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Record sea surface temperature jump in 
2023–2024 unlikely but not unexpected

Jens Terhaar1,2 ✉, Friedrich A. Burger1,2, Linus Vogt3, Thomas L. Frölicher1,2 & Thomas F. Stocker1,2

Global ocean surface temperatures were at record levels for more than a year  
from April 2023 onwards, exceeding the previous record in 2015–2016 by 0.25 °C  
on average between April 2023 and March 20241. The nearly global extent and 
unprecedented intensity of this event prompted questions about how exceptional  
it was and whether climate models can represent such record-shattering jumps  
in surface ocean temperatures2. Here we construct observation-based synthetic 
time series to show that a jump in global sea surface temperatures that breaks the 
previous record by at least 0.25 °C is a 1-in-512-year event under the current long-
term warming trend (1-in-205-year to 1-in-1,185-year event; 95% confidence interval). 
Without a global warming trend, such an event would have been practically impossible. 
Using 270 simulations from a wide range of fully coupled climate models, we show 
that these models successfully simulate such record-shattering jumps in global 
ocean surface temperatures, underpinning the models’ usefulness in understanding 
the characteristics, drivers and consequences of such events. These model simulations 
suggest that the record-shattering jump in surface ocean temperatures in 2023–2024 
was an extreme event after which surface ocean temperatures are expected to revert 
to the expected long-term warming trend.

Since April 2023, global ocean (60° S–60° N; excluding cloudy and 
largely sea-ice covered polar regions owing to sparse data) surface 
temperatures have exceeded previous sea surface temperature (SST) 
records by a large margin (Fig. 1a). This record-breaking SST event 
is not only a global record-breaking event but also unprecedented 
in the magnitude by which it surpassed previous records. Over sum-
mer 2023, the margin by which SSTs exceeded the previous record 
that occurred in 2015–2016 increased to 0.2–0.3 °C (Fig. 1a). Overall, 
the annually averaged SSTs from April 2023 to March 2024 based on 
NOAA Optimum Interpolation (OI) Sea Surface Temperature (SST) 
V2.1 (NOAA OISST V2.1)1 were 0.25 °C larger than the previous record 
SSTs when averaged over the same months of the year. This global 
record-shattering jump in SSTs (‘record-shattering jump’ is here defined 
as a record-breaking jump in annual (April to March) and globally 
averaged SSTs that exceeds previous records by at least 0.25 °C, as 
observed in 2023–2024) coincides in time with record atmospheric 
surface temperatures in late 20233–6 and early 20247,8. Moreover, the 
record-shattering jump in SSTs is believed to be responsible for the 
global atmospheric record surface warming5,6, although surface tem-
perature extremes over land and ocean are not necessarily related9,10. 
The record-shattering jump in globally averaged SSTs has been a subject 
of much attention in the scientific community11,12 and the general pub-
lic13,14. It has, for example, recently been argued that part of the jump 
was caused by low albedo owing to reduced low-cloud cover15. Since 
mid-July 2024, globally averaged SSTs are no longer record-breaking 
but still remain warmer than in any year before the jump in 2023  
(Fig. 1a).

Large increases in SST, which locally manifest as marine heatwaves, 
can affect regional climate patterns16 and sea–air carbon dioxide 
fluxes17, and substantially impact the marine environment18. For exam-
ple, marine heatwaves in the Indian Ocean can influence monsoon wind 
and precipitation over India, affecting water and food security19. They 
can also interact with and intensify tropical cyclones20, increasing their 
destructiveness. The biological impacts of marine heatwaves include 
mass die-offs of invertebrates, fish, birds and marine mammals21,22, 
coral bleaching23, declines in key species, and complete ecosystem 
restructuring24,25, all of which have socioeconomic consequences26,27.

Although record-breaking jumps in global SSTs occur when a 
long-term warming trend is superimposed onto an exceptionally warm 
year owing to climate variability28, the record-shattering jump in glob-
ally averaged SSTs from April 2023 to March 2024 has broken previous 
records by a substantially larger margin than previous record-breaking 
jumps in SSTs. The three largest margins by which globally averaged 
SSTs previously broke records were 0.16 °C in 2015–216, 0.14 °C in 
1997–1998 and 0.09 °C in 2009–2010. Owing to the unprecedented 
margin in the record-breaking jump in SSTs in 2023–2024, this jump 
in SSTs came as a surprise for the public and the scientific community. 
This event has raised questions about the likelihood of such a jump 
and whether jumps of this size are simulated in climate models2. The 
failure of state-of-the-art climate models to reproduce events such 
as the jump in SSTs in 2023–2024 would consequently question the 
ability of these models to assess future risks associated with anthropo-
genic climate change29. However, if climate models are able to simulate 
such record-shattering jumps in globally averaged SSTs, they would 
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deliver analogues to study the evolution of the ongoing event and 
to see whether temperatures decrease again or remain high. In addi-
tion, the climate models could be used to identify the drivers of such 
record-shattering jumps in SSTs, and their consequences for other 
parts of the climate system and the marine ecosystem.

Return period of record-shattering SST jumps
Here we use observation-based monthly mean SST estimates from 
various data and reanalysis products (NOAA OISST V2.11, ERA530, The 
Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST)31 
and Extended Reconstructed Sea Surface Temperature (ERSST)32) to 
quantify the likelihood of the global SST jump in 2023–2024 and assess 
whether it could have occurred without anthropogenic warming. Owing 
to the relatively short observational SST record, return periods of rare 
extreme events, such as the record-shattering jump in globally averaged 
SSTs observed in 2023–2024, cannot be directly inferred from that 
observational record. To quantify the likelihood of a record-shattering 
jump in globally averaged SSTs that exceeded the last record by at 
least 0.25 °C, as in 2023–2024, we constructed synthetic time series 
of 100 million years using an autoregressive model of order one (AR(1)) 
using observation-based estimates of the trend, autocorrelation and 
standard deviation of annual globally averaged SSTs with respective 
uncertainties (see Methods for a detailed description of how these 
values and their uncertainties are quantified).

