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The Antarctic Circumpolar Current (ACC) plays a central role in regulating

the global ocean circulation, climate and Antarctic Ice Sheet dynamics. Yet
the spatiotemporal variability of the ACC during the Pleistocene remains
poorly constrained. Here we reconstruct ACC flow-speed variation using
ameridional transect of sediment cores from the Indian sector of the
Southern Ocean. Our results reveal zonally asymmetric changes in ACC
strength across the Southern Ocean on orbital timescales over the past one
million years; the ACC intensified in the South Indian Ocean but weakened
in the South Pacific during glacial and low-obliquity periods, with the
opposite pattern during interglacial and high-obliquity periods. These
anti-phased changes probably reflect an integrated response to bathymetric
constraints, shiftsin the Southern Hemisphere westerlies, sea-ice extent,
buoyancy forcing and current confluence. Such zonally asymmetric and
anti-phased ACC dynamics persisted during warmer-than-present intervals
of the Pleistocene, offering a potential analogue for future anthropogenic
warming—albeit under fundamentally different boundary conditions.

The Antarctic Circumpolar Current (ACC) is the largest current system
intheworld oceans, yet it remains among the most poorly understood
components of the global ocean circulation. The ACC plays an essential
roleinthe climate system asit regulates interbasin exchange of physi-
cal, chemical and biological properties, thus enabling a truly global
overturning circulation'*. The meridional transport of water masses
acrossthe ACCleads to poleward heat advectionandintense upwelling
of CO, and nutrient-rich subsurface waters along tilted surfaces of
constant density (isopycnals). By modulating the poleward transport
of heat and the advection of warm Circumpolar Deep Water (CDW), the
ACCinfluences the extent and stability of the Antarctic cryosphere’°.

The ACCisadeep-reaching eastward flow steered by bathymetry
and continental topography. Its trajectory extends southeastwards
from the Indian Ocean into the southeast Pacific before undergoing
a pronounced northward deflection upon exiting the Drake Passage
into the western Atlantic basin (Fig.1a and Extended DataFig.1). More
than 95% of its transport is confined within the three major circum-
polar fronts™®: the Subantarctic Front (SAF), the Polar Front (PF), and
the Southern ACC Front (SACCF) from north to south®°. Modern ACC
dynamics are governed primarily by wind stress, buoyancy forcing
and mesoscale eddies, with far-reaching impacts on the carbon cycle
and global climate system, both today and in the geological past' ™.
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Fig.1| Changesin ACC flow speed along a north-south transect from the SAZ
to the AZ in the South Indian Ocean over the last glacial cycle. a, Modern
surface ACC velocity map. The oceanic fronts are as derived fromin situ
measurements and satellite altimetry'®. Core locations are marked by white
circles (this study, based on SS proxy) and diamonds (based on magnetic grain
size; Extended Data Fig. 3). b, ACC strength variations in the SAZ between the STF
and SAF (MD11-3354 and MD12-3396, eastern Kerguelen Plateau). ¢, ACC strength

variations in the Polar Frontal Zone (PFZ) between the SAF and PF (MD12-3394,
western Kerguelen Plateau). d,e, ACC strength variations in the AZ between the
PF and SACCF (PS2606-6 and PS2609-1, Conrad Rise; MD84-551, southern
Kerguelen Plateau). f, Antarctic temperature record from the Dome Fuji ice
core*. Vertical grey bars mark the glacial periods during Marine Isotope Stages 2,
4 and 6. Basemap ina from GMRT® with data from GODAS®? under a Creative
Commons license CC BY 4.0.
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Proxy-based reconstructions of ACC variability during the Pleis-
tocene Epoch remain insufficiently constrained (both temporally
and geographically), limiting our ability to resolve the main drivers
of change. Previous investigations have typically assumed zonally
integrated changes in ACC strength through time* . In the South
Pacific, sedimentary records spanning the SAF and PF signal a coher-
ent glacial-interglacial pattern, with weaker ACC strength during
glacials over the past ~350 thousand years (kyr; ref. 18). By contrast,
only minor variations or front-related shifts in ACC strength are
recorded in the Scotia Sea (southwestern Atlantic)**'. On the con-
trary, evidence for stronger glacial ACC flow was documented in
the southeastern Atlantic’® and South Indian Ocean'*. These find-
ings suggest that orbital-scale changes in ACC strength were not
zonally homogeneous.

