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1 Introduction

These lecture notes form the basis of a one-semester course taught at the Physics
Institute and the Oeschger Centre of Climate Change Research of the University of
Bern. The present version bases the original short textbook (Stocker, 2011) and has
been extended over the years and updated.

1.1 Goals of these lecture notes

The main goals of these notes are:

1. To introduce the students to the physical basis and the mathematical descrip-
tion of the different components of the climate system;

2. to provide the students with a first approach to the numerical solution of ordi-
nary and partial differential equations using examples from climate modelling;

3. to use and apply python as a mathematical-numerical tool.

A course of two hours per week plus computer lab is too short to reach these goals.
A modest additional literature study, www included, and the application of the
knowledge gained in the computer lab shall enable the student to proceed further
in the education, e.g., in the framework of an MSc or a PhD thesis.

The course should enable the students, who are increasingly becoming users of cli-
mate models and are missing the direct contact and developmental involvement with
climate models, to gain an insight into the construction of climate model compo-
nents, the nature of parameterisations and some of the potential pitfalls of numerical
computation in the context of climate modelling. The present lecture notes aim to
achieve this by presenting and illustrating a few simple and basic examples of how
different components of the Earth system are simulated, including the processes
governing their dynamics and their relevance for past and future climate change.

Numerical climate models enable a physically based estimate of the range of future
climate change. These models, which rest on the fundamental laws of physics and
chemistry (conservation of energy, mass, momentum, etc.), are invaluable in pro-
viding scientific information towards political and societal decision making. When
the effects of a doubling of the atmospheric COy concentration, as it is expected
around the year 2050, and other changes in the atmospheric composition have to be
evaluated, only numerical climate models can generate a well-founded quantitative
answer.

Climate models bring together findings of many disciplines in natural sciences. The
understanding of dynamical processes in the atmosphere and the ocean is crucial
for its modelling. Fluid dynamics in a rotating frame of reference (geophysical fluid
dynamics) plays a major role. The resulting partial differential equations need to be
solved with calculation schemes: a problem for numerical mathematics. As in each
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model representation of natural systems, there are processes that cannot be simu-
lated because they are insufficiently understood or because they occur on temporal
or spatial scales which the model cannot capture. Therefore, parameterisations are
formulated, some of which will be presented in these lecture notes.

Here is a selection of some helpful textbooks on the topic of climate and climate
modelling:

Peixoto J.P., Oort, A.H., 1992, Physics of Climate, 2nd ed., American Institute
of Physics, 520 pp.

Very clear and detailed introduction into the physical basis of the climate system and its
different components (Atmosphere, Ocean, Ice). Good presentation of the climatology of
important quantities. The aspect of climate models, however, is treated only briefly. The

textbook is based on an earlier review article by these authors which is available at https:
//journals.aps.org/rmp/pdf/10.1103/RevModPhys.56.365

Ocean Clirculation and Climate, 2nd FEdition. A 21st Century Perspective,
2013, G. Siedler, S.M. Griffies, J. Gould, J.A. Church (Eds.), International
Geophysics Series 103, Academic Press, 904 pp.,

Very good overview of research in oceanography on a global scale. Excellent figures. The
introductory overview article The ocean as a component of the climate system is available
at https://climatehomes.unibe.ch/~stocker/papers/stockerl3ocean.pdf

G.K. Vallis, 2017, Atmospheric and Oceanic Fluid Dynamics, 2nd Edition,
Cambridge, 946 pp.

Oustanding and very accessible graduate-level textbook on geophysical fluid dynamics in
the atmosphere and ocean. Succinct derivations of the dynamics. Excellent figures.

McGuffie K., A. Henderson-Sellers, 2005, A Climate Modelling Primer, 3rd
ed., John Wiley, 296 pp.

Introduction into the hierarchy of models and formulations including examples and pro-
grams.

Washington W.M., C.L. Parkinson, 2005, An Introduction to Three-
Dimensional Climate Modeling, University Science Books, 354 pp.

Clear presentation of the physics of the different system components, not as detailed as
Peixoto & Oort (1992), but targeted at modelling the Earth System. Many parameterisa-
tions are described. An update of the classic first edition of 1986.

Houghton J., 2002, The Physics of Atmospheres, 3rd ed., Cambridge University
Press, 320 pp.

Basic and comprehensive presentation of the physics of the atmosphere (radiation, clouds,
circulation), with an overview of climate change, climate models and predictability.

Hartmann D.L., 2016, Global Physical Climatology, 2nd Edition, Elsevier, 498
pp.

Very clear and rigorous introduction to the physics of ocean and atmosphere and a
physically-based discussion on climate variability and climate change.
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Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, T.F. Stocker (eds.).

Comprehensive assessment of the scientific knowledge on natural and anthropogenic climate
change as of 2013. See https://www.ipcc.ch/report/ar5/wgl.

Climate Change 2021: The Physical Science Basis. Contribution of Working
Group I to the Sixth Assessment Report of the Intergovernmental Panel on
Climate Change, V. Masson-Delmotte, (eds.).

Comprehensive assessment of the latest knowledge about climate change, including and
interactive Atlas based on the Climate Modelling Intercomparison Project CMIP6. See
https://www.ipcc.ch/report/sixth-assessment-report-working-group-i.

Houghton J., 2009, Global Warming: The Complete Briefing, 4th ed., Cam-
bridge, 456 pp.
Excellent overview of the science knowledge regarding global warming and consequences.

Sir John Houghton was Co-Chair of IPCC for the Second and Third Assessment Reports of
the Intergovernmental Panel on Climate Change published in 1995 and 2001, respectively.

Some books on the basics of numerical solutions of problems in mathematical physics:

Schwarz, H.R., N. Kockler, 2011, Numerische Mathematik, 8. Auflage,
Springer, 595 pp.

German. Complete introduction into the different numerical methods, interpolation, inte-
gration and solution of partial differential equations. Numerous examples.

Press W.H., S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, 1992, Numerical
Recipes in Fortran (Volumes 1 and 2), Cambridge, 963 pp. (Volume 2 for
Fortran 90, 1996).

Large collection of numerical schemes in different programming languages. Schemes are
explained briefly and succinctly. Their good and bad properties are discussed. Must be
part of the library of every modeler. The newest edition (third edition, 2007) is written in
C++.

Krishnamurti T.N., L. Bounoua 1996, An Introduction to Numerical Weather
Prediction Techniques. CRC Press, 304 pp.

Comprehensive explanation of different solving schemes and parameterisations which are
used in atmospheric circulation models.

Griffies S.M. 2005, Fundamentals in Ocean Climate Models. Princeton, 528
pPp-

Excellent graduate level textbook on ocean modelling, including the implementation of
complex ocean dynamics into a numerical model.

Haltiner, G.J., R.T. Williams, 1980, Numerical Prediction and Dynamic Me-
teorology. Wiley, 477 pp.

Advanced text with many derivations of numerical techniques. Comprehensive and far
beyond the scope of these lecture notes.

For programming with python we recommend the web page: www.python.org.
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1.2 The climate system

1.2.1 Components of the climate system

The climate system can be divided into five components (Fig. 1.1) which are intro-
duced below. The overview mentions some important processes as examples:

1. Atmosphere: Gaseous part above the Earth’s surface including traces amounts
of other gaseous, liquid and solid substances. Weather, radiation balance,
formation of clouds and precipitation, atmospheric flow, reservoir of natural
and anthropogenic trace gases, transport of heat, water vapour, tracers, dust
and aerosols.

2. Hydrosphere: All forms of water above and below the Earth’s surface. This
includes the whole ocean and the global water cycle after precipitation has
reached the Earth’s surface. Global distribution and changes of the inflow
into the different ocean basins, transport of ocean water masses, transport
of heat and tracers in the ocean, exchange of water vapour and other gases
between ocean and atmosphere, most important reservoir of carbon with fast
turnover.

3. Cryosphere: All forms of ice in the climate system, including inland ice masses,
ice shelves, sea ice, glaciers and permafrost. Long-term water reserves, changes
of the radiation balance of the Earth surface, influence on the salinity in critical
regions of the ocean.

4. Land Surface: Solid Earth. Position of the continents as a determining factor
of the climatic zones and the ocean currents, changes in sea level, transforma-
tion of short-wave to long-wave radiation, reflectivity of the Earth’s surface
(sand different from rock, or other forms), reservoir of dust, transfer of mo-
mentum and energy.

5. Biosphere: Organic cover of the land masses (vegetation, soil) and marine or-
ganisms. Determines the exchange of carbon between the different reservoirs,
and hence the concentration of COs in the atmosphere, as well as the bal-
ances of many other gases, and therefore also the radiation budget. Influences
the reflectivity of the surface, hence the radiation balance (e.g., tundra differ-
ent from grassland), regulates the water vapour transfer soil-atmosphere, and
via its roughness, the momentum exchange between the atmosphere and the
ground.

A sixth component, which is particularly relevant for the assessment of future
changes, is often treated as a distinct part of the climate system: the anthroposphere
(avfporooc = human), consisting of the processes which are caused or altered by
humans. The most important ones are the emission of substances which alter the
radiation balance, and land use change (deforestation, desertification, degradation
and transformation into constructed areas).

Most of the climate models treat processes and fluxes of the anthroposphere as
an external forcing, i.e., the models are run by prescribing atmospheric concentra-
tions and emissions of CO,, other greenhouse gases and aerosols from anthropogenic
sources. Prescribed are also dust and sulphate emissions from volcanoes: for the
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Figure 1.1: The most important components and associated processes of the climate system on
a global scale.

past based on documented data and paleoclimatic information of volcanic eruptions,
for the future they may be based on a random event generator informed by observed
space-time statistics of volcanic events.

A complete climate model contains physical descriptions of all five components men-
tioned above and takes into consideration their coupling. Some components may be
described in a simplified form or even be prescribed.

Not all questions in climate sciences require a model comprising all components.
It is part of the scientific work to select an appropriate model combination and
complexity, so that robust results are produced for a specific science question.

Each climate system component operates on a range of characteristic temporal and
spatial scales. The knowledge of these scales is necessary for a correct formulation
of climate models. Table 1.1 summarizes some of relevant scales. Usually, the
definition of processes to be represented in the model restricts the temporal and
spatial resolution of the model’s grid.

1.2.2 Global radiation balance of the climate system

The Sun is the only relevant energy source for the climate system on a temporal
scale of less than about 10° years. Regionally, the geothermal heat flux may be
of importance, e.g. to correctly simulate the Antarctic ice sheet in the presence of
basal heat sources. The different global-scale energy fluxes in the atmosphere are
shown in Fig. 1.2. Coming from the Sun, on average 340 W /m? reach the top of the
atmosphere (this corresponds to about a quarter of the solar energy flux density,
Solar Constant Sy = 1361 W/m?), while barely half of this is available for heating
of the Earth’s surface. Major parts of the short-wave radiation are reflected by
clouds or reflected directly on the Earth’s surface itself and are absorbed by the
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Component of the
Climate System

Process

Characteristic
Time Scale

Characteristic
Spatial Scale

collision of droplets

-6 -3 -6
Atmosphere during cloud formation 10 107" s 107" m
formation of 4 5 5 4
convection cells 10 - 10° s 10 - 10% m
development of
large-scale weather 10 — 10° s 105 — 10" m
systems
persistence of pressure 6 6 107
distributions 10° s 10° - 10" m
Southern Oscillation 107 s 10" m
troposphere- 107 — 108 s lobal
stratosphere exchange 8
gas exchange —3 106 —6 _ 103
Hydrosphere atmosphere-ocean 10 10° s 10 10° m
deep water formation 10* — 10% s 10* - 10° m
meso-scale oceanic 6 7 4 5
oyres 10° - 10" s 10* = 10° m
propagation of Rossby 7 7
waves 10" s 10" m
El Niiio 107 — 10% s 10" m
turnover of deep water 10° - 109 s global
Cryosphere formation of 107 - 10° s 1-105m
yosp permafrost
formation of sea ice 10" - 108 s 1-10°m
formation of land ice s 11 9 7
MASSes 10° - 10+ s 10 = 10" m
Land Surface changes in reflectivity 107 — 10% s 102 m — global
isostatic equilibration
of the crust by 108 — 10" s 105 m — global
covering ice masses
Biosphere exchange of carbon 10* - 108 s 1073 m — global
p with the atmosphere g
transformation of 109 — 1010 g 102 - 107 m

vegetation zones

Table 1.1: Some examples of processes determining the climate with their characteristic time and

spatial scales.
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Figure 1.2: Global energy fluxes from different sources which determine the radiation balance of
the Earth. Figure from Wild et al. (2015).

atmosphere. Incoming short-wave radiation contrasts with outgoing surface long-
wave radiation of around 398 W/m?2 Through convection and evaporation, the
surface loses another 103 W/m?, which would—if other important processes were
absent—result in a negative energy balance of the surface.

The natural greenhouse effect, caused by greenhouse gases such as HyO, CO,, CHy,
N,O and further trace gases, is responsible for the infrared back-radiation of around
342 W/m?. This results in an energy balance with a global mean surface temperature
of about 14°C.

1.3 Purpose and limitations of climate modelling

Until around the early 20" century, climate sciences were primarily concerned with
the study of past climatic states. This was done by observation of the environment
using mostly geological, geographical and botanical methods. By the end of the
1950ies, important physical measurement methods were developed. The measure-
ment of weak radioactivity of various isotopes was the basis for the dating of organic
material using the naturally occuring *C isotope. An entire palette of additional
radioisotopes covering a range of decay times enabled the determination of flux rates
in different environmental systems (see Lecture Notes Introduction to Climate and
Envrionmental Physics).

The measurement of the stable isotopes in precipitation (Hy'60, Hy'80) revealed a
conspicuous temperature dependence owing to different phase change rates caused
by the mass difference between the two isotopes. By analysing stable isotope ratios
in permanently deposited water (i.e., polar ice) a natural “paleo-thermometer” was
realised. Furthermore, the determination of the concentration of trace gases and
other tracers in ice cores from Antarctica and Greenland made it possible, for the
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SYNTHESIS

|
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\/\/\/
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Figure 1.3: The role of climate modelling

in climate science. C & E stands for cli- Numerical Models
mate and environmental.

first time, to produce an accurate reconstruction of the chemical composition of the
atmosphere. By exploring different paleoclimatic archives, which may be described
as environmental systems that record and conserve physical quantities varying with
time, an important step towards a quantitative science was taken. Such archives
include ice cores from Greenland and Antarctica, ocean and lake sediments, tree
rings, speleothems, and many more. This enabled the transition of climate science
from the purely descriptive to a quantitative science providing numbers with units.

To understand the increasingly detailed paleo-data hypotheses are required regard-
ing the mechanisms responsible for climate change. Such hypotheses need to be
tested quantitatively and within a consistent physical framework. This is where
climate modelling comes in. Its goal is the understanding of the physical and chem-
ical information and data retrieved from, among others, paleo-data. Such models
permit a quantitative formulation and testing of hypotheses about the causes and
mechanisms of past, and the magnitude and impact of future climate change.

Figure 1.3 visualizes the role of modelling in paleoclimate science in a schematic way.
Climate change alters certain climate and environmental (C & E) parameters which
then can be “read” using appropriate transfer functions. Even in this case, model
formulation and application play a central role, but the term climate modelling is
not applicable. Climate archives can only be made accessible to research by reliable
measurement techniques. An experimental physicist produces climate data (e.g., the
reconstruction of the atmospheric CO5 concentration over the past 800,000 years).
The modeler works on the development and application of models that yield model
results within the framework process studies. The goal is the synthesis of model
results and climate data, which is achieved when the underlying mechanisms and
hypotheses are in quantitative agreement. Hence, the model yields a quantitative
interpretation of the evolution of climate, based on the laws of physics and chemistry.

The evolution of the annual mean surface temperature averaged over the northern
hemisphere over the course of the last 1,150 years is part of some of the most im-
portant climatic information in the debate on current climate change (Fig. 1.4). A
central question, that has to be resolved by models, is whether the reconstructed
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Figure 1.4: Comparison of climate model simulations and reconstructions of global surface tem-
perature over the last 1150 years that are based on information from various paleoclimatic archives
(tree rings, lake sediments, borehole temperatures, ice cores). The multi-model mean and 5-95%
range are shown as the red curve and red band, respectively. Reconstructed temperature shown in
black with the estimated 5-95% uncertainty range in grey. Observations available from 1850 on-
wards are in green showing the unprecedented increase of temperature. Figure from IPCC (2021),
Box TS.2 Fig. 2

warming—and what fraction of it—can be explained by the increase in atmospheric
COg and the resulting changes in the radiation budget. The modelling of the last
1200 years of climate evolution necessitates an accurate knowledge of the different
forcings to the radiation budget and a credible representation of natural variations
by climate models. The most important forcings are the variations in solar radia-
tion, changes in atmospheric composition, e.g. greenhouse gases, aerosols and dust,
the location, magnitude and duration of volcanic eruptions, and changes in land
cover by deforestation and other land use changes. Besides sophisticated statistical
approaches, only climate models are able to answer these questions in a quantita-
tive way and in within a consistent physical framework. Figure 1.4 compares the
most recent reconstructions of northern hemispheric temperature with those simu-
lated by an ensemble of climate models run over the past millennium and forced by
various levels of prescribed solar variations and volcanic eruptions. The model sim-
ulations exhibit variations well within the range of reconstructed temperatures over
the past 1,150 years and reproduce the significant increase in northern hemispheric
temperature during the 20" century. Some paleoclimate reconstructions suggest
warm temperatures around the year 1000 CE, but climate models do not show such
anomalies during that period. Multi-annual coolings caused by volcanic eruptions
are well simulated.

The estimation of climate sensitivity, that is the increase in the global mean temper-
ature with a doubling of the atmospheric CO, concentration above the pre-industrial
level (from 280 ppm to 560 ppm), provides important information about the cou-
pled climate system. Models, that are employed to address this question, must be
capable of simulating the natural climate variability as well as past climate changes
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Figure 1.5: Changes in global mean temperature since 1860 a), and heat uptake in the ocean since
1955 b). Grey bands for observations, a forward model simulation solid line, and two members of
an ensemble of emulator simulatios trained by a neural network dashed lines. Figure from Knutti
et al. (2003).

in a quantitatively correct manner.

An example is shown in Fig. 1.5. Here, the Bern2.5d model, a simplified climate
model that describes the large-scale processes in the ocean and atmosphere, was used
(Stocker et al., 1992; Knutti et al., 2002). The globally averaged warming, which is
observed between 1860 and 2000 (grey band) can roughly be reproduced with differ-
ent model simulations. While the long-term trend is modeled in an acceptable way,
single variations on a time scale of less than 10 years can only partly be captured.
The uptake of heat by the ocean is only simulated in broad terms. The important
deviations between 1970 and 1990 in ocean heat uptake may well be captured by
particular simulations but, until today, have not been explained by climate models
in a satisfactory way. However, this is a rare, but interesting example of a case in
which a recent correction of the observational database has brought an improvement

of the correspondence between experimental and computed data (Domingues et al.,
2008).

As any mathematical model of natural systems, a climate model is a simplification.
The degree of accepted simplification determines the complexity of the model and
restricts the applicability of a specific model to certain questions. Determining these
limitations requires considerable experience since no objective rules or guidelines ex-
ist. Especially for the development of climate models, particular care and a natural
scepticism are needed: It is not desirable to implement and parameterize all pro-
cesses without careful consideration of overall model consistency. The quality of a
climate model is not judged by the mere number of processes considered, but rather
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Figure 1.6: Vilhelm Bjerknes (1862-1951), founder of
dynamical meteorology.

by the quality of how chosen processes and their couplings are reproduced.

Of course, it is the ambition of research and development to continuously increase
the resolution and realism of climate models, and this is happening at a fast pace.
However, this rather quickly and notoriously reaches the limits of existing comput-
ing resources, particularly if long-term simulations (e.g., over 10° years or more),
or massive ensembles are desired. For this reason, intelligent simplifications and
models of reduced complexity are required. This becomes manifest in the way how

a hierarchy of models is used in current climate research. This will be discussed in
Chapter 2.

1.4 Historical development

Climate models emerged from models that were developed for weather prediction
since around 1940. Modelling atmospheric processes and circulation is the cradle of
climate model development. Vilhelm Bjerknes (1862-1951, Fig. 1.6) was the first to
realize that weather prediction was a problem of mathematics and physics. Thus,
conservation equations for mass, momentum and energy need to be formulated in
order to calculate the dynamics of the atmospheric circulation. They are combined
with an equation of state for an ideal gas. This results in a complex dynamical
system that describes the evolution of atmosphere based on physical laws.

Bjerknes assumed that a sufficiently accurate knowledge of the basic laws and the
initial conditions were necessary and sufficient for a prediction. He therefore adopted
from Pierre-Simon Laplace (1749-1827) the classical notion of predictability of na-
ture, or determinism. Only later it will become apparent, most notably through the
work of Fdward Lorenz (1917-2008) in 1963 (see Section 7.2), that the predictability
of the evolution of a non-linear system, in this case the atmospheric circulation, is
naturally limited. Bjerknes founded the “Bergen School” of meteorology and has
produced ground-breaking contributions to the knowledge of cyclogenesis.

Lewis Fry Richardson (1881-1953, Fig. 1.7) was the first to formulate a numerically-
based weather forecast. The calculations, which he conducted in 1917, were based on
observational data from 12 vertical profiles of pressure and temperature at different
stations across Europe, which—incidentally—were established by Bjerknes. These
data served as initial conditions for the calculation. Richardson defined a calculation
grid with a resolution of 3° x 1.8° and five vertical layers across Europe. It consisted
of 150 grid points, on which the pressure trends were calculated. Richardson made
use of the so-called primitive equations: the horizontal momentum conservation
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Figure 1.7: Lewis Fry Richardson (1881-1953) computed the
first weather forecast.

equations, the continuity equation prescribing conservation of mass, and the ideal
gas equation. The workload for the calculation of a 24-hour forecast was enormous:
It took three months. Only after the first computers were available in the 1940ies,
weather forecasts were feasible and were deployed as a tactical means by the end of
the World War II. Richardson’s first computations were a significant achievement
of principle value but did not provide reliable predictions. The prediction for the
change in surface pressure over six hours yielded a value of 145 hPa. Not even in
the center of a low-pressure system such a fast drop in pressure can be observed.
Nevertheless, Richardson published his result in the famous book Weather Predic-
tion by Numerical Process (Richardson, 2007). The problem was that the initial
conditions, in this case the data for the surface pressure, contained small errors that
multiplied during the numerical procedure and led to strong trends in pressure. A
calculation based on the same data but filtered at the beginning by adjusting un-
naturally strong pressure gradients, led to a plausible prediction with Richardson’s
algorithms (3.2 hPa/6 h).

This points to the fact that initial conditions, or the initialization of weather and
climate models, is a central problem of which the modeler must always be aware.
Not only the initial conditions, but also the formulation of conservation equations is
crucial. Even the most accurate initial data would have rapidly led to instability us-
ing the equations of Richardson, because they contained physical processes (gravity
waves), which destabilize the solution and make a long-term prediction impossible.

Carl-Gustav Rossby (1898-1957) achieved a break-through by realizing that the
conservation of wvorticity was a more robust constraint than that of momentum.
This approach is suitable for the system of the rotating Earth, because the Coriolis
effect can be implemented in a natural way. Planetary waves (Rossby waves) appear
in rotating fluids (Fig. 1.8) and are prominent features of the circulation in the
atmosphere and the ocean (see Section 6.4.4). Atmosphere and ocean respond to
disturbances (temperature anomalies, onset of deep water formation, etc.) with the
propagation of Rossby waves that cause currents which then are able to modify the
background state. Rossby waves are fundamental for the understanding of weather
systems in the atmosphere and the large-scale circulation in the ocean. Interesting
further information is provided at http://www.ocean.washington.edu/research/gfd
including many descriptions of table-top experiments in geophysical fluid dynamics.

In the 1940ies and 50ies the first computer (ENTAC, Electronic Numerical Integrator
and Computer) was deployed in Princeton for the US Army. The first project was the
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Figure 1.8: Stationary Rossby waves in a rotating tank
(http://www.ocean.washington.edu/research/gfd).

Figure 1.9: Edward Lorenz (1917-2008), the discoverer
of chaos in deterministic dynamical systems.

prediction of a storm surge at the American East Coast. In 1955, the first long-term
integrations of a simplified atmospheric circulation model were realized by Norman
Phillips (Phillips, 1956). This marked the beginning of general circulation models
which would solve the complete equations of atmospheric flow.

Besides the numerically complex problems, theoretical studies on the fundamentals
of the dynamic behaviour of the atmosphere and the ocean were advanced. The
conservation of momentum and vorticity in a rotating fluid implies non-linear terms
in the equation system. They result from advection of momentum in a flow (terms
of the form udu/0z, etc.). In addition, in a rotating frame such as the Earth, the
Coriolis force causes a coupling of the components of the horizontal movements.
Non-linearities are responsible for the finite predictability of such flow as Edward
Lorenz (Fig. 1.9) has found in 1963. In his landmark paper Deterministic non-
periodic flow (Lorenz, 1963) he describes how the patterns of large-scale flow can
lead to chaotic behaviour (see Section 7.2).

This pioneering paper set the basis for a entirely new scientific domain: Chaos
Theory. Although, the evolution of a classical system can be calculated in a deter-
ministic way at all times (by solving partial differential equations), the system loses
its predictability after a finite time. Smallest differences in the initial conditions
may result in totally different states already after a short time. A scaling of the
final state as a function of the initial states is no longer possible after a while. This
finding is well known as the “butterfly effect”. An excellent book with many remi-
niscences and mathematical examples is The Essence of Chaos by Edward Lorenz
(Lorenz, 1996).
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Figure 1.10: Syukuro Manabe (at a reception in Tokyo in 2004), and Klaus Hasselmann, pioneers
of coupled climate modelling, won the Nobel Prize in Physics in 2021 for groundbreaking contribu-
tions to our understanding of complex physical systems, in particular for the physical modelling of
Earth’s climate, quantifying variability and reliably predicting global warming.

In the mid 1960ies, almost 20 years after the development of the first models for
the circulation in the atmosphere, three-dimensional ocean models were formulated
(Bryan and Cox, 1967; Bryan, 1969).

The 2021 Nobel Prize in Physics was awarded to Giorgio Parisi, Syukuro Manabe,
and Klaus Hasselmann, for their groundbreaking contributions to our understand-
ing of complex physical systems. Giorgio Parisi developed methods for generalized
predictions of complex systems, on scales from molecular to galactic. Here, however,
we focus on the work by Manabe and Hasselmann (Fig. 1.10).

Syukuro Manabe was a pioneer in developing the first coupled climate models. With
the advent of large computers, so-called mainframes, such an endeavour became
feasible. In a collaboration with Kirk Bryan, both at the Geophyscial Fluid Dy-
namics Laboratory in Princeton, they presented the first coupled climate model
that simulated the general circulations of both atmosphere and ocean (Manabe and
Bryan, 1969). It was formulated in spherical coordinates and consisted of a very
simplified domain: 120° in longitude with half of the zonal domain a land mass, the
resolution in the atmosphere was 500 km and 9 vertical levels. This configuration
captured the essential elements of the global climate system while still computa-
tionally feasible in the mid 1960ies. The salient features in the atmosphere, such as
the vertical temperature structure in the atmosphere, the equator-to-pole temper-
ature distribution, the jet stream, and the key elements in the ocean, such as the
vertical temperature distribution, the gyre circulations with their western boundary
currents, and the thermohaline circulation, were simulated. The work was more
than a proof-of-concept, since it marked the beginning of climate modelling using
comprehensive models. Building on this early success, Suki Manabe and colleagues
pushed the coupled modelling forward, by improving the model and, at the same
time, cleverly applying it to emerging problems both in the area of paleoclimate
questions regarding the mechanism of abrupt climate change as seen in the Green-
land ice core (Manabe and Stouffer, 1988), and global warming and the response of
the thermohaline circulation to warming (Manabe and Stouffer, 1994).

Klaus Hasselmann initially approached the challenge from a more theoretical an-
gle by simulating and analysing the climate system using a combination of models
and new statistical methods. His basic insight was that climate variability could
be understood as the interplay of stochastic weather forcing of a slow-responding
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Figure 1.11: Two early key contributions of the Nobel laureates Syukuro Manabe and Klaus
Hasselmann. Left: Radiative-convective model showing the temperature response through the
atmospheric column when increasing or decreasing the CO2 concentration (Manabe and Wetherald,
1967). Right Schematic illustration of the spectra of the fast and slow responding components,
the atmosphere and ocean, respectively (Hasselmann, 1976).

ocean-cryosphere component (Hasselmann, 1976). Klaus Hasselmann and colleagues
then developed new statistical techniques to detect and attribute observed climate
change to human activity. The approach uses pattern analysis (empirical orthogo-
nal functions) from climate models and observations and combines them to quantify
the amount of warming of the 20" century that is caused by the increase in CO,
concentrations. This fingerprinting method permitted, for the first time, to individ-
ually estimate the contributions of greenhouse gases, aerosols and solar variations
to the observed global mean surface warming (Hegerl et al., 1997). Today, detec-
tion and attribution has evolved into a new field in climate research and provides
attribution information of many quantities in the climate system (e.g. changes in
sea ice, ocean temperature and salinity, heat waves, floodings). Most recently, sin-
gle extreme events have been attributed to human influence. This event attribution
(Otto, 2017) has serious legal implications regarding liability for loss and damage
caused by climate change and climate extreme events. Klaus Hasselmann also laid
out a plan for an efficient ocean model (Hasselmann, 1982) which was then used
for the first simulations of the carbon cycle in the world ocean (Maier-Reimer and
Hasselmann, 1987). With this approach, physical climate modelling has extended to
other disciplines. Today coupled modelling includes also modules of chemistry (e.g.,
in the tropo- and stratosphere), biogeochemistry (e.g., in the ocean) and biology
(e.g., in land vegetation), as illustrated on the time axis in Fig. 1.12.

Finally, we show two key figures of the early contributions by the two Nobel laureates
(Fig. 1.11). Manabe and Wetherald (1967) developed a one-dimensional radiative-
convective model, the first model that simulated the vertical thermal structure of
the atmosphere in which the temperature decreases with altitude to about —56°C up
to the tropopause at around 10km, remains nearly constant until 20 km, and then
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increases again to about —3°C up to the stratopause at 50 km altitude. This vertical
distribution is the effect of adiabatic cooling and the presence of HyO, CO,, and O3
in the atmosphere. With this model they calculated the changes in temperature
upon a doubling of the COy concentration (Fig. 1.11, left). They concluded, that
the surface warming would be 2°C, a value that is still consistent with the latest
assessment of the IPCC (see Section 2.4). More remarkable is their prediction that
the entire troposphere will be warming while the stratosphere will be cooling. More
than 50 years later, this conspicuous vertical temperature fingerprint is now robustly
observed (IPCC, 2021).

Hasselmann (1976) presented a radically reduced description of the climate system
by focussing on the time variability of an observed quantity and recognizing that
there is a significant gap of time scales between the atmosphere and the ocean,
cryosphere and land. The fast responding component represents the atmosphere
which through weather, an essentially stochastic variability, acts upon the ocean,
the slow responding component. The spectra of the two components are sketched
in Fig. 1.11 (right), as red and blue noise, respectively. He found that the time
evolution of the probability of the slow component can be described by a Fokker-
Planck equation. This also allowed basic inferences regarding predictability under
stochastic forcing. Hasselmann’s study opened up a new avenue to utilize methods
of theoretical physics, classically applied to problems such as Brownian motion,
turbulence and plasma fluid dynamics, and thereby rooted climate science firmly in
Physics.

Already theoretically addressed by Hasselmann (1976), a particular challenge in the
implementation of climate models remained were the widely disparate time scales
for the atmosphere and the ocean (see Table 1.1). In consequence, for each time step
in the ocean, 100 time steps in the atmosphere were calculated. This asynchronous
coupling is still employed today, in particular in the recent efforts to couple polar ice
sheets, an even slower component, to climate models. A notorious problem was that
the required heat and water fluxes from the atmosphere and the ocean, which yield
surface climatologies of these models that are coherent with observations, were not
compatible across the two model components. This necessitated the introduction of
a non-physical flux corrections or anomaly coupling, which was used in most models
for over 30 years. This topic will be discussed in Chapter 8.7. The problem could
only be resolved in the early 2000s thanks to a higher resolution of the models —
generally a resolution of at least 2° x 2° is required —, as well as with improved
parameterisations of not explicitly resolved processes.

Since the early 1990ies, significant improvements were also achieved by incorporating
further climate system components (Fig. 1.12). Climate models are progressively
becoming more complete. The carbon cycle, dynamical formulations of vegetation
types, the chemistry of the atmosphere and ice sheets, belong to components that
are currently implemented into existing physical circulation models. In consequence,
climate modelling has become an interdisciplinary science.

Besides ever more detailed models, also simplified climate models are being devel-
oped. They permit the study of basic problems of climate sciences in an efficient
way. The development and application of climate models of reduced complexity
(often called EMICs, Earth System Models of Intermediate Complexity) have made
important contributions to the understanding of the climate system, in particu-
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Mid-1970s Mid-1980s Early 1990s Late 1990s Early 2000s Late 2000s Early 2010s

Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere

Land surface Land surface Land surface Land surface
Ocean & sea-ice Ocean & sea-ice Ocean & sea-ice
Sulphate Sulphate Sulphate Sulphate
aerosols aerosols aerosols aerosols
Non-sulphate Non-sulphate Non-sulphate
aerosols aerosols aerosols
/ Carbon cycle
Ocean & sea-ice Sulphur Non-sulphate
model cycle model aerosols
Land carbon

cycle model \ .
arbon
cycle model
Ocean carbon _—"" A

cycle model
Dynamic Dynamic
vegetation vegetation
Atmospheric Atmospheric
chemistry chemistry

Figure 1.12: Chronology of climate model development. The implementation of new components
(carbon cycle, vegetation and atmospheric chemistry) leads to an increased complexity as well as
to an increase in required computational resources. Yet it is a necessary development when the

interaction of the different processes needs to be simulated quantitatively. Figure modified from
IPCC (2001), Technical Summary (Box 3, Figure 1, p. 48).

lar in the quantitative interpretation of paleoclimatic reconstructions and ensemble
simulations of future climate change.

1.5 Some current examples in climate modelling

1.5.1 Detection and attribution of anthropogenic climate change

Given that the most important driving factors of the radiation balance are known,
the effect of increasing CO, concentrations on the annual mean atmospheric tem-
perature and other variables can be estimated. Figure 1.13 presents the results
of simulations with climate models carried out within CMIP5, the Coupled Model
Intercomparison Project Phase 5, to inform the 5th Assessment Report of the Inter-
governmental Panel on Climate Change (IPCC). The averaged temperatures, ocean
heat content, and sea ice extent of the model runs are compared with observations
during the 20" century (bold lines). If the models consider all driving factors:
change in the solar irradiance, volcanic eruptions, atmosphere-ocean interactions,
changes in the concentration of COs, other greenhouse gases as well as sulphate
aerosols, an agreement of the simulations with the observational records is found
(red bands). In case the anthropogenic driving factors are not included, a system-
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Figure 1.13: Evolution of continental land surface air temperature along with Arctic and Antarc-
tic September sea ice extent and upper ocean heat content in the major ocean basins, based on
measurements (bold line) and ensemble simulations with coupled climate models (bands). Only
simulations with a complete forcing which includes changes in greenhouse gases, aerosols, observed
volcanic eruptions and variable solar radiation, show reasonable agreement with the observations
over the entire 20" century (red bands). In case the effect of anthropogenic forcings (greenhouse
gases, aerosols) on the radiative balance is not taken into account, the global and continental-scale
increase in temperature cannot be simulated (blue bands). Figure from IPCC (2013), Summary
for Policymakers (Figure SPM.6).

atic deviation of all model simulations from the observations appears from about
1970 onwards (blue bands). This finding is valid globally, as well as averaged over
continental scales, both on land and in the ocean basins.

This leads to a clear statement in 2013:
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Figure 1.14: Changes in sea ice cover in the Arctic from 1900 to 2100. Shown are time-series
of the Arctic sea ice extent, firstly experimental data from satellite observations (red solid line),
and secondly ensembles of numerical simulations computed from 20 climate models, where each
dotted colored line signifies an ensemble member and each solid colored line an ensemble mean.
The numerical simulations are based on the representative concentration pathway 4.5 (RCP4.5)
which leads to a stabilization of the radiative forcing in the year 2100 at 4.5 Wm~2. This Figure
is discussed in Stroeve et al. (2012); observations are updated with recent data (figure supplied by
Julienne Stroeve and modified).

IPCC 2013, WGI Summary for Policymakers:

Human influence has been detected in warming of the atmosphere and the ocean, in
changes in the global water cycle, in reductions in snow and ice, in global mean sea level
rise, and in changes in some climate extremes. This evidence for human influence has
grown since AR4. It is extremely likely that human influence has been the dominant
cause of the observed warming since the mid-20*" century.

which was made in the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC, 2013). Eight years later, in 2021 this attribution statement
could be strengthened (IPCC, 2021):

IPCC 2021, WGI Summary for Policymakers:

Human-induced climate change is already affecting many weather and climate extremes
in every region across the globe. Evidence of observed changes in extremes such as
heatwaves, heavy precipitation, droughts, and tropical cyclones, and, in particular, their
attribution to human influence, has strengthened since ARS5.

1.5.2 Decrease in Arctic sea ice cover since around 1970

The decrease in the Arctic ice cover is documented by direct observations as well
as by remote sensing. Since around 1970, the decrease in total area has accelerated
(Fig. 1.14). Evidence from submarine missions also points to a drastic decrease in the
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thickness of sea ice. A similar development is visible in all coupled climate models
which were used for the Fifth Assessment Report of the IPCC (IPCC, 2013). The
models indicate an accelerated decrease in the extent of Arctic sea ice since around
1970. The simulations are based on the representative concentration pathway 4.5
(RCP4.5) assuming a stabilization of the actually increasing radiative forcing in the
year 2100 at 4.5 Wm™2 (Moss et al., 2010). Observations and model simulations
agree with negative trends of Arctic sea ice cover. This issues a stark warning
regarding the development of this important variable in the next few decades. In
fact, a sea ice-free Arctic in late summer before mid-century is likely for a business-
as-usual emission scenario (RCP8.5, see IPCC, 2013).

1.5.3 European summer temperatures by year 2100

The question how an increase in global mean temperatures will affect the climate
in Europe can still only roughly be answered by a few climate models with regional
resolution (Fig. 1.15). The high resolution (56 km) requires enormous computational
resources and only so-called time slices can be calculated. The simulation with
a regional climate model shows a significant increase in summer temperatures in
Europe between 2071-2100 (Schér et al., 2004). The warming is accentuated at
high altitudes due to the positive snow-albedo feedback and in the Mediterranean
area due to the positive feedback of soil drying. Besides a strong warming by the
end of the 215 century, every second or third summer then will be equally hot or



1.5 Some current examples in climate modelling 21

hotter than the extreme summer of 2003, an extreme event which had not occurred
in the last 500 years.

A single simulation, however, is not yet a reliable description of the expected warm-
ing. Therefore, ensemble simulations with individual models and the aggregation of
such into multi-model ensembles have become the standard. Uncertain quantities
such as the climate sensitivity or the influence of clouds must be examined system-
atically. Future climate projections will be associated with estimates of probability
which can be derived from ensemble simulations. This approach has already been
used for the Fourth Assessment Report of the Intergovernmental Panel on Climate

Change IPCC (2007).

1.5.4 Allowable emissions for CO, concentration pathways

A cornerstone of the Paris Agreement (UNFCCC, 2015) is Article 4:

Paris Agreement, Article 4:

1. In order to achieve the long-term temperature goal set out in Article 2, Parties aim
to reach global peaking of greenhouse gas emissions as soon as possible, recognizing
that peaking will take longer for developing country Parties, and to undertake rapid
reductions thereafter in accordance with best available science, so as to achieve a balance
between anthropogenic emissions by sources and removals by sinks of greenhouse gases
in the second half of this century, on the basis of equity, and in the context of sustainable
development and efforts to eradicate poverty.

How much greenhouse gases, for example CO,, may be emitted each year without
exceeding the tolerated concentrations of these gases, and the consequent warming?
The answer to this question can only be given on the basis of climate model simula-
tions that include representations of biogeochemical cycles, in particular the carbon
cycle. The exchange of carbon between atmosphere and ocean and the role of the
terrestrial and marine biosphere have to be considered with suitable sub-models and
parameterisations.

Figure 1.16 shows an example of the application of an EMIC. The long-term sta-
bilisation of CO5 concentrations can only be achieved by strongly reduced and ul-
timately vanishing emissions of COs. This would require a complete replacement
of fossil fuels. In 1998, the emissions of all fossil energy sources (cement produc-
tion included) was around 6.6 GtC/yr (1 GtC/yr = 1 gigaton carbon per year =
10 kg C/yr); 10 years later it was exceeding 8 GtC/yr. The computations show
that after a permitted maximum in 2030, the emissions need to decrease drastically
(globally around 1% per year). Such model simulations are of crucial significance to
global political decisions related to international treaties such as the Kyoto-Protocol
and the Paris Agreement of 2015. In fact, our calculations in 2008 were part of the
scientific foundation of Article 4 of the Paris Agreement of 2015.

1.5.5 Predicting El Nino: The example of the 2015/16 ENSO

The irregular warming of waters in the tropical Eastern Pacific, known as the Fl
Nirio-Southern Oscillation (ENSO) phenomenon, strongly affects the tropical cli-
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Figure 1.16: Projected allowable carbon emissions leading to stabilization of atmospheric CO5 at
given stabilization levels for the Bern2.5CC EMIC for different pathways leading to stabilization.
a) Assumed trajectories of COs concentrations in the SP, OSP, and DSP profiles. b) Implied
carbon emissions as projected with the Bern2.5CC EMIC. Profiles with the delayed turning point
in the atmospheric CO5 increase (DSP) or atmospheric CO5 overshoot (OSP) are compared to the
standard SP profile. 31-yr running averages are applied to the results. Figure from Plattner et al.
(2008).

mate and in particular the water cycle. The formation of atmospheric pressure and
temperature anomalies also causes deviations from the usual climate around the
globe (teleconnections). In the eastern equatorial Pacific the warming is due to a
cessation of the upwelling of cold, nutrient-rich waters, as the trade wind system
weakens. This affects the fisheries in this regions fundamentally. The changes which
may last some months up to around 1.5 years, cause severe economic damage.