Based on these synthetic observation-based time series, the record- 
shattering global jump in 2023–2024 was a 1-in-512-year event (mean 
estimate) under the current long-term warming trend (1-in-205-year to 
1-in-1,185-year event; 95% confidence interval based on uncertainties of 

the observation-based trend, standard deviation and autocorrelation 
estimates; Fig. 2 and Methods). This result is qualitatively insensitive to 
the choice of the autoregressive model, to the methods that are used 
to estimate the trend, the autocorrelation and the standard deviation 
of annual globally averaged SSTs, as well as to the observation-based 
SST dataset that is used for the analysis (Methods). Without underly-
ing warming, a record-shattering jump as observed in 2023–2024 is 
practically impossible. We found indeed no record-shattering jumps 
in our synthetic time series without a long-term warming trend, irre-
spective of the variability or autocorrelation characteristics (Extended  
Data Fig. 2).

Record-shattering SST jumps in climate models
Having quantified an observation-based estimate of the return period 
of such record-shattering jumps in globally averaged SSTs, we show 
that such jumps—exceeding the previous record by at least 0.25 °C—
were simulated 11 times across 270 simulations from 35 different 
state-of-the-art climate models (Methods) between 2000 and 2040. 
These four decades encompass the time when the record-shattering 
SST jump occurred in the real world (Fig. 3a and Extended Data 
Fig. 1). As the 270 climate model simulations here comprise a total 
of 11,070 years, the likelihood for a single year to experience a 
record-shattering global jump in SSTs as observed in 2023–2024 in 
the climate models is 0.1%, making the record-shattering SST event 
in 2023–2024 a 1-in-1,006-year event in climate models (1-in-563-year 
to 1-in-2,016-year event; 95% confidence interval using the Pearson–
Clopper confidence interval for binomial experiments; Methods 
and Fig. 3b). Although the return period estimate based on climate 
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Fig. 1 | Record-shattering jumps in global SSTs as observed in 2023–2024 also 
occur in climate model simulations. a–d, Monthly mean SST anomalies for 
the largest record-shattering annual (April to March) global (60° S–60° N) SST 
events before 2024 for observations from NOAA OISST V2.11 (a), and climate 
model simulations from one CMIP6 simulation (CanESM539,40 r15i1p1f1; b),  
from one simulation of the GFDL-ESM2M41 large ensemble (LE)42 (ensemble 
member 27; c) and from one simulation of the CESM243 large ensemble44 
(ensemble member LE2-1301.019; d). The years of the onset of the respective 

events are shown as blue lines, the years of the subsequent decline are shown as 
orange lines, and the 30 preceding years are shown as grey lines with their mean 
as a black dotted line. For each of the three climate model groups (Coupled Model 
Intercomparison Project Phase 6 (CMIP6), GFDL-ESM2M-LE and CESM2-LE), the 
largest record-breaking global jump in SSTs before 2023 is shown. Monthly SST 
anomalies for all simulated record-shattering global jumps in SSTs between 
2000 and 2040 that are larger in magnitude than the observed global jump in 
SSTs in 2023 and 2024 are shown in Extended Data Fig. 1.
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models is approximately twice as large as the observation-based 
estimate of the return period, it lies within the confidence interval of 
the observation-based estimate and the confidence intervals of both 
estimates largely overlap. The difference in the return period might 
be owing to lower warming trends and higher autocorrelations in the 
models compared with the observation-based estimates (Methods). 
However, the observation-based estimate of the return period is also 
highly uncertain as it is difficult to estimate the real trend, variability 
and autocorrelation over a short time series that is strongly influenced 
by natural climate variability so that the return period of such events 
might well be 1,006 years as estimated from the models. Overall, the 
probability of a simulated record-breaking jump in SSTs with a certain 
magnitude decreases if that magnitude increases. For example, jumps 
that exceed 0.2 °C are 6–7 times more likely than jumps exceeding 

0.25 °C, whereas jumps that exceed the previous record by a larger 
magnitude than 0.25 °C become less likely but are not impossible in 
climate model simulations (Fig. 3b). Under high-emissions scenarios, 
the probability of record-shattering events increases (Extended Data 
Fig. 3a), in line with higher rates of warming. However, under strong 
mitigation scenarios, the warming trend reduces in the future and 
there are no simulated record-shattering events simulated across the 
model ensemble (Extended Data Fig. 3b).

Record-shattering global jumps in SSTs (>0.25 °C) are simulated by 
different models with a wide range of trends, autocorrelations and vari-
abilities. It is thus not only the so-called hot models33 with high transient 
climate responses, such as IPSL-CM6A-LR, CESM2 and CanESM5, that 
simulate such events. Instead, models with a small transient climate 
response and warming trend, such as GFDL-ESM2M and MIROC6, also 
produce these record-shattering jumps as variability and autocorre-
lation also affect the return period, and not just the long-term trend 
(Extended Data Fig. 2). Overall, no model stands out with an unusually 
small or high number of extreme events per number of simulated years 
(Methods).

