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Major distribution shifts are projected for
key rangeland grasses under a high-
emission scenario inEast Africa at theend
of the 21st century
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Santos J. González-Rojí 1,2,10, Kaspar Hurni3, Urs Beyerle 6, Andreas Hemp 7, Staline Kibet8 &
Thomas F. Stocker1,2

Grassland landscapes are important ecosystems in East Africa, providing habitat andgrazing grounds
for wildlife and livestock and supporting pastoralism, an essential part of the agricultural sector. Since
futuregrasslandavailability directly affects the futuremobility needsof pastoralists andwildlife,weaim
tomodel changes in the distribution of key grassland species under climate change. Herewe combine
a global and regional climate model with a machine learning-based species distribution model to
understand the impact of regional climate change on different key grass species. The application of a
dynamical downscaling step allows us to capture the fine-scale effects of the region’s complex
climate, its variability and future changes. We show that the co-occurrence of the analysed grass
species is reduced in large parts of eastern Africa, and particularly in the Turkana region, under the
high-emission RCP8.5 scenario for the last 30 years of the 21st century. Our results suggest that future
climate change will alter the natural resource base, with potentially negative impacts on pastoralism
and wildlife in East Africa.

Grasslands are an important ecosystem of East Africa. For example, in
Kenya shrublands and grasslands account for the largest share of land cover
with 53%and29%of the total area, respectively1. Grasslands provide habitat
and grazing grounds for wildlife, which supports tourism, and forage for
livestock that ensures the livelihoods of pastoralists and agro-pastoralists.
Pastoralism is theprimaryoccupationof 40–45%of thepopulationwhile for
many others it is an important secondary source of income2. A key aspect of
the pastoral livelihoods is their mobility, which allows them to deal with the
climate variability of arid and semi-arid landscapes by following the rains
and green pastures3. In northern Kenya this mobility is more and more
constrained by infrastructure mega-projects and land claims in various
forms4. For example, land fragmentation and access restrictions pose

problems to themobility of pastoralists andwildlife by threatening access to
green pastures.

As the foundation species of grasslands and savannahs, grasses play an
essential role in providing structure and function to these ecosystems sup-
porting biodiversity, and delivering crucial ecosystem services such as food
production, pollination, climate regulation (including carbon sequestra-
tion), and hydrological services, while also being biomes of high conserva-
tion value5–7. In this study, we focus on seven native key grass species pivotal
to pastoralists and wildlife in East Africa: Cenchrus ciliaris, Cynodon dac-
tylon, Cenchrus mezianus, Cynodon plectostachyus, Digitaria macro-
blephara, Digitaria milanjiana and Themeda triandra. We selected species
based on their utility in pastures and their ecological roles. All the selected
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species are perennial plants and well adapted to arid and semi-arid eco-
systems. The seven species occurred in about 60% of 659 plots of grasslands
and dry savannah woodlands in East Africa8. Furthermore, these grasses
represent the major structural inflorescence types of grasses: spikes and
spike-like panicles, panicles and (digitate) racemes. The majority of the
species have tufted and/or stoloniferous morphology and as such play an
important role in the fire ecology, a key determinant of grasslands, soil
hydrological properties and in providing much needed soil cover, facil-
itating water infiltration into the soil column and subsequently reducing
run-off that causes soil erosion9–11.

C. ciliaris is known for its adaptability to arid and semi-arid regions as it
is very drought tolerant and respondsquickly to rain by growing12.Due to its
drought tolerance, it is put under cultivation for grazing and used for
reseeding degraded rangelands13,14. C. dactylon is valued not only for lawns
and sports fields but also for pastures, owing to its trampling resistance and
versatility across various environments15,16. Cenchrus ciliaris and Cynodon
dactylon are themost preferred dry season pastures as they tolerate drought
conditions and therefore are widely available17. C. mezianus is also a much
appreciated species for dry season pastures in Kenya17 and a geographical
specialist with a restricted distribution, emphasizing its unique ecological
niche in parts of East Africa. C. plectostachyus is very competitive and
grazing tolerant, and itsfitness increaseswith the activity of large herbivores.
Additionally, it is an exceptionally nutritious grass compared to other co-
occurring grass species18. D. macroblephara is a dominant grass species in
the Serengeti National Park and is widely distributed in East Africa19. D.
macroblephara shows an increase in abundance under frequent and intense
grazing20. Moreover, D. macroblephara ranked highly by pastoral com-
munities due to its high digestibility and ability to increase milk yield and
weight of livestock14,17. D. milanjiana is a highly variable grass species and
adaptive to changes in rainfall and temperature21. Finally, T. triandra
represents a native and ecologically important grass essential for main-
taining biodiversity and ecological health. T. triandra is relatively palatable,
but continuous or uninterrupted grazing, can lead to a decline in its
abundance10. Such a decline is often related to a decline in grazing value,
species richness, species cover and therefore, ecosystem function10. The
selection of these grass species highlights their roles in supporting pastoral
livelihoods, ecological balance, and biodiversity conservation. The combi-
nation of these selected widespread and important savannah grasses is
representative of typical East African savannah grassland ecosystems7,22.