Because both local and regional effects must be considered to
reconstruct past ACC dynamics, large-scale insights cannot be reliably
inferred from a single core location. The scarcity of well-constrained
sedimentrecords, especially inthe South Indian Ocean, further limits
robust assessment of ACC variability across the entire Southern Ocean.
To address this gap, we use a transect of six marine sediment cores
spanning all major oceanic fronts in the South Indian Ocean to recon-
struct the spatiotemporal variability in ACC strength on multiple time-
scales (Fig. 1and Extended Data Fig. 1). We use the mean grain size of
non-cohesive siliciclastic sortable silt (SS, 10-63 pm; Extended Data
Fig. 6) asaproxy of near-bottom current speed”. Modern observations
suggest that the ACC influences the full water column, with near-bottom
current velocities reflecting its deep-reaching structure®. Mesoscale
eddy variability drivesinterannual to decadal ACC variability, with eddy
kinetic energy decaying exponentially with depth and potentially
offsetting wind forcing under eddy saturation?**. On millennial to
orbital timescales, however, the SS proxy reflects a scalar,
water-column-integrated current speed, capturing the combined
effects of wind, baroclinic and eddy-driven forcing™>'s.

Coherent changes in ACC strength across fronts
Our meridional transect of sediment records spanning the past 160 kyr
reveals low and stable SS values during interglacials, in contrast to
higher and more variable values during glacials (Fig. 1). These results
suggest aspatially coherentincrease in ACC flow speed across abroad
latitudinal range under cold climate conditions. Evidence for stronger
glacial ACCis further supported by high SS values on the Agulhas Pla-
teau® as well as coarser magnetic grain sizes in the South Indian
Ocean'*?® (Extended Data Fig. 3) and enhanced sediment focusing
along the eastern Kerguelen Plateau”. Together, these lines of evidence
point to a strengthening of the ACC flow during glacial periods. Con-
versely, our records document a slow-down of the ACC across most
oceanic fronts during the last interglacial and Holocene. Relative to
the Holocene mean, glacial ACC strength was enhanced by ~13-38%in
the Subantarctic Zone (SAZ), ~26-43% in the Polar Frontal Zone and
~10-44%in the Antarctic Zone (AZ) (Fig.1).

Reconstructions of seasurface temperature indicate that oceanic
fronts may have shifted relative to the bathymetry**?’, which may have
influenced ACC dynamics on orbital timescales. A recent compos-
ite record from the northern boundary (NB) of the Agulhas Plateau
indicates that frontal shifts may have modulated glacial-interglacial
variations in ACC strength?.. By contrast, our transect records reveal
coherentamplitude changesin ACC strength across abroad latitudinal
and longitudinal range in the Indian sector of the Southern Ocean,
including sites to the west of Conrad Rise as well as to the west and east
oftheKerguelen Plateau (Fig.1and Extended Data Fig.1). These results
indicate that oceanic frontal movements, steered by the local bathym-
etry, may have exerted only a secondary control on ACC variability in
the pelagic South Indian Ocean on glacial-interglacial timescales.
These findings are consistent with results from a similar transect in
the central South Pacific'®.

Beyond the last glacial cycle, our high-resolution SS record reveals
coherent glacial-interglacial oscillations in ACC strengthin the south-
eastern Indian Ocean over the past one million years (Myr), with con-
sistently stronger glacial ACC flow relative to interglacials (Fig. 2d and
Extended Data Fig. 2). On longer timescales, the magnitude of these
fluctuationsincreased across the Mid-Brunhes Event (MBE; 430 kyr),
after which glacial-interglacial fluctuations became more pronounced
(Fig.2d). Large amplitude changes (-20-47%) occurred during the most
recent four glacial cycles, contrasting with modest variations (-12-30%)
in ACC strength between Marine Isotope Stages 14 and 22. During
post-MBE glacials, ACC strength in the Indian sector of the Southern
Ocean reached up to 140% of its Holocene mean, while interglacials
were marked by ACC flow speeds similar to the Holocene mean (Fig. 2d).
Takentogether, our records indicate persistently stronger glacial ACC
strength over the past 1 Myr across all frontal zones in the Indian sector
ofthe Southern Ocean.