Pattern of record-shattering SST jumps
The record-shattering global SST anomalies observed in 2023–2024 
(data from NOAA OISST V2.11) were especially pronounced in the North 
Atlantic, Eastern Tropical Pacific and North Pacific (Fig. 4a). Although all 
three regions (see exact definitions in Methods) show high regional SST 
anomalies compared with the previous 30 years, only the North Atlantic 
SST anomalies have broken previous records. The North Atlantic SSTs 
in 2023–2024 surpassed the previous record by 0.42 °C, which was 
0.17 °C more than the margin by which the global SSTs had surpassed 
the previous record in the same year. In the North Pacific, SST anomalies 
were only once larger than in 2023–2024 and in the Eastern Tropical 
Pacific, SST anomalies were only twice larger than in 2023–2024. In 
climate models, all 11 jumps in globally averaged SSTs that are as large 
as that in 2023–2024 coincide with an El Niño event, that is, a positive 
El Niño–Southern Oscillation phase of at least 1.5 °C in the El Niño 3.4 
index (Fig. 4b–d). As the three most recently observed record-breaking 
jumps that broke the respective previous record in globally aver-
aged SSTs by unprecedented margins (2023–2024, 2015–2016 and  
1997–1998) also occurred during a positive El Niño phase (1.3 °C, 1.9 °C 
and 1.7 °C respectively), a strong El Niño appears to be a necessary, but 
not sufficient, condition for such an event.
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Fig. 3 | The return period of record-breaking annual SST events increases 
with the size of the margin by which they exceed previous records. a, Record- 
breaking annual (April–March) global (60° S–60° N) SST events and the margin 
(ΔSST) by which they exceeded previous records based on 190 climate model 
simulations from CMIP6 (blue dots) (Extended Data Table 1), 30 members of  
the GFDL-ESM2M-LE41,42 (orange dots), 50 members from the CESM2-LE43,44 
(green dots), and SST observation-based estimates from NOAA OISST V2.11 
(black crosses). b, Return periods of record-breaking events of a given magnitude 
(binned in regular bins of 0.025 °C) calculated based on their occurrence in a 

for the ensembles of CMIP6 (blue), GFDL-ESM2M (orange) and CESM2 (green). 
The return periods indicate the return period for a record-breaking event  
of that magnitude and not of an event that is equal or larger than the magnitude 
of that bin. Return periods for ΔSSTs of more than 0.275 °C are not simulated  
by the large ensembles of GFDL-ESM2M and CESM2, possibly owing to their 
relatively small sample size (1,230 years between 2000 and 2040 for the GFDL- 
ESM2M-LE and 2,050 years for the CESM2-LE). Observed record-breaking events, 
corresponding to the crosses in a, are shown as dotted black vertical lines.
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For the 11 simulated global record-shattering jumps in SSTs, 
record-breaking regional SST anomalies occur 10 times in the Eastern 
Tropical Pacific, 7 times in the North Atlantic and 5 times in the North 
Pacific. The largest margin by which North Atlantic SSTs records are 
broken during the 11 global record-shattering jumps in SSTs in climate 
models is 0.33 °C, a margin that is 0.09 °C smaller than the extraordi-
narily large observed margin in 2023–2024. This observed jump in 
the North Atlantic was probably caused by a high level of surface solar 
radiation, weak winds, tropical air34 and changes in low - cloud cover15. 
Such large jumps in North Atlantic SSTs, as observed in 2023–2024, are 
identified five times in the 11,070 model years simulated between 2000 
and 2040. However, coincident global and regional record-shattering 
jumps at the observed magnitude of 2023–2024 are not found in the 
11,070 model years between 2000 and 2040. An even larger model 
ensemble would be necessary to see whether climate models can simu-
late the combination of a global record-shattering jump in SSTs and a 
record-shattering jump in SSTs in the North Atlantic in 2023 and 2024. 
A sudden drop in aerosols from shipping emissions, which has not 
been prescribed as input to the climate models in the CMIP scenarios, 
might have contributed to the extremely large observed North Atlantic 
temperature anomaly35.

SST evolution after record-shattering jumps
We now use these model simulations to understand how SST anoma-
lies typically develop over the years that follow a record-shattering 
jump in SSTs. In all simulations, the global SST anomalies stop being 
record-breaking, that is, they fall below previously measured tempera-
tures in the same month, between May and October of the second year 
of the record SST anomalies, that is, 13 to 18 months after the beginning 
of the jump in globally averaged SSTs. In the real world, global SSTs 
dropped below record levels in July 2024 (Fig. 1a), 15 months after the 
beginning of the record-shattering jump in globally averaged SSTs. 
Furthermore, SST anomalies in climate models return to their level 

before the jump (grey lines in Fig. 1) between September in the year 
after the jump in SSTs started and September in the following year in 
8 of the 11 simulated jumps (Extended Data Fig. 4). However, in 3 of 
the 11 events, the SST anomalies do not return to pre-jump levels over 
the next 10 years (Extended Data Fig. 4b–d) and beyond (Extended 
Data Fig. 5), so that the global SSTs have indeed permanently risen to 
a higher level in these simulations. However, even in these 3 cases, SSTs 
revert back to the expected long-term warming trend over the course 
of at most 8 years and do not shift to a new higher or steeper warming 
trajectory (Extended Data Fig. 5). The three cases occur in CanESM5 
and IPSL-CM6A-LR, two climate models with extremely high transient 
climate responses36 outside the recently assessed range37 and with 
atmospheric warming rates from 1981 to 2014 that substantially exceed 
the observed rate36. As atmospheric warming and sea surface warming 
are generally strongly linked38, the overly high SST warming rates facili-
tate continuing high levels of SST anomalies after the record-shattering 
jump in SSTs. Given that a return to pre-jump temperatures fails to occur 
in only these ‘hot models’33, it is likely that the global SST anomalies in 
the real world will return to temperatures more typical of those before 
the record-shattering jump by September 2025. If, however, observed 
SSTs do not return to pre-jump levels by September 2025, we expect 
SSTs to revert back towards the long-term trend within a few years 
(Extended Data Fig. 5). If this were not the case, the ongoing extreme 
event would not be consistent with climate model simulations.