Future climate change poses a threat to grassland ecosystems, poten-
tially altering the availability of suitable areas for wildlife and livestock
grazing, and changing the seasonal mobility needs of pastoralists and
wildlife.Modelling the future impacts of climate on grasslands is essential to
provide strategic foresight into the future availability of grasslands and the
changingmobility needs of livestock andwildlife. Despite the importance of
these changing needs, our understanding of how climate change will affect
these grass species remains limited. To date, only one study has examined
the impact of climate change on C. ciliaris in southern North America,
where it is considered a highly invasive species23. This study found that
changes in temperature and precipitation largely explain the spatial varia-
bility of the species, and suggests that its range is expected to expand
westward and southwardunder future climate scenarios23.However, there is
a notable lack of similar assessments for East Africa, despite the important
insights they could provide for conservationists, pastoralists, and the agri-
cultural sector. Such information is crucial for identifying potential conflicts
and developing conservation strategies ahead.

Currently, our understanding of how climate change is affecting grass
species and the overall composition of grasslands in East Africa is incom-
plete. One challenge is the lack of maps and records that track the location
and evolution of grasslands over time24,25. In addition, the use of global
climate model (GCM) output in species distribution models (SDMs)
introduces errors due to the coarse resolution of these models, which often
fail to accurately capture the regional impacts of climate change in East
Africa. As a result, the effects of climate change on grass species habitats and
grassland composition arenotwell understoodandambiguous26, nor are the

effects of changing livestock grazing patterns on grassland ecosystem
dynamics27,28. Addressing these challenges is essential to better understand
the impacts of anthropogenic climate change on grassland ecosystems in
East Africa and to design appropriate adaptation and mitigation strategies.

This study aims to address these gaps in our understanding of East
African grasslands under climate change.We aim to determine how climate
change could alter grassland habitats, change the composition of key grass
species in grasslands, andhighlight thepotential impacts of these changeson
(agro-)pastoralists, their livestock and wildlife. We also aim to provide
evidence to guide the design of effective conservation areas. To achieve these
goals, we generate detailed geospatial projections of the current and future
distribution and co-occurrence of seven key grass species under a high-
emission scenario by the end of the 21st century. We use a regional climate
model to produce fine-scale projections, which are essential to capture the
complex and diverse climate of the region. Using theWeatherResearch and
Forecasting (WRF) model29 at 9 km horizontal resolution, driven by the
Community Earth System Model (CESM)30 under the high-emission sce-
nario RCP8.531, we obtain the necessary climate data for the current period
and for the end of the century. These data, combined with other non-
climatic variables, will be used to train species distribution models (SDMs)
using machine learning algorithms. Using real presence and absence data
for seven key grass species (Supplementary Table S1), the models project
current and future occurrences, providing important insights into the future
of East African grasslands. This is because the combination of the selected
widespread and important savannah grasses provide ameaningful indicator
of typical East African savannah grassland ecosystems7,22.