Anti-phased changes in ACC strength across the
SouthernOcean

To further assess spatiotemporal variability of the ACC, we compiled
reconstructions spanning all sectors of the Southern Ocean. Our com-
pilation shows zonally asymmetric changes in ACC strength over the
past 1 Myr: it weakened in the Indian sector while it strengthened in
the Pacific sector during interglacial periods, and vice versa during
glacials'®?*° (Fig. 2). Modern observations also exhibit zonal asym-
metry in ACC transport on interannual timescales, but without sus-
tained anti-phasing across the Southern Ocean®. This contrast indicates
that the persistent anti-phased variability observedin the Pleistocene
reflects an integrated response to long-term climate forcings rather
than a transient expression of short-term processes.

Spectral analyses reveal significant variance at eccentric-
ity (-<100 kyr) and obliquity (-41kyr) bands in both the Indian
and Pacific sectors of the Southern Ocean (99% confidence
level; Extended Data Fig. 4a,b,f). By contrast, precession-related
cycles are not statistically significant (<95% confidence level;
Extended Data Fig. 4a,b,f). These results suggest that past changes in
ACC strengthwere modulated primarily by glacial-interglacial climate
dynamics and obliquity forcing.

On glacial-interglacial timescales, asymmetric ACC variability
probably reflects the combined influence of the Southern Hemisphere
Westerly Winds (SWW), sea-ice extent and meridional density gradi-
ents. Although the magnitudes of past SWW shifts remain uncertain,
reconstructions and modelling simulations are consistent with an
equatorward displacement during glacial times"*>**. The ocean fronts
shift was spatially heterogeneous, with only a minor shift (2-5°) in
the South Indian Ocean but a more substantial migration (5-10°) in
the Southeast Pacific?®?****, At the same time, winter sea ice in the
South Pacific may have extended to~51-55° Sduring the lastice age® ™’
(Fig. 2), overlapping with the modern mean ACC latitude (-58°S) and
thereby dampening wind stress on the ocean surface, weakening Pacific
ACCstrength. By contrast, sea-ice expansionin the South Indian Ocean
was confined to ~-50° S during glacial maxima®~*® (Fig. 2), leaving the
morenortherly ACC (-45°S) directly exposed to equatorward-shifted
SWW and enhanced meridional density gradients. These conditions
probably steepened isopycnal slopes and thereby intensified glacial
ACC flowin the Indian sector of the Southern Ocean.

The equatorward shift of the SWW and associated oceanic fronts
may have reduced the Agulhas leakage by limiting the transport of
warmsurface waters from the Indian Oceaninto the South Atlantic®**°.
Simultaneously, an intensified Mozambique Channel Throughflow
could have reinforced the Agulhas Return Current* (Fig. 3d,e), whose
powerful confluence probably accelerated ACC strength in the South
Indian Ocean (Fig. 3c). Reduced Indian-Atlantic water exchange may
haveled to the accumulation of warm, saline waters in the South Indian
Ocean, where the dominant thermal expansion of warming outweighed
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Fig. 2| Zonally asymmetric changes in ACC strength across the Southern
Ocean. a, Proxy-based reconstructions of the ACC variability across the Southern
Ocean based on sediment cores retrieved nearby or southwards of the NB. Blue
markers indicate aweakened ACC strength during interglacial periods; red dots
denote astrong ACC strength. Grey dots indicate no substantial changesin ACC
flow speed. The symbols used are dots for SS-based, diamonds for magnetic
grain-based, and triangles for benthic foraminifer-based reconstructions
(Supplementary Table 1). Yellow and blue lines indicate winter sea ice (WSI)
edge with 15% sea-ice concentration at modern (M-WSI) and the Last Glacial
Maximum (LGM-WSI), respectively***. b, Benthic foraminifera oxygen isotope
LRO4 stack®. ¢, Sea-salt sodium (ssNa) flux from the EPICA Dome C core, a proxy

3.0

®

[}

o
|

20 4

28

24 -

22 +

|ACC (MD02-2588, U1475)

“|Western boundary current (ODP1123)

“|ACC (PS97/093)
26 +

Age (kyr)

100 200 300 400 500 600 700 800 900 1,000

Matuyama

Mid-Pleistocene Transition

Mid-Brunhes Event

2 4 6 8 22 24 26

[+
EPICA Dome C

WSI +

d

South Indian
ACC (MD11-3354)

Southwest Indian

Southwest Pacific

Central South Pacific
ACC ( U1541

Southeast Pacific

0 100 200 300 400 500 700 800 900

Age (kyr)