Outlook on warming rate and climate models
 Based on long synthetic time series with temporal characteristics that 
match the available observations, we estimated that the observed 
record-shattering jump in globally averaged SSTs in 2023–2024 was 
a 1-in-a-512-year extreme event (1-in-205-year to 1-in-1,185-year event; 
95% confidence interval) based on current warming rates. Such a jump 
would not have been possible without anthropogenic warming. We 
have further shown that climate models indeed simulate such global 
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Fig. 4 | Anomalies of record-shattering jumps in SSTs in observations  
and climate models are mostly localized in the equatorial Pacific, North 
Pacific and North Atlantic. a–d, SST anomalies for record-shattering (record- 
breaking events of largest magnitude before 2024) annual (April–March) global 
(60° S–60° N) SST events for observations from NOAA OISST V2.11 (a), and  
the three climate model groups in Fig. 1: CMIP6 (CanESM539,40 r15i1p1f1; b),  

the GFDL-ESM2M-LE41,42 (ensemble member 27; c) and the CESM2-LE43,44 
(ensemble member LE2-1301.019; d). The anomalies are calculated based on 
the average SSTs of the 30 years preceding the respective record-shattering 
event at the years corresponding to those presented in Fig. 1 for the member  
of the respective climate model group.
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(60° S–60° N) annual record-shattering jumps in SSTs that exceed the 
previous records by at least 0.25 °C, like the global jump in SSTs that 
was observed in 2023–2024. Moreover, the estimated return period of 
these events in climate models (1-in-a-1,006-year events in models) is 
within the confidence interval of the observation-based estimate of 
the return period. Furthermore, in these models, the simulated SST 
anomalies drop below record levels between May and September in 
the year after the jump in SSTs had started, consistent with the time 
when observed globally averaged SSTs stopped being record-breaking 
( July 2024). On the basis of the simulated record-shattering jumps, we 
conclude that it is likely that SSTs will return to pre-jump levels before 
September 2025. In the few simulations that do not simulate a return to 
pre-jump levels, SSTs revert to the expected warming trajectory over the 
following years. Thus, SSTs have not shifted to a higher or accelerated 
warming trajectory after a record-shattering SST jump in the models. 
The ability of climate models to simulate both the magnitude of the SST 
jump and the timing of the decline of positive SST anomalies enhances 
confidence in their use for future studies to understand the length, 
intensity and drivers of such extreme events, and to quantify their 
impact on regional weather systems and their potentially devastating 
consequences for terrestrial and marine ecosystems, and their services.
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Methods

Observations
Observed SST anomalies were calculated using the global and highly 
resolved NOAA OISST V2.11 product, which is based on observations 
from satellites, ships, buoys and Argo floats. Among the different 
available SST products45, we chose NOAA OISST V2.11 as it has shown 
the best performance45. In addition, NOAA OISST V2.11 is also the only 
dataset that includes the observations from the Argo programme 
that was started in 1999 and has operated between 3,000 and 4,000 
Argo floats since 2007. Monthly NOAA OISST V2.11 observation-based 
estimates from 1982 to November 2024 were downloaded (last 
accessed on 4 December 2024). Although this dataset is used in the 
main paper, the underlying warming trend, the magnitude by which 
the record-shattering jump in SSTs in 2023–2024 broke the previous 
SST record, and the return period of such record-shattering jumps 
in SST were also quantified for comparison using the SST Analysis 
production version 3.0 from the European Space Agency Sea Surface 
Temperature Climate Change Initiative based on the Operational 
Sea Surface Temperature and Ice Analysis (OSTIA) reanalysis system 
ICDR3.0 (Integrated Climate Data Record 3.0)46. This dataset is also 
among the better-performing observation-based SST estimates with 
a high spatial resolution45 and covers the years from 1980 to 2024. In 
addition, longer observation-based SST time series from one reanalysis 
product (ERA530) and two interpolated observational products (Had-
ISST31 and ERSST32) from 1940 to 2023, the years that are covered by all 
three SST products, were used to estimate the variance and the autocor-
relation of the natural temperature variability of annually and globally 
averaged SSTs. The autocorrelation and variance are both necessary to 
construct the synthetic time series that are used to estimate the return 
period of record-shattering SST jumps (see section ‘Observation-based 
estimate of the return period of record-shattering SST jumps’ below).

Here we chose to calculate annual averages starting in April as this 
is the month when SSTs started to break records by a larger margin 
(Fig. 1a). However, differences to previous records in NOAA OISST V2.11 
are up to 0.009 °C larger when averaging from May to April, June to 
May, and July to June, and become smaller afterwards. The number of 
times that such events occur in climate models varies between 11 and 
12 when the first month over which one calculates the annual average 
is between April and July. The results are hence similar for averaging 
periods starting later in the year.

Observation-based estimate of the return period of record- 
shattering SST jumps
An observation-based estimate and the associated uncertainties of 
the return period of record-shattering SST events that break the previ-
ous record by the margin of 2023–2024 are constructed based on syn-
thetic time series of lengths of 100 million years. These time series 
were obtained using the warming trend and an autoregressive model 
of first order (AR(1)), which relies on the temperature variance and the 
lag-one-year autocorrelation.

