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Zonally asymmetric changes in the Antarctic 
Circumpolar Current strength over the past 
million years
 

Shuzhuang Wu    1,2  , Alain Mazaud3, Elisabeth Michel    3, Michael P. Erb    4, 
Thomas F. Stocker5, Helen Eri Amsler    5,6,10, Perig Le Tallec-Carado1,7, 
Frank Lamy    8,9 & Samuel L. Jaccard    1,5,6

The Antarctic Circumpolar Current (ACC) plays a central role in regulating 
the global ocean circulation, climate and Antarctic Ice Sheet dynamics. Yet 
the spatiotemporal variability of the ACC during the Pleistocene remains 
poorly constrained. Here we reconstruct ACC flow-speed variation using 
a meridional transect of sediment cores from the Indian sector of the 
Southern Ocean. Our results reveal zonally asymmetric changes in ACC 
strength across the Southern Ocean on orbital timescales over the past one 
million years; the ACC intensified in the South Indian Ocean but weakened 
in the South Pacific during glacial and low-obliquity periods, with the 
opposite pattern during interglacial and high-obliquity periods. These 
anti-phased changes probably reflect an integrated response to bathymetric 
constraints, shifts in the Southern Hemisphere westerlies, sea-ice extent, 
buoyancy forcing and current confluence. Such zonally asymmetric and 
anti-phased ACC dynamics persisted during warmer-than-present intervals 
of the Pleistocene, offering a potential analogue for future anthropogenic 
warming—albeit under fundamentally different boundary conditions.
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The Antarctic Circumpolar Current (ACC) is the largest current system 
in the world oceans, yet it remains among the most poorly understood 
components of the global ocean circulation. The ACC plays an essential 
role in the climate system as it regulates interbasin exchange of physi-
cal, chemical and biological properties, thus enabling a truly global 
overturning circulation1,2. The meridional transport of water masses 
across the ACC leads to poleward heat advection and intense upwelling 
of CO2

− and nutrient-rich subsurface waters along tilted surfaces of 
constant density (isopycnals). By modulating the poleward transport 
of heat and the advection of warm Circumpolar Deep Water (CDW), the 
ACC influences the extent and stability of the Antarctic cryosphere3–6.

The ACC is a deep-reaching eastward flow steered by bathymetry 
and continental topography. Its trajectory extends southeastwards 
from the Indian Ocean into the southeast Pacific before undergoing 
a pronounced northward deflection upon exiting the Drake Passage 
into the western Atlantic basin (Fig. 1a and Extended Data Fig. 1). More 
than 95% of its transport is confined within the three major circum-
polar fronts7,8: the Subantarctic Front (SAF), the Polar Front (PF), and 
the Southern ACC Front (SACCF) from north to south9,10. Modern ACC 
dynamics are governed primarily by wind stress, buoyancy forcing 
and mesoscale eddies, with far-reaching impacts on the carbon cycle 
and global climate system, both today and in the geological past11–13.
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Fig. 1 | Changes in ACC flow speed along a north–south transect from the SAZ 
to the AZ in the South Indian Ocean over the last glacial cycle. a, Modern 
surface ACC velocity map. The oceanic fronts are as derived from in situ 
measurements and satellite altimetry10. Core locations are marked by white 
circles (this study, based on SS  proxy) and diamonds (based on magnetic grain 
size; Extended Data Fig. 3). b, ACC strength variations in the SAZ between the STF 
and SAF (MD11-3354 and MD12-3396, eastern Kerguelen Plateau). c, ACC strength 

variations in the Polar Frontal Zone (PFZ) between the SAF and PF (MD12-3394, 
western Kerguelen Plateau). d,e, ACC strength variations in the AZ between the 
PF and SACCF (PS2606-6 and PS2609-1, Conrad Rise; MD84-551, southern 
Kerguelen Plateau). f, Antarctic temperature record from the Dome Fuji ice 
core47. Vertical grey bars mark the glacial periods during Marine Isotope Stages 2, 
4 and 6. Basemap in a from GMRT61 with data from GODAS62 under a Creative 
Commons license CC BY 4.0.
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Proxy-based reconstructions of ACC variability during the Pleis-
tocene Epoch remain insufficiently constrained (both temporally 
and geographically), limiting our ability to resolve the main drivers 
of change. Previous investigations have typically assumed zonally 
integrated changes in ACC strength through time14–17. In the South 
Pacific, sedimentary records spanning the SAF and PF signal a coher-
ent glacial–interglacial pattern, with weaker ACC strength during 
glacials over the past ~350 thousand years (kyr; ref. 18). By contrast, 
only minor variations or front-related shifts in ACC strength are 
recorded in the Scotia Sea (southwestern Atlantic)15,19. On the con-
trary, evidence for stronger glacial ACC flow was documented in 
the southeastern Atlantic20 and South Indian Ocean14,21. These find-
ings suggest that orbital-scale changes in ACC strength were not 
zonally homogeneous.