Due to the various teleconnections, some regions may exist which are affected by El
Nifo in a positive way (e.g., by increased precipitation in vegetation regions, where
water is normally the limiting factor). However, the strong El Nino of 1997-1998 is
estimated to have caused net economic damage (gains and losses, depending on the
region) in the USA of around 25 billion US$. Therefore, a reliable prediction of El
Nino is of highest economic and societal significance.

For the first time, the ENSO event of 1997-1998 could be predicted already 6 months
in advance. This time span allowed the affected regions to take precautions and to
adapt to the expected climatic consequences (droughts, floods, poor harvest, in-
creased prevalence of Malaria by unusually high temperatures, etc.). This success
was enabled by the set-up of a dense observation net in the tropical Pacific (in
situ and via remote sensing) since the early 1980ies (TOGA Program, 1985-1994,
McPhaden et al. (1998)), the intensive research in the theory of the coupling be-
tween ocean and atmosphere in the tropics, and statistical and dynamical model
development.

Figure 1.17 shows the prediction of the evolving ENSO 2015/2016 based on dynam-
ical and statistical models for two initialization periods. By then, such predictions
with several months of lead time have become routine and many countries and
businesses depended on them. The 2015/16 ENSO came as a complete surprise to
the prediction centres and demonstrated still unsolved issues in the ENSO forecast
systems. Initialization of the models in mid January 2015 showed non-anomalous
temperature conditions persisting into late fall 2015. However, in the course of the
year, sea surface temperature in the eastern equatorial Pacific started to rise and
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Figure 1.17: Sea surface temperature evolution in the tropical Eastern Pacific (Nifio 3.4 region)
simulated with several dynamical and statistical models. Left: Initialization in mid January shows
generally insufficient skill beyond 2 months lead time: the prediction of the onset of the 2015/16
ENSO failed. Right: When the same models are initialized in mid August predictability is high
with lead times of up to 8 months. The demise of ENSO is correctly predicted. Figure from Tang
et al. (2018), collected from http://iri.columbia.edu/our-expertise/climate/forecasts/enso.

a full-blown ENSO developed by December 2015. Comparison with observations
shows that the models initialized in January 2015 had almost no skill, with the ex-
ception of one model that captured the onset of the 2015/16 ENSO correctly. This
was a complete surprise, as usually only initializations from April to June show very
low predictability. This is referred to as the spring predictability barrier of ENSO.
Initializations in mid August show remarkable skills by most models. They correctly
predict the demise of the 2015/16 ENSO, with lead times of up to 8 months. It is
important to note that the single models differ in their quantitative prediction, with
the dynamical models being generally superior to the statistical models.

1.6 Conclusions

Climate models are simplified descriptions of complex processes within the climate
system. They are used for the quantitative testing of hypotheses regarding the
mechanisms of climate change, as well as for the interpretation of instrumental
data from paleo-data from various archives. Climate models are also essential for
the operational prediction of the economically important ENSO-phenomenon and
other climate modes. A further important motivation for the development and
application of climate models remains the aim to assess future climate change and
inform policymakers and the public about the consequences of climate policies.

Research developing and using climate models has become interdisciplinary and com-
prises domains of physics (thermodynamics, fluid dynamics, atmospheric physics,
oceanography), chemistry (organic, inorganic and surface chemistry, reaction kinet-
ics, geochemistry, cycles of carbon, nitrogen, etc.) and biology (vegetation dynamics,
ecology), and even economics (cost of climate impacts, loss and damage).

By the end of the 1960ies, simple climate models (energy balance models) were
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Figure 1.18: Increase in COy concentration, measured since 1958 on Mauna Loa (Hawai’i). COz-
data from https://gml.noaa.gov/ccgg/trends/.

developed in order to examine planned climate modifications (Budyko, 1969). The
idea was to strongly reduce the snow cover by a large-scale distribution of ash
and therefore cause a warming of Siberia in order to access new agricultural lands
(“geoengineering”). In the meantime, we have become aware that humans alter the
climate inadvertently by continuous emissions of COy and other greenhouse gases.
The increase in atmospheric CO, concentrations (Fig. 1.18) testifies to this fact with
great precision. This time series has become a cornerstone in global change research.

Figure 1.18 also provides evidence of life on planet Earth and shows its global sig-
nature. The seasonal fluctuations in COy are the result of the “breathing” of the
biosphere (vegetation and soils). During spring in the Northern Hemisphere, carbon
is taken up and is released in winter through respiration. Additionally, the inter-
annual variability of COs is visible, which is caused by the warming and cooling of
large parts of the ocean, for example during ENSO events or volcanic eruptions.

Today, CO5 concentrations are 35% higher than ever before in the last 800,000 years
(Liithi et al., 2008). This important fact has been derived from several decades of
research on ice cores from Greenland and Antarctica. Ice contains bubbles in which
air is enclosed. The enclosure process occurs at the firn-ice transition in a depth of
about 80 to 120 meters on the two polar ice sheets of Greenland and Antarctica. Ice
cores are therefore natural archives which preserve information on the content and
composition of the atmosphere in the past.

Figure 1.19 shows a compilation of such measurements of CO5 and an estimate of
local temperature based on the concentrations of the stable isotopes in ice. At the
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Figure 1.19: Evolution of the atmospheric COy concentration (blue) and Antarctic temperature
(red) over the past 800,000 years from measurements on several ice cores from Antarctica (Petit
et al., 1999; Siegenthaler et al., 2005; Jouzel et al., 2007; Liithi et al., 2008). Direct measurements
of CO3 in the atmosphere since 1958 are added.

far right side the anthropogenic increase in CO, during the last 250 years is added
to the graph. The CO,; measurements in the older half of this time series were
performed at the University of Bern (Siegenthaler et al., 2005; Liithi et al., 2008).
This demonstrates not only the unprecedented concentrations of COs today over
the last 800,000 years, but also the rate of increase of COy during the last 250 years,
which is estimated to be about one hundred times faster than ever during the last
20,000 years.

Recognizing the increasing greenhouse gas concentrations, and the climate change
induced by them, the global community has defined a remarkable goal in Article 2
of the UN Framework Convention on Climate Change (UNFCCC, 1992):

UNFCCC, Article 2:

The ultimate objective of this Convention and any related legal instruments that the
Conference of the Parties may adopt is to achieve, in accordance with the relevant provi-
sions of the Convention, stabilization of greenhouse gas concentrations in the atmosphere
at a level that would prevent dangerous anthropogenic interference with the climate sys-
tem. Such a level should be achieved within a time-frame sufficient to allow ecosystems
to adapt naturally to climate change, to ensure that food production is not threatened
and to enable economic development to proceed in a sustainable manner.

Climate research, has informed policymakers about the consequences of anthro-
pogenic climate change since 1990 when the first assessment report of the IPCC
was approved. The quantification of future climate change and its regional impact
was enabled by climate modelling. In the past 30 years it has become clear that
we cannot afford unabated climate change and that global heating beyond a certain
level does become dangerous. The danger lies not only in the shift of the mean
climate, the rising sea level and the ocean acidification, but also in the risk posed
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by climate extrem events whose intensity and frequency increase rapidly with the
warming. The limits of warming have been negotiated for many years at the annual
Conferences of the Parties (CoPs) of the UN Framework Convention on Climate
Change. Finally in 2015, at CoP21 in Paris, the Paris Agreement was approved
(UNFCCC, 2015). The key statements in this legally binding treaty read:

Paris Agreement, Article 2:

1. This Agreement, in enhancing the implementation of the Convention, including its
objective, aims to strengthen the global response to the threat of climate change, in the
context of sustainable development and efforts to eradicate poverty, including by:

(a) Holding the increase in the global average temperature to well below 2°C above
pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C
above pre-industrial levels, recognizing that this would significantly reduce the risks and
impacts of climate change;

(b) Increasing the ability to adapt to the adverse impacts of climate change and foster
climate resilience and low greenhouse gas emissions development, in a manner that does
not threaten food production;

(¢) Making finance flows consistent with a pathway towards low greenhouse gas emissions
and climate-resilient development.

2. This Agreement will be implemented to reflect equity and the principle of common but
differentiated responsibilities and respective capabilities, in the light of different national
circumstances.

In the light of limiting global warming and the difficulty (and reluctance of certain
stakeholders) to eliminate fossil fuels, geoengineering has experienced a recent re-
vival. Of particular interest is solar radiation management, or anthropogenic solar
dimming (Robock et al., 2008; Tilmes et al., 2020; NAS, 2021). This is achieved by
injecting substances into the lower stratosphere to reduce the shortwave radiation
reaching the Earth’s surface. Here, climate models are indispensable to quantify the
impact of such interventions.

However, no proposal so far has convincingly shown that geoengineering is able to
reduce global warming without other, undesired side-effects particularly associated
with the water cycle and changes in regional water availability. Also, the conse-
quence of a constant loading of the lower stratosphere with substances on strato-
spheric cloud processes and chemistry remain poorly known. Furthermore, ocean
acidification, caused directly by the rising atmospheric levels of CO, is not addressed
at all. Therefore, many physical reasons can be brought forward, not least moral,
intergenerational responsibility ones, to reject the option of geoengineering (Robock,
2008). In fact, geoengineering is likely to constitute dangerous anthropogenic inter-
ference with the climate system, which according to Article 2 of the UNFCCC, must
be prevented.



2 Model hierarchy and simplified climate models

2.1 Hierarchy of physical climate models

There is no best climate model! Different models have different advantages which
may be due to their complexity or the form of their implemented parameterisa-
tions (used in climate models). Table 2.1 gives an (incomplete) overview of the
hierarchy of models used for climate simulations. They are ordered according to
their spatial dimensions. Only model types are listed but each type may be for-
mulated in different ways. For instance, different resolutions are used, different
grid structures, parameters and parameterisations are chosen in a different way, etc.
There are, for example, more than a dozen different ocean circulation models, all
of which essentially solve the same conservation equations. For model development
and progress the various Modelling Intercomparison Projects provide important in-
sight: AMIP (Atmospheric Modelling Intercomparison Project), OMIP (Ocean ... ),
OCMIP (Ocean Carbon-cycle...), CMIP (Coupled...), PMIP (Paleo...), C*MIP
(Coupled Climate-Carbon Cycle Modelling Intercomparison Project), etc.

In order to tackle problems across the board in climate dynamics, a model hierarchy
is required. An example is the investigation of the climate at the time of the Last
Glacial Maximum some 21,000 years ago. Simplified models of the type shown in
the bold framed area of Table 2.1 permit a systematic examination of the parameter
space: which driving factors (solar radiation, greenhouse gases, aerosol, volcanic
forcing) are important for simulating, for example, the water mass distribution in the
ocean, which parameters and processes produce a significant cooling of the tropics,
ete.

Models of spatial dimension 0 or 1 help us illustrate some fundamental concepts
in climate dynamics. Clever formulations of these 0-dimensional models are, under
given circumstances, very useful for scenario or ensemble calculations. An EBM will
be presented in Section 2.2.

So called Saltzman Models are globally averaged models which simulate some time
dependent, large-scale variables that are coupled via heuristic relationships (e.g.,
global mean temperature, ice volume, atmospheric COy concentrations, etc.) and
form a non-linear, dynamical system. These models can be derived from the basic
equations in a rigorous way (Saltzman, 2001). They are a radical alternative to the
classic approach in climate modelling, but they often provide very valuable insight
into Earth System processes and their interactions. For example, the question re-
garding the origin of the transition from a 40,000- to a 100,000-year periodicity of the
glacial cycles about 10° years ago, The Mid-Pleistocene Transition, can be addressed
with such conceptual models (Paillard, 1998; Tziperman and Gildor, 2003).

Pulse response models are efficient substitute models for particular quantities which
are simulated in a more comprehensive and expensive way by three-dimensional
models. They require a linear behaviour of the simulated processes which at first
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Ocean
Dim
0 1 2 3
EBM pozlgt model wind-driven
Stommel model (lat,lon)
bipolar seesaw 6.7
9.2 Ekman model
deep ocean
0 Lorenz model global mixing (z) Stommel model (lat,lon) OGCM
7.2 6.8
Munk model (z)
pulse reponse model thermohaline
Stommel model (lat,z)
neural networks 9.4

Fig. 1.5
L
S
EBM (lat)
% 4.3, (6.38) 2.5D ocean (lat,z)
o1 radiative-convective B:,EE% ,(,L?,E)d
E model (z) (Figs. 1.5, 2.1, 9.10)
= Fig. 1.11
<
OGCM + EBM (lat,lon)
2 EBM (lat,lon) stat.-dyn. atm. (lat,z) + ocean (lat,z) + stat.-dyn. Bern3D model (Fig. 2.1)
’ diffusive ocean (z) atmosphere (lat,lon)
OGCM + QG atm. model
AOGCM
8.7,9.5
3 AGC.M2+3SST AGCM + mixed layer AGCM + slab ocean
Fig. 2. Earth System Model

Figs. 1.12, 2.4, 2.5

Table 2.1: Hierarchy of coupled models for the ocean and the atmosphere with some examples,
ordered according to the number of spatial dimensions considered. The direction of dimensions is
specified in brackets (lat = latitude, lon = longitude, z = vertical); 2.5D corresponds to several two-
dimensional ocean basins linked in the Southern Ocean; EBM stands for energy balance model; QG
is the abbreviation for quasi-geostrophic, AGCM (atmospheric general circulation model), OGCM
(ocean general circulation model), SST (sea surface temperature). The bold framed cells indicate
climate models of reduced complexity, also called Farth System Models of Intermediate Complexity
(EMICs), which permit integrations over very long periods (several 103 to 10° years) or massive
ensemble simulations. Sections, figures, or equations, where these models are presented, are given
in small bold. The table is not completely filled because some combinations are not meaningful.

has to be verified by a more complex model. The response of a complex model to
any disturbance (for example the warming caused by an increase in atmospheric
CO; can be regarded as a temporal integral of elementary responses of a complex
model to a pulse-like perturbation (d-function). These models are, e.g., successfully
applied to the calculation of CO5 uptake by the ocean or for the global warming as
an input for vegetation models. Thanks to their simplicity, they permit extended
scenario calculations (Siegenthaler and Joos, 1992; Joos et al., 2013).

A not yet common but promising method is the application of neural networks with
which substitutes for complex climate models can be built. In contrast to pulse
response models processes that are non-linear or include several equilibria can be
substituted. A limiting factor is the fact that neural networks need to be trained
with simulations of the model to be substituted. Since such “training sets” require
information, a certain amount of computational effort is necessary. Once the network
is trained, the calculation of ensembles can be realized very efficiently. This method
was employed using a simplified model (Knutti et al., 2003).

Energy balance models (EBM) belong to the earliest simplified climate models that
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Figure 2.1: Two generations of EMICs developed and used at Climate and Environmental
Physics. (a, b) Components and geometry of the first generation Bern2.5D model, one of the
first climate models of reduced complexity (Stocker et al., 1992). Ocean currents are averaged
zonally and are simulated in three basins, connected in the south (category 1/2). ¢, d Second
generation Bern3D model grid and application simulating the global distribution of chromium in
the ocean, a novel paleoceanographic tracer (Poppelmeier et al., 2021). These EMICs are compu-
tationally very efficient and permit simulations spanning over 10° to 10 years.

were used for the quantitative assessment of climate change. An example shall be
discussed later in Sects. 2.2 and 4.3.

Advection-diffusion models describe, e.g., the vertical mixing in the ocean on a global
scale in a summarized form. They provide insight into some aspects of the carbon
cycle (e.g. Siegenthaler and Joos, 1992); they are applied for questions concerning
past changes in atmospheric CO, (last 10,000 years) as well as for the assessment of
emission scenarios for future climate change.

Models of the category (0/2) are theoretical models of physical oceanography, but
some of them are used as ocean components in simplified climate models. The class
of climate models of reduced complexity (Earth System Models of Intermediate Com-
plexity, EMIC' is framed in bold in Table 2.1. Long-term simulations, particularly
important for paleoclimate dynamics, are based on such models.

The Division of Climate and Environmental Physics at the University of Bern,
Switzerland, has developed and applied such models since 1993. The concept and the
geometries of two successive generations of EMICS, the Bern2.5D and the Bern3D
models, are shown in Fig. 2.1. Although only very few atmospheric and oceanic pro-
cesses are considered, and the number of parameterisations is kept at a minimum,
these models are fairly consistent with observations on large spatial scales (> 10° m).
For example, the meridional distribution of air temperature or the distribution of
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Figure 2.2: Schematic illustration of model grids in three-dimensional AGCMs and OGCMs. The
resolution of a coupled climate model is typically set at 4° x 4° to 2° x 2° and 20 to 40 vertical
layers. Today, for single components, resolutions of up to 0.1° are applied. In this case, the
calculation is restricted to either limited regions or an extremely short time of integration, hence
not yet applicable for global climate studies. Figures from Ruddiman (2007).

water masses in the three ocean basins compare well with observational estimates.
These models were successfully employed in various ways in order to simulate quan-
titatively past climate change as, for example, found in Greenland ice cores. Even
some basic aspects of biogeochemical cycles were implemented which permitted the
direct comparison of model results with ice core measurements of COy and other
greenhouse gases (Marchal et al., 1999).

These models were also used to assess the stability of the oceanic circulation in the
Atlantic under a global warming scenario. The models showed that the stability of
the circulation not only depends on the absolute amount of warming, but also on the
rate of warming (Stocker and Schmittner, 1997). Later, this fundamental finding was
confirmed by three-dimensional AOGCMs (Atmosphere/Ocean General Circulation
Models). This is a good example for how new and relevant climate mechanisms are
found and explored with models of reduced complexity. Of course, such results then
need to be verified or falsified by more comprehensive models. The implementation
of suitable biogeochemical components permits the examination of the interaction
of the carbon cycle with the ocean over the course of the next 1000 years (Joos
et al., 1999; Plattner et al., 2008, see also Fig. 1.16). This is of significance for the
question of a possible run-away greenhouse effect as a result of an anthropogenic
increase in atmospheric CO,. In the future, such models (e.g., the MIT model in
category 2/1) may be coupled to macro-economic models, which assess the economic
effects of climate change and mitigation options.

The latest developments at the Division of Climate and Environmental Physics,
University of Bern, are devoted to models of category 3/2, where the ocean is three-
dimensional as in Fig. 2.2 (right), but coarsely resolved. Still considered an EMIC,
this model has been combined with biogeochemical modules representing the marine
carbon cycle and a dynamical vegetation. Furthermore, the model now includes a
palette of paleoceanographic tracers that allow direct simulations and comparison
with marine sediment records. This represents an important novel instrument in pa-
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leoclimate research (Miiller et al., 2006; Ritz et al., 2008, 2011; Rempfer et al., 2011;
Poppelmeier et al., 2021), including a dynamical ice sheet model of the northern
hemisphere (Poéppelmeier et al., 2023).

Comprehensive climate models consist of a three-dimensional formulation for the
atmosphere (AGCM, Atmospheric General Circulation Model) as well as for the
ocean (OGCM, Ocean General Circulation Model). The grid structures are shown
schematically in Fig. 2.2. The coupling of the two, often given in differently formu-
lated grids, is dynamic, meaning that ideally, at each time step, momentum, heat and
water, and other tracers, are exchanged. For sufficiently good models, this is possible
in a physically consistent way. Otherwise fluz corrections have to be implemented
in order to stabilize the simulated climate. AGCMs are classified in the highest
levels of the model hierarchy shown in Table 2.1. They are extremely demanding
with regard to their development, maintenance, computer time and storage and,
finally, the analysis of results. Although such models are already run on personal
computers or clusters, for their integration period quite strong limitations exist. A
simulation of a hundred years is already a large project! These models contain a
large number of parameterisations. They are being developed at various centers
globally (Hadley Centre, UK; MPI Hamburg, DE; NCAR, USA; NASA-GISS, USA
and many others).

The agreement of the current highest-resolution atmospheric general circulation
models with observations is remarkable. This is illustrated for the visible cloud cover
shown in Fig. 2.3). The model has a resolution of 9 km and 1.4 km, respectively.
The atmosphere consists of a rich structure of regions that are very dry (between
20° and 45° in latitude) and regions that have a wide-spread cloud cover (50° to
65° in latitude). The effects of simulated eddies and large-scale circualtion features,
as well as tropical convection are evidenced in the characteristic cloud cover over
the different regions. At the km-scale resolution, atmospheric and oceanic models
achieve a remarkable degree of realism (Schér et al., 2020).

Simulations carried out under CMIP5 show that climate models are reproducing the
mean of surface air temperature remarkably well (Fig. 2.4). Given the large spread
of mean surface air temperature over the globe (about 50°C), deviations of +5°C
must be considered as relatively moderate (Fig. 2.4 left). Over the poles, simulated
temperatures are generally too cold. The seasonal cycle of surface temperature
is also assessed in CMIP5 (Fig. 2.4 right). Over continents the amplitude of the
seasonal cycle tends to be overestimated, while over the ocean it is smaller than
climatology.

Precipitation is much more difficult to simulate because it strongly depends on sur-
face characteristics (e.g., soil moisture, vegetation cover) and topography which are
still poorly resolved in current coupled models. Hence, deviations between the simu-
lated data of individual climate models on the one hand and between the simulated
and observed data on the other hand can be large for all variables of the water cycle.
Figure 2.5 (left) shows the deviation of the multi-model mean of the annual mean
precipitation rate. The deviation is large in regions with high precipitation such
as in the tropics. The relative deviation (Fig. 2.5 right) is large close to mountain
ranges in North America and Central Asia and in the equatorial Atlantic and Pa-
cific Oceans where the models have largely overestimated the precipitation rate. In
spite of considerable progress in the reliability and realism of the simulation of the
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9 km w/o deep conv

Figure 2.3: Atmosphere-general circulation model at kilometer-scale resolution compared to a
visible satellite image (lower right). Deep convection in the atmosphere is explicitly resolved at
9 km and 1.4 km grid resolution (left column), and parameterized in the lower resolution version
(top right). The model is capable of simulating a realistic cloud distribution at the 1.4 km scale,
but the tropical cloud cover, e.g., over central Africa is still too dense. Figure from Wedi et al.
(2020).

global water cycle, deviations on regional scales can be still of the same order as
the observed signal. For this reason, climate projections regarding regional rainfall
changes and changes in the statistics of associated extreme events are still uncertain,
although robust patterns can be identified. In short, such projections show that wet
regions become wetter and dry regions become drier (IPCC, 2013).

Another important quantity is the distribution of cloud cover because it strongly
affects the radiative balance of the Earth. A model intercomparison of the zonally
averaged cloud cover and the annual mean net radiative effects by clouds is shown
in Fig. 2.6. The overall latitudinal structure of the representation of cloud cover
and its radiative effect is well reproduced with larger coverage and cooling in the
mid-latitudes and less coverage and cooling in the subtropics. Deviations and model
spread are large in the tropics where many models have difficulties in simulating the
regional structure of the Intertropical Convergence Zone (Section 7.1).

A recent overview and assessment of climate models and their performance in com-
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Multi-model mean bias Multi-model mean bias in absolute seasonality
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Figure 2.4: Left panel: Difference between surface air temperature (2 metre) simulated by
CMIP5 models (multi-model mean) and the climatology from the ECMWEF climatology for the
period 1980 to 2005. Right panel: Difference between the absolute seasonality, defined as
abs(DJF—JJA), as simulated by CMIP5 models and climatology. Positive values signify that
the models overestimate the seasonal temperature amplitude. Figure from IPCC (2013), Fig. 9.2b
and 9.3d.
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Figure 2.5: Left panel: Difference between annual mean precipitation rate (mm/day) simulated
by CMIP5 models (multi-model mean) and precipitation analyses from the Global Precipitation
Climatology Project for the period 1980 to 2005. Right panel: Difference relative to the multi-
model mean precipitation rate. Figure from IPCC (2013), Fig. 9.4b and 9.4d.

parison with observations is given in Chapter 9 of IPCC (2013).

Model development has made significant progress in the past decade. Particularly
the consistent coupling of dynamical representations of the atmosphere and the
ocean now permits more realistic simulations of atmosphere-ocean interactions. This
is central for example when quantifying the uptake of heat and carbon into the world
ocean, assessing the importance of natural variability such as the El Nifio-Southern
Oscillation, or projecting future changes in monsoon systems. As an example of
coupled model performance Figure 2.7 shows the differences of temperature and
salinity, zonally averaged over all ocean basins based on the CMIP5 multi-model
means. Generally, temperature deviations are less than 10% but there are systematic
patterns such as a too warm intermediate ocean and the deep ocean tends to be too
cold. Salinity deviations are relatively larger and this is not surprising as their
distribution results from the balance of evaporation and precipitation at the ocean
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Figure 2.6: Left panel: Zonal mean cloud fraction from CMIP3 models and compared to obser-
vations (International Satellite Cloud Climatology Project, ISCCP). Right panel: Annual and
zonal mean of the net radiative effect of clouds compared to two different analyses based on ob-
servations from the Clouds and the Earth’s Radiant Energy System (black solid and dashed). The
multi-model mean (red) is in close agreement with one of the observation-based analysis at most
latitudes, except for the tropics. Individual model simulations are shown as thin grey lines. Figures
modified from Probst et al. (2012) and IPCC (2013), Fig. 9.5f.
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Figure 2.7: Comparison of simulated temperature and salinity in the world ocean with observa-
tions. Black contours show climatological values from observations from the World Ocean Atlas
2009, temperature and salinity differences are given in colors, and white contours mark positive or
negative differences of 1, 2, 3°C (left) and 0.25, 0.5, 0.75, 1 psu (right), respectively. Figure from
IPCC (2013), Fig. 9.13.

surface and the circulation patterns in the ocean. Large differences of precipitation
between observations and simulations are propagated to the salinity distribution at
the ocean surface.

In preparation of the IPCC Assessment Reports the World Climate Research Pro-
gram WCRP coordinates various Coupled Climate Modelling Intercomparison Pro-
jects (CMIP). These are multi-year efforts of the international climate modelling
centers to provide simulations over the historical period and scenario simulations
for the 21%° century. CMIP5 informed the IPCC’s Fifth Assessment Report (IPCC,
2013); the current CMIP6 has provided the climate projections, including an inter-
active Atlas for regional climate change information, for AR6 (IPCC, 2021). These
simulations represent a collective effort. CMIP data is being used extensively for

90N
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Figure 2.8: Schematic depiction of the simple global energy balance models (left), and a two-
layer layer varian (right). The short-wave radiation coming from the Sun is drawn with straight
arrows; the long-wave radiation from the Earth and from higher layers of the atmosphere is shown
as wiggly arrows.

model comparison, detailed investigation of climate processes, and the estimate of
the climate system’s response to increasing greenhouse gases.

2.2 Point model of the radiation balance

For illustrative purposes and to introduce numerical schemes for time integration we
consider first the simplest of all possible climate models with 0 dimensions. A single
conservation equation for the globally integrated heat content is formulated (see
Table 2.1, 0/0). Even though the model is not of great importance, it is instructive
in various aspects. Using this simple example we will show how solutions of climate
models fundamentally depend on the exact choice of parameterisations.

We assume a geometry as shown in Fig. 2.8 (left). The conservation of the en-
ergy of a thin spherical surface air layer (as a model for the atmosphere) is given
approximately as:

dT
47TR2hpCE:7TR2(1—C¥>SO—47TR2€UT4, (2.1)

where the following quantities are used:

R =6371 km radius of the Earth

h = 8.3 km vertical extent of the air layer
p=12kgm3 density of air

c=1000J kgt K! specific heat of air

T globally averaged surface temperature
a=0.3 planetary albedo (reflectivity)

So = 1361 W m~2 solar constant (solar energy flux density)
e=0.6 planetary emissivity

c=567-10*Wm 2K Stefan-Boltzmann constant
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Figure 2.9: Contour lines of equilibrium temperature according to equation (2.2) as a function of
planetary albedo («) and planetary emissivity (¢). The global mean surface temperature derived
from measurements is equal to 14°C (bold line).

Equation (2.1) states that the heat content of the global atmosphere (left) can be
changed due to two processes (right). The equation is a statement on the conser-
vation of energy. This model is therefore referred to as an energy balance model
(EBM). The first term on the right-hand side is the energy flux coming from the Sun,
reaching the Earth through a circular disk, reduced by the reflected part. The second
term describes the (mainly long-wave) irradiance emitted from the complete Earth
surface. This term is a parameterisation of complex processes in the atmosphere not
further described in this model. The parameterisation assumes that the long-wave
radiation can be quantified by the classical grey body radiation with parameter e
(emissivity). We will illustrate the role of this parameter by an example.

Equation (2.1) is an ordinary, non-linear differential equation of 1st order for an
unknown time-dependent variable T'(¢), the globally averaged surface temperature.
For simple cases, (2.1) can be solved analytically.

The equilibrium temperature can be found easily by setting the left-hand side equal

to 0: /4
T = (W) . (2.2)

It is independent of the size of the Earth and the thermal characteristics of air.
Figure 2.9 shows T in °C for different values of a and . The bold line highlights
14°C, approximately the mean surface temperature of the Earth. It is obvious that
various, but not any, combinations of the model parameters o and € can yield ‘real-
istic” solutions. The process of choosing model parameters in such a way that model
results agree with nature, is called tuning. When tuning was applied, agreement of
the model with observations is not a measure for the quality of the model unless
further independent information about the values of tunable parameters is used.

In this case, estimates for o and ¢ based on remote sensing data (ERBE, FEarth
Radiation Balance Experiment) could be used to determine the components of the
radiation balance. Results based on remote sensing yield a planetary albedo of
a = 0.3. In order to obtain a mean temperature of 14°C in this EBM, the planetary
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Planetary Emissivity
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Figure 2.10: Contour lines of equilibrium temperature according to equation (2.4a). The global
mean surface temperature derived from measurements is 14°C (bold line).

emissivity has to be set to ¢ = 0.6206. This is a value significantly lower than the
emissivity of natural surface areas which is around ¢ ~ 0.8 ... 0.99. Hence, this
model parameter is unrealistic for an average Earth surface and does not give any
information about the processes leading to this radiative equilibrium.

Assuming the Earth were a perfect black body, hence € = 1, the temperature would
be —18.6°C. Thanks to the natural greenhouse effect, mainly caused by water vapour
and CO,, we find a difference of approximately 32.6°C.

This will be illustrated with a second, slightly more complex EBM (Fig. 2.8, right).
We assume, that irradiance occurs at the Earth surface at a temperature 77, as well
as from a higher level (,cirrus clouds“, which are supposed not to affect the short
wave radiation and hence the albedo) at temperature 75. The high-altitude cloud
cover is not complete, but extends over a fraction ¢ of the total area. The stationary
energy balance for both levels is given by:

TR*(1—a)Sy+c4nR*0Ty =4n R*eo T} (2.3a)
cdn RPeoT}! =2c4n R*c Ty, (2.3b)
(2.3b) where we have assumed that the Earth’s surface is a ,,grey” body with emis-

sivity e, the cloud cover is assumed to be a black body. The solution is now given
as follows:

(1 —a) S()

1/4
T, = (450(1—5)) , (2.4a)

T, = <m>/ | (2.40)

Here we have a slightly more detailed description of the ,Earth’s climate* (two
temperatures). This comes at the expense of having more parameters («, €, ¢) for
which reasonable values have to be chosen.
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Figure 2.10 shows that in this model more realistic values of the surface emissivity
can be applied. From Fig. 2.6 we derive a global-mean cloud cover of around 0.6.
Tuning the model we choose € ~ 0.882 and obtain an equilibrium temperature of
14°C. This yields T, = —38.8°C the temperature that is approximately measured
at a height of 8.2 km. An important information emerging from this model is that
the Earth emits infrared radiation not only from the surface, but also from higher,
much colder levels of the atmosphere, as was already evident from Fig. 1.2.

The natural greenhouse effect is caused by the fact that a higher irradiance occurs
at a lower temperature and that these levels also radiate downwards (downward
radiation). Hence, the surface is heated by a combination of direct short-wave solar
radiation and long-wave back radiation. Fig. 2.10 is only valid for high altitude
clouds which do not affect « significantly. In general, clouds affect o and ¢, and the
net effect on a global scale is a cooling one (see Section 2.4.3).

In reality, the atmosphere has to be regarded as a continuum because radiative
fluxes occur at all levels. These considerations lead to radiative-convective models.
The first 1-dimensional radiative convective model was formulated by Manabe and
Wetherald (1967). This type of model (category 1/0 in Table 2.1) layed the ground
how to implement vertical atmospheric processes in AGCMs.

2.3 Numerical solution of an Ordinary Differential Equation
of 1st order

2.3.1 Discretization of the energy balance model

We consider again the climate model given by equation (2.1), but now we examine
its time-dependence. For this we will use a numerical algorithm.

Before we derive it, we look at the temporal behaviour of the energy balance model
(EBM) near the equilibrium and write the temperature 7'(t) as follows:

Tt)=T+T(t),

where T is the constant equilibrium temperature given in (2.2) and T is a small

time-dependent temperature perturbation (|T| < T). Hence, (2.1) can be written

as 5

g:TSo—aa(TJrT)z;. (2.5)
—_ ~\ 4 —4 ~ —\4

Now we write (T + T) =T (1 +T/ T) and use the Taylor series expansion

—1
1+x"=1+nz+wx2+...
2

hpc

with x = TZT and n = 4. Neglecting the higher-order terms in this expansion with
regard to |T| < T we obtain from (2.5), using (2.2)

dT:_<4eaT3)T' (2.6)

dt hpc
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This is a linear, homogenous differential equation of 1st order for the temperature
perturbation 7', of which the solution is known:

() =ae™ '™, T = 7hpi3 : (2.7)

deoT

where a is constant depending on the initial conditions (a = T'(0)). Solution (2.7)
states that a temperature disturbance in the EBM approximately decays on a char-
acteristic time scale of 7 ~ 35 days, and the radiation equilibrium is attained at
temperature T'(t) = T. Hence, the temporal behaviour is determined by the ther-
mal properties of the atmosphere and responds rather rapidly. Above considerations
also show that T is a stable state, because the perturbation T'(t) approaches 0 for
t — 00, as evident from (2.7).

In the following we will discuss the procedure to solve (2.1) numerically. First, the
question arises of how to compute the derivatives in this equation. We assume that
it is sufficient to know them only at certain points in time chosen a priori. Therefore,
the problem can be discretized in time. The times are chosen according to the rule

t=nAt, n=20,1,2, ... (2.8)

At is the time step. (2.8) can also be interpreted as grid points on the time axis.

Let us assume we know the solution at time ¢. Therefore, the function 7'(¢) can be
expanded in a Taylor series:

2
T+ A =T + L] ar 4 2 4L

, 1 T
— t
dt |, 20 de?

3
5| A (2.9)

t t

We can solve (2.9) for the first derivative evaluated at time ¢:

1 d3T

dT| _T(t+A)-T@) 1T, 1T
3l de

dt|, At 2l de

At — ... (2.10)

t t

terms of order At and higher

By neglecting the terms of order At and higher we obtain the so-called Fuler scheme,
a finite difference scheme of 1st order. This means that the corrections of this
scheme scale with At. Whether the scheme is correct can be directly determined
by considering the limit At — 0. It is the simplest but at the same time the most
inaccurate way of numerically representing first derivatives.

Adding to (2.10) the corresponding equation with At replaced by —At, a new equa-
tion results which yields an alternative scheme for the first derivative:

dT'|  T(t+At)-T(t—At) 1 d&°T

dt|, 2 At 3l de

, 14T

5! dtd

At — ... (211)

t t

terms of order At? and higher

This is the scheme of central differences. The name refers to the position on the time
grid, where derivatives at one point are calculated by taking differences of values
from two neighbouring points. The corrections of this scheme scale with At? and
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Continuous Finite differences Error Name
Az) —
f(x) fo+ Av) = flz) O(Az)  Euler forward
Ax
f(x) f@) = i(a: ) O(Az)  Euler backward
x
f(x) f+Ax) = flx = Az) O(Az?) central difference
2 Az
Ax)—2 - A
1" (x) fo+Ar) f@) + fla z) O(Ax?) central difference

Ax?

Table 2.2: Overview of the simplest schemes for the calculation of 1st and 2nd derivatives of the
function f.

for small At, they converge to 0 faster than in (2.10). These simple schemes are
summarized in Table 2.2.

The formulations assume an equidistant discretization; adjustments are necessary if
the grid’s resolution is spatially dependent (e.g., on a spherical spatial grid).

2.3.2 Time stepping: Euler forward scheme

We consider the first-order ordinary differential equation (2.6) which is written in a
more compact form as

dT
— =—-AT 2.12
by , (212)

with the unknown function T'(t). The exact solution is obviously T'(t) = Ty - e 4%
By now evaluating T only at time points n - At we distrectize (2.12). For the time
discretization we have several choices, some are listed in Tab. 2.2. Using as a first
example the Euler forward scheme, the discretized form of (2.12) reads

Tn+1 - Tn

= AT 2.1
At "o (2.13)

where we have used the notation T,, = T'(n At). Stepping forward in time we obtain

T =1 —AANT, = (1 - AA)* Ty =...= (1 — AN, . (2.14)

We need to show that for the limit of At — 0, the numerical solution converges to
the analytical one. Therefore, we apply the transformation s = —1/ (A At):

T(nAL) = Ty = To(1 — AAL)" = Ty(1 4+ ~)=+At | (2.15)
S

and then take the limit At — 0, i.e., s = 00 :

§—00

1\8 —At
T(t) = TO lim ( (1 + ) ) = TO efAt .
S
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Therefore, the numerical solution converges to the exact solution for At — 0. How-
ever, there are some cases where the scheme fails. From (2.14) it is evident that
the numerical solution only remains bounded for |1 — AA¢| < 1. In particular, we
require the stability criterion

0<At<1/A (2.16)

for a monotonously converging solution. For 1/A < At < 2/A the numerical solution
is still bounded but exhibits a sign change at every time step. This is a computational
mode in time which is a numerical artifact. We also note that for some special
values, e.g. At = 1/A the scheme yields 7,, = 0, whereas for At = 2/A we have
T,, = (—1)" Ty; both results do not make sense.

2.3.3 Time stepping: Central difference

Central differences are second-order accurate (see Tab. 2.2) and should therefore be
preferred. However, as we will see, this poses new challenges. We first assume that
the decay term —AT of (2.12) is evaluated at nAt, therefore

TnJrl - Tnfl

= AT, . 2.1
2AL " (2.17)

The time stepping is using information from two previous times:

Tn+1 = Tn—l — 2« Tn y (218)

where we set a« = A At for shorthand. The stability condition for (2.17) can be
determined by defining a vector T, = (T, T,,—1) and writing (2.18) as

— ... =A"T,, with A = (‘fo‘ (1)) . (2.19)

For this scheme to remain stable, the eigenvalues Ay of the propagator matrix A
need to satisfy [Ay| < 1. We find Ay = —a+ /1 + 2, for which A\_ < —1, and

therefore discretization (2.17) is unconditionally unstable.

A small, but important modification resolves this problem. Instead of evaluating
the decay term at time level n, as the consistent application of the central-in-time
scheme suggests, we take the time average between levels n and n — 1. This yields

Tn+1 - Tn—l — _A Tn + Tn—l

2.2
2At 2 (220)

The propagator matrix now reads

A= <—1a L 6 oz) , with eigenvalues Ay = —1,1 — . (2.21)
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and the initial condition 7'(0) = 300 K, g o
computed with the Euler scheme and At = £
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The stability criterion for this choice is therefore v < 2. Note that for 1 < o < 2
a computational mode arises in which T}, changes sign every time step. As this is
a numerical artifact, we require o < 1. This is identical with the stability criterion
for the Euler forward scheme (2.16).

2.3.4 Runge-Kutta scheme

The Euler scheme is the simplest, but also the most inaccurate one-step scheme.
Generally, it solves

ji = (x,y(x)) , (2.22)

with an initial condition y(x¢) = yo. For the EBM given by equation (2.1) the
following correspondences hold: y =T, x =t and f(z,y) = (1 —«a)Sy/ (4hpc) —
eoy'/(hpc). The Euler scheme evaluates derivatives only at the points x and
x + Az which corresponds to the linearisation that was used in (2.10).

By the evaluation of f(z,y) at further locations in the interval [z, z + Az| and their
suitable linear combination, the error can be reduced from O(Ax) to O(Az*). This
leads to schemes of the type Runge-Kutta of order k. For k = 4 we obtain the
classical Runge-Kutta scheme for which the rule is as follows:

Ynt+l = Yn + Ax F<xn; yn)

F(zn,yn) = 5 (K1 + 2Ky + 2 K3 + Ky)
Ky = f(zn, yn)

ngf<xn+%A:c, yn—i-%AxKl)
ngf(mn—F%Ax, yn—l—%AxKQ)
Ky = f(z,+ Az, y, + Az K3)

(2.23)

Figure 2.11 compares the different schemes with the exact solution (2.7) of the
linearized system (red line). The Euler scheme was applied with time steps of
At = 12, 24, 36, 50 days. Schemes, for which the time step is larger than their
characteristic time scale 7, see (2.7), do converge to the exact solution but show
a completely wrong transient behaviour. Only time steps smaller than the char-
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acteristic time scale of 35 days approximately yield the transient behaviour of the
exact solution when using the Euler forward scheme. For the Runge-Kutta scheme
(circles) At = 50 days was chosen. The agreement with the exact solution is already
significantly better than with the Euler scheme with At = 12 days, in spite of the
large time step. A time step larger than 7 is permissible for this scheme because
according to (2.23) f is evaluated at intermediate locations on the time axis.