The underlying warming trend in SSTs in 2023–2024 was estimated 
using an Enting spline47 that was fitted to the observation-based glob-
ally and annually averaged SSTs from 1982–1983 to 2023–2024. From 
this spline fit, the trend in 2023–2024 was calculated as the slope of 
that spline fit in 2023–2024. The Enting spline filters short-term vari-
ability from time series with noise. The amount of noise that is removed 
depends on the cut-off period, with low cut-off periods removing only 
the short-time variability and large cut-off periods removing both the 
short-term and longer-term variability. To determine the cut-off period 
that allows a robust estimate of the trend in 2023–2024, the trend in 
the 11 climate simulations that include a record-shattering jump in SSTs 
was calculated for cut-off periods ranging from 25 years to 55 years. 
Cut-off periods below 25 years do not filter the decadal variability, 
and cut-off periods above 55 years are too rigid to capture nonlinear 

components47 of long-term warming trends. In each simulation with 
a record-shattering jump, the Enting spline was fitted to the year of 
the jump and the 41 years before. The length of 42 years was chosen 
as NOAA OISST V2.11 also covers 42 years. The so-estimated trend was 
then compared with the ‘true’ underlying trend. This ‘true’ trend was 
estimated with a 31-year running mean that can be calculated for the 
jump years in models because the SSTs after the jump are also simu-
lated by the models. An Enting spline with a cut-off period of 40 years 
fits that underlying ‘true’ trend best and is only 1 ± 18% larger, that is, 
0.003 ± 0.049 °C per decade). With this approach applied to NOAA 
OISST V2.11, we estimated the trend in 2023–2024 to be 0.269 °C per 
decade. The uncertainty of the estimated trend was quantified using 
the synthetic time series of 100 million years with a trend of 0.269 °C 
per decade and the best estimate of the variance and autocorrelation 
(see paragraph below). At each of the around 225,000 record-shattering 
jumps in this time series, the trend was estimated with an Enting spline 
with a cut-off period of 40 years. The standard deviation of these esti-
mated trends is 0.037 °C per decade. Thus, the estimated trend from the 
Enting spline has a likelihood of 95% to be between 0.195 and 0.343 °C 
per decade.

To further quantify the sensitivity of the resulting trend to the esti-
mation method, we fitted a linear trend from 2004/2005 to 2023/2024 
to approximate the trend in the year of the jump in NOAA OISST V2.11. 
The slope of this linear fit is 0.254 °C per decade, slightly smaller than 
the estimate from the Enting spline (0.269 ± 0.037 °C per decade) as it 
does not capture the slight nonlinear warming component48, but well 
within the uncertainty range. These sensitivity tests highlight that the 
largest uncertainty of the trend estimates results from the climate vari-
ability that is superimposed on the underlying trend and not from the 
method that is used to determine the trend.

As opposed to the estimate of the trend, we could not rely on 
observation-based SST data over the satellite period, such as NOAA 
OISST V2.11, for the estimation of autocorrelation and variance, as 
the relatively short length of the satellite period (1982 until present) 
makes uncertainties of the autocorrelation and variance large. Instead, 
the observation-based variance and lag-one autocorrelation are esti-
mated from the three SST products described above over the period 
1940–2023 after detrending the data using a cubic spline, resulting in 
three estimates each. As it is not evident which product performs best, 
the mean of all three estimates is used as the most likely estimate of the 
autocorrelation and variance. An implicit assumption for determin-
ing the uncertainty of autocorrelation and variance estimates is that 
the temperature variability follows a Gaussian distribution (Extended 
Data Fig. 6). For the ERA530, HadlSST31 and ERSST32 products, three 
tests (Kolmogorov–Smirnov, Shapiro–Wilk and Anderson–Darling) 
were employed to test whether the SST anomalies follow a Gaussian 
distribution. Across these 3 tests and 3 time series, the P values vary 
from 0.26 to 0.90, indicating no significant deviation from a Gaussian 
distribution. We thus conclude that the SST data are well modelled by 
a Gaussian distribution.

To estimate the uncertainty of the autocorrelation and variance, 
sampling distributions for the best estimates of the variance and auto-
correlation were constructed. For normally distributed time series 
of a given length, theoretical sampling distributions of variance and 
autocorrelation estimates are known49,50. These sampling distributions 
characterize the dispersion of estimates around a true value. The vari-
ance of the sampling distribution thus informs about the uncertainty 
in the estimate from internal climate variability for an estimate from a 
single product. As the best estimates of the variance and autocorrela-
tion are both an average of three products, the uncertainty is smaller 
than the uncertainty from a single product. To reflect this reduced 
uncertainty, we randomly sampled 10,000 times 3 values from the 
respective distribution and averaged over these 3 values. The result-
ing values are then the sampling distribution of the average estimate 
of the three products. The resulting uncertainties are relatively large 



(Extended Data Fig. 7b,c) as the internal climate variability still renders 
the estimation of the actual variability and autocorrelation uncertain 
in a time series that covers 84 years from 1940 to 2023. These large 
uncertainties owing to the internal variability cover the individual 
estimates from the three products (Extended Data Fig. 7). Furthermore, 
the sensitivity tests towards the detrending method were evaluated. 
When using a second-order polynomial or an Enting spline with a cut-off 
period of 40 years for detrending instead of a cubic spline, the results 
change by ±10% and are within the large uncertainties in the estimates 
resulting from the internal climate variability.

We then constructed 10,000 AR(1) models by randomly sampling 
10,000 combinations of trends, autocorrelations and variances 
from the distributions of the respective quantities (see histograms in 
Extended Data Fig. 7). For each of these 10,000 AR(1) models, a synthetic 
time series of 100 million years was simulated to determine the return 
period of record-shattering SST jumps. Based on these 10,000 return 
period estimates, the distribution of the observational return periods 
was determined, with its spread representing the uncertainty in the 
return period estimate. The resulting mean and median of the return 
period are 512 years and 448 years, respectively, with a 95% confidence 
interval ranging from 205 years to 1,185 years. The lower bound of the 
confidence interval is the return period for which 2.5% of probability 
mass is distributed over lower return periods. Consistently, the upper 
bound is defined such that lower return periods have 97.5% of the prob-
ability mass.