Because both local and regional effects must be considered to 
reconstruct past ACC dynamics, large-scale insights cannot be reliably 
inferred from a single core location. The scarcity of well-constrained 
sediment records, especially in the South Indian Ocean, further limits 
robust assessment of ACC variability across the entire Southern Ocean. 
To address this gap, we use a transect of six marine sediment cores 
spanning all major oceanic fronts in the South Indian Ocean to recon-
struct the spatiotemporal variability in ACC strength on multiple time-
scales (Fig. 1 and Extended Data Fig. 1). We use the mean grain size of 
non-cohesive siliciclastic sortable silt (SS , 10–63 μm; Extended Data 
Fig. 6) as a proxy of near-bottom current speed22. Modern observations 
suggest that the ACC influences the full water column, with near-bottom 
current velocities reflecting its deep-reaching structure23. Mesoscale 
eddy variability drives interannual to decadal ACC variability, with eddy 
kinetic energy decaying exponentially with depth and potentially 
offsetting wind forcing under eddy saturation24,25. On millennial to 
orbital timescales, however, the SS  proxy reflects a scalar, 
water-column-integrated current speed, capturing the combined 
effects of wind, baroclinic and eddy-driven forcing15,18.

Coherent changes in ACC strength across fronts
Our meridional transect of sediment records spanning the past 160 kyr 
reveals low and stable SS  values during interglacials, in contrast to 
higher and more variable values during glacials (Fig. 1). These results 
suggest a spatially coherent increase in ACC flow speed across a broad 
latitudinal range under cold climate conditions. Evidence for stronger 
glacial ACC is further supported by high SS  values on the Agulhas Pla-
teau21 as well as coarser magnetic grain sizes in the South Indian 
Ocean14,26 (Extended Data Fig. 3) and enhanced sediment focusing 
along the eastern Kerguelen Plateau27. Together, these lines of evidence 
point to a strengthening of the ACC flow during glacial periods. Con-
versely, our records document a slow-down of the ACC across most 
oceanic fronts during the last interglacial and Holocene. Relative to 
the Holocene mean, glacial ACC strength was enhanced by ~13–38% in 
the Subantarctic Zone (SAZ), ~26–43% in the Polar Frontal Zone and 
~10–44% in the Antarctic Zone (AZ) (Fig. 1).

Reconstructions of sea surface temperature indicate that oceanic 
fronts may have shifted relative to the bathymetry28,29, which may have 
influenced ACC dynamics on orbital timescales. A recent compos-
ite record from the northern boundary (NB) of the Agulhas Plateau 
indicates that frontal shifts may have modulated glacial–interglacial 
variations in ACC strength21. By contrast, our transect records reveal 
coherent amplitude changes in ACC strength across a broad latitudinal 
and longitudinal range in the Indian sector of the Southern Ocean, 
including sites to the west of Conrad Rise as well as to the west and east 
of the Kerguelen Plateau (Fig. 1 and Extended Data Fig. 1). These results 
indicate that oceanic frontal movements, steered by the local bathym-
etry, may have exerted only a secondary control on ACC variability in 
the pelagic South Indian Ocean on glacial–interglacial timescales. 
These findings are consistent with results from a similar transect in 
the central South Pacific18.

Beyond the last glacial cycle, our high-resolution SS  record reveals 
coherent glacial–interglacial oscillations in ACC strength in the south-
eastern Indian Ocean over the past one million years (Myr), with con-
sistently stronger glacial ACC flow relative to interglacials (Fig. 2d and 
Extended Data Fig. 2). On longer timescales, the magnitude of these 
fluctuations increased across the Mid-Brunhes Event (MBE; ~430 kyr), 
after which glacial–interglacial fluctuations became more pronounced 
(Fig. 2d). Large amplitude changes (~20–47%) occurred during the most 
recent four glacial cycles, contrasting with modest variations (~12–30%) 
in ACC strength between Marine Isotope Stages 14 and 22. During 
post-MBE glacials, ACC strength in the Indian sector of the Southern 
Ocean reached up to 140% of its Holocene mean, while interglacials 
were marked by ACC flow speeds similar to the Holocene mean (Fig. 2d). 
Taken together, our records indicate persistently stronger glacial ACC 
strength over the past 1 Myr across all frontal zones in the Indian sector 
of the Southern Ocean.