The use of the Runge-Kutta scheme requires that the function f in equation (2.22)
can be evaluated at any point (z,y). In most of the climate models this important
prerequisite is not fulfilled and the Runge-Kutta scheme can therefore not be applied
for the time integration.

2.4 Climate sensitivity and feedbacks

An important quantity in climate dynamics is the equilibrium climate sensitivity,
defined as the global mean temperature change resulting from a doubling of the
atmospheric COs concentration after the climate system has re-established a new
equilibrium. This quantity, often referred to as ATs,, is a fundamental characteristic
of the climate system and at the same time a useful metric for climate models. It
serves to compare models of different categories or of successive generations. Over
the last three decades ATy, was estimated at 1.5 to 4.5°C, without any information
about a possible distribution within this range. In (IPCC, 2013), more quantitative
statements about the climate sensitivity could be made:

o likely range (> 66%): 1.5 to 4.5°C;
o extremely unlikely (< 5%): smaller than 1°C;
« very unlikely (< 10%): greater than 6°C.

The latest IPCC report (IPCC, 2021) had available more information from models,
theoretical understanding and observations so that these ranges could be tightened
and a best estimate could be given:

o very likely range (> 90%): 2 to 5°C;
e best estimate: 3°C;
o likely (> 66%): 2.5 to 4 6°C.

The basis for this assessment is the detailed review by Sherwood et al. (2020). The
equilibrium climate sensitivity is evaluated when the climate model has established
a new equilibrium under an altered radiation balance. In computationally expensive
coupled climate models, it usually has to be determined by a temporal extrapolation.

The temperature increase with a doubling of the atmospheric CO, concentration is
the result of complex processes and interactions in the atmosphere that affect the
radiation balance. The contributions of the single processes as a response to the
disturbance of the radiation balance (e.g., by an increase in greenhouse gas concen-
trations or a volcanic eruption) can be quantified by the strength of the feedback.
Therefore, the term feedback parameter, given as A (Wm—2 K1), is introduced. It
quantifies the change in the radiation balance per change of the global mean tem-
perature. The estimation of A for various processes is a central task of climate
research.



44 2 Model hierarchy and simplified climate models

The concept of feedback parameters can be illustrated using the linearised EBM. We
write the energy balance as

hpc%f:Aav+Bav+cau+AQ, (2.24)
where h, p, and c are the height of the atmosphere, p air density and ¢ the heat
capacity of air (values given after eq. 2.1), A, B, and C describe energy fluxes in
Wm~2 caused by climate system processes that change the Earth’s energy balance.
Specifically, A is the short-wave radiation (which may be temperature-dependent via
albedo), B is the long-wave back-radiation, C' is an additional term of the radiation
balance (e.g., water vapour, effects of clouds, greenhouse gases, such as HyO, COs,

.., and aerosols) and AQ is a disturbance (often called forcing) of the balance
which causes a change in temperatures.

Assuming now that we can express the Earth’s globally averaged temperature 7'(¢)
as the sum of an equilibrium temperature T, and a time-dependent perturbation
temperature 7'(t), namely

Tt)=T+T(t) (2.25)

with 7' < T, we obtain upon linearizing 2.24, and rearranging of the terms

0A 0B 0C

hpcat:<aT+aT+aT>'T+AQ, (2.26)

where we used the fact that at the equilibrium temperature 7' we have energy
balance: A(T)+ B(T)+ C(T) = 0.

We now define a feedback parameter for each of the Earth System processes as

0A 0B oC
)\A—aiT, /\B—aiT, )\C—aiT, (227)
and a total feedback parameter A according to
A=A+ A+ Ao (2.28)

With this, the perturbed energy balance equation can be written compactly as

hpca;;:)\f—i-AQ. (2.29)

The general solution is given by

T(t) = T(0) - ko)t _ i AQ , (2.30)
and therefore 1
T(t) =T +T(0) - e hee)t _ 3 AQ. (2.31)

Equation (2.31) highlights the two key roles that the feedback parameter A plays in
characterizing both the transient and equilibrium response of the climate system to
perturbations. First, the time scale on which an initial perturbation T(O) decays or
grows is proportional to A™!. Second, A determines the equilibrium response of the
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effect of a permanent radiative forcing AQ on the global mean temperature. The
sign of the feedback parameter )\ indicates the stability of the climate system: For
A > 0 an initial temperature perturbation 7'(0) grows exponentially, i.e., the climate
system is unstable. Climate stability therefore requires A < 0.

Alternatively, a useful parameter for the quantification of the climate system re-
sponse to a perturbation is the sensitivity parameter defined as

§=—=
A
in units K/(Wm™2). The smaller \, the larger is the temperature change due to a
perturbation AQ). The total feedback is the sum of the single feedbacks; the total
sensitivity is equal to the inverse of the sum of the inverse sensitivities:
1 1 1 1
A=A+ A+ Ao, -—=— 4+ —+ —. (2.32)
S SA SB Sc
In the following this framework will be applied to the ,two-layer“-EBM presented
in egs. (2.3). The radiation budget for the surface temperature is given by

11—«

0= A(T) + B(T) + C(T) = 50—50T4+§50T4,

where C' describes the effects of high clouds. Cirrus clouds make a positive contri-

bution to the radiation balance, hence a warming.

The derivatives of the individual radiation terms yield the individual feedback pa-
rameters:

N, = _Shde
AT T qar
Ap = —deoT? (2.33)

1 d d
Ao = 2050T3+§€OT4d—;+gaT4d—;

Eqs. 2.33 illustrate how different feedback processes operate in concert. Temperature-
dependent changes in albedo and longwave radiation back to space are fundamental
climate system processes. The response of ,.clouds“ in our simplified framework al-
ready indicates new complexities: Apart from the longwave contribution, there are
two more terms that quantify how temperature changes affect the fractional cloud
cover and the radiation properties of the clouds via emissivity which is influenced
by the cloud structure and the size of the ice crystals.

Assuming that the albedo is not temperature-dependent, and the effect of high
clouds is irrelevant, and no additional forcing exists, we obtain:

A=Ag=—4-0.6206 - 5.67-107% - (287.15) Wm 2K *
=-33Wm?K". (2.34)

This is the feedback parameter of long-wave radiation without other feedbacks, in
particular without the water vapour. This is referred to as the Planck feedback, also
denoted Ap. The feedback is negative, implying that an increase in temperature
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Figure 2.12: Ice-albedo feedback (left) and two plausible parameterisations for an EBM (right).
The signs next to the arrows denote the correlation between changes in the quantities in the boxes
at the beginning and at the end of the arrow. The resulting correlation is given in the centre of the
feedback loop. A self-enhancing process has a positive sign and can therefore lead to instabilities in
the climate system. A negative sign corresponds to a damped process. For the parameterisation
shown in the graph at the right, it is assumed that for low temperatures a complete snow-/ice cover
exists and the albedo is a &= 0.85. For high temperatures a planetary albedo of 0.3 is assumed.

leads to an increased long-wave irradiance and hence to a cooling. Ap is a key
stabilizing feedback in the climate system. Latest estimates from the CMIP5
climate models yield A\p = —(3.2 £0.1) Wm2K~! (IPCC, 2013, Tab. 9.5).

Especially the strong temperature dependence of the water vapour content in the
atmosphere (via the Clausius-Clapeyron equation)—the most important greenhouse
gas—as well as the temperature-dependent change in albedo and cloud cover, strongly
affect the overall feedback. We would like to assess this with the snow-ice-albedo
feedback, the water vapour- and the cloud feedback. In addition, we also consider
the various soil moisture feedbacks which are very important on the regional scale
but have a minor effect globally.

2.4.1 Snow-ice-albedo feedback

A globally and locally important feedback mechanism arises from the temporal and
spatial change in the extent of the snow- and ice cover with changing temperatures.
If the extent of the snow and ice cover is large—this is generally the case at low
temperatures—more solar radiation is reflected. Snow and ice have a high reflec-
tivity, i.e., albedo (o &~ 0.85). This implies a positive feedback, as one can see in
Fig. 2.12 (left). Under a global warming scenario the extent of the snow and ice
cover is expected to shrink; also, the seasonal snow and ice cover begins later and
ends earlier. This leads to a shortening of the seasonal cover and hence to a positive
contribution to the seasonal radiation balance.

This temperature-dependence of the albedo shall now be parametrised. This prob-
lem was studied by Sellers in 1969 (Sellers, 1969), who based it on the parameter-
isation given in Fig. 2.12 (right). It is obvious that in a global point model the
evolution of the snow and ice cover cannot be simulated. For this reason, plausible
assumptions are made, which may be based on the correlation of snow cover and
regional temperatures. Sellers proposed:

a(T)=0.3-0.009(T —283K) /K, 22K<T<283K, (2.35)
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Figure 2.13: Global mean temperature anomaly in the mid-troposphere after the eruption of
Mount Pinatubo in 1991. A global cooling of 0.7°C was observed with remotely sensed radiation
measurements (microwave sounding unit, MSU) after a warming effect of the 1992/93 ENSO was
subtracted. A climate model in which the water vapour feedback was turned off shows a smaller
cooling inconsistent with the observations. Figure from Soden et al. (2002).

with constant values beyond the upper and lower bounds of the temperature range.
A mathematically differentiable function may be preferable (Fig. 2.12, right; see also
eq. 9.6).

From (2.35) we derive

So dav 1361 - 0.009 91 91
A 1 ar 1 Wm 3.1 Wm ) (2.36)
hence, a positive feedback. Therefore, the total feedback is
A=Ap+A=(-33+31) Wm?K'=-02Wm?K"'. (2.37)

Compared with (2.34) this results in a large reduction of the absolute value of
the feedback parameter which causes a strong enhancement of the sensitivity. The
derivation of (2.36) is unrealistic because not the whole planet but only polar and
snow-covered regions are influenced by the snow-ice-albedo feedback. The planetary
albedo feedback is essentially caused by the snow and sea ice cover of the Northern
Hemisphere, assuming the albedo of Greenland remains constant. A rough estimate
of the surface from 40°N to 90°N, with about 210° longitude covered by land, would
give about 10% of the entire Earth’s surface. With this scaling we would obtain
Aa = 0.3 Wm2K™!. Latest estimates based on CMIP5 climate models yield
Aa = (0.3+£0.1) Wm2K™! (IPCC, 2013, Tab. 9.5).

2.4.2 Water vapour feedback

The water vapour feedback is the most important destabilizing feedback in the
climate system because water vapour is the primary natural greenhouse gas. A
warm atmosphere can hold more water vapour than a cold atmosphere. These
additional water molecules in the warm atmosphere cause an enhancement of the
natural greenhouse effect by increased absorption of long-wave radiation. Latest
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Figure 2.14: Cloud feedback loops. The sign depends on the location and the quality of clouds.
Low clouds affect short-wave radiation via albedo as opposed to high clouds affecting long-wave
irradiance.

estimates from various climate models yield A\wy = (1.6 £ 0.3) Wm—2 K~! (IPCC,
2013, Tab. 9.5).

With this we find
A=Ap+Awyv=(-33+16) Wm?K'=-17Wm 32K, (2.38)

hence, again a significant reduction of the absolute value of A which amounts to an
increased sensitivity 1/\ by a factor of about 2 compared to (2.34). The presence
of water vapour in the atmosphere doubles the climate sensitivity.

It is difficult to directly observe the water vapour feedback, but various independent
approaches have resulted in a much better quantification of this feedback in the last
few years. The agreement of the spatial structure of the water vapour distribution,
as it was shown in Fig. 2.3, does not yet guarantee that climate models compute
the climate sensitivity in a reasonable way.

However, based on observations of the change in temperature after the large volcanic
eruption of Pinatubo in 1991, it has been shown that current climate models simulate
the water vapour feedback reasonably well. A climate model with water vapour
feedback is capable of simulating the global cooling of the mid-troposphere by 0.7°C
following the eruption (Fig. 2.13). A model, in which the water vapour content was
fixed, shows a significantly smaller cooling. Such a model therefore has a smaller
sensitivity as expected from (2.38). Fig. 2.13 also points to the fact that current
climate models simulate this effect rather well.

2.4.3 Cloud feedback

Modelling the cloud cover still belongs to one of the greatest challenges in climate
modelling and in the assessment of future climate change. A fundamental aspect
of the problem is apparent in Fig. 2.14. It illustrates, in a very simplified form,
two possible feedback mechanisms: They can be positive or negative because clouds
affect both short-wave radiation (via albedo) and long-wave radiation.

A global estimate for the effect of clouds is given in Table 2.3. The averaged effect of
the global cloud cover results in a cooling which suggests the albedo effect dominates.
The estimates in Table 2.3 yields a value for the forcing with respect to the change
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Mean  Without clouds  With clouds

Long-wave radiation —234 —266 +31
Absorbed short-wave radiation 239 288 —48
Net radiation +5 +22 —-17
Albedo 30% 15% +15%

Table 2.3: Estimate for the change in radiation in Wm~=2 due to the global cloud cover (from
Hartmann, 2016).

in cloud cover, under the assumption of a mean cloud cover of 60%, of about

AW 17 Wm™2

~ — ~ —0. —2/07 2.
Aclouds 60% 0.3 Wm™/% (2.39)

An increase in cloud cover by about 13% would constitute a forcing of AW =
—3.7 Wm™2. This negative forcing (cooling) would compensate the positive forcing
expected from a doubling of the atmospheric COy concentration, see (2.44) below.

To illustrate the concept, consider the two-layer EBM given by (2.3) as a model for
a very simplified representation of the effect of clouds and assume—as a first step—
that ¢ and ¢ do not depend on temperature and that ¢ ~ 0.6 (Fig. 2.6). Hence,
(2.34) becomes

A=Xp+ A= (-33+10) Wm?K'!'=-23Wm 2K (2.40)

which suggests a reduction of the absolute value of A\, corresponding to an increase
in the sensitivity (~ 50%) compared to (2.34).

Of course, the two-layer EBM is not a realistic model to quantify the cloud feedback
correctly. To this end, atmosphere models are necessary that resolve the formation
of clouds in all their forms. Latest estimates from several climate models yield
Ac = (0.3£0.7) Wm2K~! (IPCC, 2013, Tab. 9.5); see Fig. 2.17.

Within the last few years model consistency with regard to the cloud feedback has
increased considerably. Multiple lines of evidence indicate that the total feedback is
positive. A warming by 1°C leads to a total additional forcing and height of clouds)
of about 0.7 Wm™2.

2.4.4 Lapse rate feedback

All air masses of the atmosphere emit continuously long-wave radiation to space.
The rate of the resulting heat loss of any vertical air column depends on its vertical
temperature profile: Air masses at high altitudes lose heat more easily than air
masses of the same temperature at low altitudes, just because they are closer to
space. The so called lapse rate feedback on Earth’s surface temperature results from
the fact that a warming at Earth’s surface modifies the temperature profile in the
air column above and thus, in general, also the rate of heat loss of this air column
and the temperature of its bottom layer adjacent to the Earth’s surface.
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Figure 2.15: Schematic illustration of changes in the vertical temperature structure in the tropics
and in the mid-latitudes. Due to increased convection, the lapse rate decreases in the tropics. In
the mid-latitudes the horizontal flow limits the warming to the surface and the lower atmosphere
which causes the lapse rate to increase. Compared to the mean warming, a reduced warming of
the surface occurs in the tropics (therefore a negative feedback), while it is enhanced in the mid-
latitudes (positive feedback).

The lapse rate (of the atmospheric air temperature) is defined as the rate of decrease
of the atmospheric air temperature T" with increase in altitude z, corresponding to
the negative differential quotient of the temperature profile T'(z),

dT

’7:—&-

Well mixed dry and humid air masses of the troposphere have lapse rates of about
10°C/km and 6°C/km, respectively.

The change of the lapse rate due to warming at the surface strongly depends on the
location. In the tropics, a warming leads to an increased convective activity: water
vapour rises and condensates at high altitudes. This transport of latent heat results
in a stronger warming in the high layers of the atmosphere which is supported
by the additional greenhouse effect due to the increased concentration of water
vapour there. In consequence, the lapse rate decreases (Fig. 2.15, left panel). In the
mid-latitudes, where horizontal circulation associated with high- and low-pressure
systems dominates, and hence, the vertical movement is less pronounced compared
to the tropics, the warming is limited to layers close to the surface. In consequence,
the lapse rate increases (Fig. 2.15, right panel).

A decreasing lapse rate (as in the tropics) reflects a warming of the upper tropo-
sphere relative to the lower troposphere. This leads to a stronger long-wave radiation
to space, causing a stronger cooling and therefore a negative feedback to the warm-
ing at the surface. In contrast, an increasing lapse rate (as in the mid-latitudes)
reflects a cooling of the upper troposphere relative to the lower troposphere and
leads analogously to a positive feedback. For the global average the tropics domi-
nate due to their larger spatial extent. The resulting feedback is therefore negative
but with rather large uncertainties. Latest estimates from several climate models
yield A\pgr = (—0.6 +0.4) Wm2K~! (IPCC, 2013, Tab. 9.5).
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Figure 2.16: Three soil moisture feedback loops are generally positive and amplify local and
regional climate perturbations. Figure modified from Vogel et al. (2018).

2.4.5 Soil moisture feedbacks

On a local and regional basis, the soil moisture feedback is very important as its
related processes amplify the temperature response to warming (Fig. 2.16). For
instance, the 2003 summer heat wave in Europe owes its extraordinary amplitude
to the soil moisture feedback which produced very dry conditions in spring and
so primed the soil for very efficient heating. While an estimate of the global soil-
moisture feedback yields about Ag = 0.1 Wm 2K™!, regionally extreme tempera-
tures can be amplified substantially. The temperature of the hottest day in a year,
projected by the end of the 215 century, would be 50% higher than without the soil
moisture feedback (Vogel et al., 2017).

2.4.6 Summary and conclusion regarding feedbacks

Figure 2.17 summarizes the various feedbacks discussed above. Different model
studies and the inclusion of remote sensing data, as well as direct measurements
permit a quantification of the single feedbacks. The strongest positive feedback
is the water vapour feedback, which—in spite of the overall negative lapse rate
feedback—remains positive in total. Although the cloud feedback is assessed to be
likely positive in total, it is still associated with the largest uncertainties (IPCC,
2013).

The best estimate for the Planck-feedback is \p = —3.2 Wm2K~! and for all
other feedbacks, A\gy = +1.6 Wm 2K~ (see Fig. 2.17, and IPCC, 2013, Tab. 9.5).
Therefore, the total feedback becomes:

A=Xp+ A= (-32+1.6) Wm?K'=-1.6 Wm ?K*. (2.41)

With this, the equilibrium climate sensitivity ECS, AT5,, can be estimated. ECS
is a key climate system metric to estimate the global mean temperature change at
equilibrium for a doubling of the CO5 concentration in the atmosphere. The increase
of the greenhouse gas concentration constitutes a radiative forcing, expressed as AQ,
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Figure 2.17: Overview of the most important global-scalev feedbacks in the atmosphere from
observations and various model simulations. Note that the Planck feedback parameter is shifted
by 2.5 Wm—2K~!. Results from the present model generation (CMIP6) can be compared to the
previous generation (CMIP5). The feedback of the three processes (water vapour+lapse rate, sur-
face albedo, clouds) is overall positive. The total feedback remains, owing to the strongly negative
Planck feedback, negative, indicating an overall stable climate system. Figure from Sherwood et al.
(2020).

specifically for a doubling of the atmospheric COs concentration AQsx. We use
(2.31), define ATy, = T'(c0) — T, and obtain

ATy, = —i AQoy . (2.42)

The radiative forcing associated with changes in the atmospheric concentration of
CO, is given by Myhre et al. (1998):

- CO,]
A = 5. 2] [7 2.4
Q(CO32) =535 Wm™~ In 580 ppm (2.43)
hence 560

AQox =535 Wm™2 In o 2P0 — 37 W2 (2.44)

280 ppm
From (2.42) it follows, that
1
ATQX - _X AQQX - 2.3 K . (2.45)

This is consistent with the likely range of 1.5°C to 4.5°C, as given in the latest IPCC
assessment (IPCC, 2013).

The combined effect of different feedbacks can be illustrated by a latitudinal and
altitudinal cross-section of the warming of the atmosphere with an increase in CO,
concentrations. Figure 2.18 shows the zonal mean temperature change in the years
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Figure 2.18: Projected changes (1986-2005 to 2081-2100) in annual mean zonal mean atmo-
spheric temperature for three emission scenarios. Multi-model means are calculated from the
available CMIP5 ensembles. The number of CMIP5 models used is indicated in the upper right
corner. Hatching indicates regions where the multi-model mean change is less than one standard
deviation of internal variability. Stippling indicates regions where the multi-model mean change is
greater than two standard deviations of internal variability and where at least 90% of the models
agree on the sign of change. The warming is stronger at high latitudes of the northern hemisphere
towards the surface. This increase is caused by the ice-albedo feedback, which is mainly effective in
the northern hemisphere, where the seasonal snow cover undergoes fast changes. Cooling is simu-
lated in the stratosphere as is expected from the effect of increasing greenhouse gas concentrations.
Figure modified from IPCC (2013), Fig. 12.12.

2080-2099 in a multi-model ensemble for three emission scenarios (strong reduction
in emission RCP2.6, stabilisation RCP4.5, and business-as-usual RCP8.5). The
warming is stronger at high latitudes of the northern hemisphere towards the surface.
This increase is caused by the ice-albedo feedback, which is mainly effective in the
northern hemisphere, where the seasonal snow cover undergoes fast changes.

A clear enhancement of the warming also occurs in latitudes between 30°S and 30°N
at an altitude between 7 and 12 km. This is due to the lapse rate feedback. The
strong convection there transports water vapour (the most important greenhouse
gas) as well as condensation heat to the upper troposphere.

An important fingerprint of global warming is expected to take place in the strato-
sphere, where a cooling will occur at all latitudes. This cooling is actually observed
(IPCC, 2013, Fig. 2.24 and 2.26). It is due to the rise of the irradiance altitude for
long-wave radiation with an increase in COs concentrations. At these higher alti-
tudes, the temperatures are lower (in equilibrium at 7" &~ 255 K, hence at 5.1 km).
This causes a disequilibrium, which the warming of the whole atmosphere compen-
sates for. This warming leads to a rise of the irradiance altitude (level of equivalent
black body radiation). Hence, a bigger part of the atmosphere now lies underneath
the irradiance altitude, meaning that the optical path up to the radiation altitude
has increased. Underneath this altitude a larger part of the long-wave irradiance
is absorbed and the stratosphere experiences a corresponding deficit, which leads
to a cooling. This was already predicted by Manabe and Wetherald (1967) using a
one-dimensional radiative-convective model (Fig. 1.11).

Thanks to a significantly improved knowledge of the individual feedback mechanisms
in the atmosphere, the equilibrium climate sensitivity ATs, is now better quanti-
fied. Climate models of different categories of the hierarchy (Table 2.1) are used to



54 2 Model hierarchy and simplified climate models

1.0
- Baseline 66%
— Robustly >=66%
—— AR5 >=66%
0.8
— Baseline PDF
— Uniform S Prior
T 0.6 —— No Historical
X No Paleo Cold
(9]
8
50.4
o
0.2
001 3 3 4 G 6 7 8

S (K)

Figure 2.19: Probability density functions for equilibrium climate sensitivity (ECS, here denoted
as S). Different assumptions regarding priors yield slightly different distributions. Ranges for AR5,
and the most recent ranges adopted by AR6 are shown as horizontal lines. Dots indicate the 17th
and 83rd precentile values. Including the historical information leads to higher ECS values. From
Sherwood et al. (2020).

simulate the temperature change over the last 150 to 1000 years. The agreement
of the model simulations with observations and paleo-reconstructions is computed
which provides constraints for the range of various tuning parameters in the models,
or eliminates certain simulations.

In summary, this yields estimates of the probability distribution of the equilibrium
climate sensitivity based on various independent lines of evidence (Fig. 2.19).

Note that in order to estimate temperature increases in the near-term (e.g., by 2050
or the end of the 21%* century), a more suitable metric is the Transient Climate
Response (TCR). TCR is defined as the change in global mean temperature at
the time when the atmospheric CO, concentration has doubled in a scenario of
concentration increasing at 1% per year. The TCR is likely in the range of 1.0°C to
2.5°C with high confidence and extremely unlikely greater than 3°C.



3 Describing transports of energy and matter

In nature the transport of energy and matter in fluids is determined by diffusion
and advection. These processes induce fluxes of energy and matter, of which the
mathematical description is derived by continuum mechanics. Diffusion is a random
process taking place at all times and leading to a net transport only under certain
conditions. Advection is caused by an ambient flow which transports energy and
matter.

All processes in the climate system are fundamentally influenced by the advective
and diffusive transport of mass, energy, momentum in a rotating environment. For
example, the temperatures at a particular latitude are determined by the balance
of heat at that location which consists of the local radiation fluxes and the hori-
zontal and vertical transports of heat in the atmosphere, including the transport
of moisture. Another example concerns the transport of salt in the ocean through
advective and diffusive processes. These change the density and are thus exerting a
strong influence on the large-scale circulation in the ocean. Hence, the mathematical
description of these transport processes in models is fundamental to climate science.

3.1 Diffusion

Diffusive processes are caused by the thermal motion of molecules (Brownian mo-
tion)and can be described only in a statistical way. It is instructive to consider
first the one-dimensional case and divide the z-axis into cells of width Az and
cross-section area A in which molecules reside (Fig. 3.1). Due to a positive ther-
modynamic temperature 7' > 0 the molecules are in thermal motion. The particle
density (particles per volume) at coordinate x is denoted by n(z). We describe the
random motion by a probability p that a particle jumps from one cell to the neigh-
boring cell. We further assume, that diffusion is an isotropic process (this is not
always the case in nature). Therefore, the probability p is uniform and independent
of the direction of the particle movement.

We determine the particle flux density at the cell boundary i/i+1 for a time interval
At. From cell i, a number of pn(x;) A Az particles jump to the right, while from cell

I e R S L 8 . Figure 3.1: Model of one-di-
. . . . mensional diffusion. The particle
i—1 i i+1 b

density in cell i is given by n(x;).
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i+ 1 a number pn(z; + Az) A Az jump to the left. Hence, the net diffusive particle
flux density (number of particles per area A and time At) at the cell boundary i/i+1
is given by

_ pn(x) AAz — pn(x; + Az) AAx p Az n(x; + Az) — n(z;)

= AN N Az

In the limit of Az — 0 and At — 0, provided Axz?/At = constant, we get Fick’s
first law of one-dimensional diffusion

2
F:_<pr>8n_ D@n (3.1)

N

The quantity D is the diffusion constant, also referred to as diffusion coefficient or
diffusivity, with the unit m?s~!; it depends on the physical properties of both the
diffusing particles and the medium containing these particles (the medium can be
vacuum, a gas, a liquid or a solid). This derivation shows that the diffusion constant
parametrises processes that evolve on a molecular scale.

From (3.1) it follows that net diffusive fluxes only occur when concentration gradi-
ents, in the case of (3.1) particle density gradients, are present. Due to the random
motion, gross-fluxes of particles always exist.

The generalization of (3.1) to a three-dimensional isotropic space and a concentration
C = C(z,y, z) of an arbitrary physical quantity (e.g., particles, mass, energy, salt,
momentum, tracer, etc.) yields Fick’s first law of three-dimensional diffusion

F=-DVC. (3.2)

V is the gradient operator and D an isotropic diffusion constant (scalar). The
gradient operator is given by
- o 0 0
v = \3 5 3 a_
ox’ 0y 0z

and converts any scalar ®(x,y, z), for example the concentration C' = C(z,y, 2)
from (3.2), into the gradient of ®(z,y, 2), the vector
® — (2 2 99
Fole005) = (g o o) Do)

_ [09(x,y,2) OP(z,y,2) O0P(z,y,2)
N oxr oy 0z ’

which points in the direction of the highest increase of ®(x,y, z). The negative sign
in (3.2) ensures, that the diffusive flux density F' is in the opposite direction of the
gradient, namely in the direction of the highest decrease of C'. The diffusive flux
densities in Table 3.1 serve as examples.
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Table 3.1: Examples of diffu-

sive flux densities, p denotes a

DV p mass density and ps the particle
or the mass density of salt.

transported quantity formulation

mass F

heat F":—D,oc%T:—)\ﬁT
salt F=-DV Ps
y-momentum F=-DV(p Uy)

3.2 Advection

For the derivation of a formulation of advective flux densities of physical quantities in
the climate system, we again consider the one-dimensional case which is illustrated in
Fig. 3.2. We assume a flow u(z,t) which transports the quantity to be considered.
The fluid (gas, air, water) moves across a fixed control area A. The transported
physical quantity (e.g., particles, mass, energy, salt, momentum, tracer, etc.) is
given as a concentration C'(x,t), hence, the quantity is referred to a volume. In a
short time interval At a volume A Az of length Ax = u At passes through a cross
section of area A and transports the quantity A Az C' through here. The advective
flux density is given by

AAxC Az
F="Jar =a¢=¢
A
v, ic /
| | > x
Ax =u At Figure 3.2: Flow along the z-axis.

In three dimensions, the advective flux density of a scalar quantity C' in a three-
dimensional flow (%, t) is

F=uC. (3.3)
The advective flux density is a vector aligned parallel to the flow. The advective
flux densities in Table 3.2 serve as examples.

Table 3.2: Examples of advective

transported quantity formulation flux densities, p denotes a mass den-

MASS F= ip sity ::cmnd ps the particle or the mass
L density of salt.

heat F=dpcT

salt F =1ps

y-momentum F =tipu,
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3.3 Advection-diffusion equation and continuity equation

In the following discussion we will describe the connection between fluxes of physical
quantities and time rates of changes of these quantities. It is established by formu-
lating balance statements for those physical quantities which satisfy conservation
laws. An example was presented in Section 2.2, where we have discussed a point
model of the radiation balance.

We will set up a conservation equation for a physical quantity (e.g., particles, mass,
energy, salt, momentum, tracer, etc.) with density C' and start with one single
dimension = (Fig. 3.3).

A
/
F(x) F(x+Ax)
—_— _t
X
Figure 3.3: Spatially dependent flux in
one dimension. X x+Ax

We consider a small fixed control volume AV = A Az. The (mean) density C' inside
the control volume changes in time due to fluxes into the control volume (taken
positive), fluxes out of the control volume (taken negative), and sources and sinks
operating inside the control volume. Thus, we have

0

a(C’AV) =F(x)A—F(x+Az)A+ PAV (3.4)
where F' is the flux density (advective + diffusive) of quantity C' and P is the net
source density (sources minus sinks per unit volume) of this quantity. Inserting (3.2)

and (3.3) into (3.4) and division by AV yields

OC _ ula+Ax) Ol +Az) — ula) Cx) D . A~ D%l L p
o Az Az
and taking the limit Ax — 0, we obtain
oc  0uC) 0 oC
5 o +8m<D8x>+P' (3.5)

Generalizing to three dimensions leads to the advection-diffusion equation:

ac

E——V-(QC)JrV-(DVC)nLP, (3.6)

where V- is the divergence operator. It acts on vectors and yields the “scalar prod-
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uct” of V and the vector:

a0 0 0N () _0u  Ou  Ou
- \0z’ 9y’ 0z Yl ox oy 0z

When C' is the mass density p and diffusion as well as sources or sinks vanish, then
a special case arises from (3.6):

o _ = -
a——v-(up). (3.7)

This is the mass balance equation, namely the general form of the continuity equa-
tion. Physically, (3.7) describes the conservation of mass: the total mass is con-
served, mass is neither produced nor destroyed (P = 0), local mass density changes
are always due to divergences of the mass flux (apart from molecular fluctuations
due to diffusion). The equations (3.6) and (3.7) are balances representing the basis
for the mathematical description of processes in the climate system. Their solution
is the task of climate modelling.

For an incompressible fluid (e.g., ocean water in a thin interior layer) the density is
constant, and (3.7) simplifies to the continuity equation for incompressible fluids:

V-i=0. (3.8)

3.4 Describing small- and large-scale motions

The motions of air in the atmosphere and of water in the oceans occurs on a wide
range of space and time scales 1.1. They are described using methods of geophysical
fluid dynamics. The way this is achieved strongly depends on the spatial scale and
the time scale of the motion that needs to be resolved. A useful concept is the
statistical description of fluid flow.

Figure 3.4 a) shows an illustrative time series of wind velocity measurements, which
could have been taken at a fixed position in the free atmosphere during a time of, for
example, a few minutes, or a few days, or a few weeks. It illustrates the well-known
consequences of the complexity just mentioned, namely a typically slowly varying
mean air velocity (denoted by the thick line in this Figure) and a mostly rapidly
varying deviation from the mean of the instantaneous air velocity. The cause for
such a local time dependence of the air velocity are specific movements of numerous
eddies of various sizes. These eddies are parts of the large air stream moving with
the mean air velocity, mostly parts of larger eddies themselves, and move through
the air surrounding them, after being generated by irregular disturbances. In so
doing they cause collectively so called eddy fluctuations of the air velocity at a
point, i.e. local time varying deviations from the mean of the air velocity, and
furthermore—as they transport advectively measurable air properties (e.g., water,
COg, ...)—eddy fluctuations of the physical quantities C' of these properties (Fig.
3.4 b). Climate research is mainly interested in processes on large spatial scales
(global or continental) and long time scales (several days or longer). So the question
arises whether the small and fast movements of the eddies within the large air stream
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Figure 3.4: Ilustration of eddy fluctuations of a) air velocity v and b) another physical quantity
C, for example particle density or humidity. Bold lines designate mean values (@ and C'), 7 is the
averaging time. Fluctuations around the mean are denoted by primes, e.g. u’

have any relevance for the long-term trend of the physical quantity C satisfying the
advection-diffusion equation (3.5). In the following we show that they do have an
influence and cannot be neglected in general.

Consider the one-dimensional advection-diffusion equation (3.5) and separate the
air velocity u, the physical quantity C' and the source P in a temporal mean taken
over successive time intervals 7 = t5 —¢; (which should be significantly shorter than
the characteristic time scale of the processes to be considered) and an instantaneous
deviation from this temporal mean, respectively,

to

=T+ ﬂ:—/u(t)dt (r=ts—t1)

P=P+P, ?:—/P(t)dt,

where v/, C' and P’ denote instantaneous deviations from the time means @, C
and P, just eddy fluctuations. The time means of the eddy fluctuations vanish, for
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example the time mean of the eddy fluctuation u':

to [2)

t1 t1

With this (3.5) becomes

- + oz

o(C+c)  oa(@+u)(C+C)) o (_0o(C+C)
ot O oz \ P

)+P+P.

Multiplying out the first term on the right side of the equation and using the sum
rule of differentiation we obtain

ot ot ox ox ox ox
0 oC 0 ocC’ — ,
+8x<Dax> +%<D 8x>+P+P )

This equation describes the processes at any moment exactly. But now we take the
average with respect to time over the time interval (averaging time) 7, taking into
account relation (3.9) and its consequences, namely

ac o0 oc 0(uC) o(uC) (9<Dac> 8<D60>,

ot ot ot Ox oxr = Ox Oz Ox Oz
P=P,
oc’ _oc - 0(wC) e@e) _ 9 (0N _,
o ot or oz ' Ox oxr )
=0,
and obtain for the variation in time of the temporal mean of the physical quantity
C:
oc  0(@C) o(wl) o9 ( 90\ —
% o o +8:L‘<D8x>+P' (3.10)

We see from this that the variation in time of C indeed depends on the eddy fluctu-
ations v’ and C’; the nonlinearity of the term u C' (advection flux) prevents the eddy
fluctuations from being cancelled out by time averaging. From the statistical view-

point, the quantity v’ C" = (u — ) (C — 6) corresponds to the covariance between
the quantities v and C. It vanishes if u and C' are uncorrelated. From the physical
viewpoint, it describes the influence of the eddy fluctuations on the temporal change
of C and denotes an eddy flur density,

F=wC,

which is, unlike the molecular fluxes explained in Section 3.1 and described by the
second term on the right-hand side of (3.5), a part of the advective flux u C. If, for
example, u and C are significantly positively correlated, then a positive deviation
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u' goes in hand probably with a positive deviation C’ and a negative deviation u’
probably with a negative deviation C’; whereby in both cases a transport of the
quantity C in the positive direction of the x-coordinate axis results. Instead, if u
and C' are uncorrelated, the eddy flux density vanishes.

The motions of the eddies are seemingly stochastic, quite similar to the thermal
motion of molecules. With regard to this fact we are talking about eddy diffusion,
in contrast to the molecular diffusion presented in Section 3.1, and describe the
eddy (diffusive) fluxes similar to the (molecular) diffusive fluxes. A widely used
simple parameterisation (used in climate models) assumes the eddy flux density of
the physical quantity C' to be proportional to the gradient of the temporal mean of
C, formally identical to Fick’s first law (3.1),
— !/ A— aC
F=u(C= K(?a:’ (3.11)

where K denotes the eddy diffusion constant (also called eddy diffusion coefficient
or eddy diffusivity) with the unit m?s~!. The latter depends, like the molecular
diffusion constant D, on the physical properties of both the transporting fluid and
the transported physical quantity C, but, unlike the molecular diffusion constant,
furthermore, among other physical properties (for example the stability of stratifi-
cation), on the air velocity field u(x,t) and finally on the averaging time 7. This
parameterisation takes care of the problem that the smallest eddy motions cannot
be resolved by the temporal and spatial resolution of the actual climate models. In
a three-dimensional isotropic space, the eddy flux density of a scalar quantity C' in
a flow u(Z,t) is

F=7C =-KVC, (3.12)

in analogy to (3.2). Table 3.3 shows examples of eddy flux densities.

Table 3.3: Examples of eddy

flux densities, p denotes a mass transported quantity formulation
density and ps the particle or 7 ) — KR
the mass density of salt. mass F=up=-KVp
heat F':pcﬁ’T’:—Kpcﬁf

&Sl
I

salt @ pl = —K Vp,

!

pu uy = —p K Vi,

y-momentum

With this we obtain for the averaged one-dimensional advection-diffusion equation

(3.10)
oc  0(uC) o ( o0\ o (. 00\ -

and analogously for the averaged three-dimensional advection-diffusion equation
X~ ¥ (7C)+ V- (KVT) + V- (DVT)+P. (3.14)
ot

These general relations apply for the ocean, too. In the case of large-scale motions
in the free atmosphere or the free ocean the molecular flux densities are mostly very
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Figure 3.5: Transport of function f(x) along the positive z-axis in a constant flow velocity u > 0
under the preservation of its form.

small and in many cases even negligibly small compared to the eddy flux densities.

3.5 Solution of the advection equation

In order to explore some fundamental characteristics of the numerical solution of
the advection equation we consider the simplest case of (3.13). We assume a con-
stant flow velocity u and ignore diffusion, sources or sinks. This leads to the one-
dimensional advection equation

oc  oC

which is a partial differential equation (PDE) of particularly simple form.

3.5.1 Analytical solution

The general solution of this equation can be written as
C(z,t) = f(x —ut), (3.16)

where f is an arbitrary differentiable function. As a PDE of first order in time,
(3.15) requires one initial condition for ¢ = 0, which is given by f(z).

Equation (3.16) describes a constant movement of a concentration distribution with-
out any changes in shape f along the positive x-axis, as illustrated in Fig. 3.5. It
represents a dispersion-free propagation of a disturbance along the x-axis at con-
stant speed u and is reminiscent of a wave. Although (3.15) is not the classical wave
equation, it can be shown that it is indeed part of the classical wave equation.

We note that a disturbance moving to the left is given by the following PDE:
oC oCc

o Yar U
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with u > 0. We now seek a PDE for which the solution propagates at a constant
velocity along the positive as well as along the negative x-axis. The following PDE
has the required characteristic:

0 0 0 0
——u—||= —|C=0.
<8t “ax> <8t +“ax>
The order of the operators inside the brackets may be interchanged. FEliminating
the brackets and setting u = constant leads to

02C  ,0%C

This is the classical wave equation with a constant phase velocity u. It has the
general solution
Cz,t) = f(x —ut) + g(x +ut) . (3.18)

A particular choice for f and g is the harmonic functions sin and cos. According to
the famous identity found by Leonhard Euler (1707-1783), €'* = sinz + icosx, we
can write the solution of (3.17) in compact form:

C(z,t) = AetF@ub) | pelkatut) (3.19)
The solution of the advection equation (3.15), subject to the initial condition
C(x,0) = Ae'*™ | (3.20)

is given by
C(z,t) = Ae'Fl@ut) (3.21)

(3.21) represents a plane wave of amplitude A propagating into positive z-direction.
The quantities shown in Table 3.4 characterize the wave.

Quantity Relation

2
wavenumber k k= ;

2w
wavelength A A= — =—

k v

2m
angular frequency w W = -

2 1
period T T = 2

w v
f 1 u
requenc v p= — — —

q Yy T 3

Table 3.4: Summary of quantities describing a one-dimensional harmonic wave.
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X Figure 3.6: Illustration of the leap-frog scheme
mAx (CTCS) on a space-time grid.

3.5.2 Numerical solution using the CTCS scheme

We now solve the one-dimensional advection equation (3.15) numerically by dis-
cretising (3.15) in space and time as follows:

spatial discretisation: r=mAzx, m=20,1,2, ...

temporal discretisation: t=nAt, n=20,1,2,...