Results
Changes in bioclimatic predictors under the high-emission
scenario RCP8.5
In East Africa, the mean annual temperature (Bio1) is projected to
increase by 2–3.5 °C by the end of the 21st century compared to the
present (Fig. 1a), with the strongest temperature rise projected for the
east Kenyan plains (A1; see Supplementary Fig. S1 for the location of
the different regions A to C and Section “Study region”) and the
Ethiopian highlands (B4). Conversely, the Turkana region (A2) and
the northern part of the Kenyan highlands (B1) show the least
warming. Two variables describe temperature variability: the mean
diurnal range (Bio2) and temperature seasonality (Bio4). The mean
diurnal range is projected to decrease markedly under the high-
emission scenario, with a decrease of 2–3 °C corresponding to a
reduction of around 15–20% of the present-day diurnal range
(Fig. 1b). This decrease is most pronounced in the Lake Turkana
region and the northern part of both the Kenyan highlands and the
east Kenyan plains, resulting from a disproportional increase of the
daily minimum temperature. The mean annual temperature season-
ality is projected to increase strongly in the Turkana region and parts
of the Kenyan highlands, while decreasing in the Serengeti plains
(B2), Tanzanian highlands (B3) and Kitui county (A4, Fig. 1c).

The reduced warming in the Turkana region coincides with a
strong increase in mean annual precipitation (Bio12) of 400–600 mm
per year (Fig. 1d). The greatest increase in precipitation, up to
800 mm per year, is projected for the centre of the Kenyan highlands.
In large parts of the east Kenyan arid lowlands, the increases are
around 200 mm per year. A decrease in precipitation is projected
only for the south-eastern part of the study area, including the Ser-
engeti plains and the Tanzanian highlands. In addition to changes in
total annual precipitation, seasonal precipitation patterns will also
change, with precipitation in the driest month (Bio14) projected to
increase in the high-elevation areas of the Kenyan highlands and
along the coast (C), amounting to a doubling and tripling of present
amounts in the two regions, respectively (Fig. 1e). Conversely, the
model projects a decrease of up to 10 mm per month in the northern
part of the Serengeti plains, which means that during the driest
month of the year, part of the region receives no rainfall at all.
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Patterns and trends for seven key grass species
For all studied key grass species, tree cover (TC) emerged as themost critical
predictor (Table 1, RFmodel). Notably, TC is themost crucial predictor for
C. ciliaris (BRT and RF model), D. milanjiana (BRT and RF model), C.
mezianus (BRT model), and T. triandra (BRT and RF model).

Temperature-related factors (Bio1, Bio2, or Bio4) ranked as the second
most crucial predictor across all seven species, except for C. plectostachyus,
which is most sensitive to precipitation during the driest month. Overall, all
bioclimatic predictors are important for the key grass species, with C. plectos-
tachyus depending mainly on precipitation while the others on temperature.
Soil texture was the least important predictor for all species, with the human
footprint index (HFI) and the cation exchange capacity (CEC) playing aminor
role. The BRT model confirms these findings, with only minor shifts in the
importance rankings when compared to the RF model (Supplementary
Table S2).

We now consider the response to the high-emission scenario
RCP8.531. Only two of the key grass species, C. ciliaris and D. milanjiana,
show a consistent overall range expansion according to the spatial patterns
of species occurrence in both SDMs (Fig. 2a, f). C. ciliaris is projected to
increase its range by 4.6% (RF) to 5% (BRT), which corresponds to an
increase of 29,600 km2 (RF) to 30,700 km2 (BRT) (Table 2 and Supple-
mentary Table S3). Similarly,D.milanjiana is projected to increase its range
by 2.7% (RF) to 17.1% (BRT), amounting to an increase of 12,200 km2 (RF)
to 79,800 km2 (BRT). For all other species, the overall range is expected to
shrink in the future, except for D. macroblephara and T. triandra, which
show inconsistent trends between the two models. Among the key grass
species, C. mezianus is projected to have the strongest consistent decrease

under future climate conditions, with a decrease ranging from 34.6% to
35.8%, depending on the model. The RF model also projects a similarly
strong decrease for C. plectostachyus, amounting to 44.4% or 245,600 km2,
which is not confirmed by the BRT model, projecting a decrease of only
around 10.8% or 64,000 km2.