600 1,000

for WSl extent®*.d, ACC strength variations at site MD11-3354 (blue) in the South
Indian. e, ACC strength variations in the Southwest Indian, the Agulhas Plateau
Composite, including sediment cores MD02-2588 and IODP U1475 (dark blue)®.

f, Western boundary current variations at site ODP1123 (purple) east of New
Zealand in the southwest Pacific*. g, ACC strength variations at IODP sites U1540
(orange), U1541 (red) in the Central South Pacific'®. h, ACC strength variations at
site PS97/093 (maroon) in the southeast Pacific’®. The dashed lines indicate the
Holocene mean level of the ACC strength. Vertical grey bars and even numbers
mark the glacial stages. Basemap in a from GMRT* with data from GODAS® under
aCreative Commons license CC BY 4.0.

Nature Geoscience


http://www.nature.com/naturegeoscience
http://creativecommons.org/licenses/by/4.0/

Article

https://doi.org/10.1038/s41561-025-01901-2

Age (kyr)
0 100 200 300 400 500 600 700 800 900

I I L I n n I I I

1,000

204 4a
22,5
23.0

23.5 4

Obliquity (°)

24.0

24.5 +

_|Dome Fuji

AT 04 (°C)

(4
ACC (MD11-3354)

(nm)

12} 1

Mozambique Channel
Throughflow (U1476)

28 |

26 X

SS (um)

24 Y I

22 4

e

Agulhas Leakage fauna
(GeoB-3603-2 and MD96-2081)
“laccumulation rates of

G. menardii (ODP1087)

40

Agulhas leakage

0] 100 200 300 400 500 600 700 800 900
Age (kyr)

1,000

Fig. 3| Mechanistic forcings on the ACC variations. a, Obliquity withinverted
yaxis.b, Temperature gradient between source and site from Dome Fujiice
core". ¢, ACC strength variations at site MD11-3354 (blue) in the South Indian.

d, Mozambique Channel Throughflow (red) variations at site IODP U1476*.

e, Agulhas Leakage proxies using Agulhas Leakage fauna (light purple)

counts from cores GeoB-3603 and MD96-2081*° and accumulation rates
(number cm™kyr™, dark purple) of Globorotalia menardii from ODP1087%.
Dashed frame indicates low-amplitude variations of obliquity and ACC strength.
Grey bars mark obliquity minima.

the opposing effect of salinity on density, enhancing the meridional
density gradients during glacial periods™*2. These warm surface waters
were probably advected by the Agulhas Return Current, consistent
with glacial surface-subsurface temperature difference exceeding
9 °C in the study region*’. Eddy-resolving simulations further sug-
gest that enhanced surface buoyancy forcing leads to an increase in
ACC transport steered by a steeper meridional density gradient and
adeeper thermocline*~*%, Accordingly, increased meridional density
gradients and intensified surface heat flux driven by sea-ice expansion

and warm-water intrusion would have intensified buoyancy forcing and
reinforced ACC flow in the South Indian Ocean during glacials (Fig. 2).
By contrast, in the South Pacific, limited subtropical warm-water input
probably produced cooler, denser watersinthe northern ACC, reducing
the meridional density gradients and weakening buoyancy forcing. This
mechanism contributed to a weaker ACC in the South Pacific during
glacial periods''5*,

Superimposed on these glacial-interglacial variabilities, zonally
asymmetric changes in ACC strength also occur on obliquity time-
scales (Extended Data Fig. 4a,b,f). Cross-spectral analyses reveal that
an antiphase relationship between obliquity and ACC strength in the
South Indian Ocean, with a stronger flow during low-obliquity inter-
vals and a weaker flow during high-obliquity intervals (Fig. 3a,c and
Extended Data Fig. 5). This antiphase pattern persisted through the
Middle and Late Pleistocene, encompassing the MBE and later part of
the Mid-Pleistocene Transition (Fig. 3c). Obliquity-paced (41 kyr) fluc-
tuationsin ACCstrengthinthe South Indianintensified after the MBE,
indicating higher sensitivity to obliquity forcing, probably mediated by
its dominant control on meridional temperature gradients and South-
ern Ocean sea-ice variability**’ (Fig. 3a,c and Extended Data Fig. 5). By
contrast, changes in ACC strengthin the South Pacific are in phase with
obliquity, with a stronger ACC flow during high-obliquity intervals and
aweaker flow during low-obliquity intervals®*° (Extended DataFig. 4).
These asymmetric Indo-Pacific responses at obliquity scale indicate
distinct mechanistic forcings and regionally differentiated impacts
on ACC variability.