We adopt the following notation
C(z,t) = C(m Az, nAt) = Cyp (3.22)

for the values of the solution at the space-time grid points. The application of central
differences in equation (3.15) yields

Cm,n+l - C1m,n—1 u C’m—‘,-l,n - C1m—1,n
2 At 2 Ax

=0. (3.23)

Solving for the value at the most recent time point (n + 1) At yields

Crnrt = Coun1 — “AA; (Corsrn — Coin) - (3.24)
This scheme is called CTCS scheme (central in time, central in space). One can see
that the identification of the value of solution C' at a given time requires information
from two neighboring grid points of the previous time step. This is schematically
illustrated on a space-time grid in Fig. 3.6. With regard to the arrangement of the
“predictors” this scheme is called leap-frog scheme. It must be noted that for the
first time step from t = 0 to t = At the CTCS scheme does not work. Instead, we
must use the Euler forward scheme for time, therefore

u At

Cm,l = C’m,O - E

(Crnt10 — Cm—10) - (3.25)

Here we used the FTCS scheme (forward in time, central in space). For C,, o the
initial condition C(z,0) is substituted.
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Figure 3.7: Illustration of the solutions
(3.29) indicated as the large dots in the
complex plane.

3.5.3 Numerical stability, CFL criterion

The following presentation is based on Haltiner and Williams (1980). Here we
explore the characteristics of the leap-frog scheme (CTCS scheme). To this end,
we assume the plane wave (3.20) as initial condition. Since we know the analytical
solution, we can directly derive the discretized form,

Cm,n — BnAt eikmAz ’ (326)

where the time dependence is given in a particular form (with an appropriate choice
of B in (3.26) this is identical to (3.21)). We insert (3.26) into (3.24) and obtain

(B*) +2i0 B> —1=0, (3.27)

with At
o="1 sin(k Ax) . (3.28)

x

This is a quadratic equation in B2 with the two solutions
B2 = —ig+V1—02. (3.29)

We distinguish two cases:

« Stable case |o| < 1:

Both solutions B2! have the absolute value 1, therefore they lie on the unit
circle in the complex plane (Fig. 3.7). From the figure it follows:

e—la
BAt = { e sina =0 . (3.30)
e104 ™

Therefore, the solution (3.26) can be written as

Cm,n _ (M e—ian + Eei(a+7r)n) eikmAr (331&)
Cmo = (M + E)ethmar (3.31Db)
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According to (3.20) we require M + E = A. Therefore, the discretised solution
can be written as follows:

Cm,n _ (A N E) eik(mA:c—%) + (_1)n Eeik(mA:L‘-&-%) : (332)

P N

where P denotes the physical mode and N the numerical mode (computational
mode) of the solution. Note, that N changes its sign at every time step!

FE remains to be identified. For the first time step we use (3.25). For the
concentrations at time ¢t = 0 we use (3.31b) and obtain

Cm,l _ A(l —i sinoz) eikmAaz — (A . E) eikmA:{:—ia . EeikmA:c—Ha ’

thus ]
oA CcoS (v
2 cos o

Inserting this expression into (3.32) yields finally

Co—A 1+ cosa o K(m Az—) n (_1)n+1 A 1 —cosa oik(mAatan)
’ 2 cos 2 cos
P N

(3.33)
The convergence of (3.33) to (3.21) can be shown, as the following is valid:

u At
Az

Ax — 0 — o= sin(k Ax) — uk At
and for At — 0 it follows that 0 < 1 and hence ¢ = sina =~ «. Therefore,
(3.33) converges to

C N A 1 + COS (¥ eik(:E—Ut) + (_1)n+1 A 1 — COS (¥ eik(w—f—ut) '
mn 2 cosa 2 cosa
P N

The term P describes the physical solution of a plane wave propagating to the
right with an amplitude A (14 cosa) /(2 cosa); for At — 0 the amplitude
is equal to A. The term N is the computational mode propagating to the left
with an amplitude that vanishes for At — 0.

The advection equation (3.15) was solved numerically for u = 1, Az = 1,
and At = 0.1 using scheme (3.24), while (3.25) was used for the first time
step. The initial condition is a pulse of amplitude 10 at the origin, which, in
the exact solution, ought to propagate to the right preserving its shape. The
result is shown in Fig. 3.8. The numerical integration shows indeed a wave
package moving to the right, physically well-founded, but also the numerical
mode moving to the left and changing its sign at any grid point with each
time step (Fig. 3.8). Additionally, the physical mode is subject to numerical
dispersion, meaning that its form is not preserved. In this scheme, the propa-
gation velocity of a wave depends on the wavelength. This causes the initially
well-localized wave package to slowly disperse.
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Figure 3.8: Dissipation of a wave package and generation of the numerical mode (z < 0) for the
solution of the advection equation (3.15) for v = 1, Az = 1, and At = 0.1 using CTCS.

« Unstable case [o]| > 1:

In this case, we can rewrite (3.29):
BM=—i(c+S), S=Vo2-1>0.

For ¢ > 1 we have 0 + .5 > 1 and hence ‘(BAt)n’ — oo for n = oo. For

0 < —1 we have 0 — § < —1 and ‘ BAt n‘ diverges as well. The solution
increases exponentially with time: it “explodes™.

In consequence, the numerical solution using the CTCS scheme (3.24) only converges
under the condition |o| < 1, that is

uat sin (k Ax)

<1.
Ax -

For this condition to be fulfilled for all wavenumbers k, the following very important

condition must be satisfied:
u At

Az

<1. (3.34)



3.5 Solution of the advection equation 69

/ Figure 3.9: Space-time

& ® \s grid and area of influence

¢000/ / \ / \ of the CTCS scheme

Wb . . ° (3.24). In the case here,
7 / \ / \ / \ the characteristic of wave

propagation lies outside the

/ / T\ area of influence and thus

L4 > X violates the CFL criterion.

Condition (3.34) is called the Courant-Friedrichs-Lewy criterion (Courant et al.,
1928), which must be satisfied in order to obtain stable numerical solutions using
central differences. It is usually referred to as the CFL criterion. The CFL criterion
links the velocity, at which signals are transported in the fluid, to the resolution of
the space-time grid required to resolve the flow. At high transport velocities and
a fixed spatial resolution, small time steps must be chosen. High flow velocities
often occur in natural systems relevant for climate modelling. For example, the jet
stream in the high troposphere/lower stratosphere of the mid-latitudes, or western
boundary currents in ocean basins are difficult to resolve and require small time
steps to satisfy the CFL criterion. Both, large v and small Az conspire to requiring
small time steps At. This may quickly result in a computational challenge.

Therefore, it is important to introduce numerical schemes which do not have to
satisfy the CFL criterion. These are applied in difficult cases where the time step
would have to be reduced too much.

We now present a more intuitive and physical way to understand the origin of the
CFL criterion. The CFL criterion is a result of the wave propagation as described
in the advection equation, and the area of influence of the chosen numerical scheme.

This is illustrated on a space-time grid in Fig. 3.9. A point (z,t) on this grid is
visited by a wave which started at ¢t = 0 from a specific location and has propagated
in time ¢t to location x. The wave propagates along its characteristic; here as a
special case with a constant velocity u. The characteristic of a wave is defined as
the geometric location of constant phase in the space-time-continuum. Here, the
phase is given by ® = x — ut. The CFL criterion is the requirement that the
characteristic that runs through point (z,t) is captured by the numerical scheme at
all times.

The area of influence of the numerical scheme is determined by the specific formula-
tion of the scheme. In the case of the leap-frog scheme (eq. 3.24, CTCS) a triangular
area of influence in the space-time grid results. Its vertex is located at point (z,t).
From Fig. 3.9 we see that the slope of the characteristic must be larger than the
slope of the area of influence of the numerical scheme in order for all points to be
captured by the waves reaching point (x,t). Therefore,

A u At
> = =<,
Z X <

T

SN

t
Azx

which yields the CFL criterion (3.34). Figure 3.9 also illustrates that the slope of
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area of influence decreases either by increasing Ax or by decreasing At as is directly
evident from (3.34).

Analogously, using (3.26) for the heat equation
or o*T

— = K —

ot 0 x?

and solving it numerically using the FTCS-scheme we obtain the criterion for nu-
merical stability

K At < 1

2S5 (3.35)

3.6 Further methods for the solution of the advection
equation

3.6.1 Euler forward in time, central in space (FTCS)

The numerical mode in (3.32) arose from the fact that the computation of the new
time step required the information of two previous steps. In order to suppress the
numerical mode we try an Euler forward method for time. Hence, equation (3.15)
in a discretized form becomes

u At

Cm,n+1 - Cm,n - E (Om—i—l,n - Cm—l,n) . (336)
We assume _
Om,n — BnAt elkmA:L' (337)
and obtain
BA =1—ic=V1+02e?, (3.38)
where At
o= UA:C sin(k Ax) , tanf = o .

Inserting (3.38) into (3.37) yields

Conm = (1 + Uz)n/2 oik(mAz—n6/k)

Since the above bracket is always greater than 1, the amplitude increases with time.
Therefore we find |Cy, | — oo for n — oo. The solution ,explodes® using this
scheme.

3.6.2 Euler forward in time, upstream in space (FTUS)

The following scheme takes into consideration the physics inherent in the simple
advection equation (3.15). In a flow with speed w, the information originates from
the negative z-direction and is carried at velocity u towards the grid point under
consideration. It seems obvious to discretize the spatial derivative using a scheme
that accounts for this situation. Instead of central differences, Euler backwards is
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Figure 3.10: Comparison of the exact solution (blue) of the advection of a rectangular profile using
different numerical solutions of the advection equation: central differences in ¢ and x (CTCS, eq.
(3.23), black), and upstream scheme, respectively (FTUS, eq. (3.39), red). For both, Az = 0.2,
At = 0.1 and v = 1 are used. The initial condition is C = 1 for —1 < z < 1 and C = 0 else.
The numerical mode appearing when central differences (3.23) are used, is obvious. The upstream
scheme does not produce a numerical mode but shows a very strong damping and dispersion.

used. It is clearer to use the term upstream scheme in this context, since spatial
information originating from upstream locations is used. For v > 0 the discretized
form of (3.15) therefore becomes

u At

Ar (Crun — Ci—1) - (3.39)

Cm,n+1 = Cm,n -
Inserting (3.37) into (3.39) and simplifying, we obtain

At _ uAt —ikAz
B _1—E(1—e ). (3.40)

The numerical scheme stays stable if ‘BN < 1. Based on (3.40), it can be shown
that this is satisfied for all wavenumbers k, provided

u At

— <1 3.41

Al‘ — ) ( )
hence, if the CFL criterion (3.34) is satisfied. The disadvantage of the upstream

scheme is a relatively strong damping and dispersion as illustrated in Fig. 3.10. In
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Figure 3.11: Schematic representation of an explicit and two implicit numerical schemes. a)
explicit leap-frog scheme (3.23), b) the implicit leap-frog scheme (3.42), and c¢) the implicit trape-
zoidal scheme (3.44).

the upstream scheme, the damping increases with the reduction of At.

3.6.3 Implicit scheme

Often, the CFL criterion can only be satisfied if extremely short time steps are
chosen. For example, in typical ocean models near the surface, where the isopycnal
surfaces (surfaces of constant density) are steep, fluxes become large, and time
steps on the order of seconds would be required to satisfy CFL. This is clearly not
practical, and therefore an alternative must be found. The idea of the implicit
scheme is that spatial derivatives are taken at the new time (n + 1) At. There are
various possibilities to do so, as is illustrated on a space-time grid in Fig. 3.11.

The implementation of the implicit leap-frog scheme for the advection equation
(3.15) reads

Cm n+1l = C'm n Cm—l—l n+1l 7 Cm—l n+1
: ’ : ntl ., 42
At 2 Az ! (3.42)
We insert (3.37) into (3.42) and obtain
1 u At
B = = in (kAz) . 4
T o 0= sin (k Az) (3.43)

For any value for ¢ we find BAt‘ < 1. Therefore, this scheme is stable without
a constraint on the time step or the spatial grid resolution. However, there is
significant damping.

If, instead, the spatial derivative is evaluated at the intermediate time level (n+1)At,
we obtain the implicit trapezoidal scheme for the advection equation (3.15)

Cm,nJrl - Cmn 1 <Cm+1,n+1 - Cmfl,n+1 + Cerl,n - Cmfl,n

tug 2 Ax 2 Ax

= ; ):o, (3.44)

where £ (...) represents the average of the first spatial derivative at times (n + 1) At
and n At. Again, we insert (3.37) into (3.44) and obtain

1— 1
LA (3.45)
I+35io
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For any value for ¢ we find ‘BN‘ = 1. Therefore, this scheme is absolutely stable,
and neither the CFL criterion has to be satisfied, nor a damping of the amplitude
occurs. Unfortunately, the phase velocities of the waves become distorted.

It is evident from (3.44) that the implicit scheme leads to a large system of linear
equations which requires a matrix inversion in order to solve for the new time step.
We now write the equations resulting from using the implicit scheme in a compact
way. Therefore, we collect the solutions at grid points m =1, 2, ..., M and time n
in a vector:

Cp = (Crn,Com s, Car) - (3.46)

The discretized form (3.44) can then be written as a system of linear equations in
the following way:

w At .1 u At Cg_l’"
4:AI‘ : 4 AI Cm+1,n
: : : : Co it
n _uAt u At Comit | =0,
4 Az 4 Ax C
. . . m+1,n+1
or in short
AC,+BC,;1=0. (3.47)
The solution at time n + 1 is given by
Con=-B1TAC,. (3.48)

This means that for one time step, the solution at all spatial grid points is derived by
the inversion of a linear equation system. B is a tridiagonal matrix; such matrices
are regular, i.e. they can be inverted. The matrices are usually sparse, the solution
can be obtained without using a full matrix inversion which is computationally
expensive. In the case of (3.44), the matrix has non-zero elements only in the
diagonal and the first off-diagonals. The numerical solution using the implicit scheme
(3.44) for the same parameters At and Az and the same initial conditions as in
Fig. 3.10 is practically indistinguishable from the numerical solution using (3.23).
However, the big advantage is the possibility of an arbitrary increase of the time
step without sacrificing the quality of the numerical solution (Fig. 3.12).

3.6.4 Lax scheme

In Section 3.6.1 it was shown, that the scheme Euler forward in time, central in space
(FTCS) is always unstable. Now, the idea in the Lax scheme is to stabilize the FTCS
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Figure 3.12: Comparison of the exact solution (blue) with the numerical solutions of the advection
equation using the implicit-trapezoidal scheme (3.44) with two different time steps: At = 0.1
(black) and At = 0.5 (red) with Az = 0.2 and v = 1. The latter violates the CFL criterion, but
this is not relevant for the implicit scheme. The initial condition is C' =1 for —1 < z < 1, and
C = 0 else. Both schemes reproduce the main maximum relatively well, but they also generate
numerical modes propagating to the left. The method with the large time step exhibits a greater
lag of the main maximum.

method by an additional diffusion term. This can be achieved by replacing C,, ., by
the spatial mean of two neighbouring grid points in (3.36). This leads to

1 u At

Crins1 = B (Crgin + Cmcin) — Ay (Crt1n — Cr1n) (3.49)

The scheme (3.49) is equivalent to (3.36) plus a diffusive term, because

u At 1
Cm,n—i—l = Cm,n - E (Cm—i-l,n - C’m—l,n) + 5 (Cm—i-l,n -2 Cm,n + Cm—l,n) )

(3.36) D

and term D is a discretized form of a diffusion term

AZE2 Om-i-l,n -2 Om,n + Cm—l,n ~ At <Al’2> 820

fem D= Ar? 2AL) 02

(3.50)

2At

with a numerical diffusion constant Ax?/ (2 At). Therefore, the reduction of Ax
decreases the diffusion quadratically, whereas a decrease of the time step increases
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Figure 3.13: Comparison of the exact solution (blue) with different numerical solutions of the
advection equation: Lax scheme (3.49) (black and green) and Lax-Wendroff scheme (3.53) (red).
The parameters are: Az = 0.04, At = 0.02 and v = 0.3. The initial condition is C = 1 for
-1 <z <1, C =0 else. The Lax scheme (3.49) exhibits a strong damping and therefore a
substantial underestimation of the gradients. The damping is reduced in the Lax scheme if the
grid spacing is reduced (Az = 0.02, green).

diffusion. But Az and At cannot be chosen independent from one another because
of the CFL criterion. This follows from using form (3.37) and inserting it into (3.49).
This yields

At
B2 = cos (k Ax) — UA isin(kAx) . (3.51)
x
Hence, the scheme is stable only if
At u At
B <1 o<1 (3.52)

which is again the classical CFL criterion. The numerical solution is illustrated in
Fig. 3.13; the parameters are identical to Fig. 3.10. The smaller the chosen time
step, the stronger is the effect of diffusion of the first term in (3.49) and the scheme
becomes useless.

The Lax scheme exhibits no numerical mode. But the clear disadvantage of the
scheme is the rather large damping of gradients.



76 3 Describing transports of energy and matter

3.6.5 Lax-Wendroff Scheme

The Lax-Wendroff scheme addresses directly the problem of numerical diffusion from
which the Lax scheme suffers. It reproduces gradients considerably better than the
Lax scheme. This scheme is based on the idea to combine the Lax scheme for an
intermediate time step with a subsequent leap-frog scheme (CTCS, with %At and
%Az, see section 3.5.2). The intermediate or preparatory step is given by

~ 1 u At
Cm+%7n+% — 5 (Cm—l-l,n + Cm,n) - m (Cm—l-l,n - Cm,n) (353>

and then followed by CTCS-time stepping to time (n + 1) At

Cmm_,_l _ Cmm _ u At (~

TZL’ Cm-‘r%,n-‘r% - Cm—%,n—i—%) : (354)

Inserting (3.53) into (3.54) reveals how the formerly unstable scheme (3.36) becomes
stabilized:

u At
Cm,n+1 == Cm,n - @ (Om—i-l,n — Cm—l,n)
(3.36)
u? At?
m (Cerl,n -2 Cm,n + Cmfl,n) . (355)

D

Term D in (3.55) is a diffusion term, because

u? At Cpiin —2Cmn +Criin
Az?

u? At 0°C

Term D = At

Here, the numerical diffusivity is u? At/2 and thus much weaker than for the Lax
scheme. It scales with At, and hence decreases when reducing the time step. The nu-
merical solution is illustrated in Fig. 3.13. The representation of the steep gradients
is significantly improved over the Lax scheme. However, the Lax-Wendroff scheme
overestimates the maximum and shows trailing oscillations. Their spatial extent is
much reduced compared to the trailing oscillations occuring with the CTCS, FTUS,
and implicit schemes (see Figs. 3.10 and 3.12). This is because the oscillations
emerging in the Lax-Wendroff scheme are primarily associated with the gradients
rather than with a computational mode propagating to the —z-direction. These
growing oscillations before the steep gradients are due to the Gibbs phenomenon.

It can be shown that also for the Lax-Wendroff Scheme the CFL criterion (3.52) has
to be satisfied to ensure stability.

Comparing now the numerical diffusion constants of the Lax and the Lax-Wendroff
schemes, respectively:
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L_ Az? LW _ u? At
YN N 2

(3.57)

and assuming that grid spacing and time step are unchanged, and that the CFL
criterion (3.52) is satisfied as follows:

— =r<l 3.58
we find that
DYV =r’Dx . (3.59)

The Lax-Wendroff scheme has a numerical diffusion that is reduced by a factor of

r? compared to the Lax scheme.

3.7 Numerical solution of the advection-diffusion equation

Let us now consider the one-dimensional advection-diffusion equation (3.5) with a
source term proportional to C(z,t):

oC 0*C oC

D, uwand b are constants. A generalized formulation of the discretized form of (3.60)
is given by

Om,n+1 - Om,n - D 0 v?ng,n—H + (]- - 6)) Vic(m,n
At Az?
chm n
: b .61
tu— ot Cinn (3.61)

using two central difference operators, defined as follows:
chm,n = Cerl,n - C’mfl,n 5

(3.62)
vicm,n = Om-l—l,n -2 Om,n + Ctm—l,n .

0 in (3.61) is a free weighting parameter, 0 < § < 1, defining the “degree of implicity”
of the scheme. For § = 0 the scheme is explicit and the right-hand side of (3.61) has
no time index n + 1. The explicit scheme is stable for D At/ Az? < %

For the parameter combination v = 0, b =0 and 0 = %, (3.61) is called the Crank-
Nicholson scheme which is absolutely stable. In general, stability of (3.61) requires

At 1 1
< =
Azx?2 —21-20

D for 0<6<1 (3.63)

and for absolute stability: 6 > %
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3.8 Numerical Diffusion

Any numerical scheme exhibits non-physical properties due to the truncation. By
neglecting higher-order terms in the Taylor expansion, errors are introduced. Nu-
merical diffusion is one of them, and it becomes particularly obvious when the real
diffusion of physical properties needs to be quantified (e.g., mixing of tracers in a
fluid system, penetration of heat into the ocean, etc.). We have encountered this
already in (3.49) and (3.54), but it is also evident in Fig. 3.10 (scheme (3.39)).

In order to examine the dependence of this numerical artifact from the choice of
the discretization, we look at the one-dimensional advection equation (3.15) which
represents one part of the classical wave equation:

oC oC
0*C 0*C

We discretize in space (index m) and time (index n), and write the following Taylor
expansions for the spatial and time steps, respectively:

OCm, 1 9°C,,.
Coitn = Chn+ = Az + — A+
’ ’ ox 21 Ox?
, (3.66)
oC, 1 04C,
— A UL N A S
Ot = O+ =57 A+ o == AT+

In (3.66), we solve for the first derivatives and insert them into (3.64). We obtain

Cm,n+1 - Om,n +u Cerl,n - Cm,n

At Az
1 0*Crn 1 0*Crop

A solution of (3.64) is also a solution of (3.65). Therefore, the second time derivative
in (3.67) can be substituted using (3.65). Finally, we get

Cm,nJrl - Cm,n +u Cm+1,n - Cm,n
At Ax
) 0?*Crnm

—...=0. (3.68)

2 2 0x?

1 1
— (uQAt—i- —uAx
The third term in (3.68) is again a diffusion term. (3.68) reveals the fact that for all
1st-order schemes consisting of the numerical formulations of derivatives, diffusion

occurs with diffusivity
1

1
Dy = 3 urAt + 3 ulAx . (3.69)
Dy is the numerical diffusivity that scales with the time step and the grid spacing.

Note that by marginally satisfying the CFL criterion and selecting Az and At such
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that uAt/Axz = 1, we obtain from (3.69)

Ax?

Dy=—— . .
N= A (3.70)

This shows that by decreasing both Ax and At by a factor, the CFL criterion is
unchanged, but the numerical diffusion reduces by that factor.

Various schemes exist that compensate for the numerical diffusion up to a certain
point (see e.g., Smolarkiewicz, 1983). Such modern schemes are denoted FCT-
schemes (fluz-corrected transport schemes).
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4 Energy transport in the climate system and its
parameterisation

4.1 Basics

In the annual mean, the Earth takes up energy between 30°S and 30°N, while it has
a negative energy balance towards the poles (Fig. 4.1). Since neither a continuous
warming in the lower latitudes nor a cooling in the high latitudes are observed, a
strong poleward transport of energy is required. The integration of the meridional
radiation balance from the South Pole to the North Pole, as it is given in Fig. 4.1,
yields the heat transport, required by the radiation balance (Fig. 4.2). In each
hemisphere, about 5 - 10 J/s = 5 PW (Petawatt) are transported polewards.
This flux is split about evenly between ocean and atmosphere. The maximum
heat transport in the northern hemisphere occurs around 45°N in the atmosphere
and around 20°N in the ocean. This fact points to the different mechanisms and
boundary conditions (continents) responsible for the meridional heat transport. The
atmosphere transports heat in a way fundamentally different from that of the ocean.
The most important mechanisms are briefly explained in the following sections.

A central question is how climate models simulate heat transport and whether a
certain model is able to reproduce the relevant processes of heat transport at all.
It turns out that state-of-the-art three-dimensional climate models (position 3/3 in
the model hierarchy of Table 2.1) simulate heat transport in the atmosphere as well
as in the ocean in a physically adequate way. However, particularly models with a
coarser resolution tend to underestimate the meridional heat transport in some of
its important components and require unphysical corrections.

150F —
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50 -

Net radiation at top of atmosphere [W/m?]
o

_50L
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-1507\’“\\

20 g5 e0°S  40°S  20°S 0 20°N  40°N  60°N  80°N

Latitude

Figure 4.1: Radiation balance as a function of latitude. Shown are the annual mean as well as
the two seasonal means DJF (December-January-February) and JJA (June-July-August). Data
from NCEP reanalysis (Saha et al., 2006). Figure constructed by F. Lehner.
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Figure 4.2: Annual mean meridional heat transport in the atmosphere (latent and dry) and in
the ocean. Figure from Siedler et al. (2001).

4.2 Heat transport in the atmosphere

The total energy per unit mass in the atmosphere is given by

1
E= cT + gz + Lqg + §(u2+vz) ) (4.1)
——— —— —— —_———
I P L K

where cy is the specific heat capacity of air at constant volume, T is the temperature,
g is the gravity acceleration, z an altitude above a reference level, L the specific
latent heat, ¢ the humidity (mass of water vapour per mass of dry air), and u and
v the horizontal components of the velocity (the vertical component is neglected).
The four terms on the right-hand side denote the internal (I), the potential (P), the
latent (L) and the kinetic (K) energy. The order of magnitude of the individual
forms of energy in the atmosphere is given in Table 4.1.

10% Jm—2 fraction (%)
Internal Energy I 1800 70.2
Potential Energy P 700 27.3
Latent Energy L 64 2.5
Kinetic Energy K 1.2 0.05
Total 2565 100

Table 4.1: Amount and distribution of energy per unit surface area in the global atmosphere
(from Peixoto and Oort, 1992).

In order to explain the mechanisms of the temporal and zonal mean energy flux
density F' = 4 p E, we split the variables into a temporal mean and a temporal
deviation on the one hand, as we have already done in Section 3.4, and, quite
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analogously, into a zonal mean and a zonal deviation, on the other hand. The
temporal and zonal means of a quantity A are defined as follows:

to 27
o 1
14=T/Adu [A]:QW!AdA (4.2)

(time average taken over a time interval 7 = ¢ — t; of a few weeks, for example).
We denote the temporal and zonal deviations from the respective means as

A=A-A, Ar=A-1A]. (4.3)
From (4.3) follows, that
A=0, [A*] =0, (4.4)
as shown in (3.9).

Calculating fluxes such as the energy flux density F=4q p E involves products of
quantities that vary in time and space. We write

B

(A1 4) (B+B)

—AB+AB + A B+ A B
= AB+ A B
= ([A] +A*) ([B] +B*> + A'B

A|B)+|AB"+A'|B|+A'B "+ A B . (4.5)

—

After zonal averaging of (4.5) we obtain

[AB]=[A][B]+0+0+ [Z*E*] + [A"B|
[A][B|+ [A" B |+ [4AF]. (4.6)

The zonal and temporal mean of the product quantity A B consists of the product
of the means [ A] and [ B] of the respective individual quantities A and B plus the
zonal covariance between the temporal means A and B plus the zonal mean of the

temporal covariance A’ B'.

For illustration, we consider the first component of (4.1) in the following. By apply-
ing (4.6) onto the meridional flux density of internal energy v pcy T, where p is the
mass density, we get, ignoring both the approximately constant mass density and
the approximately constant specific heat capacity, for the zonally and temporally
averaged meridional flux of internal energy:

[vT]=[@)[T]+ [T | +[vT] . (4.7)

Hence, the zonally and temporally averaged meridional flux of internal energy con-
sists of three components: the flux due to the mean meridional current (M), the
flux due to stationary eddies (SE, caused, for example, by stationary high- and low-
pressure systems) and the flux due to transient eddies (TE, caused, for example, by
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stationary eddies transient eddies
Tt <0 vt >0 v >0 v <0
T <0 T >0 T >0 T <0
[T*T ] >0 [T ] >0 [vT'] >0 [vT'] >0

Figure 4.3: Schematic illustration of stationary and transient eddies in the atmosphere. In the
situation above, both systems transport heat northwards.

moving high- and low-pressure systems).

Here, M is the classical advective heat flux as described in Section 3.2. The terms
SE and TE in (4.7) originate from spatial and temporal correlations of v and 7.
An illustration is given in Fig. 4.3. The atmospheric meridional energy flux and its
components, as determined from observations, are given in Fig. 4.4.

4.3 Meridional energy balance model

As can be inferred from Fig. 4.4, the annual mean meridional transport of total
energy in the atmosphere is positive in the northern and negative in the southern
hemisphere. In the zonal and annual mean, the meridional temperature gradient
0T /Dy is positive in the southern and negative in the northern hemisphere. There-
fore, a negative correlation exists between 9T /d¢ and [v E']. This observation-based
relation is now used to suggest a simple parameterisation of the meridional heat flux.
We write

10T
R Oy’
where [ is the meridional flux density of energy, p the air density, ¢ the specific heat
of air, v" and T" the eddy fluctuations of meridional air velocity and temperature,
respectively. K = K(p) is a zonal eddy diffusivity dependent on latitude ¢ and on
the order of 10° to 107 m?/s, R the Earth radius and T the time mean of the local
temperature.

F=pcvT =—pc K(p) (4.8)

It is obvious, that the spatial and temporal scales, where (4.8) can be regarded
as valid, are strongly limited. Figure 4.4 shows, that during winter, when steeper
temperature gradients are present, more energy is transported. It has been empir-
ically shown that (4.8) is valid for time scales of > 6 months and spatial scales of
> 1500 km (Lorenz, 1979).
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Figure 4.4: Profile of the zonally and vertically averaged atmospheric meridional transports of
the total energy in (4.1) in °Cms~!. a) total; b) transient eddies; c) stationary eddies; d) mean
meridional flow, for the annual mean (bold), winter (thin line) and summer (dashed) months. In
order to obtain units of PW, the factor (27R cos ¢) ¢, (po/g) has to be multiplied. Figure from
Peixoto and Oort (1992).

We now apply this to the point energy balance model (2.1) which can be extended
to a one-dimensional energy balance model for which ¢ = T'(¢) now depends on
latitude. The balance equation is given by

hpca—T h 0 (pcK(go)laT coscp)

ot R cos p O R 0¢
l-«
#1200 () - (oo (4.9)

where the eddy diffusivity K, the albedo «, and the emissivity £ may be functions
of latitude. The (mainly short-wave) incoming radiation S(¢p) is also a function of
latitude. A good approximation for the annual mean is given by

S(p) = So (05294 + 0.706 cos’ o)

where Sy is the solar constant.
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The first term on the right-hand side of (4.9) is the divergence of the meridional heat
flux density multiplied by h, the vertical extent of the troposphere. The temperature
is a function of time and latitude. Since (4.9) is a differential equation of 2nd
order (9*/9¢?) in space, two boundary conditions must be satisfied. The boundary
conditions at the two poles require the heat flux to vanish, hence

or

™
— =0 fi = — —. 4.10
0 o =T+ (110

T
2
The one-dimensional energy balance model presented in (4.9) is referred to as the
Budyko-Sellers EBM. Budyko (1969) and Sellers (1969) were the first to propose

such a simplified climate model and to address fundamental questions concerning
climate change using their models.

The EBM in (4.9) can be further generalized to two dimensions by additionally
considering the zonal direction. Such models were developed in the 1980ies for
studying the temperature difference between glacial and interglacial periods based
on the changes in the radiation balance (North et al., 1983). Still today, they are
implemented in some models of reduced complexity (Table 2.1, dimensions 2/2 and
2/3, e.g. Ritz et al. (2011)).

It must be emphasized that dynamic global circulation models of the atmosphere
(AGCMs) compute the individual contributions to the energy transport (see (4.1)
and (4.7)) based on the dynamics, and, to describe large-scale eddies and their
effect on the heat transport, simplified parameterisations like (4.8) are not needed.
This requires a minimum spatial resolution of 1000 km or less in the atmosphere in
order to simulate eddies and their transport. As a result, a significantly increased
computational burden is carried which in turn limits the length of the integrations
and hence the applicability of AGCMs.

4.4 Heat transport in the ocean

The meridional heat transport in the ocean is caused by completely different mecha-
nisms from those operating in the atmosphere, even though the equations describing
the flow are analogous in both systems. The reason for this is on the one hand, that
parameters in these equations are different (in certain cases by orders of magnitude)
and that on the other hand, the ocean is restrained by basin boundaries. Along
the latter, important current systems emerge which contribute significantly to the
meridional heat flux.

In the ocean, eddies appear to play a minor role for the meridional heat trans-
port except in some particular regions (equator, circumpolar current, southern tip
of Africa). However, this statement is based on idealized model simulations and
sparse observational data, for which reason the uncertainties are still quite high. An
estimate for the meridional heat transport in the global ocean is given in Fig. 4.5.
Some 2 PW are transported polewards by the ocean in both hemispheres, with the
maximum in the northern hemisphere located more towards the equator than in the
southern hemisphere.
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In the different ocean basins different amounts of heat are transported. Ganachaud
and Wunsch (2000) inferred the heat fluxes based from temperature and salinity
measurements combined with inverse modelling. This is illustrated in Fig. 4.6. While
heat is transported northwards at all latitudes in the Atlantic, a southward transport
can be observed in the Indian Ocean. Despite its large extent, the transports in the
Pacific are surprisingly small. Transport in the circumpolar current is largest with
about 1.3 to 1.7 PW eastwards. The direction of the heat transport in the different
ocean basins is qualitatively consistent with the strongly simplified depiction of the
global oceanic conveyor belt introduced by Wallace Broecker (1931-2019) (Broecker,
1987).

In order to quantify the transport mechanisms of heat in the ocean, we define the
vertical averaging of quantity A in the ocean according to

ﬁ—lfAdz, At =A—A. (4.11)

—AB+ A+ B+
— AB+ ([A*] + A7) ([B*+] + B+
— AB+ [A*][B+] + A~ B+, (4.12)

where we have separated the quantities AT and B* further into a zonal mean and
a zonal deviation according to (4.3b).

Now taking the zonal average of (4.12), and also splitting A and B into zonal mean
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Figure 4.6: Meridional and vertical heat transports in the different regions of the world ocean.

Numbers in boxes denote the meridional transport in PW. Horizontal bars represent the vertical
transport (to the left = downwards). Figure from Ganachaud and Wunsch (2000).

and zonal deviation, we obtain

[AB] = [AB]+[A"][B+]+ A" B]
— [([A]+ A)([B] + B) |+ [A7] [ B*] + [ A" B+]
— [[A][B]+[A|B" + A'[B] + & B*] + [A7|[B*] + [A~ B""]
— [A][B] + [A* B*] + [A7][B+] + [A~ B+]. (4.13)

The meridional heat transport v T, vertically and zonally averaged, therefore consists
of four contributions:

(0T] = [8][T]+ 8" T* ]+ [v7] [T+]+ [0 T+, (4.14)
=0 bG MOCHwG EK

where the first term vanishes due to mass conservation in a closed basin, bG denotes
the heat transport associated with horizontal barotropic gyres (i.e., ocean gyres with
a one-to-one correspondence of density and pressure, so that isobaric surfaces are
isopycnal surfaces, as further explained in Section 6.8), MOC+wG is the meridional
overturning circulation, including the wind-driven baroclinic gyre circulation, and
EK is the heat transport due to the surface- and bottom Ekman circulation. These
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Figure 4.7: Zonally integrated meridional heat transport for the whole ocean and the Atlantic,
total flux (bold) and contributions by eddies (thin lines), simulated with a high-resolution OGCM.
Figure from Jayne and Marotzke (2002).

are induced by pressure forces, wind- and bottom-friction forces as well as Coriolis
forces (see Sections 6.2 and 6.7).

Available data for the ocean does not yet permit to determine (4.14) by measure-
ments. Therefore, Bryan (1987) simulated (4.14) in an ocean model of coarse resolu-
tion without eddies and found that around 80% of the meridional heat transport in
the Atlantic is caused by the MOC. These results were later corroborated by a global
OGCM of high resolution (Jayne and Marotzke, 2002). Thanks to a resolution of
0.25°, this model simulates individual eddies.

Globally, as well as in the Atlantic, the meridional transport of heat is predominantly
associated with the term MOC in (4.14). Eddies only contribute in some limited
regions to the total heat transport mainly in the tropical Pacific and in the western
boundary currents (Fig. 4.7). For this reason, particularly in the Atlantic, the deep
circulation, or thermohaline circulation (which is driven by ocean water density
differences emerging from temperature and salinity differences), is the most relevant
one for climate.

A rough estimate of the quantity of the term MOC in (4.14) yields the following
values: In the northern Atlantic, the thermohaline circulation transports some 20 -
105 m3s~! polewards near the surface at a temperature of around 18°C. Meanwhile,
the same volume flows towards the equator at a depth of 2-3 km along the western
boundary at a temperature of around 3°C. This corresponds to a meridional heat
transport of pc (AV/At) AT ~ 10%-4-10%-20-10%-15 W = 1.2 PW. This is in rough
agreement with the values of Fig. 4.6. The large vertical temperature contrast is
therefore the reason for the meridional heat transport in the Atlantic.

Also in ocean models, sub-scale transports need to be parametrised due to the limi-
tations imposed by the grid resolution. To this end, like in the energy balance model
(4.9), a flux-gradient relationships for the transport of heat and momentum are cho-
sen, because there are physical mechanisms (barotropic and baroclinic instabilities,
see Vallis (2017)) that scale with the gradients of temperature (e.g., K071 /0x) and
velocity (e.g., KO0v/dy). Therefore, the assumptions shown in Table 4.2 are made.
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4 ou A Ou 4 ov A v Eddy-momentum flux in z-
"oz 15y "oz 1oy and y-direction

. Ou o, Ov Eddy-momentum flux in
V oz V oz z-direction

T A K os K as Eddy-heat and -salt flux in
oz "9y oz "9y x- and y-direction

K or K o5 Eddy-heat and -salt flux in
Vo2 V. oz z-direction

Table 4.2: Components of eddy fluxes, namely x-, y- and z-components of eddy fluxes of horizontal
momentum, eddy fluxes of heat and eddy fluxes of salt.

The values of the eddy viscosities Ay, Ay and the eddy diffusivities Ky, Ky are
insufficiently constrained by data and hence, they are very uncertain. The value of
Ay depends on the grid resolution of the ocean model: the smaller Az, the smaller
Ay, since the model is able to resolve more scales for smaller Ax. Table 4.3 lists
typical values used in ocean models.

Table 4.3: Ranges of values for eddy viscosities

and eddy diffusivities in ocean models of coarse (n?/s)

resolution. A 10" ... 10°
Ay 107° ... 107!
Ky 10% ... 10
Kv 1075 ... 10

The role of eddies in mixing the water masses and their realistic and consistent
parameterisation in models is a current topic of research. In which way the mixing
effect of the tides and their interaction with the ocean topography could be accounted
for, also remains an unresolved question.



5 Initial value and boundary value problems

5.1 Basics

The linear approximations of the energy balance models by Sellers (1969) and
Budyko (1969) result in a linear partial differential equation of 1st order in time
and 2nd order in space (4.9). The first term on the right-hand side is the divergence
of the temperature gradient in one dimension, the second term is a source term,
independent from the solution itself, and finally there is a term proportional to T4
which in its linear approximation about the temperature T, reads

T4 ~ T4 4 d<T4)

R TE (T—T,) =T +4AT3 (T —-T,) = -3T +4T>T .

To

If the eddy diffusivity K in (4.9) is taken as a constant, (4.9) is therefore approxi-
mately of the general type

65+K62C+@0:,3<f>, (5.1)

with the solution function C(Z,t), e.g., T(p,t), and where & is constant and p(z) a
given function of #, and defined on a (not necessarily finite) domain €. It describes
numerous linear or linearized phenomena in physics, chemistry or mathematical
biology.

Functions C' = C(Z,t), & € Q, solve (5.1) for suitable boundary and initial condi-
tions. If such a solution satisfies an initial condition

C(Z,0) = f(2), (5.2)

where f(Z) is a suitable function defined on the domain €2, then the differential
equation (5.1) and the initial condition (5.2) together represent an initial value
problem. Instead, if the problem is independent of time,

V2C 4+ aC = p(Z), (5.3)
with the constant o and the function p(Z), for example
V20 =0 Laplace Equation,
V2C = p(7) Poisson Equation,

V0 +aC=0 Helmholtz Equation,
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and the solution C' = C(Z) satifies boundary conditions

() P00 4 (i) (@) = 4(). (5.4

where 0/0n is the derivative perpendicular to the boundary &, of the domain €2, and
a(Zy), B(2)) as well as () are suitable functions defined on this boundary, then
the differential equation (5.3) and the boundary condition (5.4) together constitute
a boundary value problem. For boundary conditions (5.4) at a point 7}, on the
boundary the following names are commonly used:

a(dy,) =0 Dirichlet boundary condition,
B(a,) =0 Neumann boundary condition,
else Cauchy boundary condition.

One of the most common boundary value problem is Poisson’s Equation
V20 = p(7) (5.5)

along with boundary conditions, i.e., specifically in two dimensions using Cartesian
coordinates,

0?’C  9*C

0x? + oy?
Equations (5.5) and (5.6) describe such diverse examples as stationary tempera-
ture distributions (7" instead of C') in regions where heat sources are present, also
stationary distributions of the electrostatic potential (¢ instead of C') in regions
containing electric charges, or the stationary flow of an incompressible and inviscid
fluid (velocity potential instead of C') in the presence of mass sources and sinks.

= p(z,y) . (5.6)

5.2 Direct numerical solution of Poisson’s equation

This section is given only for introductory purposes and in order to demonstrate
the principles. The numerical solution of a boundary value problem would not be
calculated using this method because of its computational inefficiency. Superior
methods are available which will be presented below.

For simplification, we first assume, that the region, in which the equation is to be
solved, is quadratic in shape. For the numerical solution of (5.6) a grid with a
grid spacing of Az and Ay is overlaid on the region (Fig. 5.1). Circles are termed
inner points, diamonds denote boundary points. Further, we assume that Dirichlet
boundary conditions are formulated, i.e. the values of the boundary points are given.
The derivatives in (5.6) are discretized according to Table 2.2:

820 . Cz"]qu - 201'73‘ + C@j—l
ox2 Ax?

9*C G —2C;+Ciyy
oy? Ay?