The results of the SDM indicate the absence of C. ciliaris in large parts
of the Kenyan highlands, but overall an expansion of this species by
47,100 km2 is projected, mostly in elevated areas in the north Ugandan
plains (A3), the Serengeti plains, and aroundMount Kilimanjaro, as shown
in Table 2 and the green areas in Fig. 2a and Supplementary Fig. S2a. The
consistent change between the two models in T. triandra (Fig. 2b and
Supplementary Fig. S2b) is the range contraction around Lake Turkana, in
the western part of the Serengeti plains, and in the Tanzanian highlands. In
the east Kenyan plains and in the Tanzanian highlands, T. triandra is
projected to slightly expand its range. This expansion is larger in the BRT
model (Supplementary Fig. S2b) than in the RFmodel (Fig. 2b). As a result,
the overall change ranges widely, from an increase of 11,200 km2 in the BRT
model to a decrease of 76,300 km2 in the RF model (Table 2 and Supple-
mentary Table S3). For C. dactylon both the RF and BRTmodels indicate a
range contraction in the east Kenyan plains, Kitui county, northern part of
Lake Turkana and in the northern part of theKenyanhighlands (Fig. 2c and
Supplementary Fig. S2c). The RF model projects an overall range contrac-
tion of 91,900 km2, while the BRTmodel projects a slightly smaller decrease
of 68,300 km2. Simultaneously, bothmodels suggest a range expansion ofC.
dactylon in the northernKenyanhighlands and in theTanzanian highlands.
C. plectostachyus is projected to almost completely disappear in the Lake
Turkana region (Fig. 2d and Supplementary Fig. S2d). At the same time,

Fig. 1 | Changes in bioclimatic variables between the present and the future.
Changes between the future and the present (future, i.e. RCP8.5 at 2071–2100,minus
present, i.e. 1981–2010) for amean annual temperature (Bio 1) in °C, bmean annual
diurnal temperature range (Bio 2) in °C, cmean annual temperature seasonality (Bio
4) in °C/100, dmean annual precipitation sum (Bio 12) in millimetres per year, and

e mean precipitation sum in the driest month (Bio 14) in millimetres per month.
The grey boundary lines indicate physiographic units of East Africa (see Methods
and Supplementary Fig. S1). The upward-pointing black triangle indicates the
location of Mount Kenya, and the downward-pointing one marks Mount
Kilimanjaro.
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both models suggest a range expansion in the Serengeti plains. A range
contraction is projected for D. macroblephara at the boundary of the east
Kenyanplains and theEthiopianhighlands, in theKenyanhighlands, and in
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Fig. 2 | Changes in the occurrence of the seven grass species between the present
and the future predicted by the RFmodel. a C. ciliaris, b T. triandra, c C. dactylon,
d C. plectostachyus, e D. macroblephara, f D. milanjiana, and g C. mezianus. The
upward-pointing black triangle indicates the location of Mount Kenya, and the
downward-pointing one marksMount Kilimanjaro. The grey, beige, pink and green
shaded areas indicate absence, no change, range contraction (species disappear from
area) and range expansion (species invade area), respectively, for each species under
future climate conditions. For more details see Section “Species data and species
distribution models”. For the BRT model, see Supplementary Fig. S2.
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the Serengeti plains (Fig. 2e and Supplementary Fig. S2e). Other pattern
changes for D. macroblephara are difficult to interpret, as they are patchy
and inconsistent with the BRTmodel results. An expansion is projected for
D. milanjiana (Fig. 2f and Supplementary Fig. S2f) in the north Ugandan
plains, the Kenyan highlands, the Serengeti plains, and the Tanzanian
highlands. Generally, the two models agree on these regions, but the BRT
model projects a much stronger increase than the RF model. Finally, both
SDMs project a range contraction of C. mezianus in the surroundings of
Lake Turkana, the north-eastern Kenyan highlands and in the eastern part
of the eastKenyanplains. Simultaneously, a range expansion in the southern
part of the east Kenyan plains is projected (Fig. 2g and Supplementary
Fig. S2g).

To summarize the changes of all seven grass species, their co-
occurrence is investigated under present and future climate (Fig. 3
and Supplementary Fig. S3 for the RF and the BRT models, respec-
tively). The co-occurrence is expressed in the number of individual
grass species present at a given grid point. Our study region shows a
separation into a part with a projected increase in grass species co-
occurrence which is in the western part, i.e., north Uganda plains,
western part of Kenya highlands, the Serengeti plains, and the Tan-
zanian highlands. The other part of the study area is projected to see
a decline in the co-occurrence of grass species. A particularly pro-
nounced decrease is projected for the greater Turkana region,
extending into the Mount Kenya region. In addition, most of arid
eastern Kenya plains are likewise projected to see a future decline in
species co-occurrence by different grass species. It should be noted,
however, that the coverage of the actual species presence and absence
data is very sparse in the eastern part of the domain, so these results

must be treated with caution. The changes in co-occurrence under
global warming are very similar for the RF and the BRT models in
most regions (Fig. 3 and Supplementary Fig. S3).