Anti-phased changes in ACC strength across the 
Southern Ocean
To further assess spatiotemporal variability of the ACC, we compiled 
reconstructions spanning all sectors of the Southern Ocean. Our com-
pilation shows zonally asymmetric changes in ACC strength over the 
past 1 Myr: it weakened in the Indian sector while it strengthened in 
the Pacific sector during interglacial periods, and vice versa during 
glacials18,21,30 (Fig. 2). Modern observations also exhibit zonal asym-
metry in ACC transport on interannual timescales, but without sus-
tained anti-phasing across the Southern Ocean31. This contrast indicates 
that the persistent anti-phased variability observed in the Pleistocene 
reflects an integrated response to long-term climate forcings rather 
than a transient expression of short-term processes.

Spectral analyses reveal significant variance at eccentric-
ity (~100 kyr) and obliquity (~41 kyr) bands in both the Indian 
and Pacific sectors of the Southern Ocean (99% confidence 
level; Extended Data Fig. 4a,b,f). By contrast, precession-related 
cycles are not statistically significant (<95% confidence level; 
Extended Data Fig. 4a,b,f). These results suggest that past changes in 
ACC strength were modulated primarily by glacial–interglacial climate 
dynamics and obliquity forcing.

On glacial–interglacial timescales, asymmetric ACC variability 
probably reflects the combined influence of the Southern Hemisphere 
Westerly Winds (SWW), sea-ice extent and meridional density gradi-
ents. Although the magnitudes of past SWW shifts remain uncertain, 
reconstructions and modelling simulations are consistent with an 
equatorward displacement during glacial times11,32–34. The ocean fronts 
shift was spatially heterogeneous, with only a minor shift (2–5°) in 
the South Indian Ocean but a more substantial migration (5–10°) in 
the Southeast Pacific28,29,34,35. At the same time, winter sea ice in the 
South Pacific may have extended to ~51–55° S during the last ice age35–37 
(Fig. 2), overlapping with the modern mean ACC latitude (~58° S) and 
thereby dampening wind stress on the ocean surface, weakening Pacific 
ACC strength. By contrast, sea-ice expansion in the South Indian Ocean 
was confined to ~50° S during glacial maxima35,36 (Fig. 2), leaving the 
more northerly ACC (~45° S) directly exposed to equatorward-shifted 
SWW and enhanced meridional density gradients. These conditions 
probably steepened isopycnal slopes and thereby intensified glacial 
ACC flow in the Indian sector of the Southern Ocean.

The equatorward shift of the SWW and associated oceanic fronts 
may have reduced the Agulhas leakage by limiting the transport of 
warm surface waters from the Indian Ocean into the South Atlantic38–40. 
Simultaneously, an intensified Mozambique Channel Throughflow 
could have reinforced the Agulhas Return Current41 (Fig. 3d,e), whose 
powerful confluence probably accelerated ACC strength in the South 
Indian Ocean (Fig. 3c). Reduced Indian–Atlantic water exchange may 
have led to the accumulation of warm, saline waters in the South Indian 
Ocean, where the dominant thermal expansion of warming outweighed 
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Fig. 2 | Zonally asymmetric changes in ACC strength across the Southern 
Ocean. a, Proxy-based reconstructions of the ACC variability across the Southern 
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the opposing effect of salinity on density, enhancing the meridional 
density gradients during glacial periods11,42. These warm surface waters 
were probably advected by the Agulhas Return Current, consistent 
with glacial surface–subsurface temperature difference exceeding 
9 °C in the study region43. Eddy-resolving simulations further sug-
gest that enhanced surface buoyancy forcing leads to an increase in 
ACC transport steered by a steeper meridional density gradient and 
a deeper thermocline44–46. Accordingly, increased meridional density 
gradients and intensified surface heat flux driven by sea-ice expansion 

and warm-water intrusion would have intensified buoyancy forcing and 
reinforced ACC flow in the South Indian Ocean during glacials (Fig. 2). 
By contrast, in the South Pacific, limited subtropical warm-water input 
probably produced cooler, denser waters in the northern ACC, reducing 
the meridional density gradients and weakening buoyancy forcing. This 
mechanism contributed to a weaker ACC in the South Pacific during 
glacial periods17,18,30.