+ O(Az?) (5.7a)

+O(AY?) . (5.7h)
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Inserting (5.7) into (5.6), assuming Az = Ay, and neglecting terms of higher order
in (5.7), we obtain:

CiJrl,j —+ Cifl,j —+ Ci,jJrl -+ Ci,jfl — 4Ci,j = A.CC2 Pij - (58)

(5.8) states, that the deviation of the sum of the four closest neighbors from the value
in the centre is equal to the source term at this point. Equation (5.8) is a system of

linear equations of dimension N M x N M of the unknowns C; ;, 1 =1, ..., N; j =
1, ..., M. By appropriately numbering the indices of the inner points, a vector
Cr, k=1,..., N M can be constructed. We choose the following numbering, here
illustrated for N = 3 and M = 3, a total of 9 inner points as in Fig. 5.1,

Cip Ci2 Cis G Cy O

02’1 0272 0273 = CQ 05 Cg s (59)

C’3,1 C'3,2 03,3 C?) CG CQ

which converts (5.8) into the system of linear equations

—4 1 0]1 0o olo0o 0 o0 Cy "
1 =4 110 1 0|0 0 0 Oy o
0 1 —4/0 0 1/0 0 0 Oy ry
1 0 0]-4 1 0]1 0 0 Cy Ty
0 1 0|1 -4 1]0 1 o0 Cs|=1|rs| . (5.10)
0o 0 1]0 1 —-4/0 0 1 Cs T
0 0 0|1 0 0]-4 1 0 Cy -
o 0 0]0 1 0|1 -4 1 Cs rg
o 0 0|0 0 1|0 1 —4)\C ro

where the vector on the right side of the equation contains the values Az? p; ; plus
possible boundary values. The matrix in (5.10) is symmetric and has a block struc-
ture. By inverting the matrix in (5.10), C' can easily be solved for. However, this
method quickly leads to very large systems, which can hardly be handled. By num-
bering (5.9) in a different way, we obtain a different structure of the matrix. The
conditioning of the matrix depends on this numbering. This has an impact on the
accuracy of the solution C.
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We have seen that the numerical solution of partial differential equations rapidly
leads to large systems of linear equations which have to be solved using appropriate
numerical methods. For a typical grid resolution of 50 x 50 already a matrix of
dimension 2500 x 2500 has to be inverted.

5.3 Iterative methods

The inversion of a large matrix is costly. To avoid this obstacle, we consider here
iterative methods, first methods of relaxation and then the method of successive
overrelazation.

5.3.1 Methods of relaxation

The solution of (5.6) is a special solution of the time-dependent partial differential
equation

1 9C 9*C  9*C .
= o S~ p(®).
K ot ox?  0y?
namely the one for which 0C'/0t = 0. We seck the stationary solution of (5.11).
Discretization in space and time yields

(5.11)

KAt
n+l __ n n n
Cift = Oy + g (Clhay + Oy + Ol + Oy — 4C)

where again Ax = Ay and the upper index n denotes the time step. For the
time discretization in (5.12), Euler forward was used. The simultaneous solution
of a system of linear equations is replaced by an iterative calculation rule given by
(5.12). In the course of a relaxation iteration procedure the values C; ; converge to
the values of the stationary solution dC'/0t = 0. For the solution to be stable, the
appropriate CFL criterion (3.35) in two dimensions must be satisfied, i.e.

KAt 1
< — .
Ax?2 — 4

(5.13)

By considering the maximum allowable time step derived from (5.13), (5.12) trans-
forms to the classical Jacobi method:

Ax?

mn 1 n
Crit =2 (Ol + Oy + Oy + CF 1)—7%.

1 (5.14)

The Jacobi method converges only very slowly. A related method is the Gauss-Seidel
method, which uses already computed values of the consecutive time steps in (5.14).
Hence, when we proceed along the rows (i = constant) from small to large j, (5.14)
can be modified to

CZ,LJJ'A - (CZnJrlj Cznﬁlj + i, i+l T CZnJHl 4 P (5.15)
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Even the Gauss-Seidel method is not very efficient. In order to reduce the error of
the solution by p orders of magnitude, i.e., by a factor of 107, about % p J? iterations
are required, where J is the number of grid points.

5.3.2 Method of successive overrelaxation (SOR)

The method of successive overrelaxation (SOR) described in this section is a good
and appropriate method for simple boundary value problems that do not have to be
designed for efficiency. It is an iterative method based on the discretization given in
equation (5.8).

The solution matrix C' in (5.9) is again numbered as a vector: Cy, k =1, ..., J,
J = M N. For clarity, the solution vector here will be denoted x, instead of C.
Hence, (5.8) reads

Ax=b. (5.16)

Any matrix can be written as the sum of a diagonal matrix D, a left-triangular
matrix L, and a right-triangular matrix R, with zeroes in the diagonals of the latter
two. Applying this for matrix A we have

A=D+L+R. (5.17)
In this notation, the methods we have previously presented read:
Jacobi method ~ Da"t' = —(L+R)2" +b, (5.18)

Gauss-Seidel method MD+L)2" = -Ra"+b. (5.19)
We subtract (D + L) 2™ from both sides of (5.19) and solve for z"*:

=2~ (D+L) (D+L+R)a"—b) . (5.20)

=¢n

The quantity £" is called the residual of equation (5.16) at time step n, because
& = Az™ —b. Hence, the iteration reads

=" —(D+L) e (5.21)
= Agntl
where Azt = "1 — g7 = — (D 4 L)™' £" is the correction at iteration step n + 1

(the first iteration step goes from n =0 to n = 1).

The idea of the method of successive overrelaxation is to accelerate the convergence
by scaling the correction in (5.21) by a factor w with 1 < w < 2. This amounts to
increasing the correction term by up to 100%. Accordingly, the SOR method reads

g =" —w D+ L), (5.22)

and w = 1 would be the Gauss-Seidel method.

It can be shown that in order to reduce the error by a factor 107, here only % pJ
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iterations are required. The computational burden therefore only scales linearly
with J rather than quadratically (5p.J?) as for the Jacobi and the Gauss-Seidel
methods. However, this only holds if an optimum value for w is used in (5.22), and
this is the difficulty in the SOR method. Luckily, there are some prior estimates
for wopt (see Press et al., 1992, chapter Relaxation Methods). For smaller problems,
Wopt can be found by a search algorithm.

The matrix formulation (5.22) of the algorithm is only of theoretical value. The
practical implementation is straightforward.

The discrete form of a partial differential equation of second order can be written
in a generalized way as follows:

@ij Tip1,g + i Tio1j + Cij Tijn + dij Tij1 + €5 Tij = fij - (5.23)

The new estimate for z; ; is then calculated analogously to (5.22):

n

n+l __ ,.n i,J
el)]

where &' is the residual of the nth iteration:
n __ n n n n n
§ivg = Qi iy 5+ bigai oy +Cigaiy g +dig ;g e iy — fig (5.25)

In 1950, D. M. Young and S. P. Frankel proposed independently from each other
an optimized SOR method which uses previously computed x:‘jl in (5.25). This
method has become a standard SOR method and is outlined in Appendix A. The
description there should also illuminate the relation between the relaxation factor

w and the speed of convergence of any SOR method.



6 Large-scale circulation in the ocean

Every fluid parcel in the atmosphere and the ocean obeys the fundamental laws of
fluid mechanics including the equation of motion and the continuity equation. In
the following we describe approximate forms of these two equations for large-scale
circulations in the ocean. Analogous equations apply for large-scale circulations in
the atmosphere. As a preparatory step, we consider a special time derivative.

6.1 Material derivative

Given a small water parcel moving through the ocean on a path

Hence, at time ¢ the water parcel passes the coordinates x(t), y(¢) and z(t) with the
velocity

oty (| _ (10
u(t) = e % =1v®) |, (6.1)
dz(t) w(t)

Sdt
where u(t), v(t) and w(t) are the z-, y- and z-components of the velocity, respectively.
Any physical property A of the water parcel—such as the velocity, the pressure,

the density, the temperature, or the salinity—is a function of time and space, A =
A(t,z,y, z). The total derivative with respect to time of this mathematical function

is
1 dA_ 04 dr9A dy oA dz0A
dt ot  dt 9r  dt 9y = dt 0z
Determining the derivative along the path of the water parcel, where dz/dt = w,

dy/dt = v and dz/dt = w according to (6.1), we get the material derivative, also
called Lagrangian derivative or advective derivative,

DA_oA oA 94 o4
Dt ot ' ox v(‘?y Yoz

(6.2)

(6.3)

corresponding to the time rate of change of the physical quantity A measured by an
observer moving with the water parcel. The first term on the right-hand side of this
equation is the partial derivative of A with respect to time ¢ (the space coordinates
x, y and z are held constant), called Eulerian derivative, corresponding to the rate
of change of the physical quantity A measured by an observer at a fixed position in
space (x, y, z = constant). The difference between the material derivative DA/Dt
and the Eulerian derivative 0 A/0t is due to the transport with the flow, of which the
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water parcel is part, namely due to advection. Equation (6.3) can also be written
in vector notation:

DA
DA 0A 0w
— = — +(u, v, w)- 24
Dt ot gj
Oz
0A o
= VA, (6.4)

6.2 Equation of motion

The small water parcel satisfies the conservation equation for momentum, namely
the equation of motion based on the 2nd Law of Newton. With respect to an Earth-

fixed coordinate system it is
Du
— =da-+a, 6.5
Dt ! (6.5)

where a signifies the acceleration (force per unit mass) due to the sum of all real
forces (pressure gradient force, friction force, gravity force) and @ analogously the
acceleration due to the sum of all inertial forces (also called apparent forces) arising
from Earth’s rotation in an Earth-fixed reference system (Coriolis force, centrifugal
force).

Denoting the nearly constant angular velocity of Earth’s rotation with ﬁ, where
Q = 27/86,400 s = 7.272 - 107° s7!, the acceleration of the water parcel due to
inertial forces relative to an Earth-fixed reference system is given by

&I:—2Qxﬁ—ﬁx(ﬁxf), (6.6)

as shown for example in Peixoto and Oort (1992). The first term on the right-hand
side is the Coriolis acceleration, the second term is the centrifugal acceleration.
Due to the centrifugal acceleration, the Earth surface is approximately a rotational
ellipsoid so that the horizontal component of the centrifugal acceleration is nearly
cancelled out by the horizontal component of the gravity acceleration g. Therefore,
in contrast to the Coriolis force, the horizontal component of the centrifugal force
can be neglected.

Every realistic version of the equation of motion has to consider that the oceanic
currents are flowing on the approximately spherical surface of the Earth. But there
are good approximations, especially for circulations on smaller scales, which assume
oceanic flows to occur on a plane (Fig. 6.1). This plane is called f-plane or 5-plane,
depending on the approximations assumed (see below). A Cartesian coordinate
system (x,y,z), in which the equations are formulated, is defined on this plane.
The coordinate system is attached to the sphere and rotates with it. The Coriolis
acceleration in this system is given by

0 U 2Q sinpv
dc=—-2|Qcosp | x |v|=]|-20snpu] ; (6.7)
Q sing 0 2Q cospu
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Ve £, B-plane

Figure 6.1: Local Cartesian coordinate system on
a rotating sphere.

considering inertial forces, we will neglect vertical motions by setting w = 0. In
both horizontal components the common factor

f=2Qsingp (6.8)

appears. This is the Coriolis parameter which, due to the spherical shape of the
Earth, depends on latitude . Linearisation of f(y) yields

df
f(@) = flpo) + 7=| (¢ = o)
de ©o
=2Q sin g + 28 cos g (p — o)
2€) cos g
= fp+—T
fO REa’rth

=fo+By. (6.9)

If we only account for the constant term fy in the equations of motion in the (x,y, 2)-
coordinate system, we consider the dynamics on an f-plane. On the 3-plane one uses
the linear approximation (6.9) when considering the dynamics. This is especially
important if the plane’s origin is at the equator where fy = 0.

Next, we work out the most important real forces acting on the fluid. These are the
pressure gradient force, the friction force due to shear stress and the gravity force.
Pressure forces (caused by pressure p) and friction forces (caused by shear stress 7)
act on a mass element as follows (see Fig. 6.2):

p0xoydz a, = p(x) dydz — p(x + 0x) oy dz
+ Toy(y + 6y) 02 6 — T4y (y) d2 0
+ 7o (2 + 02) d2 0y — 7,0 (2) 0 by .

The water density p is taken as constant. Friction forces within the ocean arise
especially from eddy shear stress due to eddy fluxes of momentum going through
the frictional surface considered (viscous shear stress, however, is generally negligible
for large-scale motions), so that according to Table 3.3 7, = —pu/ V', 7, = —pu/ W',
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Figure 6.2: Denominations of
the pressure and of the shear
stress for the derivation of the
pressure gradient accelerations
and friction accelerations.

px)

0z

Ox

T.(2+02)
7’Txy(y) é | —---e-e-d _(y>6 )
: TV +
Pp(x+bx) B Ll feooa AV
7 7sz(z ) >
T(2)
------ oz
6)/ e -
dx by

except at the boundaries. We obtain for the components of the acceleration,

Uy = —— -

ay = —— -

a, = ——

1 0p 1 OTzy 1 OTy
pOxr p Oy p 0z
10p 1071, 1071,
p8y+p Ox +p 0z

1 0p 1 OTn 1 0Ty B
pOz p Ox p Oy ’

(6.10)

where g denotes the free-fall acceleration, i.e., the resultant acceleration due to the
gravity force and the vertical components of centrifugal force and Coriolis force. As
the horizontal shears of large-scale ocean circulations are commonly negligibly small
compared to the vertical shear we write approximately

A, =

1 0p

p Oz
1 dp

Ay = —— ——

p Oy

1 07y
p 0z

Y

1 07y,
p 0z

(6.11a)

(6.11D)

(6.11c)

With this we obtain from (6.5) the equation of motion approximated for large-scale

horizontal circulations,

Du
Dt

Dv
Dt

Dw

1 0p

p Oz
1 0p

p 9y

1 07y
;az +fU,
1 07y,
;82’ _fua

(6.12a)

(6.12D)

(6.12¢)



6.3 Continuity equation 101

i.e., written out in full, using the relation (6.3),

au+u@+v@+w@——l@+la%z+f
ot ox dy oz  pox p Oz

aUjLu@—l—v@jLw@——1@%—lgTyz—fu
ot ox dy dz  pdy p 0z

v, (6.13a)

: (6.13b)

L u v = -2 g, 1
8t+u8x+vﬁy+w82 >0 g (6.13c)

6.3 Continuity equation

The equation system (6.13) is not yet complete. In order to account for the mass
conservation, we assume that the ocean water is incompressible and satisfies there-
fore the continuity equation (3.8):

ou Ov Ow

2t oy T =0 (6.14)

6.4 Special case: Shallow water equations

6.4.1 General derivation of one-layer model

We now assume that the ocean is a homogeneous layer of water of average thickness
H, its surface everywhere at height z = 0 in the stationary equilibrium but generally
at height z = 7, the ocean bottom at height = = —H + n;, (Fig. 6.3). Thus, the
local instantaneous layer thickness is h = H 4+ n — n,. If the average thickness
H of the water layer is much smaller than its horizontal extent—a precondition
of the subsequently described shallow water model—then the vertical accelerations
in the water mass will be rather small (Dw/Dt ~ 0), so that the ocean will be
approximately in the so-called hydrostatic equilibrium, defined by the hydrostatic
equation following from the vertical component of the equation of motion (6.12¢):

A

ocean surface

2

ocean bottom e ST

X,y

Figure 6.3: Vertical cross section showing a part of the ocean. Average layer thickness H, water
surface at height z = n, bottom at height z = —H + n,, local layer thickness h = H +n — .
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dp
5, = P9 (6.15)

Under these conditions, the hydrostatic pressure at height z within the water layer
is given by

—p(n)+/gi dz
=pn) +pg(n—=2) .

It is therefore equal to the sum of the atmospheric air pressure at the surface of
the ocean water, p(n), and the weight per unit area of the water column above,
pg(n—z). Assuming the atmospheric air pressure to be constant, we get for the
pressure gradients dp/dx and dp/dy

o _ o’
3x_pgax
9 _ On
oy "oy

Obviously, the pressure gradients within the layer in hydrostatic equilibrium are
independent of z. Due to this important fact, the horizontal components of the
velocity u and v are constant with height for all time, if this had already been the
case at the beginning. Provided this case, the friction forces due to shear stress
vanish and the horizontal components of the equation of motion (6.12) become

on
v ow, ouw 90 1
8t+u8x+v<9y ga$+fv (6.16a)
+u+v=—gg’;—fu, (6.16b)

where we have written out in full the material derivative, as in (6.13), and the
vertical motions neglected.

In order to close the equation system for the three unknowns u, v and 7, we integrate
the continuity equation (6.14) from the bottom of the ocean water layer to its surface.
To be sufficiently exact, we take the vertical motions into account:

] u  dv  ow),
or 0Oy 0z :

—H+n,
U] U] "
ou v ow
= Sz [ Taz+ [ ZRaz = 0. 6.17
/ ox * dy i 9z (6.17)
—H+ny, —H+ny, —H+ny,
The limits of integration z; = —H + 1, and 2z, = n = 2, + h are functions of z

and y, Le. 21 = z1(2,y) = —H + mp(x,y) and 20 = n(t, 2,y) = z1(x,y) + h(t, 2, y).
Using the Leibniz integral rule (rule for the differentiation of a definite integral) and
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noting that the velocities v and v are constant, we get

n

n
ou .0 on ony,
/%dz_ax / udz “ax “ax
—H+mn, —H+np
78(u(H+n—nb))_ @—F ny,
N ox “ax u@x
_oGwh) _ on o,
- Oz ox oz’
n n
gvdz:a(9 / vdz—vgn—i— %nb
A Y y y
own)  on, o
dy dy oy’
I ow
| 5 4z =w(m) —w(-H +mn)

and with this from (6.17)

O (uh)
ox

.o
u@x
o(vh)  on Om
dy dy oy
+w(n) —w(—H +m)=0.

U
ox

(6.18)

The difference between the vertical velocity at the surface w(n) and the vertical
velocity at the bottom w(—H + ny,) corresponds to the change in height per unit
time of the water column between —H + m, and n and therefore to the material
derivative (with respect to the horizontal motion) of the column height h(t,x,y) =

H +n(t,z,y) —m(z,y):

Dh
w(n) —w(=H +m) = 7~
_oh_  Oh  Oh
T " Yar T ay
_On,  on, On  Om O
ot " "or oy “or Yoy
So, we obtain from (6.18)
on  O(uh) dWwh)
ot Ox oy

or, because h = H +n — n,, where H as well as n, are time independent,

ot

8h+ O (uh)

+8(vh)

0. (6.19)

ox

0y

The equation of motion (6.16) and continuity equation (6.19) represent the funda-
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mental equations of the shallow water model, namely the shallow water equations

ou ou ou on

ov v v on

- == R 2
ot T Mor TVay T Yoy W (6.20b)

oh oh oh ou  Ov

S tug = —h| h=H+n—m; 6.20
ot T 'ar Ty <8x+8y> / T (6.20¢)
the continuity equation (6.20c) follows from (6.19) with the aid of the product rule
of differentiation.

We now consider briefly a few approximations of (6.20) which demonstrate that the
shallow water equations permit solutions that represent various types of propagat-
ing waves. These waves are of central importance to understand the effect of local
anomalies in e.g., surface elevation, temperature or salinity, on the large scale cir-
culation. Waves are also key to enable various modes of natural variability in the
climate system, e.g., El Nino-Southern Oscillation (see Section 8.6.2). The waves
that we discuss here occur in principle both in the ocean and the atmosphere, but
we will focus on the ocean.

We first simplify the shallow water equations by assuming a flat bottom (n, = 0),
small velocities u, v and elevations n < H, as well as small space derivatives of u,
v and h. In this case the non-linear terms are negligible:

ou B an

ov on
on ou  Ov
— =—-H—+ = . 21
ot <6’x * 8y> (6.21c)

6.4.2 Gravity waves in a non-rotating ocean

Further restricting considerations to a non-rotating Earth (f = 0), taking the time
derivative 0/0t of the continuity equation (6.21c), the space derivative d/0x of the
equation of motion (6.21a) and the space derivative d/0y of the equation of motion
(6.21b) we obtain a single equation for the surface elevation:

~ L =gHV?%. (6.22)

This is a classical 2-dimensional wave equation, formally identical to (3.17). Solu-
tions of the simplified shallow water equations (6.21) in the non-rotating case are
therefore, among others, harmonic dispersion-free gravity waves. The solutions are



6.4 Special case: Shallow water equations 105

given by .
n(z,y,t) = qjetrtv=ed (6.23)

where the following dispersion relation between angular frequency w and the hori-
zontal wavenumbers k and [ must be satisfied:

w=1/gH K, with K =vVk?2+12. (6.24)

K is the magnitude of the wavenumber vector (k,[) which points in the direction of
wave propagation. The phase speed is given by ¢,, = w/K = \/gH, and is constant,
i.e. it does not depend on the angular frequency of the gravity wave. Therefore,
gravity waves in a non-rotating frame are dispersion-free.

6.4.3 Poincaré waves and Kelvin waves

The effect of the Earth’s rotation brings about important modifications of the wave
propagation and also generates new types of waves which do not exist in non-rotating
environments. Here we consider the case of a constant Coriolis parameter f # 0;
waves propagate on an f-plane. Seeking a wave solution to (6.21), we assume that
also u and v take the form (6.23) with amplitudes @ and o, respectively. Inserting
these into (6.21) yields a system of three linear equations which permits non-trivial
solutions for (a,v,7n) only if

w(w?—gHK?*— f*)=0. (6.25)

The dispersion relation therefore reads

w=/gHK?+ f?, (6.26)

and is shown in Fig. 6.4. The phase speed of the wave, ¢,, = w/K, here depends
on the wavenumber, and therefore gravity waves in a rotating frame are dispersive.
There are two limiting cases based on the characteristic length scales relative to
the Rossby radius which is defined as Lr = v/gH/f. Typical values for the Rossby
radius in an ocean of depth 4 km at mid-latitudes are about 2000 km, for a shallower
layer of only 400 m, we have Li ~ 600 km.

The Rossby radius separates two distinct gravity wave regimes in a rotating environ-
ment. For wavelengths much shorter than the Rossby radius, i.e., A = 27/K < Lg,
rotation becomes unimportant and the waves are non-dispersive with w = /gH K.
For wavelengths longer than the Rossby radius, w approaches f. These waves are
called Poincaré waves. Their angular frequency has a lower bound f, whereas in the
non-rotating case, w will approach 0 for very long gravity waves.

A special case occurs at lateral boundaries in a rotating ocean. Such boundaries
act as wave guides. For illustration we assume that there is a north-south wall at
x = 0 which requires v = 0. Equations (6.21b) and (6.21c) can then be combined
as follows:
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0%n 0%n

— = — 6.27
Ot2 g ayQ ! ( )
with the general solution n(x,y,t) = 7i(x) =% provided w = ++/gH . This is a
wave travelling in the y-direction at phase speed c,, = v/gH. Assuming a formally
identical solution for v, inserting it into (6.21a) and (6.21b), and using the dispersion
relation, we obtain

on .

— =4——17. 6.28

e ik (6.28)
A finite solution for x > 0 is therefore:

i(x) =ne /e, (6.29)

where we have used the definition of the Rossby radius Lr = /gH/f, and the
appropriate sign in (6.28) for the domain of propagation. Exponential decay away
from a boundary is the salient property of Kelvin waves. This highlights the fact
that the Rossby radius is also the characteristic length scale of a Kelvin wave. In
the northern hemisphere, where f > 0, Kelvin waves propagate with the boundary
to their right: northward at eastern boundaries, southward at western boundaries,
and westward at northern boundaries and eastward at southern boundaries. The
dispersion relation is shown in Fig. 6.4.

It turns out that also the equator, where f = 0, acts as a wave guide along which
waves can travel. This is due to the fact that f changes sign at the equator where
we have f = Py (see eq. 6.9). Since the boundary needs to be to the right of a
Kelvin wave travelling in the northern hemisphere, and to the left in the southern
hemisphere, equatorial Kelvin waves propagate from west to east with c,, = /gH.
The amplitude of an equatorial Kelvin wave decays as e~ '/2(/ Lp)? away from the
equator, where Lg = (v/gH/B)"/? is the equatorial Rossby radius. This is one key
element in the equatorial ocean to understand the dynamics of El Nifio-Southern
Oscillation.

6.4.4 Rossby waves

The shallow water equations (6.21) support yet another class of waves which arise
due to the dependence of the Coriolis parameter f on latitude. Such changes be-
come important at scales larger than the Rossby radius. To extract these waves we
build —0/0y(6.21a)4+0/02(6.21b) which eliminiates the pressure gradients in the
momentum equations:

0 (Ov OJu ou Ov
at<ax—ay>+f<&v+ay>+ﬁv—0- (6.30)

Note that we used f = fo + fy. We further assume that dn/0t = 0, in which case,
according to (6.21c), the divergence of the flow field vanishes. This permits the
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Kelvin

Frequency w/f

Wavenumber k x LR

Figure 6.4: Dispersion relations for the various types of midlatitude shallow water waves on an
f-plane (Poincaré and Kelvin waves) and on a S-plane (Rossby waves), according to the approxi-
mations in subsections 6.4.3 and 6.4.4. The next mode with meridional wavenumber [ is shown in
dashed lines.

introduction of a stream function ¢ (x,y) as follows:

L N
u=— ay,v—ax. (6.31)

Replacing u and v in (6.30) by ¥(z,y) we get

oy 0? 0
at<af+af>+ﬁ¢ , (6.32)

which supports wave solutions of the form v (z,y,t) = v ==« provided the
dispersion relation

Bk
= _ 6.33
YT TRt (6.33)
holds (Fig. 6.4). Note that the phase of the Rossby wave only propagates in one
direction, as indicated in the fixed sign relation between wavenumber and angular
frequency in (6.33): Rossby waves propagate from east to west in a fluid at rest.

A similar analysis can be carried out for a fluid with a background flow U. In this
case, an additional term U k appears in (6.33), and for a particular wavelength,
Rossby waves can become stationary (c,, = w/k = 0), if the background flow is
eastward (U > 0). The equatorial wave guide also supports equatorial Rossby waves,
in addition to the equatorial Kelvin waves. For a much more extended presentation
of the dynamics the reader is referred to Vallis (2017).
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6.4.5 Further considerations on the shallow water waves

To obtain the dispersion relations for the Poincaré and Rossby waves above, we have
made simplifications which are, however, not necessary. The full dispersion relation
of (6.21) on a mid-latitude S-plane can be determined by first bringing all terms in
(6.21) to the left-hand side and then building 9%/0t?(6.21b) — g 9*/dtdy(6.21¢) —
gH 0/0x(0/0x(6.21b) —0/0y(6.21a)) — f (0/0t(6.21a) — g 0/0x(6.21c)) . This elimi-
nates u and 7, and by assuming v(x,y,t) = 0 ellkr+ly—wl) we obtain the full dispersion
relation.

The shallow water equations (6.20) include non-linear terms which preclude ana-
lytical solutions in most cases. Therefore, numerical methods must be employed to
calculate the flow on discretized grids. Because of the presence of waves on differ-
ent time and space scales the numerical implementation is not straightforward. A
comprehensive exposition of the problem is found in Griffies (2005).

In the next section we provide a short overview of the most commonly used two-
dimensional grids that are employed to numerically solve the partial differential
equations that describe the circulations in the ocean and the atmosphere.

6.5 Different types of grids in climate models

The solution of the partial differential equations describing the dynamics in climate
models requires discretization of the equations. Up to now, we only considered
one-dimensional problems (Section 3.5). Furthermore, we have assumed that all
quantities are evaluated at the same grid points. However, in most cases this is
not the best choice. It will be shown in simple examples that other arrangements
of grids, which represent the physical reality better, lead to much more efficient
schemes. This will be illustrated using the one-dimensional version of the simplified
shallow water equations (6.21).

Here we focus, for simplicity and clarity, on Cartesian grids which are suitable
for equations formulated in Cartesian coordinates. Generally, climate models use
spherical coordinates. Because of basin boundaries in the ocean component of these
models, the equations are generally solved on a grid which discretizes along the
spherical coordinates (r,\, ). However, for atmospheric models which cover the
entire globe, an alternative technique based on the transformation into spectral
space is also frequently used. The basics are presented in Section 6.6.

The simplified shallow water equations (6.21) in one dimension and in a non-rotating
frame are given by

ou on
on ou
Si=—Ho (6.34b)

where the two unknown functions u(z,t) and n(z,t) are to be determined. It is
important to realize that the two equations in (6.34) are tightly coupled. If we choose
the common discretization in space according to x = ¢ Ax with the denominations
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Figure 6.5a: Simple spatial grid for the shallow water equations. The structure of the two equa-
tions dictates two independent sub-grids (red and blue lines).
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Figure 6.5b: Staggered grid for the shallow water equations. Flux quantities (u) and volume
quantities (7) are evaluated at different points.

w; = u(iAx,t), and n; = n(i Az, t), both functions are evaluated at identical grid
points (Fig. 6.5a). The discretized forms of equations (6.34) read

ou; MNi+1 — Thi—1

— gl Tl 6.35
ot g 2Ax ( a)
on; Uir1 — Uj—1

= -—-H T " 6.35b
ot 2 Az ( )

Thus, it appears that the two schemes are applied on two independent sub-grids,
the solution vectors (nox, tokt1) and (nog11, ugk) are mutually independent and no
information is interchanged. The error of the schemes in (6.35) is of order Az?.

By shifting one axis in Fig. 6.5a, we consider a staggered grid as it is shown in Fig.
6.5b. Here, twice the grid spacing as before is chosen. Therefore, only half the
number of values needs to be computed. The discretized forms of equations (6.34)
for this grid are given by

ou; an Nit1 — i

-l =g (6.36a)
ot ox i1/ 2 Az
on; ou Ui — Uj—1

=—-H — =—H—— 6.36b
ot Ox im1/2 2Ax ( )

By evaluating derivatives in (6.36) at the intermediate points, they can be regarded
as central differences with an equivalent grid spacing of Az, even though indices
only include immediate neighbors. For this reason, the schemes in (6.36) are of the
same accuracy as the ones in (6.35), where twice the number of values need to be
computed. Hence, the staggered grid affords a significant improvement with regard
to the present differential equations.

These findings can be generalized to two dimensions. To illustrate this, we consider
again the equation system (6.20), where the three unknown functions u(x,y,t),
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Figure 6.6: Left: Two-dimensional Arakawa A-grid in which all quantities are evaluated at iden-
tical grid points. Right: Arakawa C-grid which consists of three sub-grids, one for each field to be
calculated. The dashed square indicates a hypothetical physical grid box. Flux quantities v and
v are evaluated at the center of the faces of the box, whereas volume quantities 1 are taken in the
centre of the box. Grid positions at indices (i, j) of the respective sub-grid are circled bold.

uy) A\ (uy

i—1 i i+1 i—1 i i+1

Figure 6.7: Left: The two-dimensional Arakawa B-grid consists of two subgrids, one for the
velocities which are evaluated at identical grid points, and one for 7. Right: Arakawa E-grid which
has only one grid whose points are alternatively occupied by velocities and 7. This grid can also
be set up consisting of two subgrids, one for (u,v) and one for 7, as indicated by the red dashed
grid, rotated by 45°. The B- and E-grids are structurally identical. Grid positions at indices (i, j)
are circled bold.

v(x,y,t) and n(z,y,t) have to be computed on a two-dimensional grid (Figs. 6.6
and 6.7). In case all functions are evaluated at the same grid points (Fig. 6.6, left),
we denote this an A-grid (Arakawa A-grid). This structurally most simple grid has
disadvantages in representing spatial gradients.

A commonly used grid is the C-grid (Arakawa C-grid). It results from the A-grid
by defining a subgrid for each unknown w, v, and 1 and staggering them by half a
grid length %Aa: and %Ay, respectively. Velocity components of different directions
are evaluated at different locations (Fig. 6.6, right). This grid structure represents
the physics of fluid motion appropriately with respect to the conservation of mass
and momentum, because flur quantities, such as the velocities, energy fluxes, etc.,
are defined at the boundaries of a hypothetical physical box (dashed square box in
Fig. 6.6, right), while volume quantities, such as the surface elevation, temperature,
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salinity, density, concentrations of tracers, etc., are represented in the center of this
box. When using the C-grid in solving the shallow water equations (6.20) the spatial
gradients can be easily represented, but evaluating the Coriolis term at a specific
velocity grid point requires averaging the values of the nearest neighbors.

For illustration we here give the discretized version of (6.20a) for the Arakawa-C
grid, and we use central differences for the time discretization t = n - At:

n+1 n—1 n n n n n n
i, i, i+1, i—1, i,7+1 2,0—1 7, i—1,
J J un J J n J J g J J fv;rfj (637)

oAt W 2Ax B 2Ay Az

with o, = $(vf; + 0Py 5+ oy, + o). It is evident that the Arakawa-C grid
is not ideal for the representation of the meridional advection and Coriolis terms.
For simplicity here we have chosen central differences for time stepping, but the

Lax-Wendroff scheme (see Section 3.6.5) would be preferable.

Alternative choices of grids that are used in ocean models are the B-grid (Arakawa
B-grid) and the E-grid (Arakawa E-grid) for which the velocity components are
evaluated at grid points between the 1 points (Fig. 6.7). Therefore, they consist of
two subgrids, one for the two velocity components and one for n, and the subgrids
are staggered by %AZL‘ or %Ay. Note that for Ax = Ay the B- and E-grids are
structurally identical: By rotation of 45° and stretching by a factor of /2 the B-
grid is transformed into an E-grid.

It is important to note that each grid has special properties regarding conservation of
physical quantitites and characteristics of wave propagation in the two-dimensional
space. Dispersion and damping of waves, e.g., the gravity and planetary Rossby
waves in (6.20), depend on the grid on which the system of equations is solved.
More details on the properties of these grids are given in Randall (1994).

So far we have discussed two-dimensional horizontal grids. In the atmosphere or
ocean model components, the vertical dimension is also discretized, and this can
be achieved by applying the considerations above. In atmosphere models, pressure
coordinates are preferred, in ocean models most often depth is used, but there are
also so called isopycnal ocean models that employ density as the vertical coordinate.

We now consider a simple, one-dimensional application of a staggered grid. This
choice is convenient when solving the one-dimensional energy balance model. Equa-
tion (4.9) can be simplified to

oT . o[ o

with spatially dependent coefficients a, b, ¢ and e. In this model, temperature is
the volume quantity while the meridional temperature gradient represents a flux
quantity. If an A-grid is selected (Fig. 6.8a), the discretized form of (6.38) reads

oT; e 1l —ei1 T/
i a; + bz 7—;4 + ¢ i+1 41 v i—1 (639&
ot 2A ¢ )
oT Tiy1 —Tio
(ago) =T =58, (6:39)
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Figure 6.8a: A-grid for the one-dimensional energy balance model. The scheme (6.39) for the
solution of (6.38) results in two independent sub-grids (colored lines).
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Figure 6.8b: C-grid for the one-dimensional energy balance model.

where again (T, 15, ) and (Tor41, T3;,) are independent solution vectors. The
solution is evaluated on two non-connected sub-grids.

In a C-grid configuration (Fig. 6.8b) with double grid spacing, only half the number
of functions has to be evaluated and, accordingly, the discretized form reads

oT; T —e; T
- —a b T e S ZZZ 11 (6.40a)
©
T — T,
T =7 6.40b
1 QASO 7 ( )

which is of the same accuracy, but requires only half the computational resources.
In addition, the implementation of boundary conditions with respect to the flux
quantities (4.10) is straightforward, since they can be set to zero: Tj = 0 and
T, =0.

6.6 Spectral models

Here, a short section on an important alternative method to solve partial differential
equations in spherical coordinates (r, A, ) is presented. Up to now, we have treated
several methods that make use of finite differences. For the atmosphere component
of global climate models, the integration domain covers a sphere, which enables
the use of particular functions for the solution of the partial differential equations.
Therefore, in order to solve equations of the type given in (6.22) on a sphere, spectral
methods are often applied.

Usually, the atmospheric components of global climate models are spectral models.
In global ocean models they are employed rarely, or only for the vertical component
as the strong gradients of properties near the surface (e.g., temperature) can be
better accounted for.
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Instead of spanning a grid over the sphere and then replacing the differential equa-
tions by a system of equations in finite differences, the unknown functions are ex-
panded by appropriate basis functions which satisfy certain boundary conditions.

Consider eigenfunctions of the Laplace operator on a sphere of radius R,

A (AN ) N
V2, :—(Rz)n , (6.41)

namely spherical harmonics, which are given by

Y™ (0, ) = P (singp) '™, (6.42)

where P)"(sin ) are associated Legendre functions of the 1st kind. The quantities
m and ¢ are wavenumbers: 2m is the number of knot meridians (zeroes on a circle
of latitude), ¢ — m is the number of knot latitudes excluding the two poles. The
following orthogonality relation is valid:

(6.43)

1 2 , 1 if m=m (=70
- /d(sm@)/dAnmm -
o 0 else

which is consistent with the fact, that (6.42) constitutes a complete basis of func-
tions.

The unknown solution of (6.22) is now expressed as a linear combination of basis
functions Y;™(p, \) with time-dependent coefficients @} (¢):

n(t,eA) = > ;W(t)YZm(@A)- (6.44)

Iml<¢

Inserting (6.44) into (6.22) and using (6.41) we obtain following ordinary differential
equations for the coefficient functions:

d2or gH _ ..
dt; = —L(L+1) 55 O (6.45)

Hence, the partial differential equation (6.22) is replaced by a set of ordinary differ-
ential equations for the coefficient functions ®}*(¢). In this special case, the solutions
are simply the harmonic modes ®}*(t) = ¢}* - el“rt with w? = (¢ + 1)gH/R?.

The expansion in (6.44) theoretically ranges from ¢ =0, ..., 0o, m = —{, ... ,+{,
but in practice, the summation needs to be truncated at an appropriate point.
This results in finite spatial resolution determined by the highest wavenumbers.
The most commonly used truncations are triangular and rhomboidal truncations,
schematically illustrated in Fig. 6.9.

Early GCMs used R15 and R21. Transient eddies, important features of the atmo-
sphere, are barely resolved in R15. Hence, the partitioning—in absolute terms—of
the meridional heat transport in the atmosphere is not realistically simulated. This
is one of the reasons for coupled models of low resolution to require flux corrections
(see also Section 8.7). Typical spectral resolutions used today are T42 for coupled
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Figure 6.9a: Triangular truncation Figure 6.9b: Rhomboidal truncation
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atmosphere-ocean GCMs used for ensemble or long-term paleoclimate simulations,
T639 for the ERAS reanalysis product, and T7999 for the currently highest resolved
spectral model (Wedi et al., 2020).

The choice of the basis function already satisfies some of the boundary conditions.
This is a distinct advantage of spectral models. However, one difficulty arises with
the treatment of the non-linear and Coriolis terms which are part of the full equations
of motion. When these effects are considered, spectral models become much more
complicated, and coupling between the individual wavenumbers occurs.

6.7 Wind-driven flow in the ocean (Stommel model)

Since the beginning of inter-continental marine navigation in the 15" century, it is
well known that the surface flow in the ocean is characterized by large-scale gyres
(in the northern hemisphere clock-wise subtropical gyre, counter-clockwise subpolar
gyre). These gyres are not spatially uniform but feature a strongly intensified current
along the western boundary of the ocean basin, namely a strong northward current in
the northern hemisphere and a strong southward current in the southern hemisphere,
while in the eastern part the currents are weak.

The well-known Gulf stream is part of the western part of the North Atlantic’s
subtropical gyre. This then turns into the Transatlantic Drift Current as soon as
it leaves the American East Coast and moves northward towards the eastern part
of the subpolar gyre. Its effects on temperature and salinity are observed as far as
Spitsbergen. The Kuroshio Current, the Brazil Current and others form dynamically
similar circulation systems.

The wind, i.e., the Westerlies in the mid-latitudes and the pronounced Easterlies
more towards the equator, have quickly been identified as causes of these currents.
However, the dynamical problem, why the ocean currents only intensify along the
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Figure 6.10: Geometry of the
ocean basin and mass trans-
port in a Cartesian coordinate

o—> system, which is tangent to
the Earth’s sphere at a given
x=L latitude.

western basin boundaries, has not been resolved until 1948 when a landmark paper
was published by Henry Stommel (1920-1992). Using an elegant model, he demon-
strated that the spherical shape of the rotating Earth is the origin of this prominent
phenomenon (Stommel, 1948).

Stommel considered a homogenous fluid (p = constant) in a flat rectangular basin
(Fig. 6.10) on the p-plane; vertical cross-section as shown in Fig. 6.3. He assumed
the bottom to be flat, m, = 0, further the atmospheric air pressure at the surface of
the ocean water p(n) to be constant, and finally the vertical elevation to be much
smaller than the mean layer thickness, i.e. n < H. Multiplication of the horizontal
components of the equation of motion (6.13) with p, integration over the entire
depth from the height of the bottom z = —H to the height of the water surface
z =1, plus the assumption of stationarity 0/0t = 0 and linearity, yields

_f / pu dz = — / ——dz + Tz 77) - T:rz(_H) ) (646&)

f / pudz=— P gy Tyz(n) — Ty (—H) . (6.46b)

31/

We define the mass transport as follows:

n
M = /pﬁdz (6.47)

—-H

and substitute this in (6.46). Equation (6.46) reveals that the mass transport is
driven by the shear at the surface and slowed by the friction on the ocean floor.
Hence, at the surface the effect of the wind is to transfer momentum into the fluid.
The flux of momentum must be passed on to the fluid by internal friction or friction
at the bottom of the ocean basin.

Stommel chose the simplest possible parameterisation for this effect by postulating
that the shear exerted by the bottom is proportional to the velocity, or the mass
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transport, respectively. Hence, (6.46) becomes

n
0
My == [ Lzt - RM,, (6.48a)
—-H
o
FM, =— éﬁdz+@4m—fM@, (6.48b)
“H

where R is an inverse characteristic spin-down time of the circulation due to friction.