To explore the mechanisms underlying the obliquity-paced ACC
variability, we analysed simulations performed with the National
Center for Atmospheric Research (NCAR) Community Earth System
Model version 1.2 (CESM1.2)*. In these experiments, orbital forcing
was drivensolely by changes in obliquity, with conditions set to either
minimum or maximum obliquity while maintaining other boundary
conditions unchanged.

Our simulations reveal positive Southern Annular Mode-like
responses, characterized by intensified SWW over the Southern Ocean
(Fig.4a).Stronger SWW during low-obliquity intervals are further sup-
ported by enhanced meridional temperature gradients asindicated by
the larger temperature contrast between the moisture source region
and the Dome Fujiice core site under low obliquity compared with high
obliquity* (Fig. 3b). Specifically, asingle jet streamintensified over the
Atlantic-Indiansector for all seasons (Fig. 4b and Extended DataFig.7),
accelerating the ACCinthe South Indian Ocean during obliquity min-
imarelative to maxima (Fig. 3¢). Concurrently, sea-ice expansionin the
South Indian Ocean was probably confined south of the ACC, thereby
enhancing meridional density gradients and surface heat flux during
low-obliquity intervals (Fig. 4c and Extended Data Figs. 8 and 9). These
conditions steepenedisopycnal slopes, deepened the thermocline and
collectively strengthened buoyancy forcing®, which amplified ACC
transportin this sector (Fig. 4d).

By contrast, the South Pacific jet streams exhibit pronounced sea-
sonal variability with astronger splitjet structure during austral winter
(Fig.4band Extended DataFig.7), consistent with earlier observations
of zonally heterogeneous changes in the SWW over the past 1 Myr
(ref. 34). During low-obliquity intervals, the strong split jet configura-
tion probably misaligned peak SWW with the main ACC trajectory.
Combined withexpandedseaice, this would have reduced the efficacy
of SWW forcing on the ocean surface, thus weakening the ACC in the
South Pacific™®. Furthermore, reduced meridional density gradients
and diminished surface heat flux during low-obliquity intervals (Fig. 4c
and Extended Data Figs. 8 and 9) would have decreased buoyancy forc-
ing* and further weakened ACC strength in the South Pacific (Fig. 4d).

Implications of Pleistocene ACC dynamics
Zonally asymmetric changes in ACC strength were probably mecha-
nistically coupled to the variability of the East and West Antarctic
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Ice Sheets (EAIS and WAIS). During the Pleistocene interglacials, a
weakened ACC in the Atlantic and Indian sectors of the Southern
Ocean would have reduced southward heat transport and advec-
tion of warm CDW onto the EAIS continental shelf, contributing to
its stability™. Conversely, a stronger ACC in the South Pacific may
have enhanced poleward heat transport and CDW advection into
the Ross Sea, potentially triggering the retreat or collapse of the
WAIS*'®%2, This asymmetric pattern is also expressed at obliquity
timescales, withintensified Pacific ACCincreasing ocean heat delivery
to the Ross Sea coinciding with WAIS retreat during high-obliquity
intervals®'®*, Taken together, these findings suggest that zonally
asymmetric changes in ACC strength, in concert with other climatic
forcings, have long modulated the EAIS and WAIS dynamics and will
certainly continue toinfluence the ice-sheet variability under future
climate changes®~**.

Asymmetric changesin ACC flow also exerted fundamental influ-
enceontheglobal oceancirculation and interbasin exchanges. Inthe

Indian sector, astronger glacial ACC coincided withintensification of
the deep western boundary current east of New Zealand, concurrent
with a weaker ACC in the South Pacific'®*® (Fig. 2d,f,g). This configu-
ration suggests enhanced northward export of glacial ACC into the
tropical Pacific, consistent with pronounced cooling of deep water
off New Zealand***” (Extended Data Fig. 10). Similarly, in the Drake
Passage region, a weaker ACC during the ice ages is consistent with
northward deflection of cold waters viathe Humboldt Currentinto the
South Pacific Gyre'®"*%, These patterns imply that reduced interba-
sin exchanges during glacial periods favoured CO, sequestration by
suppressing water masses mixing and upwelling***°. Under warmer
climatic conditions, anintensified ACCin the South Pacific promotes
interbasin exchanges and thus facilitates the release of previously
sequestered carbon to the atmosphere. Our reconstructions therefore
providerobust evidence that future ACCintensification will probably
increase interbasin connectivity and diminish the efficiency of the
Southern Ocean as a sink for anthropogenic CO,_
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Methods