Superimposed on these glacial–interglacial variabilities, zonally 
asymmetric changes in ACC strength also occur on obliquity time-
scales (Extended Data Fig. 4a,b,f). Cross-spectral analyses reveal that 
an antiphase relationship between obliquity and ACC strength in the 
South Indian Ocean, with a stronger flow during low-obliquity inter-
vals and a weaker flow during high-obliquity intervals (Fig. 3a,c and 
Extended Data Fig. 5). This antiphase pattern persisted through the 
Middle and Late Pleistocene, encompassing the MBE and later part of 
the Mid-Pleistocene Transition (Fig. 3c). Obliquity-paced (41 kyr) fluc-
tuations in ACC strength in the South Indian intensified after the MBE, 
indicating higher sensitivity to obliquity forcing, probably mediated by 
its dominant control on meridional temperature gradients and South-
ern Ocean sea-ice variability47–49 (Fig. 3a,c and Extended Data Fig. 5). By 
contrast, changes in ACC strength in the South Pacific are in phase with 
obliquity, with a stronger ACC flow during high-obliquity intervals and 
a weaker flow during low-obliquity intervals18,30 (Extended Data Fig. 4). 
These asymmetric Indo–Pacific responses at obliquity scale indicate 
distinct mechanistic forcings and regionally differentiated impacts 
on ACC variability.

To explore the mechanisms underlying the obliquity-paced ACC 
variability, we analysed simulations performed with the National 
Center for Atmospheric Research (NCAR) Community Earth System 
Model version 1.2 (CESM1.2)50. In these experiments, orbital forcing 
was driven solely by changes in obliquity, with conditions set to either 
minimum or maximum obliquity while maintaining other boundary 
conditions unchanged.

Our simulations reveal positive Southern Annular Mode-like 
responses, characterized by intensified SWW over the Southern Ocean 
(Fig. 4a). Stronger SWW during low-obliquity intervals are further sup-
ported by enhanced meridional temperature gradients as indicated by 
the larger temperature contrast between the moisture source region 
and the Dome Fuji ice core site under low obliquity compared with high 
obliquity47 (Fig. 3b). Specifically, a single jet stream intensified over the 
Atlantic–Indian sector for all seasons (Fig. 4b and Extended Data Fig. 7), 
accelerating the ACC in the South Indian Ocean during obliquity min-
ima relative to maxima (Fig. 3c). Concurrently, sea-ice expansion in the 
South Indian Ocean was probably confined south of the ACC, thereby 
enhancing meridional density gradients and surface heat flux during 
low-obliquity intervals (Fig. 4c and Extended Data Figs. 8 and 9). These 
conditions steepened isopycnal slopes, deepened the thermocline and 
collectively strengthened buoyancy forcing45, which amplified ACC 
transport in this sector (Fig. 4d).

By contrast, the South Pacific jet streams exhibit pronounced sea-
sonal variability with a stronger split jet structure during austral winter 
(Fig. 4b and Extended Data Fig. 7), consistent with earlier observations 
of zonally heterogeneous changes in the SWW over the past 1 Myr  
(ref. 34). During low-obliquity intervals, the strong split jet configura-
tion probably misaligned peak SWW with the main ACC trajectory. 
Combined with expanded sea ice, this would have reduced the efficacy 
of SWW forcing on the ocean surface, thus weakening the ACC in the 
South Pacific11,18. Furthermore, reduced meridional density gradients 
and diminished surface heat flux during low-obliquity intervals (Fig. 4c 
and Extended Data Figs. 8 and 9) would have decreased buoyancy forc-
ing45 and further weakened ACC strength in the South Pacific (Fig. 4d).