Discussion
Our results based on dynamical downscaling highlight the potential
impacts of climate change on grass species occurrence in the region.
With an average projected warming of 2–3.5 °C for the last 30 years
of the 21st century in a high-emission scenario (RCP8.5)31, we are
within the range of CMIP5 models, but in the cold quartile of the
model spread32. The wetting of the region, which our model suggests,
is in line with other climate change projections for East Africa33,34.
Since we are using only one climate simulation, it is important to
consider alongside other existing climate change projections. A
comparison with the widely used WorldClim CMIP5 data sets shows
that the results of our dynamical downscaling are within the
uncertainty range of the WorldClim ensemble members with respect
to temperature and precipitation, but with more realistic and finer-
scale patterns (see Section “Model verification: future climate
response over East Africa under RCP8.5”). Additionally, the dyna-
mical downscaling allows to approximately maintain the physical
consistency between the bioclimatic variables. When considering
climate change, SDMs can contribute to an improved understanding
of future habitat suitability for a given species and species range
expansion and contraction. When using SDMs to understand
climate-change-related habitat changes of plant species within the
same ecosystem and geographic region, it is particularly important
that climate data and future climate projections are as accurate as

Table 2 | Change in area of grass species

Species Absent [100 km2] No change [100 km2] Contraction [100 km2] Expansion [100 km2] Change [100 km2] Change [%]

C. ciliaris 991 6721 176 471 296 4.6

C. dactylon 1811 4600 1433 514 −919 −16.6

C. plectostachyus 2215 3081 2760 304 −2456 −44.4

D. macroblephara 1729 5239 1219 172 −1047 −16.7

D. milanjiana 2696 4697 422 544 122 2.7

C. mezianus 3060 3134 1912 253 −1659 −34.6

T. triandra 2731 3306 1543 780 −763 −18.8

Area of different grassland types in 100 square kilometres, separated into absent, no change, contraction, expansion, and an overall change, obtained from the RF model (for the BRT model, see
Supplementary Table S3). The last column indicates the relative change in per cent of the relevant species’ area of presence under present climate conditions.

Fig. 3 | Predicted co-occurrence of the seven grass species.Predicted co-occurrence
of the seven grass species under (a) present climate conditions and (b) future climate
conditions. Panel c indicates the change in the co-occurrence of the grass species
under future climate (RCP8.5, 2071–2100) compared to present climate

(1981–2010) conditions obtained from the RF model (for the BRT model, see
Supplementary Fig. S3). Orange (green) shadings in the panel c) indicate a decline
(increase) in the number of species that populate the same area.
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possible and provide sufficient spatial detail to capture subnational to
local habitat changes35,36.

Both SDMs that we applied to the data revealed tree cover as the most
critical predictor across all key grass species. This is probably because these
grasses struggle to grow in areas with high tree density due to limited
sunlight. With an increase in annual precipitation but potentially also ele-
vated atmospheric CO2, the transition of grasslands into woodland in
savannah ecosystems will further be promoted37. Our study has shown that
climate related variables such as temperature and precipitation are impor-
tant for habitat suitability of different grass species. The distribution of
species suitability is primarily shaped by regional precipitation patterns,
while temperature largely determines the maximum elevation that grass
species can inhabit, as higher elevations tend to have lower temperatures.
Additionally, soil properties influence the more detailed, localized dis-
tribution of grass species10,19.

Before we discuss the changes in grass species suitability under global
warming, we must acknowledge that statistical species distribution models
are inherently designed to identify nonlinear connections,which limits their
ability to establish causal relationships. Hence, some changes in the patterns
of grass species can be attributed directly to changes in bioclimatic variables,
which are the only variables that differ between the two periods under
consideration. However, most of the changes observed are the result of a
nonlinear interplay between various variables, and the exact reason for the
change cannot be determined. This is, for example, the case for C. dactylon,
whose changes are related to a complex interplay between the 11 selected
variables and the changes in some of these variables.