Sediment cores

Our study analyses six sediment records within the oceanic front sys-
tem of the South Indian Ocean. These records are considered to reflect
primarily the regional evolution of the ACC flow through time and
for which local dynamics are deemed negligible. Four cores (MD11-
3354, MD12-3394, MD12-3396 and MD84-551) were collected during
RV Marion Dufresne MD185,189 and MD38 cruises® . The remaining
two piston cores (PS2609-1 and PS2606-6) were obtained from RV
Polarstern cruise ANT-X1/4°%,

Sites MD11-3354 (46°13.87’S, 87° 36.5 E, 3,475 mwater depth) and
MD12-3396 (47° 43.88’S,86° 41.71’ E, 3,615 m water depth) are located
inthe central South Indian (Extended DataFig.1). These twosites sit at
the east of the Kerguelen Plateau and the southern flank of the south-
eastIndianridge. At present, MD11-3354 and MD12-3396 are located in
the north of the SAF and lie in the dominant pathway of the ACC®. An
~40 m thick continuous sequence of Holocene to Middle Pleistocene
(-980 kyr) sediments was obtained at Site MD11-3354. The sediment is
characterized by carbonate-bearing to carbonate-rich diatom oozes,
diatom-rich nannofossils and calcareous oozes.

Site MD12-3394 (48° 23’ S, 64° 35’ E, 2,320 mwater depth) is located
in the west of the Kerguelen Plateau (Extended Data Fig. 1). This site
sits upstream in the ACC and west of the Kerguelen Plateau and in the
Polar Front Zone between the SAF and the PF. Site MD84-551 (55° 0.5’S,
73°16.90’E, 2,230 m water depth) is located in the west of the Fawn
Trough and southwest of the Kerguelen Plateau (Extended Data Fig. 1).
Thissite sitsin the AZ between the PF and the SACCF.

Cores PS2609-1(51°29.9’S, 41° 35.8' E, 3,113 m water depth) and
PS2606-6 (53°13.9’S, 40° 48.1'E, 2,545 m water depth) are located
in the west of Conrad Rise (Extended Data Fig. 1). These two cores lie
in the AZ of the Southern Ocean, south of the PF, and are composed
mainly of diatom ooze.

Age models

For core MD11-3354, the oxygen isotopic composition of benthic
foraminifera (C. kullenbergi) hasbeenmeasured for the first 9 mat Lab-
oratoire des Sciences du Climat et de 'Environnement (LSCE) on a GV
Isoprime mass spectrometer (Extended DataFig. 2). The 50 measure-
ments are reported versus Vienna Pee Dee Belemnite standard (VPDB)
with NBS19 (National Bureau of Standards) standard at §'*0 = -2.20%o,
with a mean external reproducibility (1s) of carbonate standards of
+0.06%0. Measured NBS-18 80 are —23.27 + 0.10%0 VPDB. The reproduc-
ibility for C. kullenbergi §'0 (1 s) is +0.11%o. The reflectance, L*, hasbeen
measured on board during the oceanographic cruise all along the core
(Extended Data Fig. 2). For the past 190 kyr, the chronology has been
established by correlating the benthic §®0 of MD11-3354 core to the
880 LR04 stack® using Analyseries software’. For the deeper part of the
core, the stratigraphy has been made by correlating L* to the 50 LR04
stack using Analyseries software’’. The chronology is independently
controlled by asharp palaeomagnetic inclination transition from posi-
tiveto negative values between 34.74 and 34.68 m, corresponding to the
Brunhes-Matuyamaboundary. These alignments converge onthe LRO4
6180 stack with uncertainties of <3 ~ 5 kyr, ensuring that orbital-scale
variability in sortable silt mean grain size remains unaffected.

We used the chronology of MD12-3394 from ref. 60, based on *C
radiocarbon dates on planktonic foraminifera and the correlation of
reconstructed sea surface temperature by TEX86L to the Antarctic
temperature stack. The age model of MD12-3396 we used was from
ref. 71, based on "*C radiocarbon dates on planktonic foraminifera.
The age model of core MD84-551 was taken from ref. 29, based on sea
surface temperature and *C radiocarbon dates. The age models of
cores PS2609-1 and PS2606-6 were adapted from ref. 72, based on
radiocarbon dates and biostratigraphic constraints. X-ray fluorescence
records and biogenic opal and magnetic susceptibility signals were
used to the refinement.