Implications of Pleistocene ACC dynamics
Zonally asymmetric changes in ACC strength were probably mecha-
nistically coupled to the variability of the East and West Antarctic 
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Ice Sheets (EAIS and WAIS). During the Pleistocene interglacials, a 
weakened ACC in the Atlantic and Indian sectors of the Southern 
Ocean would have reduced southward heat transport and advec-
tion of warm CDW onto the EAIS continental shelf, contributing to 
its stability51. Conversely, a stronger ACC in the South Pacific may 
have enhanced poleward heat transport and CDW advection into 
the Ross Sea, potentially triggering the retreat or collapse of the 
WAIS5,18,52. This asymmetric pattern is also expressed at obliquity 
timescales, with intensified Pacific ACC increasing ocean heat delivery 
to the Ross Sea coinciding with WAIS retreat during high-obliquity 
intervals5,18,30. Taken together, these findings suggest that zonally 
asymmetric changes in ACC strength, in concert with other climatic 
forcings, have long modulated the EAIS and WAIS dynamics and will 
certainly continue to influence the ice-sheet variability under future 
climate changes53,54.

Asymmetric changes in ACC flow also exerted fundamental influ-
ence on the global ocean circulation and interbasin exchanges. In the 

Indian sector, a stronger glacial ACC coincided with intensification of 
the deep western boundary current east of New Zealand, concurrent 
with a weaker ACC in the South Pacific18,55 (Fig. 2d,f,g). This configu-
ration suggests enhanced northward export of glacial ACC into the 
tropical Pacific, consistent with pronounced cooling of deep water 
off New Zealand56,57 (Extended Data Fig. 10). Similarly, in the Drake 
Passage region, a weaker ACC during the ice ages is consistent with 
northward deflection of cold waters via the Humboldt Current into the 
South Pacific Gyre16,17,30,58. These patterns imply that reduced interba-
sin exchanges during glacial periods favoured CO2 sequestration by 
suppressing water masses mixing and upwelling59,60. Under warmer 
climatic conditions, an intensified ACC in the South Pacific promotes 
interbasin exchanges and thus facilitates the release of previously 
sequestered carbon to the atmosphere. Our reconstructions therefore 
provide robust evidence that future ACC intensification will probably 
increase interbasin connectivity and diminish the efficiency of the 
Southern Ocean as a sink for anthropogenic CO2.
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pressure in the mid-latitudes. b, Zonal wind strength at 850 hPa during austral 
winter in the Atlantic–Indian sector (red and orange) and Pacific sector (blue 
and cyan) during minimum and maximum obliquity (obl_min and obl_max), 

respectively. Vertical dashed lines mark the peaks of the jet stream. c, Integrated 
density anomalies. Basemaps in a and c based on simulation datasets from NCAR 
CESM50. SB, Southern boundary. These boundaries are defined from satellite 
altimetry and in situ observations10. d, ACC transport (42° S–58° S) anomalies 
across the Atlantic–Indian sector (0°–160° E) and Pacific sector (160° E–60° W) 
of the Southern Ocean. Panels a and c adapted from ref. 49 under a Creative 
Commons license CC BY 4.0.
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Methods
Sediment cores
Our study analyses six sediment records within the oceanic front sys-
tem of the South Indian Ocean. These records are considered to reflect 
primarily the regional evolution of the ACC flow through time and 
for which local dynamics are deemed negligible. Four cores (MD11-
3354, MD12-3394, MD12-3396 and MD84-551) were collected during 
RV Marion Dufresne MD185, 189 and MD38 cruises65–67. The remaining 
two piston cores (PS2609-1 and PS2606-6) were obtained from RV 
Polarstern cruise ANT-XI/468.

Sites MD11-3354 (46° 13.87′ S, 87° 36.5′ E, 3,475 m water depth) and 
MD12-3396 (47° 43.88′ S, 86° 41.71′ E, 3,615 m water depth) are located 
in the central South Indian (Extended Data Fig. 1). These two sites sit at 
the east of the Kerguelen Plateau and the southern flank of the south-
east Indian ridge. At present, MD11-3354 and MD12-3396 are located in 
the north of the SAF and lie in the dominant pathway of the ACC69. An 
~40 m thick continuous sequence of Holocene to Middle Pleistocene 
(~980 kyr) sediments was obtained at Site MD11-3354. The sediment is 
characterized by carbonate-bearing to carbonate-rich diatom oozes, 
diatom-rich nannofossils and calcareous oozes.

Site MD12-3394 (48° 23’ S, 64° 35’ E, 2,320 m water depth) is located 
in the west of the Kerguelen Plateau (Extended Data Fig. 1). This site 
sits upstream in the ACC and west of the Kerguelen Plateau and in the 
Polar Front Zone between the SAF and the PF. Site MD84-551 (55° 0.5′ S, 
73° 16.90′ E, 2,230 m water depth) is located in the west of the Fawn 
Trough and southwest of the Kerguelen Plateau (Extended Data Fig. 1). 
This site sits in the AZ between the PF and the SACCF.