6.7.1 Determination of the stream function

By cross-differentiation 0(6.48b)/0x — 0(6.48a)/0y the pressure gradient terms in
(6.48) are eliminated. Taking (6.9) into account, we obtain

M, OM M, oM
5Mﬁ%<aw+ay>_&¢ &h_R<ay_az>7

ox oy B ox oy

A4
ox oy (6.49)

where the functions 7., and 7,. are now written without argument.

The two unknown components of the mass transport are not mutually independent,
since in a closed basin mass conservation must be satisfied. The vertical integration
of the continuity equation (6.14) yields, analogously to the derivation leading to
(6.19) but with 9/0t = 0,

oM, oM,

S 7
v ox * oy

=0, (6.50)

where the unknown vector function M can now be replaced by a scalar choosing

ov
ov
M,=—. 5l
V= (6.51b)

The scalar function W(x,y) is called stream function. Streamlines are lines of con-
stant stream function, along which the current moves tangentially.

Definition (6.51) satisfies (6.50) automatically, and we can use (6.51) in (6.49) in
order to obtain the Stommel equation which was first formulated in 1948 (Stommel,
1948):

or Oz oy

2 2
oV 0y, 8sz_R<a‘I’ 8\If>' (6.52)

B o2 " op?

This equation contains the phenomenon of western boundary currents in an ocean
basin in principle. Equation (6.52) is a partial differential equation of 2nd order in
x and y for the function ¥(z,y).

Boundary conditions still remain to be formulated. Since the transport must be
parallel to the boundaries, we require along the boundaries in the y-direction M, =
—0V /0y = 0, and along the boundaries in the z-direction M, = 0V /0x = 0. Hence,
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Figure 6.11: Stream function ¥ (in Sverdrup, 1 Sv = 10° m®s8~1) of the Stommel model (6.52)
fora) f=2-10"" m~!'s™! and b) 3 =0, with R = 1/(6 days), and 7' = 0.1 Nm~2 in (6.54).
The numerical solution was computed on a grid with N, x N, = 100 x 20 and using the Method of
Successive Overrelaxation (5.22). The current flows clockwise and is parallel to the stream lines.

VU is constant along the boundary. Because (6.52) only contains derivatives of ¥, we
can set, without loss of generality,

U=0 at the boundaries. (6.53)

Therefore, the Stommel model is a boundary value problem with Dirichlet boundary
conditions (Section 5.1). In order to find the solution, the wind stress must be
prescribed. For particularly simple spatial relationships of the stress, the boundary
problem may even be solved analytically. To this end, Stommel chose a purely zonal
wind stress, typical of the mid-latitude northern hemisphere, given by

Tps = —Tp COS (g y> , (6.54a)

7. =0 (6.54b)

Thus, (6.52) can be solved analytically by separation of the variables. But for more
complicated profiles of the wind stress, numerical methods presented in Chapter 5,
need to be applied. We will not explain this analytical solution but are going to
discuss numerical solutions of this problem.

The numerical solutions of the boundary value problem (6.52), (6.53) in a rectan-
gular basin between 0 < z < 7000 km and 0 < y < 5000 km are illustrated in
Fig. 6.11. We have employed the Method of Successive Overrelaxation described in
Section 5.3.2. On a S-plane, a western boundary current develops; for g = 0, a sym-
metric solution results which exhibits no boundary current. The western boundary
current in this model appears as soon as the Coriolis parameter f depends on the
latitude, implying that the spherical shape of the Earth plays a fundamental role in
the establishment of the dynamics.

In case a boundary current is present, the x derivatives of the stream function in
(6.52) become dominant at the boundary. Assuming a typical lateral width § of the
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boundary current and inserting ¥ ~ 1 — e~%/? into (6.52), we obtain

1 1 R
B 5™ R 5 hence 0 ~ 5 (6.55)

The width of the boundary current (Stommel boundary layer) scales with the friction
coefficient and is inversely proportional to f3.

6.7.2 Determination of the surface elevation

According to (6.48), wind-driven flow induces pressure gradients, which become
manifest as an elevation 7 of the water surface. This effect shall be quantified in
the following. It will lead to a boundary value problem with Neumann boundary
conditions (Section 5.1).

Analogously to (6.47), we define the pressure integrated over the depth as
n
P= / pdz (6.56)
“H

and take 0(6.48a)/0x 4+ 0(6.48b) /dy, assuming n < H. Using (6.50) and (6.51), we
obtain now the following Poisson equation for P(x,y):

oV 07y, N 07y

ViP = fV2U 4+ B — :
v AV +68y+8x 5

(6.57)

With the previous choice of the wind stress (6.54) the last two terms in (6.57) vanish.
The boundary conditions for P(z,y) may be derived from (6.48) and the fact that
the transport must be parallel to the boundaries:

P \
gx =f gm + Tys at =0 and x=1, (6.58a)
oP ov
a—y:fa—y+7yz at y=0 and y=~8B. (6.58Db)

Consequently, the derivatives of P perpendicular to the boundary are fixed (Neumann
boundary conditions). It must be noted, that (6.57) and (6.58) restrict the solution
up to a single constant.

By calculating P(z,y) based on (6.57) and considering (6.58), we can determine the
elevation of the water surface using (6.56) and assuming hydrostatic equilibrium:

n

P(z,y) = /pg(n—Z)dz:;/)9(1%”7)2 : (6.59)

“H
We expand (6.59) with regard to n < H,

1 n\? 1
P(z,y) =§p9H2 <1+H) %ing%rngn,



6.7 Wind-driven flow in the ocean (Stommel model) 119

Pl PZ— PN_Z
P Py
0 N—-1 PN
— X g X
0 Ax 2Ax (N-2)Ax (N-1)Ax NAx

Figure 6.12: Interpolation of the solution at the western and eastern boundary using parabolas.

and find with this

Pz,y) H
5

6.60
ool (6.60)

n(z,y) ~
The numerical solution of a boundary value problem with Neumann boundary con-
ditions requires some additional considerations. For Dirichlet boundary conditions,
such as (6.53), the boundary values are accounted for naturally by setting the values
in the numerical scheme directly. However, Neumann boundary conditions require
additional information from the points next to the boundary in order to find the
values at the boundary itself.

We derive the discretized schemes for the Neumann boundary conditions by cal-
culating the derivatives at the boundary using the values of the grid points inside
and assuming an appropriate interpolation. There are various possibilities for this:
linear, parabolic, etc. We explain the approach for the boundaries x = 0 and = = L;
corresponding formulations for the other boundaries can be inferred analogously.

In z-direction, the discretisation Az = L/N, with x = i Ax is chosen. We evaluate
the solution function P(z) at the grid points, that is P(i Az) = P;, where Py and Py
are located at the respective boundaries x = 0 and = = L (Fig. 6.12). A parabola is
assumed to interpolate the solution between the boundary point and the two points
closest to the boundary. For the boundary = 0, we assume the quadratic function

P(z)=az*+bx+ P, . (6.61)

In order to assure that the parabola goes through the values P, and P,, the following
must be valid

Pi=a(Az)’+b(Az)+ Py, and Py=a(2A2)°+b(2Az)+ Py, (6.62)

and analogous expressions hold for the boundary at = L. Solving (6.62) for the
coefficients of the interpolation parabola we obtain

P,—-2P + F —P,+4P - 3F
¢ 2 Az? o 2Ax (6.63)
With this, the first derivative at the boundary can be computed using (6.61):
dpP
— =b. 6.64
de | _, (6.64)

Hence, for the derivative to be given as a boundary condition at the boundaries, we
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Figure 6.13: Surface elevation 7 (in cm) calculated using the Stommel model (6.52). Panel a)
B=2-10"" m~1s~!; Panel b) 8 = 0, and Panel ¢) f = 0. The parameters are R = 1/(6 days),
H = 1000 m and 7' = 0.1 Nm~2 in (6.54). The numerical solution of (6.57) and (6.58) was
calculated on a grid with N, x N, = 100 x 20 using the Method of Successive Overrelaxation
(5.22).

can apply (6.63) and (6.64) in order to calculate the value of the function at the
boundary. We find

4P —-P 2 dP
PhP=———-Ax — 6.65
0 3 3 T dx - ) ( a“)
4Pny_1—Py_o 2 dP
Py = - A .65b
N 3 + 5 AT » (6.65b)

The numerical solution of (6.57), shown for different parameter values in Fig. 6.13,
was computed inside the domain using the Method of Successive Overrelaxation
according to (5.22). Therefore, ¥(x,y) needs to be determined first by solving
the Dirichlet boundary value problem given by (6.52) and (6.53). The boundary

conditions (6.58) are accounted for by computing the boundary values according to
(6.65).

The current is clock-wise (Fig. 6.11). Inside the western boundary current, pres-
sure gradient, Coriolis and inertial forces are in equilibrium with the wind stress
(Fig. 6.13, a). On an f-plane (8 = 0, Fig. 6.13, b), the current is approximately
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Figure 6.14: Vertical cross section showing a part of a discontinuously stratified ocean. Providing
that the stratification is stable, the water of the lower layers are denser than the water of the upper
layers (Ap > 0). Eddy fluctuations w’ of the vertical velocity w occur and yield mean eddy mass

fluxes +w’ p’ = +w’ Ap between the layers.

in a geostrophic equilibrium (Coriolis forces are balanced mainly by the pressure
gradients, friction compensates for the wind stress). It must be noted, that due to
the friction, currents do not exactly follow the lines of constant pressure, although
V2P = f V2V is valid inside the domain. This follows from the equation of motion
(6.48). In case the reference system is not rotating (f = 0, Fig. 6.13, c), the meridi-
onal flow is directed parallel to the negative pressure gradients, i.e. “downhill”, and
the zonal flow is forced to flow “uphill”, i.e. against the pressure gradient, owing to
the zonal wind stress that drives the zonal flow.

6.8 Potential vorticity: An important conserved quantity

Conservation theorems are fundamental statements in physics and enable a more
profound understanding of various processes responsible for the dynamics. Hence,
conservation theorems and related quantities are also very useful in geophysical fluid
dynamics and climate modelling. A conservation equation for large-scale ocean flow
is derived from the equations of motion (6.13) in this section.

The following explanations of this section are based on a simple model of a large-scale
ocean flow in hydrostatic equlibrium (Section 6.4). It approximates the continuous
stratification of the real ocean water by a discontinuous stratification formed by
superimposed thin layers, shallow water layers indeed, as illustrated in Fig. 6.14.
Any of these layers has a constant density p and a variable thickness h(z, y) and slides
between the underlying denser layer and the overlying lighter layer, thereby moving
along surfaces of constant density (isopycnals). The function p h(z,y) represents the
mass per unit area in this layer and obeys the relation

d(ph) 0

o
o +%(uph)+@(vph)=Q- (6.66)

This is a generalized version of the continuity equation (6.19) of the shallow water
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Figure 6.15: Vortex in the form of a solid disk ro-
tating with angular velocity w about an Earth-fixed 7
z-axis. The velocity of the points of the vortex at a wr

distance r from the center is wr and always tangen-
tial. Hence, the relative vorticity is 2 w.

model taking into account a cross-isopycnal mass flur Q (in kg/(m?s)) as well,
which could arise for example from eddy mass fluxes +w’p’ (covariance between
vertical velocity w and density p) going through the upper and the lower boundaries
of the layer. Using definition (6.3) for horizontal motions and neglecting density
changes (but not volume changes) within the layer, (6.66) can be written as

Dh ou  Ov Q
=4+ === 6.67
Dt <8x 8y> p (6.67)
We now define the vorticity measured relatively to the Earth’s surface, namely the
relative vorticity (, as the vertical component of the curl of the velocity field ,
which is measured relatively to the Earth’s surface, according to

- ov  Ou
=(VxUd)-Z2=—— —. 6.68
(= (Vi) 2= 3 (6.68)
2 is the unit vector normal to the Earth’s surface. It can be shown that the relative
vorticity ¢ equals twice the angular velocity of an infinitesimal vortex on Earth as
illustrated in Fig. 6.15.

To examine the time evolution of relative vorticity inside the layer, we consider the
equations of motion (6.13) — namely a generalized version of the equations of motion
of the shallow water model (6.20) — and calculate 0/0y(6.13a) and 0/0x(6.13b)
assuming w = 0. Observing (6.11) we obtain

oy — Otdy Oy Or Oxdy Oy Oy oy2 Oy Oy oy’
or  Otdx Ox Oz ox?  Ox Oy oyoxr  Or Ox ox’

so that 0/0x(6.13b) — 0/0y(6.13a) reads
O (o owy 0 (o0 oy, 0 (00 ou
ot \ox 0Oy Or \Ox 0Oy oy \Or Oy

Lou (00 ou) o (00 ou
Or \dx 0Oy oy \Or Oy
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and with (6.68) and 0f/0t =0

ac  ac o (au (%)C

— tTu—+v—+
or Jy

ot ox Jy

ox dy Ot ox 0 Jxr 0y
that is,
D B ou Ov da, Oa,
m(CJrf)__(C*f)(ax*ay)*ax—ay : (6.69)
CON PRO

¢ + [ is the absolute vorticity, i.e. the vorticity taken relative to an unaccelerated
reference system (f = 22 sin ¢ is the vorticity of the rotating surface of the Earth
at latitude o).

We consider the terms on the right-hand side of (6.69). They signify two distinct
sources of absolute vorticity: (i) convergence of the flow (CON), and (ii), production
by real forces (PRO). From (6.11), and with p = constant, we have

da, Oa, 1 0%, 1 0°m,

or Oy pOoxdz poydz

In such a fluid the production by real forces (PRO) is independent of the pressure
gradient forces. Such a fluid is called barotropic, all the others are baroclinic (Section
4.4). In a barotropic fluid the change of the absolute vorticity results solely from
circulation convergence and vorticity production due to friction.

Equation (6.67) allows us to simplify the term CON in (6.69) applied to the shallow
water layer emphasized in Fig. 6.14:

D _ (+f(Q Dh Oda, Oay
Dt<€+f)—_h<_])t>+(9:r_8y’
i.e.
1 D C+fDh  C(+fQ 1(da, da,
R AR T T m*zz(ax‘ay)
and consequently
D (¢C+f\  [(¢+f\Q 1 (da, Oa,
Dt<h>__<h>ph+h<8:cy_8y>' (6.70)

The quantity (¢ + f) /h is the potential vorticity in the shallow water layer. Potential
vorticity is a conservative quantity in a barotropic and frictionless ocean circulation,
if no mass is supplied or removed.

Regarding (6.70), wind-driven flow described in Section 6.7 can now be understood in
a coherent framework. In the Stommel model, a closed flat basin (@ = 0 and 1, = 0,
Fig. 6.3) with only one shallow water layer was considered. We integrate (6.70) over
the layer thickness h, assuming n < H (so that h = H +n ~ H = constant), and
substitute a, and a, for the right-hand side of (6.48). We assume 7,, = 0 according
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1 2 3 4 5
Direction of flow ph]l))g +ph]]?)‘:: ~ _a(;-;z -R 85\;[ Y 4R aé\;[x
N —+ S ~ 0 <0 <0 ~0 ~ 0
S — N ~ 0 >0 <0 >0 ~ 0

Table 6.1: Signs of the individual terms in (6.71) for the Stommel model of the subtropical gyre
in the northern hemisphere. The relation shaded in grey is required in order to close the balance
of terms. The large gradients imply a strong, confined flow, i.e., a boundary current.

to the Stommel model. This results in the approximation

D¢ Df _ Or. OM,  _OM,
pth—l—pthN oy Rax R oy

(6.71)

An estimate for the individual terms in (6.71) for large-scale circulation of typical
spatial scales of 10° m reveals the individual contributions given in Table 6.1 and
provides substantial insight into the dynamics of large-scale geophysical flow.

We now consider the signs and magnitudes of the five terms in (6.71) for northward
and southward flow. The dominant term on the left-hand side is Df/Dt (term 2
in Table 6.1), and the material derivative of the relative vorticity (term 1) can be
neglected in comparison. Southward flow implies decreasing f, and for northward
flow f increases. The sign of term 3 is always negative, and the west-east mass
transport M, (term 5) vanishes towards the eastern and western boundary. We
therefore are left with term 4 to close the vorticity balance. For southward flow
both left-hand side and right-hand side of (6.71) are negative, so term 4 is not
required to achieve vorticity balance. This is the Sverdrup transport determined by
the wind stress curl and the S-effect.

In contrast, for northward flow, term 2 and 3 have opposite sign and only a strongly
positive term 4 can achieve vorticity balance. —R M, /0x > 0 is, however, only
possible at the western boundary. Therefore, friction in the boundary current pro-
duces enough positive vorticity that the negative vorticity input by the wind is
overcompensated. This enables the movement of the water parcel from south to
north.

Henry Stommel examined the deep circulation, as well. He used a similar model
which is generally referred to as the Stommel-Arons model presented in two land-
mark papers (Stommel, 1958; Stommel and Arons, 1960). These articles led to the
remarkable prediction of a western boundary current that is supposed to be located
in the Atlantic at a depth of 2-3 km, flowing from north to south! Consequently,
physical oceanographers set up an intensive search for this current in order to verify
the theoretical prediction. It was finally identified off Cape Hatteras using current
meters. Maximum velocities in the core at a depth of 2500 m are around 20 cm/s.

At this depth, the effect of the wind can be neglected, however, the mass flux,
also a source term of potential vorticity in (6.70), must be accounted for. Stommel
postulated a large-scale, extremely slow upwelling in the deep ocean in order to
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1 2 3 4 5
D D oM, oM,
Direction of flow phDi —I—phDZ: ~—-(C+f)Q —R 83;y R 5
N — S ~ 0 <0 >0 <0 ~ 0
S — N ~0 >0 >0 ~0 ~0

Table 6.2: Signs of the terms in (6.71) for the Stommel-Arons model of the subtropical gyre in
the northern hemisphere. The relation shaded in grey is required in order to close the balance of
terms. The large gradients imply a strong, confined flow, i.e., a boundary current.

compensate for the deep water formation occurring in polar regions. This signifies
that water leaves the layer h and hence ) < 0 in (6.70). Analogously, Table 6.2 can
be compiled.

The vorticity balance requires a deep western boundary current flowing southward.
It supplies the inner geostrophic flow with water and therefore continuously loses
strength. Just this prediction could not be confirmed by observations, which points
to a much more complicated picture of deep currents, in particular, the assumption
of large-scale uniform upwelling seems inconsistent with measurements. A critical
overview is given in Lozier (2010).

In a highly simplified view, Fig. 6.16 displays the structure of the current systems
in the northern hemisphere Atlantic schematically.

90°N western boundary currents

subpolar gyre ’

subtropical gyre

i I
zonal l isopycna
windstress

wind-driven gyres

Ekman
pumping

newly formed
deep water

1000 m

uniform
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boundary current
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geostrophic

deep circulation
4000m

Figure 6.16: Panoramic and simplified view of the large-scale currents in the northern hemisphere
Atlantic based on the Stommel and Stommel-Arons models.
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7 Large-scale circulation in the atmosphere

7.1 Zonal and meridional circulation

In this chapter the general circulation in the atmosphere is presented in a simplified
form. A comprehensive description of the dynamics of the atmosphere can be found
in Holton and Hakim (2013).

The consideration in Chapter 4 of zonally and temporally averaged quantities and
their deviations was useful for the analysis of the meridional heat fluxes. Here, we
follow the same approach. Applying suitable time averages the short-term weather
events are filtered out and the general circulation can be separated into a quasi-
stationary component, a monsoon component that changes its direction during the
seasonal cycle, and a component describing low-frequency variations.

The mean flow in the atmosphere is mainly directed from west to east, and so are
the highest wind velocities (Figs. 7.1 and 7.2). This is a result of the conservation
of the air masses’ angular momentum on the rotating Earth. Their movement is
driven by the meridional temperature distribution.

The specific angular momentum (angular momentum per mass) of an air parcel that
moves along the latitude ¢ at velocity u relative to the Earth’s surface is given by

L=(QRcosp+u)R cosgp, (7.1)

Streamflow [m/s] and geopotential height [m] at 200 mb 20 m/s
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Figure 7.1: Mean wind field at an altitude of around 12 km. Data from ERA-40 (Uppala et al.,
2005). Figure constructed by F. Lehner.
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Figure 7.2: Mean wind in ms™" in a meridional transect of the atmosphere. The strong west-east
jets in the northern- and southern hemisphere at an altitude of around 12 km are clearly visible.
Data from ERA-40 (Uppala et al., 2005). Figure constructed by F. Lehner.

where €2 and R are the angular velocity and the Earth radius, respectively. If no
forces act on the air parcel, the angular momentum L is conserved. Consider an air
parcel which starts from rest at the equator and reaches latitude ¢. Accounting for
the conservation of its angular momentum, its zonal velocity reaches

_ QR sin? ¢

7.2
Ccos (7:2)

u(yp)

This means, that at 30°N a westerly wind with a velocity of u = 134 ms~! would
result. This calculation, however, overestimates the speed of the zonal jet stream
by about a factor of 3. The observed jet stream maximum is located at 35°N and at
an altitude of about 12 km (Fig. 7.2). But this simple computation shows that the
transport of angular momentum is by far sufficient for an explanation of the high
zonal wind velocities at mid-latitudes. However, it also leads to the conclusion that
angular momentum must be constantly removed from the flow. This is caused by
eddies and the associated transport of angular momentum. The mean meridional
advective transport of angular momentum is given by

[vL] =[v] (2R cosp + [u]) Rcos p

M
—i—([ﬂ*@*]—l—[W])R cos g , (7.3)
SE TE

in analogy to (4.7). The meridional transport of angular momentum is achieved by
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Figure 7.3: A simple depiction of the Hadley circulation in the northern hemisphere. Heated air
at the equator rises first, then moves polewards, descends at higher latitudes and finally returns
to the equator as a near-surface flow.

the combination of the mean flow (M), stationary eddies (SE) and transient eddies
(TE). Observations show that at latitudes between 20° and 50° TE is the largest
contribution to angular momentum transport.

In the 18 century, George Hadley (1685-1768) proposed that the strong solar radia-
tion in the tropics heats up the air and causes it to rise. On the northern hemisphere
the resulting near-surface flow is directed towards the equator and converges finally
at the so-called intertropical convergence zone (ITCZ). Its deviation towards the
west (so that the zonal velocity is westward, u < 0) is a result of angular momen-
tum conservation. This causes the well-known trade winds. The return flow at
higher levels is analogously deviated towards the east (u > 0) inducing a zonal jet
stream at higher latitudes where it passes over to descending air motions. The re-
sulting meridionally closed circulation is referred to as Hadley circulation or Hadley
cell, schematically depicted in Fig. 7.3.

The effect of the Coriolis force, or of the conservation of angular momentum respec-
tively, is hence a south-west-directed flow at the surface and a north-east-directed
flow at high altitudes. Hadley expected the circulation cell to extend all the way
to the pole. However, observations indicated that the Hadley cell does not even
reach the mid-latitudes, because there, the mean winds are directed to the east at
the surface, as well as at high altitudes (westerlies). The simple picture of a merely
thermally-driven flow is therefore not sufficient to explain observations outside the
tropics.

For a deeper understanding the balance equations for momentum, mass and energy
in the atmosphere need to be solved. The equation of motion is basically analogous
to (6.13) and the continuity equation is given with (3.7); in addition, the thermo-
dynamic energy equation must be taken into account. For a complete derivation of
the equations, the reader is referred to Holton and Hakim (2013).

We consider the zonally and temporally averaged equations, where terms of the form
(4.6) will occur. The flow in a meridional plane can be described by a meridional
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stream function x(y, z), defined as follows:

ox
U= ——2 4
pPoU 9 (7.4a)
ax
W= -2 A4
Po W dy (7.4b)

where v and w are meridional and vertical velocities and py = po(z) is the density
of air. The overbars denote appropriate time averaging. As derived in Holton and
Hakim (2013), the stream function satisfies the following partial differential equation:

N? 0% L 1 0x
po Oy® 082’ po 0z

k 0J R 02T %'/

_E@—ﬁﬁ—foaa fo . (7~5)
—— \W_/
D TEH TEM R

Here, N is the Brunt-Viisila frequency, the angular frequency of free vertical oscil-
lations in a stable atmosphere given by

R* (HTD dT0>

N?= " [—=—= 4+ = 7.6
H H+dz (7.6)

which is approximately constant in the troposphere. R* is the specific gas constant
of the air and k = R*/c,; furthermore, H = R*T}/g is the isothermal scale-height
of the atmospheric layer considered here with temperature Ty = Ty(2) and a layer
mean temperature Tp. The physical quantity J(y,z) in (7.5) is a mean diabatic
heating rate (induced by heat fluxes at the ground or latent heat from conden-
sation processes) and X is a mean drag in a zonal direction by friction at the
ground. Finally, the coordinate z in (7.5) signifies the so-called log-pressure coordi-
nate z = —H In(p/ps) with ps the air pressure on the underside of the layer. In the
troposphere, the log-pressure coordinate is nearly equal to the usual z-coordinate
which represents a geometric height coordinate. According to (7.5), the stream
function is driven by four processes: (i), diabatic heat sources (D), (ii), heat fluxes
associated with transient eddies (TEH), (iii), fluxes of momentum associated with
transient eddies (TEM) and, (iv), friction (R).

Equation (7.5) is a generalized form of the Poisson equation and needs to be com-
plemented by boundary conditions. Therefore, we consider a domain, reaching from
the equator nearly to the pole and in the vertical dimension from the Earth surface
up to the tropopause. Transport is assumed to be confined within these boundaries,
and hence Y = 0 on the boundary. The domain is illustrated in Fig. 7.4.

For the qualitative discussion of (7.5), we assume that ¥ can be represented by
appropriate sin-functions in y and z which satisfy the boundary conditions. Hence,
the left-hand side of (7.5) is proportional to —Y and we can derive the following
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Figure 7.4: Schematic illustration of the stream function % in the northern hemisphere. ¥ > 0
is the thermally direct Hadley cell, ¥ < 0 describes the thermally indirect Ferrel cell. Angular
momentum is supplied to the atmosphere south of about 30°N and removed from the atmosphere
north of it.

relations:
o 2
X X — 37; (diabatic heat sources) + a—yQ (meridional eddy heat flux)
82
+ 820y (meridional eddy momentum flux) — b (zonal shear) . (7.7)

Close to the equator, a large amount of latent heat is released and hence, J > 0,
while at around 30°N and further to the north cooling caused by radiative losses
dominates, hence J < 0. Between the equator and 30°N J decreases and hence
0J/0y < 0. In these latitudes the eddy fluxes TEH and TEM are small; their
contribution to the zonal wind stress, that is directed towards the east due to the
trade winds, is only to be considered at its lower boundary. Term D prevails in (7.5)
and contributes, together with the smaller term R, to the observed Hadley cell, a
meridional cell with ¥ > 0. This is denoted as a thermally direct cell, i.e., warm air
rises, while colder air sinks (Fig. 7.4).

The eddy activity has a maximum at around 30° to 60°N where the storm tracks are
located. The latitudinal and altitudinal dependence of the meridional eddy fluxes
are illustrated in Fig. 7.5. It can be shown that at these latitudes the two respective
terms are negative in (7.7). Due to the westerlies, the drag is directed towards the
west and decreases in magnitude with increasing altitude, hence —fy 90X /02 < 0.
Therefore, according to (7.7), X < 0 and an indirect cell is formed. This indirect
cell in the region of 40° to 60°N is called Ferrel cell (Fig. 7.4). The Ferrel cell is
thermally indirect, i.e., cold air rises and warm air sinks.

A part of the specific angular momentum (7.1) of the northern hemisphere is pro-
duced in the Hadley cell in the region of the trade winds, where u < 0. Here, the air
is accelerated by friction at the Earth surface so that a flux of angular momentum
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Figure 7.5: Observed distribution of eddy fluxes of heat (left, in °Cms™!) and momentum
(right, in m?s~2) for northern winter. Positive fluxes are directed northward. Data from ERA-40
(Uppala et al., 2005). Figure constructed by F. Lehner.

from the Earth to the atmosphere is induced (Fig. 7.4). This angular momentum
is transported polewards to the Ferrel cell and subsequently again lost to the Earth
surface in mid-latitudes, where u > 0.

The observed meridional circulation (Fig. 7.6) shows strong Hadley cells in the
respective winter hemisphere. The Ferrel cells in the southern and northern hemi-
spheres can also be identified. The simplified theoretical model in (7.5) captures
this structure quite well.
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Figure 7.6: Observed meridional circulation (stream function in 10'° kgs=!), annually averaged
(upper), for the northern winter (middle) and the northern summer (lower). Data from ERA-40
(Uppala et al., 2005). Figure constructed by F. Lehner.
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7.2 The Lorenz-Saltzman model

In order to examine the thermally-driven flow, Barry Saltzman (1931-2001) derived
an approximation of the governing equations of a viscous, stably stratified flow con-
sisting of a non-linear system of ordinary differential equations (Saltzman, 1962).
The fundamental significance of this equation system was recognized by Fdward
Lorenz (1917-2008) who numerically solved this system and interpreted it (Lorenz,
1963). Beyond the particular application for viscous incompressible fluids, the sys-
tem may be interpreted as the simplest form of a description of non-linear processes
in relation with the general circulation in the atmosphere. The model is of particu-
lar significance, because it was the first system to describe deterministic chaos and,
based on it, Chaos theory was developed.

Deterministic chaos can occur in a non-linear system (non-linearity is a necessary
but not satisfactory condition) and is based on the fact that the instantaneous time
derivative is given functionally, however, the temporal evolution of the system cannot
be predicted over long periods. Mathematically speaking, the system is determined
by several coupled ordinary differential equations of first order in time. Its changes
can be calculated exactly at all times: the system is therefore deterministic. This
system is generally referred to as the Lorenz model. But since the original equations
were derived by B. Saltzman, we shall call it Lorenz-Saltzman model.

The following derivation of the Lorenz-Saltzman model is somewhat technical. Nev-
ertheless, it will be described here since in the literature only the dimensionless
system is usually given. The Lorenz-Saltzman model is formulated on a meridi-
onal plane in the non-rotating reference system (y,z). A generalization for the
f-plane was presented later (Lorenz, 1984). Solutions are assumed uniform in the
x-direction. We further assume that diabatic effects, e.g., heat sources, drive the
flow clock-wise. Additionally, a constant vertical temperature gradient is chosen as
a background state. The solution domain is shown schematically in Fig. 7.7.

4
A /- y=0
z=H
Figure 7.7: Coordinates and
solution domain for the Lorenz-
z=() AT >y Saltzman model. A constant
o : ‘ vertical temperature gradient is
y=0 y:H/a 6, ) chosen.

The fluid is considered incompressible (in fact, not a valid approximation for the
atmosphere, but applicable to a water body), therefore, mass conservation is given
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by the continuity equation (6.14),

ov  Ow
87y+§_0' (7.8)

With this, a stream function can be defined as follows:

ov v

v =

Thus, the relative vorticity in the meridional y-z-plane, i.e. ( = dw/dy — Ov/0z, is
given by .
=V, (7.10)

The formulation of the conservation equation of vorticity reveals that vorticity is
dissipated by molecular diffusion and produced by meridional temperature gradients
00/0y (buoyancy). In order to derive the vorticity equation, we start from the
momentum equations

Dv 1 Op -

- - F \V& 7.11
DI Py ay—i—y v, (7.11a)
Dw 1 Op . g

- 2 Viw— L 7.11b
Dt~ s UV YT P (7.11b)

where v is the kinematic viscosity and the last term in (7.11b) describes the accel-
eration due to buoyancy, caused by a small deviation p from the constant density
po (Archimedes’ principle). Cross-differentiating 9(7.11b)/0dy — 0(7.11a)/0z and

considering (7.8) yields
2( o2 g Op

=vVi(———. 7.12
Dt VST by (7.12)
Using the volume coefficient of expansion
1 0p
=—— = 7.13
(7.12) can be rewritten as
D¢ = 00
Dt Vietga oy’
that is,
¢ a¢ ¢ =0 00
hie) el = = —. 7.14
at+”ay+waz I/VC+gOzay (7.14)
We now assume the following temperature distribution
AT ~
9(y727t) :90_ 7Z+9(yvz7t) ) (715)

H

where 6 is the deviation from a stable linear temperature profile 8y — AT /H z with
AT = 60y — 0, (Fig. 7.7). The conservation of thermal energy can be captured by
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the heat equation

— =k V30 ; (7.16)

considering (7.15), we obtain
00 00 AT 06 9% 0%
Vg —W—F W

bt Ko bR 1
8t+ dy H 0z K8y2+ﬁaz2 (7.17)

Here, k is the thermal diffusivity. Inserting (7.9) and (7.10) into (7.14) and (7.17)
results with (7.15) in the following system:

Doy OV Doy 00 D, ) o0

— V2 — —— V¥ — VX =y VU — 1

atV % 8yv + By 0zv vV +gaay, (7.18)
90 0U 00 0V 0 _,: AT 9T
— et — = - . 1
ot " ozoy Taya: "YUt gy (7.19)

Equations (7.18) and (7.19) represent a coupled, non-linear system of partial differ-
ential equations which has to be completed by boundary conditions. We postulate
no transport across the boundaries and no heat flux across the meridional bound-
aries. Furthermore, fixed temperatures at the ground and at the upper boundary
shall be given, hence

U=0 at the boundary , (7.20a)
90
a—:O fory=0and y = H/a, (7.20b)
Y

f=0 forz=0and 2 = H . (7.20¢)

The solution of this system is supposed to be found approximately by only consid-
ering the rough spatial structure inside the solution domain. To do so, we assume a
truncated Fourier expansion satisfying the boundary conditions:

U(y, z,t) = X(t) sin (W—Zf‘y) sin (7;;> : (7.21a)
(y, z,t) = Y (t) cos (W;y) sin (7;[2) — Z(t) sin (2;}2) . (7.21b)

The space dependence is prescribed, the time dependence is given by the coefficient
functions X (¢), Y(¢t) and Z(t). This a priori choice allows solutions with the sim-
plest possible structure and, due to the truncation of the expansion only represents
approximate solutions. Inserting (7.21) into (7.18), and eliminating the common
factor sin (may/H)sin (7 z/H) we find

(Y (e o) e xemnir o
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Similarly, inserting (7.21) into (7.19) yields
Tay\ . [Tz dY 7wa27 (2772)
LERD L
COS(H)SID(H>{dt Hu " H
T\ 2 ) AT ma
—H@(H) (1+a)Y—X}
272\ [dZ 1wa 27m\?
— s &2 T vy vk (ZT) 7
Sm(H){dt > H H +F‘(H) }

i.e., with sin (2”) = 2 sin (”) cos (ﬂ),

H H H
may\ |dY wa27 (27rz)
COS(H){dt 7o\
T\ 2 5 AT ma
Tz dZ 17ma w 27\ 2

Since this equation has to be valid for all values 0 < y < H/a and 0 < z < H, the
sums in the two {}-brackets have to vanish. Finally, we assume that the dynamics
are determined by processes inside the vertical range 1/4 H < z < 3/4 H and hence,
the rough approximation cos (27 2/H) ~ —1 is applicable.

The system of ordinary differential equations for the coefficient functions X (t), Y (¢)
and Z(t) then reads:

X
d— =—cX+dY, (7.24a)
dt
dY
dZ
—=hXY—-kZ, (7.24c¢)
dt
with the seven constants
T\? gaaH
— = 1 2 — J -7
c V(H) ( ~|—a>, d T+’
27%a AT ma 7\ 2 )

7T2a

T 2
= I
oz * “(H)

By introducing new dimensionless physical quantities ¢, X, Y and Z in the following

h
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way,
T2 2
(%) (1+a®) st — ¢
a
_— X
kltad) "
H3
a : gaa i Ly
K(1+a?) (1 +a2)v
a gaaH?
2 2 Z,
K(1+a?) m(1+a2)v
the classical Lorenz-Saltzman model can be derived:
dX
—=—0X+0Y (7.26a)
dt
dY
dz
—=XY -b”Z 7.26
with 5 AT ) A
o=2, r=9¢ T b= (7.27)
K VK 7 (1 + a?) 1+ a?

Note, the quantities ¢, X, Y and Z in (7.26) are the scaled forms of the quantities
t, X, Y and Z in (7.24); for simplicity we do not introduce a new notation.

Figs. 7.8 and 7.9 illustrate the solution of (7.26) for a given set of parameters.
The time series exhibit a chaotic behaviour, where the variables, here Y (), change
from one regime (Y > 0) to the other (Y < 0) in an irregular way (Fig. 7.8).
The residence time in a certain regime is erratic and considerably longer than the
transition between the regimes itself. The system obviously evolves on two different
time scales: one for the transition and one for the residence time in one regime.
The Lorenz-Saltzman model is a prime example for abrupt changes in a dynamical
system. These transitions are not a response to external disturbances, but are
spontaneously triggered by the dynamics of the system itself.

40
20 y
Y(t) OoH —
-20 ,
_40 | | | | |
0 500 1000 1500 2000 2500 3000
time step

Figure 7.8: First 3000 time steps of the time series Y (¢) of the Lorenz-Saltzman model with
the classical parameter values r = 28, ¢ = 10, b = 8/3. The Runge-Kutta scheme (2.23) with
At = 0.012 and initial conditions (1,2,11.02) is used. Shown is the chaotic regime with abrupt
transitions after a period of growing amplitudes.
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Figure 7.9: Cross-sections through the different planes in the (X,Y,Z)-space of the Lorenz-
Saltzman model with the classical parameter values used in Fig. 7.8. Shown is the chaotic regime
which is established after a transient phase.

Figure 7.9 shows the trajectories of the Lorenz model at subsequent time steps
in the three-dimensional variable space (X,Y,Z). The points (X = +8.49, YV =
+8.49, Z = 27) represent unstable equilibria. Trajectories originating in their
surroundings move away from these points in spirals. For chaotic behaviour, as
is the case in Figs. 7.8 and 7.9, the trajectories will never cross in the (X,Y, Z)-
space. Another particular point is the origin (0, 0, 0), representing another stationary
solution of the equations (7.26). It is located in the center of the transition point from
one regime to the other and hence, is the location of maximum non-predictability in
the Lorenz-Saltzman system.

It is remarkable that this system can exhibit chaotic, periodic or stationary be-
haviour depending on the choice of parameters (7.27). The chaotic behaviour of
the Lorenz-Saltzman model only occurs in certain parameter windows. Outside
these windows, either a stable equilibrium is reached after a relatively long transient
phase (Fig. 7.10) or a periodic behaviour can be observed. These are self-sustained
oscillations, as shown in Fig. 7.12. They develop after a transient phase.
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Figure 7.10: As Fig. 7.8 but with » = 20, ¢ = 10, b = 8/3. Shown is the damped regime
approaching a steady state after a transient phase.
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Figure 7.11: As Fig. 7.9 but with » = 20, ¢ = 10, b = 8/3. Shown is the damped regime
approaching a steady state after a transient phase.



140 7 Large-scale circulation in the atmosphere
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Figure 7.12: As Fig. 7.8 but with » = 100, 0 = 10, b = 8/3. Shown is the periodic regime which
is established after a transient phase.
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Figure 7.13: As Fig. 7.9 but with » = 100, ¢ = 10, b = 8/3. Shown is the periodic regime from
time step 2500 to 3000.



8 Atmosphere-ocean interactions

8.1 Coupling of physical model components

Energy, momentum and matter (water, carbon, nitrogen, ...) are exchanged between
the ocean and the atmosphere. Most of the movements in the ocean, particularly
the large-scale flow, are caused by these exchange fluxes. Consequently, they need
to be reproduced in a climate model as realistically as possible. In the context of
these lecture notes we will not treat micro-scale fluxes, occurring on a cm- or smaller
scale. An in-depth description is provided by Kraus and Businger (1994). We will
only present the parameterisations that are implemented mainly in climate models
of coarse resolution. Formulations of so-called boundary layers in the atmosphere
and ocean are also not discussed.

In the present chapter, we consider primarily heat fluxes (fluxes of thermal or latent
energy), water fluxes and momentum fluxes (Fig. 8.1). They are influenced by the
dynamics of the atmosphere and the ocean, whilst they influence these dynamics.
For the individual model components, the fluxes can be considered and formulated
as boundary conditions.

Similar considerations have to be made for the coupling of sea ice, ice sheets, and
land surface modules.

Atmosphere
Equation of — | Thermodynamic Eqn. Equation of
T N -t Mot
ater Vapor > Radiation otion
Evaporation Sensible Heat Surface Stress
Precipitation Radiative Transfer

|

Salt Equation 3
Sea Ice Equation ~ [“®——]

| }

Ocean

Equation of
Motion

Thermodynamic Eqn. st——®

Figure 8.1: Diagram of the different model parts and fluxes of water, heat and momentum. Re-
drawn from Fig. 1 in Manabe and Stouffer (1988).
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8.2 Thermal boundary conditions

The complete thermal boundary condition for the heat flux from the ocean to the

atmosphere FO74 is given by
FO7% = — (1 —a0) QM +eoo T4 —epo Th
SW Y LB
+ D (To —Ta) + E(To, Ty) , (8.1)
S B

where TH and Ty are the surface temperatures of the ocean and the atmosphere,
respectively, Q""" denotes the (mainly short-wave) solar radiation reaching the
ocean surface, ap the albedo of the ocean surface, eg and 5 the emissivities at
the ocean surface and the atmosphere, respectively, D a transfer coefficient for the
sensible heat flux and finally F(To,Ta) a relation describing the evaporation on
the ocean surface. The heat flux consists of five components: short-wave solar
radiation (SW), long-wave radiation of the ocean (LW), long-wave back radiation
of the atmosphere (LB), sensible heat flux (S) and evaporation (E). A positive sign
denotes a flux from the ocean to the atmosphere. The global distribution of ocean-
atmosphere fluxes is given in Fig. 8.2 and for the Atlantic in Fig. 8.3.