Grain-size measurements

For sediment cores from the RV Marion Dufresne cruises, the detrital
fraction of the sediments was isolated from the bulk sediment after
removal of the carbonates by 10 ml hydrochloricacid (HCI,10%) and the
organic matter by 2 mlhydrogen peroxide (H,0, 35%). The biogenicsilica
was removed with 40 mlsodium hydroxide (NaOH, 20%) under 85 °C for
a period of 5-9 hours. A few drops of sodium hexametaphosphate
(Nag[(PO,),], 2%) was used to ensure complete desegregation of particles.
For sediment cores from the RV Polarstern cruise, 1g of freeze-dried
sediment was wetsieved through a 63 pm net. After aone-week settling
time, the samples were transferred to centrifuge tubesinadesegregating
solution (Nay[(PO,),]). The organic matter, carbonate and biogenicsilica
fractions were successively dissolved inaseries of chemical treatments
using 10% H,0,, 1 M acetic acid and 20% NaOH, respectively, separated
by multiple steps of rinsing and vortexing. Remaining diatom frustules
were physically removed by density separation using sodium polytung-
stateatadensity of 2.25 g cm™. Both procedures yielded very compara-
ble results measured by laser diffraction analyser and SediGraph". The
grain-size measurements in this study were operated with a Malvern
Panalytical’s mastersizer 2000/3000 laser diffraction particle-size
analyser. The instrument precision of the Malvern 3000 for Silliker
standard sample” is less than 0.5% variation. Sortable silt mean grain
size (SS)is defined as the mean grain size of the silt fraction (10-63 um).
Sampling resolutions are summarized in Supplementary Table 2.

Spectral analyses

Spectral analyses were conducted by the Blackman-Tukey spectral
power incorporated in the Analyseries software’, Linear trends were
systematically removed and the values subsequently normalized. The
frequency scale underwent a resampling process from O to 0.1, with
an incremental step of 0.0002. We applied a Bartlett window with a
bandwidth of 0.005 for these analyses (Extended Data Fig.4). We then
filtered the SS record to extract its obliquity-paced signal (centred at
0.0244 £ 0.005 cycles per thousand years) so that its timing could be
compared directly with the obliquity forcing (Extended Data Fig. 5).

Modelling simulations

We use the simulations run with the NCAR CESM1.2°%7, This is a fully
coupled global climate model, incorporating atmospheric, oceanic,
land and sea-ice components. The NCAR CESM1.2 model offers a specific
atmosphericresolution of 1°latitude by 1° longitude with 30 vertical levels
and an oceanic resolution of 1° by 1° with 60 vertical levels. The NCAR
CESML1.2 incorporates a spatiotemporally dynamic Gent-McWilliams
eddy parameterization, providing a good first-order approximation
of the effect of ocean eddy activity™. In this study, we use two obliquity
simulations that set obliquity to the low (22.0798°) and high (24.4808°)
extremes of the past 900 kyr. All other forcings are prescribed at prein-
dustrial levels. Simulations were run for 500 years or longer. For more
details, see ref. 50. We present regional average zonal winds across the
combined Atlantic-Indiansector of the Southern Ocean (60° Wt0160° E)
and the South Pacific (160° Eto 60° W; Fig. 4b and Extended DataFig. 7).

Data availability

All relevant data in this paper are available via Zenodo (https://
doi.org/10.5281/zen0d0.16945943)°, Simulation datasets for
NCAR CESM are available at https://zenodo.org/records/1194490
(refs.50,77). Geometric velocity datasetsin Fig.1are available viaNCEP
Global Ocean Data Assimilation System (GODAS) at https://psl.noaa.
gov/data/gridded/data.godas.html. Bathymetry background data
in Extended Data Fig. 1 are available via the Global Multi-Resolution
Topography (GMRT) synthesis at https://www.gmrt.org/index.php.

Code availability
The analysis scripts generated for this study are highly customized to
the specific data infrastructure and require specific explanation for
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use. The code is, however, available upon reasonable request from
the corresponding author, who can provide the necessary support
and documentation.
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