Cores PS2609-1 (51° 29.9’ S, 41° 35.8’ E, 3,113 m water depth) and 
PS2606-6 (53° 13.9’ S, 40° 48.1’ E, 2,545 m water depth) are located 
in the west of Conrad Rise (Extended Data Fig. 1). These two cores lie 
in the AZ of the Southern Ocean, south of the PF, and are composed 
mainly of diatom ooze.

Age models
For core MD11-3354, the oxygen isotopic composition of benthic 
foraminifera (C. kullenbergi) has been measured for the first 9 m at Lab-
oratoire des Sciences du Climat et de l’Environnement (LSCE) on a GV 
Isoprime mass spectrometer (Extended Data Fig. 2). The δ18O measure-
ments are reported versus Vienna Pee Dee Belemnite standard (VPDB) 
with NBS19 (National Bureau of Standards) standard at δ18O = –2.20‰, 
with a mean external reproducibility (1 s) of carbonate standards of 
±0.06‰. Measured NBS-18 δ18O are –23.27 ± 0.10‰ VPDB. The reproduc-
ibility for C. kullenbergi δ18O (1 s) is ±0.11‰. The reflectance, L*, has been 
measured on board during the oceanographic cruise all along the core 
(Extended Data Fig. 2). For the past 190 kyr, the chronology has been 
established by correlating the benthic δ18O of MD11-3354 core to the 
δ18O LR04 stack63 using Analyseries software70. For the deeper part of the 
core, the stratigraphy has been made by correlating L* to the δ18O LR04 
stack using Analyseries software70. The chronology is independently 
controlled by a sharp palaeomagnetic inclination transition from posi-
tive to negative values between 34.74 and 34.68 m, corresponding to the 
Brunhes–Matuyama boundary. These alignments converge on the LR04 
δ¹⁸O stack with uncertainties of <3 ~ 5 kyr, ensuring that orbital-scale 
variability in sortable silt mean grain size remains unaffected.

We used the chronology of MD12-3394 from ref. 60, based on 14C 
radiocarbon dates on planktonic foraminifera and the correlation of 
reconstructed sea surface temperature by TEX86L to the Antarctic 
temperature stack. The age model of MD12-3396 we used was from 
ref. 71, based on 14C radiocarbon dates on planktonic foraminifera. 
The age model of core MD84-551 was taken from ref. 29, based on sea 
surface temperature and 14C radiocarbon dates. The age models of 
cores PS2609-1 and PS2606-6 were adapted from ref. 72, based on 
radiocarbon dates and biostratigraphic constraints. X-ray fluorescence 
records and biogenic opal and magnetic susceptibility signals were 
used to the refinement.

Grain-size measurements
For sediment cores from the RV Marion Dufresne cruises, the detrital 
fraction of the sediments was isolated from the bulk sediment after 
removal of the carbonates by 10 ml hydrochloric acid (HCl, 10%) and the 
organic matter by 2 ml hydrogen peroxide (H2O2, 35%). The biogenic silica 
was removed with 40 ml sodium hydroxide (NaOH, 20%) under 85 °C for 
a period of 5–9 hours. A few drops of sodium hexametaphosphate 
(Na6[(PO3)6], 2%) was used to ensure complete desegregation of particles. 
For sediment cores from the RV Polarstern cruise, 1 g of freeze-dried 
sediment was wet sieved through a 63 μm net. After a one-week settling 
time, the samples were transferred to centrifuge tubes in a desegregating 
solution (Na6[(PO3)6]). The organic matter, carbonate and biogenic silica 
fractions were successively dissolved in a series of chemical treatments 
using 10% H2O2, 1 M acetic acid and 20% NaOH, respectively, separated 
by multiple steps of rinsing and vortexing. Remaining diatom frustules 
were physically removed by density separation using sodium polytung-
state at a density of 2.25 g cm−3. Both procedures yielded very compara-
ble results measured by laser diffraction analyser and SediGraph17. The 
grain-size measurements in this study were operated with a Malvern 
Panalytical’s mastersizer 2000/3000 laser diffraction particle-size 
analyser. The instrument precision of the Malvern 3000 for Silliker 
standard sample73 is less than 0.5% variation. Sortable silt mean grain 
size (SS) is defined as the mean grain size of the silt fraction (10–63 μm). 
Sampling resolutions are summarized in Supplementary Table 2.