To test the sensitivity to the choice of the observation-based SST 
estimate, the underlying warming trend, the magnitude by which the 
record-shattering jump in SSTs in 2023–2024 broke the previous SST 
record, and the return period of such record-shattering jumps in SST 
were also quantified using the SST Analysis production version 3.0 
from the European Space Agency Sea Surface Temperature Climate 
Change Initiative based on the OSTIA reanalysis system ICDR3.046. 
In that dataset, the SST jump in 2023–2024 is 0.23 °C, the underlying 
trend in 2023–2024 is 0.209 °C per decade, and the resulting return 
period estimate is 543 years with a 95% confidence interval of 204 years 
to 1,371 years. Thus, the return period is almost the same as the return 
period estimated based on NOAA OISST V2.11. Furthermore, the number 
of record-shattering events in climate models for a jump of 0.23 °C is 
19, resulting in a return period of 583 years. Thus, the estimates of the 
return period of record-shattering events based on observations and 
models are closer when using this dataset instead of NOAA OISST V2.11.

The sensitivity of the return period estimate to the choice of the 
underlying statistical model was also tested. In addition to using the 
AR(1) model, the return period was calculated with an autoregres-
sive model of order 2 (AR(2) model) and a moving average of order 1 
model (MA(1) model). The resulting mean return periods are 484 years 
(196–1,142 years, 95% confidence interval) for the AR(2) model and 
498 years (201–1,179 years) for the MA(1) model. As the results are 
almost indistinguishable from the results with the AR(1) model that 
resulted in a return period of 512 (205–1,185) years, we here rely on the 
well-established AR(1) model.

In addition to these 10,000 time series, a smaller number of time 
series was constructed for a range of combinations of autocorrela-
tions, standard deviations and trends to visualize the respective 
effect of the effect of each quantity on the resulting return period of 
record-shattering jumps in SSTs and to be able to compare the mod-
els with observation-based estimates in terms of autocorrelations, 
standard deviations, trends and return periods (Extended Data Fig. 2).

Climate model simulations
We used 270 simulations from 35 coupled climate models: 170 
simulations are from the Coupled Model Intercomparison Project 
Phase 6 (CMIP6; Extended Data Table 1), 30 simulations are from the 
GFDL-ESM2M41 large ensemble from the University of Bern42 (ensem-
ble members are numbered 1 to 30), and 50 simulations are from the 

CESM243 large ensemble44 (ensemble members 51 to 100). Although 
the CESM2-LE contains 100 ensemble members, only the second half 
of the members was used, as the first half of the members had too high 
temperature variability owing to too high sensitivities of aerosol–cloud 
interactions to variability in biomass burning44.

The CMIP6 and CESM2-LE simulations were forced with historical 
data from CMIP6 until 2014 and with the Shared Socioeconomic Path-
ways (SSPs) 5-8.5 (CMIP6 simulations) and 3-7.0 (CESM2-LE)51. The 
GFDL-ESM2M-LE simulations were forced with historical data from 
CMIP5 until 2005 and with Representative Concentration Pathway 
(RCP) 8.5 afterwards52. The resulting radiative forcing between SSP3-
7.0, SSP5-8.5 and RCP8.5 is smaller than 3% in 2020, smaller than 5% in 
2030 and smaller than 7% in 204053,54, resulting in global warming that 
is statistically indistinguishable until 204029.

To compare the climate models with the observed record-shattering 
jumps in globally averaged SSTs over 2023–2024, annual SST means 
were calculated from April to March, the part of the year when the 
observed record-shattering jump occurred in 2023–2024. For each 
model, monthly data from each model’s original grid was analysed to 
avoid introducing errors by regridding the data first.

The climate model return period for record-breaking global jumps 
in SST that exceed the previous record by at least 0.25 °C was estimated 
by counting the number of record-breaking jumps in SST simulations 
between 2000 and 2040, the years when the trend is approximately 
similar to the trend in 2023–2024. For the climate model return period 
estimate, a confidence interval for the return period estimate of 
record-breaking global jumps in SST was constructed by identifying 
the counted number of such events in the model simulations (here 11) 
with the outcome of a binomial experiment55. The binomial parameter 
p represents the probability of any year in any model simulation to 
show such an event. We then calculated the 95% Pearson–Clopper con-
fidence interval (plower, pupper) for the binomial parameter p (refs. 55,56). 
As the return period is given by 1/p, the confidence interval of the return 
period is (1/pupper, 1/plower). Here, the confidence interval of the return 
period is 562–2,016 years. The Pearson–Clopper confidence interval 
was chosen over the confidence interval assuming a normal distribu-
tion for p, as p is close to zero where normality cannot be assumed55. 
Nonetheless, a relatively similar confidence interval (633–2,459 years) 
would be estimated when assuming a normal distribution. This similar 
result suggests that the confidence interval is relatively insensitive to 
the chosen approach.

We have not detected an unusual proportion of record-shattering SST 
jumps in any of the model ensembles. Therefore, most record-shattering 
jumps in SSTs are found in model simulations that tend to have the larg-
est number of ensemble members (2 such events in 30 GFDL-ESM2M-LE 
members, 2 in 50 CESM2-LE members, 2 in 50 CanESM5 members, 4 in 
43 MIROC6 members, and 1 in 6 IPSL-CM6A-LR members). Given that 
the observation-based estimate of the return of record-shattering 
jumps in SSTs has a confidence interval between a 1-in-a-205-year event 
and a 1-in-a-1,185-year event, it appears plausible that no such events 
are sampled in model ensembles with 10 or fewer ensemble members, 
which cover a maximum of 410 years. The smallest ensemble in which 
an event was simulated was IPSL-CM6A-LR, which runs over 246 years. 
Finding such an event in one small ensemble is also plausible given that 
there are many such small ensembles without a record-shattering SST 
jump. Lastly, the most events were found in the MIROC6 ensemble with 
4 events in 1,763 years (43 ensemble members). This corresponds to 
a return period of around 440 years, within the uncertainty range of 
the observation-based estimate.