Typical values for the parameters in (8.1) are
a0 =02, =096, €4=07...09, D=10WK'm™?. (8.2)

For certain parameterisations, the transfer coefficient D for the sensible heat flux
may depend on wind speed.

The temperature dependence of the evaporation E can be expressed as a Taylor
series expanded about the temperature of the atmosphere T (Haney, 1971),

dE(To, Ta)

E(To,TA) = E(TO = TA,TA) =+
a7,

(To—TA)+... .

To=Ta

An appropriate linear truncated Taylor series, which is in accordance with the
Clausius-Clapeyron equation, reads (Gill, 1982; Stocker et al., 1992)

To —Ta
T3 ’

_ 5418 K

E(To,Ty) =cp e Ta (0_2 + 5418 K (8.3)

where cg is a transfer coefficient depending on the wind speed.

For simplicity, in (8.1), the long-wave heat fluxes are given as grey body radiation
with their associated emissivities. However, particularly LB may originate from the
individual contributions of the free atmosphere and the reflection of clouds (high, as
well as low clouds) and hence, may depend on modeled variables of the atmosphere
component in a complex way. They also affect the solar radiation Q*"°"*, which is
prescribed in (8.1) but in reality is influenced by the state of the atmosphere. In
principle, the heat flux between ocean and atmosphere depends on the temperatures
in both components as well as on the wind speeds. These are all quantities that are
simulated in a coupled climate model.
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Figure 8.2: Left: Annually averaged heat fluxes in W m™2 based on the Comprehensive Ocean
Atmosphere Data Set (COADS), Woodruff et al. (1987). Areas with heat fluxes exceeding
60 Wm~2 are hatched. Right: Zonal average. Figure from Trenberth et al. (2001).

60N

Latitude
30N

308

90w 60W 30W 30E
Longitude

Figure 8.3: Heat flux —F°~4 in the Atlantic in W m~2. The map was compiled on the internet
(http://ingrid.ldeo.columbia.edu), where many data sets are available. Here we have used the
Cayan data set, Cayan (1992).

In climate modelling, simplified forms of (8.1) are often applied, especially when a
single model component (e.g., the ocean) is integrated individually or in models of
reduced complexity. This is often the case at the beginning of a simulation, when
a stable equilibrium climate has to be reached. An adequately simplified form of
(8.1) for an ocean model is found by linearizing this relation using a truncated Taylor
series about the temperature of the atmosphere T, which is assumed to be constant
(for an atmospheric model analogously):

dFO—>A

FO—>A T — FO—)A T
(To) (Ta) + T,

(To — Tha)
To=Ta

= Fy+ D" (To —Ty) (8.4)
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where
FO — FO%A(TA) ’

O—A
e 4F
dTo

To=Tx

Fy is the net heat flux through the ocean surface of the temperature 7o = T and
D* ~ 45 WK'm™2 is a typical transfer coefficient. Note, that D* > D, since
(8.4) contains the effects of temperature-dependence of evaporation and of the net
long-wave radiation. Haney (1971) proposed a further simplification of (8.4),

FO7Ty) = D* (To — T3) (8.5)
with the so-called restoring temperature

i Fo
To=Ta — D+ (8.6)
which is assumed to be constant. The formulation (8.5) is called restoring heat
fluz. This is due to the fact that heat fluxes are directed in a way that the variable
surface temperature T asymptotically approximates the fixed temperature 77, when
no other heat fluxes (e.g., advective heat fluxes) are present.

Figure 8.4: 1-box model for the illustration of restoring < T
fluxes. 0

The effect of the restoring heat fluxes and the role of D* shall be briefly illustrated
by means of a 1-box model. The energy balance in the 1-box model (Fig. 8.4) with
surface area A and volume V = A Az is given by

dT
pV e 10 = AFONTo) = ~AD" (To—T5) (87)

p is the mass density and ¢ the specific heat capacity of the ocean water. Equation
(8.7) can be written as follows:
d(To —1T3) D*
dt - pclAz

(To —T3)

and the solution is t
To(t) =T+ (To(t = 0) = Tg) e 7 |

where 7 is a typical time scale of the relaxation. Accordingly, disturbances decay
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on a time scale 7. An estimate of this restoring time scale yields:

A 102 d
T:pc Z 028 - 39001A ~1 ayAZ

D 5 (8.8)

In an ocean model used in an uncoupled mode, restoring heat flures are commonly
used, and for the restoring temperature T¢ the observed surface temperature is
applied. This guarantees that the surface values of temperature never deviate too far
from the observations and that a defined equilibrium state is reached. In atmosphere
models, one can proceed analogously.

The formulation (8.5), as part of an ocean model, may be regarded as the simplest
form of a specific parameterisation of the effect of the not dynamically modeled at-
mosphere. A closer investigation of two extreme cases of ocean models demonstrates
this:

o Constant temperature of the atmosphere Th: The atmosphere acts as a “heat
reservoir” with infinite heat capacity. These are infinite heat capacity models.

« Constant flux from the ocean to the atmosphere: We select D* = 0 in (8.4),
and hence FO74(Ty) = Fy, and therefore independent of a possible deviation
from the mean temperatures of ocean and atmosphere. The heat capacity of
the atmosphere vanishes, the atmosphere radiates the heat energy immediately
to space. This is referred to as zero heat capacity models, and is also the case
for very long relaxation times 7.

Again analogous considerations apply for atmospheric models.

The fact that (8.5) ignores a possible scale-dependence of the relaxation time is an
important problem. Small-scale temperature anomalies at the sea surface are elim-
inated at a rate of ~ 1 m/day by direct heat exchange. But large-scale anomalies
may persist much longer, since they penetrate deeper into the ocean, and hence
require a significantly higher amount of heat for equilibration. Under certain cir-
cumstances this heat energy cannot be provided by the atmosphere alone (e.g., in
the form of rapidly passing storms).

In order to account for the scale-dependence, we would have to write

/A B {T(&) — T3} 7’ (8.9)

which contains a non-local dependence of the fluxes at location Z. Here, the determi-
nation of the form function A(Z, #5) is a challenge. A step towards scale dependence
of 7 or D was proposed by Willebrand (1993),

FOPANTo) = Dy (To — T3) — Dy V2 (To — T3) (8.10)

with D; & 2 WK'm™2 and D, ~ 10®* WK~!. Small-scale anomalies at a typical
spatial scale of 500 km, given a surface ocean layer of 50 m thickness, are equilibrated
on a time scale of 7, = pcAz L?/D, ~ 60 days, while large-scale anomalies decay
on a time scale of 11 = pcAz/D; =~ 3.5 years. Formulation (8.10) may also be
interpreted as a compact form of an atmospheric energy balance model.
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8.3 Hydrological boundary conditions

The coupling of the water cycle is of fundamental significance for the transport of
energy in the form of latent heat in the atmosphere and for the change in density of
the surface water, induced by precipitation and evaporation. Evaporation not only
represents an important heat flux (see 8.1), but also separates water and salt and
only the latter remains in the ocean.

Accordingly, evaporation leads to an increase of the salinity in the surface ocean.
The density of sea water at the surface p(7,.5) can be expressed as a Taylor series
expanded about a temperature Ty and a salinity Sy. An appropriately truncated
Taylor series reads

(T, 8) = po(1+a (T =To)+B(S—So) +7(T—Tp)*) (8.11)
where
po = 1028kgm=, o = —54128-10° K,
T, = 0°C, B = 7.623-107*, (8.12)
Sy = 35, v = —5.0804-107K=? .

p decreases with increasing temperature T and increases with increasing salinity S
(S in g salt per kg water).

In analogy to (8.5), ocean models are run to equilibrium with the boundary condition
FQ7A(S) = D§ (S — 5%) (8.13)

with a transfer coefficient D that has the units kgm™2s™!. This guarantees surface
salinity values to remain close to the observational data S*. Formulation (8.13) is
called restoring salt flux. Here, the restoring time scale

pAz
T =
Dy

(8.14)

is most commonly selected to be identical with the restoring time scale of the thermal
boundary conditions (8.8). In case both fluxes, as given by (8.5) and (8.13), are
applied in ocean models, we refer to restoring boundary conditions.

Analogously, atmosphere models require a condition for the lower boundary. Above
water, it usually reads

Fy7™q) = Dy (g —q) (8.15)

where ¢* is a prescribed specific humidity. For land surfaces, simple hydrological
models (bucket models) are commonly used. The coupling of atmosphere and ocean
models requires that the salt fluxes in (8.13) are consistent with the water fluxes in
(8.15). This is approximately accounted for by dividing the salt fluxes by a constant
conversion factor p Sy, Sy is a reference salinity:

1
—e=— F974A 8.16
p [ pSO S ( )

and p — e is the net water balance in m/s (or mm/yr). The distribution of p — e is
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Figure 8.5: Distribution of water fluxes p — e in m/year, at a contour interval of 0.5 m/year. The

map was compiled on the internet (http://ingrid.ldeo.columbia.edu), where numerous data sets
are available (here we used the Oberhuber data set).
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Figure 8.6: Water fluxes p — e in the Atlantic in m/year. The map was compiled on the inter-
net (http://ingrid.ldeo.columbia.edu), where numerous data sets are available (here we used the
Oberhuber data set).

shown in Figs. 8.5 and 8.6. The conversion to energy fluxes is done according to
E=plLe, P=pLp, (8.17)

with L = 2.5-10% Jkg™! for the specific latent heat of water.

8.4 Momentum fluxes

Any wind stress 7 on the ocean surface is due to a momentum flux between ocean
and atmosphere. It is a function of the horizontal wind speed v, = vu? + v2. For
dimensional reasons of the units, the following parameterisation is used,

T=cppui, (8.18)
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where p is the density of air and cp is a dimensionless transfer coefficient for mo-
mentum. Based on wind tunnel experiments, one may select for atmosphere-ocean
fluxes

1.1-1073 0<|u <6%
o = (8.19)

0.61-10° + 631072 - [u| 62 < |u| <222

but many other parameterisations have been proposed to account for different con-
ditions at the interface. In the models, vertical momentum fluxes are implemented
as forces acting on the uppermost layer of the ocean model (or the lowest layer in
the atmosphere model).

8.5 Mixed boundary conditions

Restoring boundary conditions as given by (8.5) are useful when equilibria of ocean
models are sought for which the surface temperatures and salinities should be in
good agreement with the data. Analogously, they are used in atmosphere-only
models when surface temperatures are prescribed. For heat fluxes it may plausibly
be argued that fluxes are proportional to temperature differences. In fact, this is
a discretized formulation of the heat flux according to Fick’s first law. In physical
terms, this means that for example a warm anomaly of the surface temperature in
the ocean leads to an increased heat flux from the ocean to the atmosphere and
hence causes a cooling of the ocean tending to restore the previous equilibrium.

However, the same argument cannot be used for water fluxes. A locally increased
salinity at the surface of the ocean, for example induced by an oceanic eddy, does
not lead to increased precipitation (Fig. 8.7). Such anomalies are therefore not
eliminated on a typical time scale and have a much longer lifetime. Hence, (8.13)
lacks a physical justification.

W higher salinity

Figure 8.7: Schematic illustration of temperature and salinity anomalies at the surface ocean and
the different responses of heat and water fluxes. A warm SST anomaly causes an increased ocean-
to-atmosphere heat flux which removes the anomaly. On the other hand, a SSS anomaly does not
influence the amount of precipitation in the atmosphere.

In order to account for this fact in ocean models that have reached equilibrium (after
several 1000 years for 7" and S), equation (8.13) is replaced by a constant flux

FO7A = DE(See — 57) (8.20)

where S, is the salinity attained in equilibrium. According to (8.20), F974 is
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not time-dependent. The combination of the two boundary conditions (8.5) and
(8.20) is denoted mized boundary conditions. In principle, they represent a first
approximation to the different nature of feedback processes associated with heat
and water fluxes.

For mixed boundary conditions, the salinity, and hence the density at the surface
ocean can deviate arbitrarily from a fixed prescribed distribution S* without water
fluxes to react and to counteract the emerging changes. This implies that salinity
anomalies could permanently alter the structure of the circulation. This hypothesis
was first formulated by Stommel (1961), and later confirmed by Bryan (1986) in a
three-dimensional ocean model. The surprising result was the detection of multiple
equilibria, qualitatively different ocean circulations were simulated. The relevance
of this finding to understand the dynamics of the climate system is further discussed
in Chapter 9.

8.6 Simple coupled models

We have seen the amount of fundamental insight that comes from simple models in
the consideration of the thermally-driven flow in the atmosphere (see Section 7.2).
Here we present two further examples of dynamical systems that address entirely
different space and time scales. The first concerns the question of ice ages and thus
includes processes operating on time scales of 10% to 10° years, while the second
simulates the atmosphere-ocean interactions in the equatorial Pacific that give rise
to the ENSO-phenomenon with characteristic time scales of a few months to years.

8.6.1 Global model of Pleistocene ice ages

Due to the long time scales of glacial-interglacial cycles, for many years general cir-
culations models could not be applied to these questions due to their computational
limitations. In the past few years, EMICs could be applied to these problems, and
predictably soon, low-resolution coupled climate models will do so, too. Fundamen-
tal feedback relations between global climate system components can be investigated
by systematically reducing conservation equations to a lower-dimensional problem
(Saltzman, 2001). The insights gleaned from such reduced climate models pave the
way for targeted investigations using models of gradually increasing complexity (see
Table 2.1).

The approach is very similar to that already presented in Section 7.2. The model of
Saltzman and Maasch (1991) considers three global-scale variables: global ice volume
I(t), CO5-concentration in the atmosphere, C'(t), and deep ocean temperature, 7'(t)
which are coupled through feedbacks between them:

df

E:Oél—OCQC—OégI—OQLT—T(t)‘i‘g[(t) : (8.21a)
dc
E:51—52O+5302—54C3—55T+6C(t), (8.21b)
dT

=y — vl =T +ep(t), (8.21c¢)

dt
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Figure 8.8: Pleistocene ice ages
as simulated by the dynami-
cal system (8.21). (a): Pre-
scribed changes in high-latitude
solar irradiation; (b): simulated
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where «;, ;, and ~; are positive coupling constants, r(t) is the prescribed variation
in high-latitude irradiation, and ¢;(t) are small stochastic forcings for each variable
representing the effects of internal variability. With the exception of 35 all feedbacks
are negative and hence stabilizing. The parameters can be tuned within plausible
ranges. In addition, Saltzman and Maasch (1991) prescribed slow trends of the
background climate, consistent with the known slow cooling, decreasing CO, and
increasing ice volume over the past 5 M years. By then focusing on the millennial-
scale changes by separating I(t) = Iy + I'(t), etc., they could simulate the transient
change in global climate over the past 2 M years. The time evolution is remarkably
consistent with the paleoclimatic records as known by then (Fig. 8.8¢). In particular,
the Mid Pleistocene Transition (MPT) at around 1 M years ago is captured as
a relatively rapid switch from 40,000-year, small amplitude to 100,000-year, large
amplitude ice age cycles.

Such studies with simplified climate models are not meant to definitely resolve the
mysteries around the MPT but to demonstrate the dominating processes that may
generate this transition. It is concluded that the switch is caused by a non-linear
interaction between the ice sheet extent, the ocean temperature, and the atmo-
spheric CO4 concentration, against a varying background climate due to other, much
slower processes such as weathering, ice-bedrock interactions, or tectonic responses.
Remarkably, more recent simulations using an EMIC come to similar conclusions
(Willeit et al., 2019).
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8.6.2 Simplified models of the El Nino-Southern Oscillation

El Nino-Southern Oscillation is the most prominent mode of natural variability in the
climate system and an iconic example of atmosphere-ocean interaction. It consists of
two elements: (i), a pressure seesaw between Tahiti and Darwin which drives anoma-
lies of the trade winds over the equatorial Pacific and determines the location of the
tropical convection (Southern Oscillation), and (ii), anomalies of sea surface tem-
perature and associated upwelling in the eastern equatorial Pacific and ocean wave
propagation along and near the equator. A key process maintaining normal condi-
tions in the equatorial Pacific is the so-called Bjerknes feedback (Bjerknes, 1969).
This was proposed by Jacob Bjerknes (1897-1975), the son of Vilhelm Bjerknes
(page 11). Cold anomalies at the sea surface in the FEastern equatorial Pacific in-
crease sea level pressure, promote atmospheric subsidence and increase trade winds.
These in turn, force coastal upwelling which further cools the sea surface (Fig. 8.9).

Figure 8.10 shows the three states of the ENSO cycle. Normal conditions are char-
acterized by a tilted thermocline — the location between the cold deeper water and
the warm surface water at around 150 m depth at the equator —, resulting in cold
sea surface temperatures in the east and a warm pool in the west. Cold surface
conditions generate high sea level pressure, whereas low pressure and convection
prevail over the western warm pool. This promotes trade winds which drive warm
surface waters westward and shallow the thermocline in the east. This is the lower
branch of the atmospheric Walker circulation. Under normal conditions, coastal
waters supplied by the upwelling are cool and nutrient-rich. If the trade winds re-
lax and the Walker circulation weakens, the entire equatorial Pacific adjusts, and
El Nino conditions start to develop. First, the upwelling in the east weakens and
cuts off the supply of colder deeper waters. A strong warming and deepening of the
thermocline follows in the east, the western warm pool starts to extend towards the
central equatorial Pacific, and the convective area in the atmosphere shifts eastward.
La Ninia conditions are the opposite of El Nino with anomalously cold conditions in
the eastern equatorial Pacific and a stronger Walker circulation.

The cycle is irregular and has a typical time scale of 3 to 7 years. Recent analyses
show that there is also a decadal component to the Pacific variability: phases with
several El Nifio-years follow a series of La Ninas, or several years of normal con-
ditions. Furthermore, observations suggest that these three states described here
are not sharply defined and there may exist different flavors of ENSO with different
degrees of predictability (Timmermann et al., 2018).
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Figure 8.10: The three states of the ENSO cycle showing the location of the main convective
system and circulation in the atmosphere, sea surface temperature anomalies and the location of
the ocean thermocline. Figure adapted from McPhaden et al. (1998).

To understand ENSO cycle one needs to consider the propagation of anomalies in
the equatorial atmosphere-ocean system. Key is the fact that the equator is a wave
guide for Kelvin and Rossby waves (see Sections 6.4.3 and 6.4.4). Anomalies at the
east (e.g., sea surface temperature or thermocline thickness) propagate westward as
slow Rossby waves. When they reach the western basin boundary they are reflected
and transform into eastward propagating fast equatorial Kelvin waves. Once arrived
at the eastern boundary, they generate coastal Kelvin waves escaping into both
hemispheres, and a new westward travelling Rossby wave, closing the oceanic wave
cycle. The sequence of waves not only transports anomalies but also dissipates them
and causes an adjustment of the state. It is through this equatorial wave action,
tightly coupled to the tropical atmosphere, that the different states of the ENSO
cycle are generated.

Simple models therefore must represent the coupling of the key variables of sur-
face temperature, thermoclimate thickness, and wind strength, and the temporal
sequence of perturbations. Various simple models have been proposed. For illustra-
tion we present two of them briefly, and then close with a dynamical model that is
based on the shallow water equations on the equatorial -plane.

The simplest model, exhibiting some key characteristics of ENSO, is the Delayed
Oscillator for the eastern Pacfic surface temperature 7"

dT

= aT(t) =bT(t—0) —rT°. (8.22)

The strength of the positive Bjerknes feedback is described by a, and the delayed
negative feedback, mediated by the Rossby and Kelvin waves at delay time ¢, is
captured by the second term. The third term is a nonlinear dissipation term. This
empirical model exhibits a stable and oscillatory regime depending on model pa-
rameters r and b/a. More details are given in Boutle et al. (2007) and Vallis (2017).

The second, more complex model is the Recharge—Discharge Oscillator which de-
scribes the coupled interaction between anomalies of sea surface temperature in the
eastern Pacific T" and thermocline thickness h:

dT dh

—=aT+Fh, —
a+’dt

pp =—ch—aTl, (8.23)
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where F' provides the warming through thermocline thickening, while the thermo-
cline undergoes discharge (¢) and recharge («), via meridional Sverdrup transport
towards (caused by easterly wind anomalies), and away from the equator (caused
by westerly wind anomalies).

Due to the direct impacts on people and livelihoods in the entire tropical Pacific,
chiefly in the coastal regions of South America, but also beyond the Pacific regions
through teleconnections, there is a strong economic interest to reliably predict ENSO
(see Section 1.5.5). Simple models are unable to provide this information and there-
fore, coupled models based on the detailed dynamics in the equatorial Pacific need
to be employed. They are based on the shallow water equations 6.20, formulated
on the equatorial S-plane and supplemented by a suitable atmospheric component
coupled to it. The relevant ocean dynamics occur in the equatorial thermocline layer
which occupies the top 150 m and rests on a colder water body. Therefore, we need
to employ in (6.20) reduced gravity ¢'. 1t is defined as ¢’ = g (p2 — p1)/p1, With py
and py the densities of the thermocline layer and the layer below, respectively. All
waves are understood to pertain to the first baroclinic mode, i.e., they propagate on
the thermocline.

The first model that was employed for an ENSO forecast was formulated by Zebiak
and Cane (1987). Here we follow essemtially Vallis (2017) and present the system
of equations which results from the shallow water equations in the ocean and the
atmosphere, formulated on an equatorial S-plane where f = S y. First, the equations
for the ocean are given by:

@—6 v——’@—rujt~
ov Oh ~
8t+5yu:_g/@—rv+7y, (8.24)
Oh ou  Ov
—_ H —_— — Py
at " <8x+8y> ¢

where (u, v) is the horizontal velocity vector of the flow in the thermocline layer with
an undisturbed thickness of H. The thickness anomaly is given by h and caused
by the combination of the elevation of the sea surface and a much larger change
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Figure 8.12: Simulated time evolution of the thermocline thickness anomalies on an equatorial
[B-plane. The simulation shows the effect of equatorial wave propagation initiated by a central-
equatorial thickness anomaly at ¢ = 0. The locations of anomaly maxima are joined by dashed
arrows through time: black: eastward propagating Kelvin wave at speed ¢, = 2.8ms™1; blue:
westward propagating Rossby wave at speed cpp = 0.9 ms~!. Figure adapted from Vallis (2017).

in the depth of the thermocline. It is the latter that is important for the ENSO
phenomenon. In this case, the pressure gradient acceleration driving the flow is
dominated by —¢'Vh, with reduced gravity ¢’ = 5.6 - 1072ms™2, r = (2.5yr)"! is
a dissipation coefficient, and 7, = 7,/pH is the zonal wind stress acting on the
thermocline layer of undisturbed thickness H = 150 m. Here, it is assumed that the
meridional wind stress 7, and all non-linear advection terms are neglected.

The atmospheric component of this ENSO model is formally very similar to (8.24),
namely

oU 0P

o PV =gy U

oV 0o

a5 +pyU = oy -1V, (8.25)
00, (oU VY

aﬁ%(ax*ay)—%‘

(U, V) is the horizontal velocity vector of the baroclinic circulation in the atmo-
sphere, driven by geopotential gradients of ®. With the baroclinic velocity (U, V),
appropriate to describe the Walker circulation (see Fig. 8.10), the near-surface wind
velocity would be —%(U, V) and the wind aloft +1(U,V). Parameter values are
taken from Hirst (1986). r, = 5-107%s™! is the atmospheric drag coefficient. The
zonal wind speed U creates a wind stress driving ocean currents: 7, = —Kg U, with
Kg = 8-1078s71. The negative sign is due to the fact that 7, is in the direction
of the near-surface wind velocity. ¢, = 60ms™! is the speed of the first baroclinic
mode of atmospheric gravity waves.

The atmospheric dynamics are driven by heat anomalies (), caused by sea surface
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Figure 8.13: Evolution of the zonal wind anomalies (in ms™!) in the western (solid) and central-
eastern (dotted) equatorial Pacific as simulated by the Zebiak-Cane model (Zebiak and Cane,
1987). The non-periodic nature of the ENSO cycle is evident with strong events, quiet periods,
and near-oscillatory behaviour. Figure from Zebiak and Cane (1987).

temperature anomalies 7. An empirical parameterization is therefore @, = Ko T'
with Ko = 7-1073 m2s™3K~! (Hirst, 1986). The Zebiak and Cane (1987) model also
includes a balance equation for the thermocline temperature. A simplification was
proposed by Hirst (1986) who shows that the temperature anomaly T is approxi-
mately proportional to the thermocline thickness anomaly h, and hence @), = a h.
Heating of the overlying atmosphere occurs where the thermocline is deep. Param-
eter @ = 2.1 -10"*m s~ represents the strength of the positive Bjerknes feedback
(Fig. 8.9). Coupling of ocean and atmosphere in (8.24) and (8.25) occurs through
7. = —KgU and @, = ah, respectively. (8.24) and (8.25) form a complete set of
PDEs for the six variables (u, v, h, U, V, ®).

For the solution of the PDEs we need to employ numerical techniques as outlined in
Section 6.5. A simulation of the uncoupled atmospheric flow anomalies generated
by an equatorial heat source (west: & < 0) and heat sink (east: z > 0) is shown
Fig. 8.11a. This heat distribution is characteristic of normal ENSO conditions and
generates easterly flow and resulting convergence with ensuing convection in the
west, while divergence and subsidence are located in the east. This is the lower
branch of the Walker circulation. Upon an eastward shift and weakening of the
heat source (Fig. 8.11b), the Walker circulation reduces and the area of convergence
widens towards the east. This is the El Nino condition.

A simulation of the ocean component of the ENSO model (8.24) is depicted in Fig.
8.12. The system (8.24) is solved on the equatorial S-plane where perturbations are
meridionally confined by the equatorial Rossby radius Lg ~ 350 km. The model is
initiated with a Gaussian perturbation in the central Pacific which launches a slow
Rossby wave westward and a fast Kelvin wave eastward. Once the latter arrives
at the eastern basin boundary (¢ ~ 34), the Kelvin wave splits and propagates
meridionally as a coastal Kelvin wave away from the equator. This is an efficient
dissipation mechanism for wave energy. Additionally, a weaker equatorial Rossby
wave is generated that, again, moves westward. When the Rossby waves hit the
western boundary (¢ = 63), the energy is transferred to an equatorial Kelvin wave
which starts travelling eastward (see also Fig. 8.10).

Finally, we show the historical simulation by Zebiak and Cane (1987) in Fig. 8.13.
Their coupled ENSO model was based essentially on equations (8.24)-(8.25) and
was able to reproduce the main characteristics of the observed ENSO cycle. Ir-
regular fluctuations of zonal wind stress, themocline thickness and heat content
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show episodes of significantly larger anomalies (El Nifio conditions), several years of
normal conditions, and nearly-regular El Nino-La Nina cycles. Such models, supple-
mented with essential observations in the tropical Pacific, form the basis of today’s
ENSO forecast system.

8.7 Coupled models

The biggest challenge in climate modelling is the construction of consistent coupled
models that incorporate and quantitatively simulate the components ocean, atmo-
sphere, cryosphere, land surface, biosphere as well as the physical-biogeochemical
interactions. Over the years, large progress in the coupling has been achieved as
illustrated in Fig. 1.12. A particular difficulty is to simulate climatologies of the
ocean, the atmosphere, and the cryosphere, that agree well with the observations.
For a long period, the fact that the ocean and the atmosphere required different
fluxes in order to reach equilibrium, was a major obstacle in modelling. This im-
plies, that at the time of coupling, the two model components cannot be driven by
the same fluxes. This inevitably leads to drift of the two components and possibly
to completely unrealistic states.

Ideally, the coupling follows the scheme presented in Fig. 8.14 without flux correc-
tions. In climate models of earlier generations, this often led to climate drift. A
stable state agreeing with the climatology could not be attained. This is especially
difficult, when the model state is in a range where several equilibria are possible.

Such a climate drift simulated with a coupled model of reduced complexity is shown
in Fig. 8.15. The ocean component is first brought to equilibrium for 4000 years
under restoring boundary conditions. Subsequently, a simple energy balance model
is coupled to the ocean model. From this point on, more degrees of freedom are
available, therefore, T" and S may also change.

As mentioned earlier, the prevention of drift is based on an unphysical approach: so-
called flux corrections or flux adjustments. Although the latest generation of coupled
models no longer requires such flux corrections, they shall be discussed here, also
with respect to their order of magnitude.
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Figure 8.15: Climate drift in a coupled model of reduced complexity, the Bern 2.5D model,
initiating at the time of coupling (¢ = 4000 years). The salinity of the Pacific (P) is increasing, the
energy balance is perturbed and an approach to a different equilibrium state is simulated (upper
panel). This leads to a change in the meridional circulation (lower panel), apparent in the drift
of the stream functions. Figure from Stocker et al. (1992).

Flux corrections for heat, water and momentum fluxes are implemented as constant
artificial sources and sinks at the boundaries of the individual model components.
In doing so, the different model components are not fully coupled, but are rather
linked via their deviations from an independently maintained equilibrium state. This
is also referred to as anomaly coupling.

Flux corrections may be described as follows. F'(o,a) denotes the heat flux from the
ocean (0) to the atmosphere (a), as it results from a fully coupled model, hence it
is computed based on the variables T and T in (8.1). F'(oy,a,) denotes the heat
flux that the uncoupled model requires in which 7o ,, and Ty , are used. In contrary,
F(oy, am) denotes the heat flux based on fixed observational data of the atmosphere
based on measurements (a,) and values of the uncoupled ocean model (o). This is
illustrated in Fig. 8.16.

Instead of driving the ocean model with the fully coupled fluxes F(0,a), F(o,a) is
replaced by .

F,(o,a) = F(o,a) + {F(0u,am) — F(0ou,a4)} , (8.26)
FO

where F'O is the flux correction for the ocean model. FO = 0, in the ideal case
that the variables from the uncoupled atmosphere model completely agree with the
measured quantities, i.e., a, = a,,. Analogously, for the atmosphere model we write

F.(o,a) = F(o0,a) + {F(0m,ay) — F(ou,a4)} , (8.27)
FA
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Figure 8.17: Correction of the heat flux. Particularly in areas with strong oceanic currents (Gulf
stream and Kuroshio), as well as in areas of deep water formation (Norwegian and Weddell Seas),
very large fluxes result. Figure from Schiller et al. (1997).

where FA is the flux correction for the atmosphere model. The difference F, — F,
is the artificial net source of heat, induced by the deviations of the modeled fluxes
in the uncoupled model from the measured fluxes. The corrections in (8.26) and
(8.27) may reach the same order of magnitude as the fluxes themselves. For the heat
flux, this is shown in Fig. 8.17, for the flux of water in Fig. 8.18, for two illustrative
examples of coupled climate model.

By means of simple models and other considerations, it can be demonstrated, that
for relatively small changes (e.g., the simulation of the next 50 year’s climate) flux
corrections do not yield fundamentally different results compared to the ones without
flux correction (Egger, 1997). However, one has to be generally cautious when
interpreting such models.

As mentioned above, most of current climate models no longer employ flux correc-
tions. This is evidence for significant progress in the understanding of processes
in the climate system components (ocean, atmosphere, land, sea ice, snow, vegeta-
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Figure 8.18: Correction of the water flux
in m/year. Particularly in areas with
strong oceanic currents (Gulf stream and
Brazil Current), as well as in areas of deep
water formation (Norwegian Sea), very
l large fluxes result. Figure from Manabe
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tion, etc.) and their representation in coupled models. Improved parameterisations
(used in climate models), and to some extent a higher model grid resolution, have
contributed to this progress.

However, occasionally coupled models still use other forms of flux correction, e.g.,
an imposed additional freshwater flux from the Atlantic to the Pacific in order to
enhance deep water formation in the North Atlantic and improve the global ocean
circulation (e.g., Zaucker et al., 1994; Renssen et al., 2005; Ritz et al., 2011).
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9 Multiple equilibria in the climate system

9.1 Abrupt climate change recorded in polar ice cores

The most detailed information about past climate states of the last 800,000 years
can be retrieved from polar ice cores (Jouzel et al., 2007). One example for the
last 90,000 years is presented in Fig. 9.1. The Holocene, the present interglacial,
has started after the abrupt end of the last glacial period, 11,650 years ago. The
transition from the last ice age to the Holocene, called Termination I, started about
20,000 years ago. An increase in the concentrations of particular isotopes could
be detected in Antarctic ice cores. Stable isotopes of the water molecule are a
measure for the local temperature. The temperature indicators also show that the
climate changed in an abrupt way 25 times in Greenland during the last glacial
period. These abrupt warming events, numbered in Fig. 9.1, are now referred to
as Dansgaard-Oeschger events (D/O events) in remembrance of the research of the
two pioneers in ice core science Willy Dansgaard (1922-2011) and Hans Oeschger
(1927-1998) from the University of Copenhagen and the University of Bern.

These D/O events all show an abrupt warming of the northern hemisphere within
one decade and a subsequent continuous cooling over about 1000 to 3000 years.
Interestingly, the isotope maxima and minima during the glacial periods are all at
the same level. Already in 1984, Hans Oeschger proposed that the climate system
may have operated similar to a physical flip-flop and that the ocean circulation in
the Atlantic Ocean is likely to be responsible for these climate jumps (Oeschger
et al., 1984). Flip-flop systems are characterized by several stable equilibria. The
Lorenz-Saltzman model (Section 7.2) is a classical example.

When Bryan (1986) demonstrated, using a three-dimensional ocean circulation model,
that several states of the thermohaline circulation can be realized, Wally Broecker
(1931-2019) synthesized the results from different climate archives and argued that

rapid oscillations of the “Atlantic heat pump” (the thermohaline circulation) are

responsible for the abrupt climate changes found in the Greenland ice cores, in tree

rings, in sea and lake sediments, stalagmites, and in numerous other paleoclimatic

archives (Broecker et al., 1985; Broecker and Denton, 1989). Some relevant sources

of subsequent research on abrupt climate change are Alley et al. (2003), Barker et al.

(2009), Blunier et al. (1998), Broecker (1997), Clark et al. (2002), Dansgaard et al.

(1984), Dansgaard et al. (1993), EPICA Community Members (2006), Huber et al.

(2006), Manabe and Stouffer (1988), Manabe and Stouffer (1994), Oeschger et al.

(1984), Pedro et al. (2018), Stocker (2000), Stocker and Johnsen (2003), Stocker

and Marchal (2000), Stocker and Wright (1991), Stocker et al. (1992), For an intro-

ductory overview on the role of the ocean in the climate system we refer to Stocker

(2013b).
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Figure 9.1: Climate history of the last 90,000 years recorded in ice cores from Greenland and
Antarctica. A) Oxygen-isotope ratio 0 (in per mille deviation from a predefined standard)
in the GRIP ice core from Greenland; B) 80 in the Byrd core from Antarctica; C) Methane
concentration in the GRIP core; D) Methane concentration in the Byrd core. In the Greenland ice
core, 21 Dansgaard/Oeschger events are recorded. The longest D/O events exhibit a corresponding
warm event in the Antarctic core; labeled Al to A7. All of the D/O events are marked by abrupt
peaks in the methane, enabling a synchronization of the time scales of Greenland and Antarctic
ice cores. Figure from Blunier and Brook (2001).

9.2 The bipolar seesaw

Evidence from many climate archives supports the hypothesis that the ocean is
primarily responsible for these abrupt changes. A sudden shut-down of the North
Atlantic deep water formation causes a reduction of the meridional heat flux and
therefore an abrupt cooling in the North Atlantic region. An active meridional cur-
rent draws heat from the Southern Atlantic and therefore a weakening will cause
a warming of the Southern Atlantic and should be noticeable in distinct telecon-
nections. This has led to the formulation of the so-called “Bipolar Seesaw” as a
paradigm for the interaction of the northern and southern hemisphere during abrupt
climate transitions (Broecker, 1998; Stocker, 1998). The bipolar seesaw is shown in
Fig. 9.2 (right part) and suggests that an abrupt warming in the north leads to
an abrupt cooling of the Southern Atlantic and vice-versa. This hypothesis makes
distinct predictions that can be tested in climate archives.

A slightly more elaborate concept is the thermal bipolar seesaw proposed by Stocker
and Johnsen (2003). It results from coupling a large heat reservoir to the southern
end of the seesaw and leads to a fundamentally different temporal response of the
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Southern Ocean to abrupt temperature changes in the north. An abrupt cooling
in the South Atlantic (i.e., abrupt warming in the North Atlantic) induces a slow
continuous cooling in the whole Southern Ocean. In this simple manner, the very
different characteristics of temperature signals extracted from ice cores of Greenland
and Antarctica and shown in Fig. 9.1 can be explained.

The thermal bipolar seesaw is formulated as an energy balance for the Southern
Ocean temperature:
dTs(t 1

S _ (e - 1) 91)
where Ty is the temperature anomaly of the Southern Ocean and Ty may represent
the temperature anomaly of Greenland. With this, —Ty is the temperature anomaly
of the South Atlantic adjacent to the Southern Ocean assuming the instantaneous
seesaw. T is a characteristic time scale for the heat equilibration in the Southern
Ocean. If Tx(t) is given, the temporal evolution of T5(t) can be determined by a
Laplace transformation of (9.1):

Ts(t) = —

S

t
/ Ta(t — ') e~/ ' + Ts(0) e~V/" | (9.2)
0

Hence, Ts is completely determined by the temporal evolution of Ty and reflects the
northern temperature with a “damped memory”. Let us consider this simple model
in order to explain the different temporal evolution of the temperatures in Greenland
and Antarctica. By tuning the only free parameter 7 we aim at producing the
largest possible correlation between the modelled 75 based on (9.2), with the known
temperature from the ice core Ty as input and the measured Ts derived from the
Antarctic ice core. For 7 = 1,100 years a maximum correlation of 0.77 is achieved.
This allows us to predict the Antarctic temperature based on the temperature of
Greenland in a surprisingly accurate way (Fig. 9.3). The bipolar seesaw predicts
that not only the most prominent D/O events have a southern counterpart, but
that all D/O events should coincide with a peak in temperature that is achieved by
a prior slow warming and a subsequent slow cooling (A events in Fig. 9.3).

Although this simple concept explains a large part of the variability, the required
long time scale 7 of over 1000 years seems incompatible with the results from Ocean
General Circulation Models (OGCMs), simulating only around 100 to 200 years as
a typical exchange duration for the Southern Ocean.

There is another interesting consequence of the bipolar seesaw which follows from
(9.2). Consider a very simple case of a northern temperature signal that has the
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shape of a periodic step function:

1
_§AT for (24)tg <t < (2i+ 1)t
In(t) = 1 (5:3)

+§AT for (21+1)t0<t<2(@+1)t0,
where ¢ = 0, 1, 2, ... and AT the temperature amplitude of abrupt changes in the

north. In this case, we can determine T5(t) easily using (9.2). Assuming 75(0) =0
we get in the first interval 0 <t < #:

Ty(t) = ;AT (1—em) . (9.4)

Values for Ts(t) in later intervals are calculated similarly. From the Taylor series
expansion of this function about ¢t = 0 truncated to first order, we obtain

dT;
Ts(t) ~ Ts(O) + T: t
t=0
AT
~— 1,
2T

which is a good approximation for ¢ < 7. We find a remarkable linear dependence
of the maximum southern warming on the duration ¢y of the northern cooling,

AT
Ts<t0) ~ ? to . (95)

The longer the cooling in the northern Atlantic lasts due to the cessation of the
meridional overturning circulation, the larger the warming will be in Antarctica.
The warming further depends on the overall cooling, AT, in the north.

This linear relationship could be confirmed using the most recent information from
the EPICA ice core from Dronning Maud Land (Antarctica). This ice core was
drilled in a location geographically relatively close the Southern Atlantic Ocean
where one would expect the largest influence of the bipolar seesaw. The duration of
the stadials prior to the Dansgaard-Oeschger events was determined from the tem-
perature reconstructions of the Greenland ice core from North GRIP; the amplitude

of the warming in the south was obtained from the isotopic measurements on the
EPICA ice core from Dronning Maud Land (EPICA Community Members, 2006).

Figure 9.4 shows this impressive linear relationship for Marine Isotope Stage 3 during
the last ice age and provides therefore the most convincing and independent evidence
that much of the variability during an ice age can be captured by the very simple
concept of the bipolar seesaw. It is remarkable that such a strong connection of the
climatic behaviour on millennial time scales operates across the hemispheres.

More recent paleoclimatic reconstructions suggest that this mechanism also operated
during the last Termination, i.e. the transition from the last ice age to the Holocene,
a time period which was punctuated by large and abrupt climate changes such as
the Bolling/Allergd warming and the Younger Dryas cooling in the North Atlantic
region, and the Antarctic Cold Reversal in the south (Barker et al., 2009), as hypoth-
esized earlier (Stocker, 2003), as well as during previous ice ages (Nehrbass-Ahles
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Figure 9.3: High-pass filtered time series of the temperatures in Greenland (A) and Antarctica
(B) derived from ice cores. (C) is the simulated temperature according to (9.2) with input (A).
The abrupt Dansgaard-Oeschger events of the north hence become manifest in the local isotope
maxima in Antarctica (A1, A2, ...). For each D/O event 3 to 18, an individual Antarctic warming
event is predicted in (C). Figure from Stocker and Johnsen (2003).
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Naturally, the bipolar seesaw os a climate model reduced to the max. As more high-
resolution paleoclimate records become available and more coupled climate model
simulations are carried out, the picture of north-south globa teleconnection becomes
more complex (Pedro et al., 2018).

9.3 Multiple equilibria in a simple atmosphere model

Geological evidence suggests that the Earth has gone through several phases of
almost complete glaciation (“Snowball Earth” hypothesis, Hoffman et al. (2017)).
How could this happen, given a roughly constant solar irradiation?