Spectral analyses
Spectral analyses were conducted by the Blackman–Tukey spectral 
power incorporated in the Analyseries software70. Linear trends were 
systematically removed and the values subsequently normalized. The 
frequency scale underwent a resampling process from 0 to 0.1, with 
an incremental step of 0.0002. We applied a Bartlett window with a 
bandwidth of 0.005 for these analyses (Extended Data Fig. 4). We then 
filtered the SS  record to extract its obliquity-paced signal (centred at 
0.0244 ± 0.005 cycles per thousand years) so that its timing could be 
compared directly with the obliquity forcing (Extended Data Fig. 5).

Modelling simulations
We use the simulations run with the NCAR CESM1.250,74. This is a fully 
coupled global climate model, incorporating atmospheric, oceanic, 
land and sea-ice components. The NCAR CESM1.2 model offers a specific 
atmospheric resolution of 1° latitude by 1° longitude with 30 vertical levels 
and an oceanic resolution of 1° by 1° with 60 vertical levels. The NCAR 
CESM1.2 incorporates a spatiotemporally dynamic Gent–McWilliams 
eddy parameterization, providing a good first-order approximation 
of the effect of ocean eddy activity75. In this study, we use two obliquity 
simulations that set obliquity to the low (22.0798°) and high (24.4808°) 
extremes of the past 900 kyr. All other forcings are prescribed at prein-
dustrial levels. Simulations were run for 500 years or longer. For more 
details, see ref. 50. We present regional average zonal winds across the 
combined Atlantic–Indian sector of the Southern Ocean (60° W to 160° E) 
and the South Pacific (160° E to 60° W; Fig. 4b and Extended Data Fig. 7).

Data availability
All relevant data in this paper are available via Zenodo (https://
doi.org/10.5281/zenodo.16945943)76. Simulation datasets for 
NCAR CESM are available at https://zenodo.org/records/1194490  
(refs. 50,77). Geometric velocity datasets in Fig. 1 are available via NCEP 
Global Ocean Data Assimilation System (GODAS) at https://psl.noaa.
gov/data/gridded/data.godas.html. Bathymetry background data 
in Extended Data Fig. 1 are available via the Global Multi-Resolution 
Topography (GMRT) synthesis at https://www.gmrt.org/index.php.

Code availability
The analysis scripts generated for this study are highly customized to 
the specific data infrastructure and require specific explanation for 

http://www.nature.com/naturegeoscience
https://doi.org/10.5281/zenodo.16945943
https://doi.org/10.5281/zenodo.16945943
https://zenodo.org/records/1194490
http://psl.noaa.gov/data/gridded/data.godas.html
http://psl.noaa.gov/data/gridded/data.godas.html
https://www.gmrt.org/index.php


Nature Geoscience

Article https://doi.org/10.1038/s41561-025-01901-2

use. The code is, however, available upon reasonable request from 
the corresponding author, who can provide the necessary support 
and documentation.
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Extended Data Fig. 1 | Bathymetric map of the South Indian Ocean. The oceanic 
fronts (red lines) are indicated after Park et al10. NB, Northern Boundary; SAF, 
Subantarctic Front; PF, Polar Front; SACCF, Southern ACC Front; SB, Southern 
Boundary. The symbols used are dots for SS-based, diamonds for magnetic grain-
based, and triangles for benthic foraminifer-based reconstructions78,80–83 (see 

Supplementary Table 1). SWR, Southwest Indian Ridge; SEIR, Southeast Indian 
Ridge; CR, Conrad Rise; KP, Kerguelen Plateau;EPR, East Pacific Rise; PAR,Pacific 
Antarctic Ridge; DP, Drake Passage. Bathymetry map from GMRT62 under a 
Creative Commons license CC BY 4.0.

http://www.nature.com/naturegeoscience
http://creativecommons.org/licenses/by/4.0/