The climate model simulations analysed here have temperature 
trends, temperature variabilities and autocorrelations that spread 
around the observation-based estimates of these three variables 
(Extended Data Fig. 2). To compare the trends, temperature variabili-
ties and autocorrelations in the models with the observation-based 
estimates, we estimated the quantities in the same way as we did for 
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the observation-based estimates. The multi-model mean tempera-
ture trend in 2023–2024 in the models is 19% smaller (43% smaller to 
9% larger, interquartile range) than the observation-based trend esti-
mated from NOAA OISST V2.11 (0.27°C per decade) in CMIP6 model 
simulations, 26% smaller (11–44% smaller) than the observation-based 
trend in CESM2 simulations, and 37% smaller (25–50% smaller) in 
GFDL-ESM2M simulations. The multi-model mean standard devia-
tion of the temperature variability (temperature from 1940 to 2023 
after being detrended with a third-order polynomial) is 16% higher 
(3% smaller to 40% larger) in CMIP6 model simulations than the aver-
age of the observation-based estimates based on ERA530 (0.085 °C), 
HadISST31 (0.082 °C) and ERSST32 (0.092 °C), and 15% (10–21%) and 20% 
(14–26%) higher than the observation-based estimate in CESM2 and 
GFDL-ESM2M simulations, in line with the overestimation of decadal 
trends of major climate modes in CMIP6 models57. In addition, the 
multi-model mean autocorrelation is 55% (31–86%) larger in CMIP6 
models than the average of the observation-based estimates based on 
ERA530 (0.20), HadISST31 (0.31) and ERSST32 (0.41), 23% (8–38%) larger 
in CESM2 simulations, and 19% (8–37%) larger in GFDL-ESM2M simula-
tions. A part of the difference between the models’ and the observed 
parameter estimates may be due to the uncertainty in the observed 
estimates (standard deviations for the parameter estimates of the SST 
trend, SST standard deviation and year-to-year SST autocorrelation of 
0.03 °C per decade, 0.004 °C and 0.06, respectively). In addition, the 
counting of the record-shattering jumps in globally averaged SSTs led 
to a return period of 1,000 years, higher than the observation-based 
estimate of the return period (512 years) but within the confidence 
interval (205 years to 1,185 years). The slightly higher simulated return 
period might well be the result of the slight tendency towards relatively 
high autocorrelations and relatively small trends, compensated by a 
relatively high standard deviation. However, the observation-based 
estimates of the return period might also just be affected by the inter-
nal variability leading to a too-low best guess based on observations.

Regionally averaged time series
Time series of spatially averaged SST anomalies were calculated for 
four different regions: 60° S to 60° N, the El Niño 3.4 index region in the 
Eastern Tropical Pacific from 5° S to 5° N and from 170° W to 120° W, the 
North Atlantic as defined by all Atlantic open-ocean biomes as defined 
by ref. 58 excluding the Mediterranean Sea and limited by 0° N, and 
the North Pacific as defined by the North Pacific subpolar seasonally 
stratified biome and the subtropical seasonally stratified biome from 
ref. 58. The mask for the respective biomes were mapped on each indi-
vidual native model grid.

Data availability
The Earth system model output used in this study is available via the 
Earth System Grid Federation (https://esgf-data.dkrz.de/projects/
cmip6-dkrz/). The large ensemble from CESM2 is available at https://
www.earthsystemgrid.org/dataset/ucar.cgd.cesm2le.output.html. The  
monthly two-dimensional SST output from the GFDL-ESM2M large 
ensemble is available at https://www.seanoe.org/data/00897/100853/. 
The NOAA OISST V2.11 data are available at https://psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.highres.html. The SST Analysis produc-
tion version 3.0 from the European Space Agency Sea Surface Tem
perature Climate Change Initiative based on the OSTIA reanalysis 
system ICDR3.031 is available at https://catalogue.ceda.ac.uk/uuid/4a
9654136a7148e39b7feb56f8bb02d2/. The ERA5 SST data are available  
at https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single- 
levels-monthly-means?tab=overview, the ERSST SSTs are available at 
https://www.ncei.noaa.gov/products/extended-reconstructed-sst, 
and the HadISST SSTs are available as https://www.metoffice.gov.uk/
hadobs/hadisst/data/download.html. All maps were created using the 
Basemap tool in Python (https://matplotlib.org/basemap/stable/).

Code availability
The code that was used for this study is available on Zenodo at https://
doi.org/10.5281/zenodo.14618176 (ref. 59).
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Extended Data Fig. 1 | Record-shattering jumps in global sea surface 
temperature as observed in 2023/24 are simulated by 11 climate models 
between 2000 and 2040. Sea surface temperature (SST) climatologies for 
record-shattering (record-breaking events of largest magnitude before 2024) 
annual (April-March) global (60°S-60°N) SST events for a) observations  
from NOAA OISST V2.11, and climate model simulations from b)-h) CMIP6 
(CanESM539,40 – r14i1p1f1, CanESM539,40 – r15i1p1f1, IPSL-CM6A-LR60 - r14i1p1f1, 

MIROC661 – r3i1p1f1, MIROC661 – r22i1p1f1, MIROC661 – r25i1p1f1, MIROC661 – 
r39i1p1f1), i)-j) the GFDL-ESM2M-LE41,42 (ensemble members 3 and 27), and  
k) – l) the CESM2-LE43,44 (ensemble members LE2-1301.002 and LE2-1251.017). 
The years of the onset of the respective events are shown as blue lines, the years 
of the decline as orange lines, and the 30 preceding years as grey lines with a 
black dotted line showing the average of these preceding 30 years.