The energy balance model presented in Section 2.2 already gives a possible answer in
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case the ice-albedo feedback is accounted for (Section 2.4.1). Considering the equi-
libria of the energy balance (2.1) and parameterizing the albedo according to (2.35)
but in a mathematically differentiable form as illustrated in Fig. 2.12 according to

T —-2525K
T)=0.575—0.275 tanh | ————— .
a(T) = 0.575 — 0.275 tan < 203 K ), (9.6)
an energy balance equation results that is non-linear in 7"
(1- a(T))Z —coT*. (9.7)

The left- and right-hand sides of (9.7) are shown in Fig. 9.5 for the two cases of a
solar constant of Sy = 1361 W m ™2 and one which is reduced by 15%, S§ = 0.85 5.
For today’s value of the solar constant (Sp) three equilibria exist, of which two are
stable as indicated by filled circles. They represent a “warm” and a “cold” climate
state. In the case of a 15% weaker solar constant (S§, faint young Sun), only a single
stable equilibrium exists corresponding to a very cold climate. Likewise, Fig. 9.5
reveals that the structure of the solution strongly depends on the specific form of
the ice-albedo parameterisation. For example, if an albedo parameterisation with a
flatter slope were chosen, the two stable equilibria would shift towards the unstable
one and finally merge into a single stable equilibrium.

The question remains, whether multiple equilibria also exist in more complex climate
models, e.g. in a coupled atmosphere-ocean model. This is discussed in Section 9.5.

9.4 Multiple equilibria in a simple ocean model

The deep circulation in the Atlantic is associated with a large heat transport that
considerably affects climate in the North Atlantic region (conveyor belt). This heat
transport is responsible for a comparatively mild climate. Already at the beginning
of the 20*" century geologists assumed that the change in the ocean circulation may
be responsible for part of the climate variability. In 1961, Henry Stommel presented
a conceptual model that is able to reproduce such changes since it contains several
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Figure 9.6: 2-Box model of the thermohaline circulation, representing a low-latitude warm water
pool with evaporation dominating, and a high-latitude cold water pool with precipitation domi-
nating. Figure after Stommel (1961) and Marotzke (2000).

equilibria (Stommel, 1961). This model is presented in its simplified form following
Marotzke (2000). The reason for the existence of multiple equilibria is linked to the
fact that heat and water fluxes respond differently to anomalies. Mixed boundary
conditions account for this phenomenon (see Fig. 8.7). Different relaxation times in
(8.8) and (8.14) can also lead to several equilibria.

In this simple model the ocean is represented as two boxes: one for latitudes where
evaporation dominates (warm, a positive water flux P) and one for the cold, high
latitudes where precipitation dominates (Fig. 9.6). T; und S; represent the temper-
atures and salinities of the two boxes, respectively. A fixed temperature difference
AT between the boxes is assumed. It is maintained by heat fluxes between the
atmosphere and the ocean. Between high and low latitudes a water transport ¢
operates and is driven by the density difference according to

q:k(Pz—Pl)Zk‘Po(a(Tz—Tl)-i-ﬁ(Sz—Sl)) ; (9.8)

in which (8.11) with & < 0 and 5 > 0 but with 7 = 0 was used. The balance of the
salinity in the two boxes is

ds; dSy

E-|Q’(S2—Sl)+Pa 1 = lq| (S1 = S2) = P, (9.9)
where P > 0 denotes the net water flux. In (9.9) the absolute value of ¢ appears, be-
cause for the exchange the direction of the current is irrelevant. Stationary solutions
for (9.9) can only be found if

_OCATjE (aAT>2_ P -
28~ \\ 28 pkp 1T
AS=8,— 8 = (9.10)
a AT a AT 2 P
25 _\<2ﬁ>+pok6 7<0,

where AT =T, — T} < 0. For the direct circulation, ¢ > 0 and hence py > p1, two
solutions are possible: one with a smaller contrast in salinity AS < 0 and one with
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a large negative AS. For an even smaller AS an indirect circulation exists, ¢ < 0
and py < p;. We put

AS P
e oL (9.11)
a AT pok (o AT)
and obtain from (9.10)
1 1
—+4/-—F
5 1 q>0,
§ = (9.12)
1 1
—+4-+FE .
5 + 1 + qg<0
The transport ¢ is given by
q=kpoa AT (1-5) . (9.13)

For 0 > 1 the circulation is indirect, i.e., water sinks where it is warmer. In order
to attain a sufficiently high density that permits a sinking, the salinity must be
accordingly high. For 6 < 1 two solutions result, of which one is unstable (Fig. 9.7).
For the direct circulation (water sinks where it is colder) ¢ > 0. In case P increases,
E and ¢ increase as well. But this leads to a decrease of q. An amplified hydrological
cycle slows down the thermohaline circulation.

For 0.5 < 6 < 1 and hence 0 < ¢ < %kpoaAT the circulation is unstable. The
model shows a threshold for ¢, below which the thermohaline circulation does not
exist. It must be noted, that in this simple model the meridional temperature
contrast directly determines this threshold.

The existence of multiple equilibria of the thermohaline circulation can be quali-
tatively understood by considering the heat and water transport as schematically
illustrated in Fig. 9.8. In Fig. 9.8 a) the circulation is direct. Under the typical
depth-profiles of 7" and S in the ocean (with respectively high values at the surface)
the ocean transports heat and salt northwards. The cycle of the fluxes is closed by
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Figure 9.8: Schematic depiction of the thermohaline circulation and the meridional heat and
water fluxes. a) direct circulation: water sinks where it is cold; b) indirect circulation: water sinks
in warm areas. Arrows of the water circulation are color coded: red (warm), blue (cold/fresh),
green (salty).

an excess of heat in the equatorial region and a cooling in the north, and by the at-
mospheric water transport. However, the same water transport can also result from
an opposite circulation as shown in (b) in case the vertical gradient of S changes
sign.

Hence, significant relocations of salinity in the ocean are necessary in order to pro-
voke basin-scale changes in the oceanic circulation. In the context of mixed boundary
conditions for ocean models the salinity at the surface may change in an unlimited
way which is a precondition for attaining state (b) in Fig. 9.8. The question whether
this bears any realism is addressed in the next section.

9.5 Multiple equilibria in coupled models

Model simulations by Manabe and Stouffer (1988) revealed for the first time results
from a coupled climate model, in which for present climate conditions, two different
states were found. They primarily differed in their thermohaline circulation in the
Atlantic. One of the states had an active deep water formation in the North Atlantic,
the other state showed a circulation similar to the one in the Pacific. Transitions can
be triggered by short-term differences in the water balance in the North Atlantic.
Similar results were also found with other coupled models (Ferreira et al., 2018; Kilic
et al., 2017, 2018).

Therefore, it is probable that the deep water circulation in the Atlantic sensitively
responds to changes in the surface water balance. This is a plausible mechanism
to explain the abrupt changes found in climate time series (e.g., Fig. 9.1). One
hypothesis claims that during glacial periods the ice sheets located around the North
Atlantic discharged large amounts of freshwater caused by advancing ice streams.
This situation was reinforced towards the end of the last glacial period, when the
melting of the northern hemispheric ice sheets led to a sea level rise of about 120 m.
During that time, the last sequence of abrupt climate changes was observed.

The lessons from the past clearly raise the question whether limited stability of
the climate system, observed in many paleoclimatic records, may also be an issue
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Figure 9.9: Atlantic Meridional Overturning Circulation (AMOC) strength at 30°N as a function
of year, from 1850 to 2300 as simulated by CMIP5 models in response to scenario RCP2.6 (left)
and RCP8.5 (right). The vertical grey bar at year 2000 shows the range of AMOC strength
measured at 26°N, from 2004 to 2011. Figure from IPCC (2013), Technical Summary TFE.5.

today, when the increase of greenhouse gas concentrations represents a significant
perturbation to the climate system. The anthropogenic warming in the atmosphere
not only increases sea surface temperatures but also alters the freshwater balance in
a profound way. First, the melting of Greenland, which is proceeding at rapid rates,
delivers freshwater to the Atlantic Ocean. Second, a warmer climate intensifies
the water cycle due to the increased amount of water vapour in the atmosphere
and to the higher evaporation rates induced by higher temperatures. This leads
to a stronger meridional transport of water in the atmosphere. All three processes
(warming of the SST, melting of Greenland and more precipitation) conspire to
decrease the sea surface density in the North Atlantic and, in consequence, have the
potential to reduce the formation of deep water in the North Atlantic.

The question remains, whether this has basin-scale implications with the possibil-
ity that the Atlantic meridional overturning circulation may weaken in the future.
Whether a threshold will be exceeded and a complete shut-down of this circulation
system follows, is the object of current research. Coupled climate models will take
centre-stage to shed light on this important issue.

The Intergovernmental Panel on Climate Change has addressed this issue (IPCC,
2013, Chap. 12). Fig. 9.9 illustrates the change in the meridional overturning cir-
culation of the Atlantic for the coming 300 years based on different coupled models.
Large differences between models exist; some models are inconsistent with observa-
tional estimates of the Atlantic meridional overturning.

Nevertheless, a general weakening trend during the 21%° century emerges. None of
the models simulates an intensification or an abrupt shut-down under these scenarios
within the coming 100 to 200 years.

Models of reduced complexity show that a threshold of the circulation exists be-
yond which a complete shut-down of the current results without additional exter-
nal inputs. Therefore, a transition to a second stable equilibrium occurs. This
behaviour might also be observable in more complete models (three-dimensional
coupled atmosphere-ocean models without flux corrections), according most recent
simulations (Mikolajewicz et al., 2007) and as suggested by two of the three longest
simulations for the RCP8.5 scenario in Fig. 9.9 (Hu et al., 2013). Multiple equi-
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Figure 9.10: Simulations with the Bern 2.5D model for the evolution of the meridional overturn-
ing circulation (MOC) in the Atlantic considering a warming scenario. The different simplified
COg3-scenarios (upper panel) consist of an exponential increase at different rates, levelling off at
a given maximum value. The MOC reveals a bifurcation in its behaviour (lower panel): for small
maximum values or slow rates of CO, increase, the threshold for a complete shut-down may be
avoided. Figure from Stocker and Schmittner (1997).

libria were also shown in a fully coupled AOGCM, in an aquaplanet configuration
(Ferreira et al., 2011), and an Earth with idealized continental distribution (Ferreira
et al., 2018).

Simulations with a simplified coupled model (Bern 2.5D model), consisting of a zon-
ally averaged 3-basin ocean model and an energy balance model for the atmosphere,
show that the threshold depends on several important quantities in the climate sys-
tem, as well as the history of the perturbation. Figure 9.10 gives a summary of the
results. For the respective simulations, simplified COs-scenarios were chosen: after
an exponential growth at different rates, the CO5 concentration was held constant.
The evolution of the thermohaline circulation may be split into two cases. One ex-
hibits a linear behaviour in which a temporarily strong reduction of the circulation
is followed by a recovery over a few centuries. The reduction of the overturning
circulation depends on the maximum value of the CO, increase and hence on the
warming. In the second case, the circulation shuts down completely and does not re-
cover. An irreversible transition to the second stable equilibrium has been realized.

It is interesting to notice that a reduction of the maximum concentration of CO,
(from experiment 750 to 650) as well as a reduction of the rate of COy increase
(from experiment 750 to 750S) avoids the crossing of the critical threshold. Hence,
the rate of future warming in the climate system plays a significant role. Depending
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on the rate and amount of warming, irreversible changes may result.

There is evidence that a similar behaviour can be produced by a more complex
model. However, it must be considered that these models contain more degrees
of freedom and hence respond to disturbances in a much more sophisticated way.
The question, whether multiple equilibria can also occur in the models of highest
resolution, remains anaread of active research.

In its latest assessment report, the IPCC draws a cautious conclusion regarding this

potentially serious consequence of anthropogenic climate change in the Summary
for Policymakers, IPCC (2021):

The Atlantic Meridional Overturning Circulation is very likely to weaken
over the 215 century for all emission scenarios. While there is high confi-
dence in the 215 century decline, there is only low confidence in the mag-
nitude of the trend. There is medium confidence that there will not be an
abrupt collapse before 2100. If such a collapse were to occur, it would very
likely cause abrupt shifts in regional weather patterns and water cycle, such
as a southward shift in the tropical rain belt, weakening of the African and
Asian monsoons and strengthening of Southern Hemisphere monsoons, and
drying in Europe.

Recent research has focused on the question whether there exist other components
in the climate system which may exhibit instabilities or which are forced into new,
quite different, equilibrium states. One example of intensive debate is the fate of
the Greenland ice sheet. Recent observations confirm sustained mass losses for
both Greenland and Antarctica (Rignot et al., 2019; Mouginot et al., 2019). Some
model simulations suggest that there exist thresholds for warming in the area of
the Greenland ice sheet and if crossed, this may lead to an irreversible melt-down
of the ice sheet with a massive sea level rise of more than 6 meters over the next
several 100 years. However, paleoclimatic information suggests that during the last
interglacial about 120,000 years ago, which was about 4°C warmer than today, the
Greenland ice sheet was still present, although much smaller in extent, and hence
additional sea level rise remains a real threat.

Also, the Amazonian rainforest is supposed to respond to anthropogenic climate
change both directly to the warming and, of course, due to direct deforestation.
Some model simulations suggest that in this area a steppe-like vegetation cover may
develop which then would feed back to the regional hydrological cycle and produce a
new state of stable, but much drier regional climate. Even if the large-scale climate
conditions were reset to pre-industrial values, the change in vegetation would not
be reversible.

Permafrost in the boreal areas of Siberia and North America is also a system which is
increasingly investigated. Large amounts of methane are trapped in the permafrost.
With the warming, permafrost is melting which could release methane from these
areas. As a powerful greenhouse gas, this would enhance the greenhouse effect.
However, due to natural sinks for methane in the atmosphere and the short lifetime
of methane (about 10 years), such a perturbation would disappear rather rapidly.
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There is therefore the general concern that anthropogenic perturbations may have
already caused irreversible climate change. In this context, one often refers to “Tip-
ping Points” in the climate system (Lenton, 2011), although this concept is difficult
to quantify. Obviously, predictability is extremely low, if not impossible, for such
climate instabilities, but warning signals may be identified in the climate system.
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10 Concluding remarks

The goal of these lecture notes was to provide some basic knowledge in climate mod-
elling. In addition to theoretical concepts and recent results from climate research,
we have framed the material in a sequence of simple problems which were solved
numerically. This afforded the opportunity to introduce some basic numerical so-
lution techniques and expose specific characteristics of them. A further goal was
to introduce a few fundamental concepts of the dynamics of the climate system.
Surely, these notes could only provide an initial, very limited insight into this fas-
cinating topic. Hopefully, it was made clear, that questions remain unresolved and
that therefore many areas of activity are open for good ideas and creative model
design.

Climate modelling is the only, however by far not perfect, method to make quantita-
tive statements concerning past climate change. For predictions of future changes,
climate modelling is the only scientific basis. An ongoing analysis of observed data
and climate variables, as well as a more profound understanding of the fundamental
processes guarantees a continuous improvement of these models. The scientific as-
sessment of the impact of human activities on this planet, and to foresee dangerous
developments becomes an important duty of a responsible modern society.

Global heating is a scientific fact. This is succinctly captured by the ‘warming
stripes’ (Fig. 10.1). Climate models are the basis for designing strategies of a sus-
tainable future. A stable climate is a crucial resource for humanity, as it is now
realized in the light of increasingly frequent and intense extreme climate events such
as heat waves, flooding, drought, and tropical storms. Many of these events can
now be attributed to anthropogenic emissions of greenhouse gases (IPCC, 2021).

A stable climate is also a essential for uninterrupted ecosystem services. Each mod-
ification of a resource implies a risk and disruptions may follow. In this sense, the
changes observed to date should be considered as both a reminder and starting point
for resolute actions. These are required as humanity has set a clear goal: Holding
the increase in the global average temperature to well below 2°C above preindustrial
levels (UNFCCC, 2015). However, with every year of constant, or even increasing,
CO; emissions the door for climate targets is closing irreversibly (Stocker, 2013a).

Figure 10.1: Global mean surface temperature anomalies from 1850 to 2021 shown as ‘warming
stripes’, a compelling visual by Ed Hawkins, University of Reading (showyourstripes.info).
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In closing, I note that art is able to provide an orthogonal and deeply emotional
access to the greatest challenge of our century. As an early and impressive example
of an artist’s engagement against anthropogenic climate change we reproduce, as the
last display item of these Lecture Notes, the compelling drawing Global Warming,
created by Niki de Saint Phalle (1930-2002) in 2001 (Fig. 10.2).

Niki de Saint Phalle was an internationally acclaimed sculptor, painter, and film-
maker. She is most famous for her colourful and voluminous ‘Nanas’ which are
powerful reminders of joyful, liberated and self-confident women. A huge Nana,
L’ange protecteur, is flying high in the 19*-century arrival hall of Zurich’s main
train station since 1997.

Niki de Saint Phalle’s ceuvre is very rich and surprising, sometimes eccentric. Her
drawing reproduced here is a prescient call of the many problems created by humans
polluting the atmosphere and the environment. Since then, every one of these issues
has grown bigger, more pervasive, and more dangerous.
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Figure 10.2: Drawing by the Franco-American artist Niki de Saint Phalle (1930-2002). She was
an internationally renowned sculptor, painter, and filmmaker of the 20t century. Photo source:
Global Warming, 2001 © Niki Charitable Art Foundation. All rights reserved.
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Appendix A

The Young-Frankel SOR method

The Young-Frankel successive overrelaxation method was derived independently by
David M. Young (Young, 1950) and Stanley P. Frankel (Frankel, 1950). This method
may be viewed as a generalized Gauss-Seidel method (5.19). Nowadays it represents
the standard SOR method and is described in detail in many textbooks, for example
in Varga (2009) or Schwarz and Kockler (2011).

We start our brief description of this method by writing down again the iterative
methods of Jacobi and Gauss-Seidel which we have already noted in (5.18) and
(5.19):

Jacobi method ~ Da""!' = — (L+R)a"+b, (A1)
Gauss-Seidel method (D+L)a"" = -Ra"+b. (A.2)

We subtract L z""! from both sides of (A.2):
Dz"" = —La"™ —Ra"+b. (A.3)

This representation of the Gauss-Seidel method elucidates the fact, that this method,
while advancing from the first component £ = 1 successively to the next components
k=2 3,...,J, uses always the most recent of the already calculated values (as
mentioned on page 94), in contrast to the Jacobi method (A.1): The kth component

of the vector 2™*!, i.e. the component 2!, results from the components z7*, ..

2] just calculated during the actual iteration step and from the components x|,

..., o} already calculated before, during the foregoing iteration step (equation (5.15)
is an example). Now we subtract D z" from both sides of equation (A.3) and left
multiply both sides by D~
xn-i—l =" — D—l (L $n+1 4 (D + R) " — b)
=" + Azt
The quantity Azt = " — 2" = —D 1 (L2"™ + (D + R) 2™ — b) signifies the

correction demanded from the Gauss-Seidel method at iteration step n + 1 (where
n=0,1,2 ...).

The Young-Frankel successive overrelaxation method scales the Gauss-Seidel correc-
tion Az™*! by a relaxation factor w > 1,

2" =" w Ar" (A.4)
=2" —wD™! (anJrl +(D+R)z" - b) :
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Le.
(D—i—wL)x"H:Dx”—w((D—i-R)a:”—b)
or

=D+l ((1-w)D-wR)e"+wD+wl) b, (A5

It includes the Gauss-Seidel method (5.15) with w = 1. Clearly, (A.5) is a linear
non-homogeneous recurrence relation,

" =Ta"+c, (A.6)

where both the so-called iteration matrix T and the vector ¢ (the non-homogeneous
part of the recurrence relation) are functions of the relaxation factor w:

T=D+wl) " (1-w)D-wR), (A7)
c=w(D+wL)"b.

The following aspects are fundamental for the further discussion:

1. Starting with any initial approximation z° and using any relaxation factor w,
the recurrence relation (A.6) determines a unique sequence of approximations

{2"} =20 2t 2%, ... (A.8)

2. The sequence (A.8) might be divergent or convergent. If it is convergent
then it must converge to the unique solution x of equation (5.16) implying
2"t = 2" =  for n — oo and therefore the solution x to be a fixed point of
the recurrence relation (A.6):

r=Tz+c. (A.9)

To ensure convergence of the sequence (A.8), the iteration matrix T must fulfil
a particular requirement. This requirement follows from the fact that, in case of
convergence, the sequence of errors {€"}, where

€ = 2" —x

(Az-g)Tmn—l_i_C_(Tx_i_c)

= T (x”_l - :z:)
= Tt

— T2 6n—2

= T", (A.10)

has to converge to the null vector. It is clear that this happens for each initial
approximation 2, i.e. for each initial error €’ = 2% — x, if, and only if, the matrix T
is a convergent matrix, i.e. a matrix whose sequence of powers {T"} converges to

the null matrix. And this is the case precisely if all the eigenvalues \;, Ag, ..., A\;
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of T (which may be complex numbers) have absolute values! smaller than one,
i.e. precisely if the largest of the J values ||, [A2], ..., |[A\s|, the so-called spectral
radius? of the iterative matrix T,

p(T) = max () . (A.11)

=1,...,

is smaller than one, p(T) < 1. This is a general rule and easy to justify in the
special case of a diagonalizable matrix T: We know from linear algebra that for
such a matrix there is a regular matrix P causing the matrix P~' TP to be a
diagonal matrix

A1

A
A=P'TP= ?

AJ

where the diagonal elements of A are the eigenvalues of T (and the columns of P
are the eigenvectors of T). It follows

T=PAP (A.12)
and further T? = PAP ' PAP~! = P A?2P~! and consequently, for any n € N,

AL " A
A\ A
T =PA"P!=P 2 Pl—p 2 Pl
Ay AT

This confirms that T™ — 0 for n — oo is equivalent to p(T) = max (|[\x]) < 1.
The smaller the spectral radius p(T), the faster the convergence. After conduct-
ing m successive iteration steps, the error has changed approximately by a fac-
tor of p(T)™; to change the error by a factor of 1077 it needs approximately
m =~ —p In10/1n p(T) = —p/ log,, p(T) iteration steps.

The spectral radius p(T) of any SOR iteration matrix T = T(w) depends on the
relaxation factor w. Figure A.1 shows an example. Usually, the function p(w)
has a unique minimum. If this minimum is less than one, then the corresponding
relaxation factor w = wqpy is optimal concerning speed of convergence. This optimal
relaxation factor is generally difficult to determine exactly. What is certain is that
it must be in the value range between 0 and 2, together with the other relaxation
factors ensuring convergence. This follows easily by taking the determinant of the
iteration matrix T given in (A.7):3

d%mD:AMQ”AJ:&%OD+WLY%O—WOD—WRD
=det (D+wL) ™" -det ((1-w)D - wR)

!The absolute value of a complex value z = z + iy is the real, positive value |z| = /22 + y2.

2The eigenvalues A1, Mg, ..., Ay of a complex N x N matrix M constitute the spectrum of this
matrix. The radius of the smallest circle in the complex plane with center at the origin which
incloses all eigenvalues is the spectral radius p(M).

3Some properties of the determinant function are used in the reasoning (matrices X and Y should
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Figure A.1: Spectral radius p(w) = p(T(w)) of the iteration matrix (A.7) derived from the matrix
A = (31). The spectral radius results with p(w) = max (|A; (w)], [A2(w)|), where A; (w) and A (w)
are the eigenvalues of T.

1
~ det (D)
=(1-w)’.

(1 —w)” - det (D)

From this it results [\ Ao ... \j| = ‘(1 —w)‘]‘ = |1 —w|]’ and from (A.11) also

A Aa ... Ay < p(T)7. Tt is therefore |1 — w|” < p(T)” and simply |1 —w| < p(T).
A convergent matrix T(w) requires p(T) < 1 and thus |1 —w| < 1, i.e.

O<w<?2 (A.13)

(a necessary but not sufficient condition for convergence of the sequence (A.8)).
The iteration procedures (A.5) using relaxation factors w < 1 are accordingly called
successive underrelaxation methods (SUR). They can be used in cases where the
iteration matrix T(w) is divergent for relaxation factors w > 1 and convergent for
some w < 1.

be J x J matrices, a a constant value):

det (XY) = det (X) - det (Y) ,

det (X7) = oz -

det (a X) = o’ det (X) .
If X has eigenvalues A1, Ag, ..., Ay (which do not have to differ from each other) then
det(X) :)\1>\2 )\J .

If X is a triangular matrix, either a left triangular matrix with x;; = 0 for 4 < j or a right
triangular matrix with x;; = 0 for 7 > j then the determinant of X is the product of the
diagonal elements of X:

det (X) =T11X22 ... X JJ .
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Appendix B

Problem Sets

Problem 1: Warm-up

Calculate the sum N
S(N)=>n
n=1

for N = 100 and for N = 10,000, first by summing all the numbers from 1 to N
and then by using Gauss’ formula

N (N +1)

S(N) = =5

a) Compare the two approaches using the speed to calculate them.

b) Plot a graph of S as a function of N.

Problem 2: More warm-up

Prime numbers between 2 and M can be found using Erathostenes’ Sieve which goes
as follows: In the vector of numbers from 1 to M, all multiples of the smallest prime
still in the vector are cancelled, with the exception of the prime itself. Start with 2.

Problem 3: Hydrostatic pressure in the ocean

Calculate the hydrostatic pressure p(z) of sea water as a function of depth z, by
integrating the hydrostatic equilibrium

dp

— = —gplz B.1
S OF (B.1)
where p is sea water’s density and g = 9.81 ms~2 the gravitational acceleration.
Density depends, in a simplified form, on temperature 7" and salinity S according
to

p(T.S) = po(l—a(T = Tp) + B(S — ) ) .

where py = 1028 kg/m?, Ty = 0°C, and Sy = 35, and the thermal and haline expan-
sion coefficients are given by o = 5.4 -107° K~!, and f = 7.6 - 10~*. Temperature
at a depth of z = 1000 m is 7" = —1°C and increases linearly to 7' = 10°C at the
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surface (2 = 0) typical of high latitudes. Surface air pressure is p = 1.013 - 10° Pa.
Assume S = 37.

a) The first derivative in (B.1) should be discretized using the Euler forward
scheme. Calculate the pressure profile and plot it against z. Hint: Use Az =
100 m to discretize the derivative.

b) Calculate pressure by integrating (B.1). The integral can be directly calcu-
lated in python. Alternatively, calculate it numerically by approximating the
integral by the area of a trapezoid:

[ Ha@) dom (o - 0 1T

Show the difference between a) and b).

c) A better approximation is obtained if the interval (a,b) is divided in many
small sub-intervals in which the trapezoidal rule is applied.

d) In lower latitudes ocean temperatures vary approximately exponentially from
the surface at T = 20°C to T" = 5°C at 1000 m depth with a scale depth of
d = 150 m. Again repeat a) but with the exponential temperature profile and

plot p(z) and p(z).

Problem 4: Energy balance model 1

The energy balance model of the atmosphere was introduced in Section 2.2. The
balance equation (2.1) reads:

ar So .
hpca—(l oz)z eoT™. (B.2)

Determine the equilibrium temperature for the parameter values given on page 35.

The ice-albedo feedback should be simulated by using the following approximation
of the temperature-dependence of the planetary albedo:

042 for T > —10°C
] 0.62 for T < —10°C .

In order to solve the differential equation (B.2) you use
a) the Euler forward,
b) the Runge-Kutta scheme of 4" order.

The initial value is T' = 290 K. Terminate the iteration, if the change of temperature
in an iteration step is smaller than 1073 K, or more than 1000 iterations are used.
Plot the temperature time series for both schemes and explore the effect of changing
the time step.
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Problem 5: Energy balance model II (time dependence)

We now extend Problem 4 by including a simple description of the ocean surface
layer. We also want to investigate the consequence of a varying solar constant,
typical for a solar cycle. Consider the energy balance,

dT S(t
(hpet hucpoccod) o = (1 =) 20 2o (B.3)

where we use po. = 1028 kgm™3, ¢, = 3900 Jkg ' K~ as typical ocean values. In
equation (B.3) we have assumed that the atmosphere is in instantaneous equilibrium
with the ocean. For albedo use the constant o = 0.42, and assume that the solar
energy flux S(t) varies sinusoidally with an amplitude of 2%o and a period of 11
yearsm around the solrar constant of Sy.

Consider different depths of the surface ocean layer, ho.: 50 m, 100 m, 500 m, and
1000 m.

In order to solve the differential equation (B.3) you use
a) the Euler forward,
b) the Runge-Kutta scheme of 4" order.

Try increasing time steps from 1 month, 1 year, 3 years, 5 years to 7 years. Integrate
(B.3) over several solar cycles, and produce a graph in which you show 7" as a function
of time. Note how the temporal behaviour depends on ocean depth (phase lag).

Problem 6: One-dimensional tracer advection I

A tracer is released continuously into an aquifer in which water is flowing at a
speed of u = 1 m/day. We assume that this tracer is salt, whose concentration
is measured in grams per kilogram water. The concentration of the tracer at the
location of release at x = 0 raises from 0 for ¢ < 0 abruptly to Cy = 100 g/kg at
time t = 0 and is held constant thereafter, ¢ > 0. Determine the time, when the
tracer concentration exceeds 0.1 g/kg at a distance of 500 m from the location of
release.

The problem is described by the one-dimensional advection equation:

oC +u o¢ =0.
ot Ox
Solve this equation using
a) central differences,
b) upstream scheme,
c¢) using a diffusive correction described in Section 3.8.
d) What is the exact time?

Plot the numerical solutions at different subsequent times. Try different time steps.
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Problem 7: One-dimensional tracer advection II (radioactive decay)

Assume now that the tracer considered in Problem 6 is tritium, the unstable isotope
of hydrogen (*H). Tritium decays radioactively (3-decay) with a half life of 12.3
years. The initial activity is 120 Bq/liter.

Determine the time, when the tracer activity first exceeds 2 Bq/liter at a distance
of 500 m from the location of release.

The problem is now described by

oC oC

Plot the numerical solutions at different subsequent times.

Problem 8: One-dimensional tracer advection III (implicit scheme)

Solve Problem 7 now with an implicit scheme as described in Section 3.6.3. Use
Euler forward in time and central differences in space. The discretized problem can
be written in matrix form.

Problem 9: Energy balance model III (time and latitude dependence)

Consider the one-dimensional energy balance model which was presented in (4.9).
The energy balance now reads:

hpe 0 oT

S 4
hpca—(l_a)z—éaT +}%2(}()S(pa(P<KCOSS0890>’ (B4)

where the latitudinally dependent eddy diffusivity K (in m?s™!), the albedo o and
the incoming solar radiation S are given by
K=K(p) =~ (1.5+25cos¢)10°m?*s™"
a=alp) =~ 06—-04cosy
S=5(p) =~ S0(0.5294+0.706 cos®p) .

Sp = 1361 W/m? is the solar constant. The values of the other parameters are given
in Section 2.2.

Define a grid where the temperatures are given at the centres of the grid boxes,
and the first derivatives 0T /0y are given at the box edges, as in the figure below.
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The temperatures are evaluated at the points, the derivatives at the diamonds.
The boundary conditions are imposed at the open diamonds. The discretized first
derivative is given by

T/ _ ﬂ - E—l
(2 A(p Y
the second derivative is evaluated at the points, and given by
T — T;I—i-l B T;/
(2 ASO

a) Calculate the steady-state temperature as a function of latitude. Choose 1° as
the meridional resolution, and Euler forward for the time discretization with
At = 20 min. Note that you need at least 10,000 iterations for convergence.

b) Compare the temperature with that obtained for K = 0 (no meridional heat
flux).

c) Compare the result with the surface air temperature data set (data will be
provided during the lecture).

Problem 10: Wind-driven circulation (two-dimensional PDE)

The first model of the wind driven large-scale circulation in a closed basin was
proposed by Henry Stommel as introduced in Section 6.7.

The stream function W satisfies the partial differential equation (PDE) (6.52),

687\11:87@,2_87}52_}5 827‘1/_’_827\1] ,

ox ox oy ox?  0y?
and ¥ = 0 on the boundary. The PDE should be solved in a rectangular domain of
zonal extent of L = 7000 km, and B = 5000 km meridional extent. The circulation
is driven by a zonal wind stress for which we assume the simple profile (6.54):

T
Tuz = —To COS (B y) , Ty =0,

with 70 = 0.1 Nm™2. We select 3 =2-10""" m™'s™! and R = 1/(6 days).

a) Discretize the PDE using central differences. Use the Method of Successive
Overrelaxation (SOR) to calculate the stream function. The iteration can
be terminated when the maximum relative error is smaller than 1075, i.e.,
max (&;/ (e;; Wi ;) < 107° (see Section 5.3.2).
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b) Determine the optimum relaxation parameter w by plotting the number of
iterations as a function of w.

¢) Make a contour plot of the stream function.

d) Plot the stream function V(z,y = B/2) for three values of the friction: R =
1/(2 days), 1/(6 days), 1/(20 days). Note that your discretisation might not
be appropriate to represent a very narrow western boundary current whose

width scales as R/f5.

Problem 11: Lorenz-Saltzman model I

The Lorenz-Saltzman model is a simple but powerful model for flow in the atmo-
sphere. It is the starting point of Chaos Theory, first described by Ed Lorenz in
his landmark paper entitled Deterministic non-periodic flow (Lorenz, 1963). The
equations (7.26) of this famous model read:

dX

E:—O-X—FO'Y,

dY

= XZ+4rX-Y
dt T ’
g:XY—bZ.

dt

All quantities are dimensionless. These equations describe the small-scale thermal
convection of an incompressible fluid in a box. The physical meaning of X, Y, and
7, and the derivation are given in Section 7.2.

Calculate the solution of the Lorenz-Saltzman model using the 4" order Runge-
Kutta scheme (see Section 2.3) with a time step of At = 12/2000. Use the following
parameters: r = 28, 0 = 10, and b = 8/3. Calculate the solution for two slightly
different initial conditions:

1. X, (0)=1, Yi(0)=2, Z(0)=11.01
2. Xp(0) =1, Y5(0)=2, Zy(0)=11.02.
a) Plot the first 10,000 time steps in the Y-Z-plane.

b) Plot the distance between the solutions starting from the two initial conditions
as a function of time. The distance is defined as

A1) = (X1~ X + (Vi - V)’ + (21— Zo)°

Problem 12: Lorenz-Saltzman model I1

The predictability of atmospheric flow depends on the current state of the atmo-
sphere. Predictability can be determined by integrating an ensemble of initial con-
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ditions that are within certain predefined bounds.

We now use the Lorenz-Saltzman model to calculate ensembles from initial condi-
tions at t = 0 which are located in circles of radius 0.5 in the Y-Z-plane, centered
at the three locations:

(X1,Y1,21) = (1,2,42) ;
(X27}/2722) == (1,2,9) ;
<X37Y257ZB) - (17 _17 1]_) .

Follow how the circles deform as time progresses. Consider the time interval from
t=0tot=0.5.

Problem 13: Equatorial waves I

This and the last problem take you on a tour d’horizon revisiting many concepts presented
in this course. Consequently, these are quite demanding.

An important element to predict the El Nino-Southern Oscillation phenomenon is
to simulate the propagation of ocean waves along the equator. Here, we numerically
solve the shallow water equations (8.24). The dynamics are described by the per-
turbations h to the thermocline layer of thickness H, extending from west to east
in the equatorial Pacific. Thickness anomalies drive a flow (u,v) which, through its
divergence, feeds back on the perturbation h. We consider an equatorial S-plane
and assume 7, = 0.

The following values for the constants are selected: 8 = 2.283 - 107" m™!s71 ¢ =
5.6 - 1072ms~2 is the reduced gravity, r—! = 2.5yr is a damping timescale, and
H = 150m is the thickness of the unperturbed thermocline. The domain is a
rectangular basin of zonal and meridional extent of L = W = 10,000 km, centered
at the equator.

For the discretization we choose a C-grid (see Section 6.5) with N = M = 200 grid
points and use formulations for the derivatives similar to (6.37), with first-order
spatial differences and central differences in time. Note that for stability reasons,
the friction terms in (8.24) need to be averaged over two preceding time steps, e.g.
u?jl = u?;l +2 At ff = At (uf; + u,"]_l), where f™ contains all other terms
at time step n; see subsection 2.3.3.

The boundary conditions are u(+L/2,y) = 0, v(x, £W/2) = 0, i.e., no flow across
the basin boundaries. Other boundary values need not be specified. The domain
is made large enough in the y-direction so that boundary effects are not relevant
during the selected integration time.

As an intial perturbation at t = 0 we set h(z,y) = hge 05/ (0 LE)*+(u/(ay LE))?)
with hg = 50m, Lg is the equatorial Rossby radius, and a,, a, are scaling factors
determining the zonal and meridional extent of the perturbation. We set u(z,y) =
v(z,y) =0att=0.
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Figure B.1: Evolution of h(z,y,t) starting from a Gaussian perturbation with a; = a, = 1.
A time step of 0.02 days was used; positive thermocline thickness anomalies (warm anomaly)
are plotted in red contours. Various types of equatorial waves travel along the equator with
characteristic phase speeds, and Kelvin waves escape polewards along the eastern boundary of
the domain. Once they reach the northern and southern boundaries (not shown), they travel
westwards, unless suppressed during the time stepping.

a)

b)

Write the discretized schemes for the equation system (8.24) assuming a C-
grid. Note that the first time step is Euler forward.

Formulate the numerical boundary conditions for the four boundaries of the
rectangular domain. Take into account that you use the C-grid and select
carefully which subgrid lies on the respective physical boundaries.

Estimate the time step that you need for stability by first assuming the phase
speed of the equatorial Kelvin wave to be important. Also, estimate the equa-
torial Rossby radius Lg for the given parameter values.

It turns out that a time step about 5 times shorter than this first estimate is
needed for stability. Discuss the reason for this by considering the dispersion
relation shown in Fig. B.2 and make a quantitative argument.

Simulate the propagation of the equatorial waves by showing contour plots of
h(z,y,t) at t = i-(4days),i = 0, ...11, see Fig. B.1. For the initial perturbation
we choose a, = a, = 1. As contour levels [—49 : 2 : 49] are suggested, and
for clarity we display the domain limited by —L/2 <2 < +L/2,-W/5 <y <
+W/5.

As in d) but now with a, = 0.3.

Discuss the evolution of the wave fields for both values of a on the basis of the
dispersion relation for equatorial waves shown in Fig. B.2.

Integrate out to t = 200 days and observe the westward propagation of Kelvin
waves along the northern and southern boundaries. Repeat the integration
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Figure B.2: Dispersion relation of equatorial waves (see page 194 how to derive it). There are four
types of equatorial waves: n > 1 modes of each high-frequency gravity waves (Poincaré waves) and
low-frequency Rossby waves, and one mode (n = 0) of a mixed gravity-Rossby wave (Yanai wave)
and a Kelvin wave (n = —1). Note that for the Kelvin wave the phase speed c,, = w/k is only
positive, i.e. the phase propagates eastwards), whereas it is strictly negative for the Rossby waves
whose phase propagates westward. However, wave energy is transported at the group velocity
cgr = Ow/0k. Therefore, Rossby and Poincaré waves transport energy in both zonal directions.

and suppress these Kelvin waves by setting hA(z,y,t) = 0 in the vicinity of
these boundaries at every time step.

Problem 14: Equatorial waves 11

Extending Problem 13, we further explore the simulated equatorial waves employing
two approaches. The first is the so-called Hovmgaller diagram which displays the
time evolution of a variable f(z,t) in one space dimension. The Hovmgller diagram
is obtained by contouring the field f(z,t) with the time dimension along the y-
axis. This permits the visualisation of wave propagation and a straightforward
determination of the phase velocities.

The second approach is the 2-dimensional Fourier spectrum of a variable f(z,t)
from which the dispersion relation of Athe simulated waves can be determined. This
is achieved by contouring the field f(k,w) = [[ f(x,t)e!**=“Ddxdt in the (k,w)-
plane.

We employ the simulation obtained in Problem 13g and store the thermocline depth
field at the equator heq(x,t) = h(z,y = 0,t) at every time step for later analysis.
We set f(z,t) = heq(z, t).

a) Plot the Hovmgller diagram for heq(z,t) and observe the propagation of the
phases of the different wave types. Note the time when a standing wave pattern
has developed in the basin.
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b) To determine the dispersion relation of the simulated waves, calculate the
Fourier spectrum of hey(z,t) and contour h(k,w) in the (k,w)-plane.

¢) Repeat the simulation with an initial Gaussian perturbation of much smaller
spatial extent by choosing a, = a, = 0.1. This excites gravity wave modes of
higher order that will be emerge in the dispersion relation.

d) Repeat the simulation with an Gaussian perturbation of second order in the
y-direction. Use as initial condition Oh(z,y)/0y with a, = a, = 1, where
h(z,y) is the initial condition from Problem 13. In addition to the second-
order Poincaré waves, this excites the Yanai wave, the mixed gravity-Rossby
wave, which will appear in the dispersion relation.

Hints to obtain the exact dispersion relation for equatorial waves:

Analogous to the procedure decribed in subsection 6.4.5, we first bring all terms of
(8.24) to the left-hand side and eliminate v and h by calculating

0% /0t*(8.24b) — ¢'9* /0tdy(8.24c)
— ¢'HO/0x(0/0x(8.24b) — 0/0y(8.24a))
— By(0/0t(8.24a) — ¢'0/0x(8.24c)) .

Then, assume v(z,y,t) = 9(y) ¢#*~“" to obtain an ordinary differential equation in
0(y). This differential equation is also solved in Quantum Mechanics when consid-
ering the harmonic oscillator: Solutions are Hermite polynomials. They are finite
only if

Wk —kjw=2n+1, (n=0,1,2,..), (B.5)

and decay as e V/2W/Le)* wwhere Ly = (v/g'H/B)/? is the equatorial Rossby radius.
Equation (B.5) is the non-dimensional dispersion relation for successive modes n
of equatorial waves. It is a polynomial of order 3 in w. In addition, there is the
equatorial Kelvin wave for n = —1, however, it does not result from the derivation
above because v = 0. The dispersion relation of the equatorial Kelvin wave is
simply w = SL2% k. This is the only equatorial wave that is non-dispersive, i.e., all
wavelengths travel at the same phase speed c,;, = 3L%.
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