Nature Geoscience

Article https://doi.org/10.1038/s41561-025-01901-2

Extended Data Fig. 2 | Stratigraphy for MD11-3354. a, Benthic δ18O record from MD11-3354 (blue) tuned to the LR04 δ18O stack63 (black). b, Reflectance L* record (red) 
tuned to the LR04 δ18O stack63 (black). Triangles mark the tuning points. c, Inclination record from MD11-3354. d, Sedimentation-rate record from MD11-3354.
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Extended Data Fig. 3 | Reconstructions of ACC strength variations based 
on magnetic grain size from the SAZ to PFZ in the Indian sector over the 
last glacial cycle. a, ACC strength variations in the SAZ (MD00-2375G, eastern 
Kerguelen Plateau)14. b, ACC strength variations in the PFZ (SK200/22a, Crozet 

Plateau)78. c, ACC strength variations in the PFZ (MD11-3353, Kerguelen Plateau)26. 
d, Antarctic temperature record from the Dome Fuji ice core47. Increases in ARM/κ 
and SIRM/χ indicate smaller grain size and weaker ACC strength14,26,78.
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Extended Data Fig. 4 | Comparisons of spectral and phase pattern.  
a, b Spectral analysis of SS  records with the corresponding phase and coherency 
spectrum from sites MD11-3354 (blue) in the South Indian Ocean and PS97/093 
(red) in the southeast Pacific30. It shows high coherency at eccentricity and 
obliquity bands c, with anti-phase variations between of MD11-3354 and 
PS97/093 (d). e, f Spectral analysis of SS  records with the corresponding phase 
and coherency spectrum from sites MD11-3354 (blue) in the South Indian Ocean 
and IODP U1541 (purple) in the central South Pacific18. It shows high coherency at 

eccentricity and obliquity bands (g) with anti-phase variations between of 
MD11-3354 and IODP U1541 (h). (i, j) Spectral analysis of SS  records with the 
corresponding phase and coherency spectrum from sites MD11-3354 (blue) and 
ODP1123 at east of New Zealand55 (blue purple). It shows high coherency at 
eccentricity and obliquity bands (k) with in-phase variations between of 
MD11-3354 and ODP1123 (l). In all spectral power plots, the confident levels are 
99% (red), 95% (pink) and 90% (orange). Grey bars indicate the eccentricity (Ecc) 
and obliquity (Obl) cycles.
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Extended Data Fig. 5 | Obliquity components of climate records. a, Obliquity with inverted y-axis. b, The obliquity component of temperature gradient from Dome 
Fuji ice core47. c, The obliquity component of ACC strength in the Indian sector of the Southern Ocean. d, The obliquity component of MCT strength41. Dashed frame 
indicates low amplitude variations of obliquity and ACC strength.
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Extended Data Fig. 6 | Comparisons of SS  and SS  percentage in this study. a, Site MD11-3354. b, Site MD12-3396. c, Site MD12-3394. d, Site MD84-551. e, Site PS2606-6. 
f, Site PS2609-1. All records show a positive correlation, indicating that the SS  is predominantly current-controlled79.
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Extended Data Fig. 7 | Simulated seasonal changes in zonal wind strength across the Southern Ocean during minimum obliquity relative to maximum obliquity. 
a, Austral summer (December to February). b, Austral autumn (March to May). c, Austral winter ( June to August). d, Austral spring (September to November).
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Extended Data Fig. 8 | Simulated results by obliquity minimum relative to 
obliquity maximum. a, Sea surface temperature (SST) anomalies. b, Winter 
sea ice anomalies. c, Surface heat flux (SHF) anomalies. d, Integrated salinity 
anomalies. NB, Northern Boundary. SB, Southern Boundary. The oceanic 

boundaries (purple lines) are indicated after Park et al.10. Basemaps were based 
on simulation datasets from NCAR CESM50. Figure adapted from ref. 49 under a 
Creative Commons license CC BY 4.0.
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Extended Data Fig. 9 | Southern Ocean density anomalies during obliquity minimum relative to maximum. a, Pacific sector; b, Atlantic sector; c, Indian sector.  
A decrease in the meridional density gradient within the South Pacific, contrasting with an increase across the Atlantic-Indian sectors of the Southern Ocean.
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Extended Data Fig. 10 | Evidence of northward transport of the ACC during 
glacial periods. a, Benthic foraminifera oxygen isotope stack63. b, Bottom water 
temperature (BWT) variations at site ODP1123 east of New Zealand56. c, Deep 

western boundary current (DWBC) variations at site ODP112355. d. Sea surface 
temperature variations at site IODP U1542 in the Southeast Pacific58. e, Cape Horn 
Current (CHC) strength variations at site IODP U154258.
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