Extended Data Fig. 2 | The return period of record-shattering jumps in sea 
surface temperature depends sensitively on the warming trend, and the 
autocorrelation and variance of annual sea surface temperatures. The return 
period of record-shattering sea surface temperature (SST) events, defined as 
events when the annually averaged SST (April to March) between 60°S and 60°N 
is at least 0.25 °C (record-breaking SST observed in 2023/2024) larger than the 
previous record SST, is plotted in dependence of the warming trend over a given 
period and the temperature variability for five different autocorrelations: a) 0.2, 

b) 0.3, c) 0.4, d) 0.5, and e) 0.6. The return period is calculated based on 
timeseries of 100 million years with an AR(1) model and prescribed trends, 
variability and autocorrelation (see methods). The dots indicate each simulation, 
and their location indicates the trends, variability and autocorrelation derived 
from these simulations. The larger dots show the simulations that included a 
record-shattering jump in SSTs. Accordingly, the crosses indicate the trend 
from NOAA OISST V2.11 and variability and autocorrelation from ERA530  
(cross in b)), HadISST31 (cross in c)), and ERSST32 (cross in d)).
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Extended Data Fig. 3 | The return period of record-breaking annual sea 
surface temperature events over the 21st century depends sensitively on the 
emission scenario. Record-breaking annual (April-March) global (60°S-60°N) 
sea surface temperature (SST) events based on 190 climate model simulations 

from CMIP6 (blue dots) (Extended Data Table 1) for a) the high-emission SSP5-8.5 
and b) the low-emission SSP1-2.6. In addition, record-breaking SST events based 
on SST observation-based estimates from NOAA OISST V2.11 are shown as black 
crosses.



Extended Data Fig. 4 | In all simulated record-shattering jumps, sea  
surface temperatures anomalies are mostly localised in the equatorial 
Pacific, North Pacific, and North Atlantic. Sea surface temperature (SST) 
climatologies for record-shattering (record-breaking events of largest 
magnitude before 2024) annual (April-March) global (60°S-60°N) SST  
events for a) observations from NOAA OISST V2.11, and climate model 
simulations from b)-h) CMIP6 (CanESM539,40 – r14i1p1f1, CanESM539,40 – r15i1p1f1, 
IPSL-CM6A-LR60 - r14i1p1f1, MIROC661 – r3i1p1f1, MIROC661 – r22i1p1f1, 

MIROC661 – r25i1p1f1, MIROC661 – r39i1p1f1), i)-j) the GFDL-ESM2M-LE41,42 
(ensemble members 3 and 27), and k) – l) the CESM2-LE43,44 (ensemble members 
LE2-1301.002 and LE2-1251.017) between 2000 and 2040. The years of the onset 
of the respective events are shown as blue lines, the years of the decline as orange 
lines, the 10 years following the event as green lines, and the 30 preceding years 
(pre-jump years) as grey lines with a black dotted line showing the average of 
these preceding 30 years.
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Extended Data Fig. 5 | Annual global sea surface temperature anomalies 
return to the long-term warming trend after record-shattering jumps in 
sea surface temperatures that exceed previous records by more than 0.25 °C. 
Annual (April-March) global (60°S-60°N) sea surface temperature (SST) for  
the 71 years around a record-shattering jump in SSTs that exceeds the previous 
record by at least 0.25 °C for the simulations a) CanESM539,40 – r14i1p1f1,  

b) CanESM539,40 – r15i1p1f1, and c) IPSL-CM6A-LR60 – r14i1p1f1, the simulations  
in which SSTs do not come back to pre-jump levels in the future (blue lines). The 
respective ensemble means for CanESM39,40 (50 ensemble members) and IPSL- 
CM6A-LR60 (6 ensemble members) are shown in comparison (orange lines).  
The year of the jump in SSTs is shown as a dashed black line.



Extended Data Fig. 6 | Observation-based sea surface temperature 
anomalies can be approximated by a gaussian distribution. Distribution  
of global (60°-60°N) annual (April to March) Sea surface temperature (SST) 
anomalies for the observation-based reanalysis product ERA530 from 1940  
to 2023 (blue line). After detrending (see Methods), the anomalies were binned 
in 21 bins of 0.025 °C each. In addition, a gaussian distribution with the standard 
deviation of the SST anomalies is shown.
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Extended Data Fig. 7 | Sampling distributions for the 3-product averages of 
variance and autocorrelation and of the single trend estimate. The single 
estimate for the trend is shown as a dashed line in a) and the three different 

estimates are shown as dashed orange (ERA530), dotted green (HadISST31), and 
dash-dotted purple (ERSST32) lines in b) and c) together with the mean estimate 
of the three individual estimates as a solid black line.



Extended Data Table 1 | List of CMIP6 climate models and the number of ensemble members per model used in this study

The following references are cited in this table: refs. 62–84.

Climate model Ensemble members Reference

ACCESS-CM2 3 62

ACCESS-ESM1-5 10 63

BCC-CSM2-MR 1 64

CanESM5-CanOE 3 39,40

CanESM5 50 39,40

CAS-ESM 2 2 65

CESM2 3 43

CESM2-WACCM 1 43

CIESM 1 66

CMCC-CM2-SR5 1 67

CMCC-ESM2 1 68

CNRM-CM6-1-HR 1 69

CNRM-CM6-1 6 69

CNRM-ESM2-1 4 70

EC-Earth3 2 71

EC-Earth3-Veg-LR 3 71

EC-Earth3-Veg 5 71

FGOALS-f3-L 3 72

FGOALS-g3 4 73

FIO-ESM-2-0 3 74

GFDL-ESM4 1 75

GISS-E2-1-G 7 76

HadGEM3-GC31-LL 1 77

HadGEM3-GC31-MM 1 77

INM-CM4-8 1 78

INM-CM5-0 1 79

IPSL-CM6A-LR 6 60

MCM-UA-1-0 1 unknown

MIROC6 43 61

MIROC-ES2L 6 80

MPI-ESM1-2-HR 2 81

MPI-ESM1-2-LR 10 82

MRI-ESM2-0 1 83

NorESM2-LM 1 84

NorESM2-MM 1 84
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