The results of the two SDMs indicate the absence of C. ciliaris in large
parts of the Kenyan highlands, which is not surprising given the species’
preference for low rainfall and high temperatures23. C. ciliaris is known for
its ability to withstand and recover from droughts better than other grass
species38. As such, this species is expected to expand its range towards areas
with drier and warmer conditions due to climate change23. C. ciliaris is a
highly valued pasture grass in the tropics and is known for reducing the
abundance of unpalatable species due to its dominance and ability to pro-
duce biomass quickly in response to unpredictable precipitation39,40. With
climate change, higher-elevation areas inEastAfrica are expected to become
suitable for C. ciliaris, which is what the models project for the elevated
regions in the western part of the domain, making it more available for
pastoral use.

The main change in T. triandra’s distribution – which is captured by
both the RF and the BRT models – is the range contraction around Lake
Turkana. For this region, the climatemodel projects a substantial increase in
temperature seasonality. Areas experiencing a range contraction of T. tri-
andra may experience a decline in grassland ecosystem services for pas-
toralists in the future. This is becauseT. triandra is an important food source
for both livestock and wildlife10,41 and plays a central role in the ecological
dynamics of savannahs. The species contributes substantially to pasture
resilience and its decline is associated with a deterioration of grazing
value10,41,42. Additionally, a decline in T. triandra is associated with a decline
in species richness and ecosystem function and therefore, impacts biodi-
versity, not only of grass species, but also of herbivores10. In regions where
the temperature seasonality remains the same or decreases under the future
climate, such as in the eastKenyanplains and in theTanzanianhighlands,T.
triandra is projected to slightly expand its range.

Both models project a decline in the habitat suitability of C. dactylon.
The areas where a range contraction is predicted could become less suitable
for feeding livestock and wildlife, as C. dactylon is a valuable food source.
Particularly in the dry season, C. dactylon is a valuable grazing forage to
improve livestock production, so a range contraction could predispose
livestock and wildlife to a sub-optimal performance. Additionally, the
species is excellent in controlling soil erosion17,43, which would be a highly
preferred characteristic due to the projected strong increase in precipitation
amounts under the high-emission scenario RCP8.5.

The decline of C. plectostachyus around Lake Turkana is likely due to
increased precipitation and temperature seasonality, which will make the

future climate in that region unsuitable for this species. C. plectostachyus is
palatable to livestock and is valuable as fodder40, given its high nutritious
value18, so its decrease might also have a negative impact on pasture quality
in the affected areas.

The reduction of D. macroblephara near the boundary of the east
Kenyan plains and the Ethiopian highlands is probably due to a slight
decrease in diurnal temperature range, led by an increase in the minimal
temperature. Other pattern changes are challenging to interpret, as they are
patchy and sometimes both model results are inconsistent.

The increase in D. milanjiana is probably related to the rise in tem-
perature in higher-elevation areas, such as at the boundary of the north
Ugandan plains, the Lake Turkana region, and the Tanzanian highlands.
With climate change, higher-elevation areas are expected to become suitable
for D. milanjiana, making it more available for pastoral use.

Finally, the changes in the habitat of C. mezianus cannot be directly
related to projected climatic changes, because of the nonlinear interplay
between the different variables. Nevertheless, the implications of the pro-
jected decrease forC.mezianus are highly relevant, as this species is valuable
for livestock and wildlife during dry periods. Despite being relatively
unpalatable when mature44,45, C. mezianus is consumed by livestock and
wildlife during periods of feed deficit46, so its decrease might negatively
impact the availability of pasture resources during harsh conditions.

Taken together, the changes of the individual grass species could serve
as a first-order measure of grassland biodiversity and its projected change.
The co-occurrence of different grass species is projected to decrease in the
future, which implies reduced grass species diversity by the end of the 21st

century. This indicates afirst risk of grassland biodiversity loss in this region
under a high-emission scenario. The decrease in co-occurrence is particu-
larly pronounced in the greater Turkana region, extending partly into the
Mount Kenya region. Particularly in the Turkana region, most of the
investigated grass species will not find suitable conditions anymore under
global warming. This region is projected to experience strong climatic
changes, including a substantial increase in annual precipitation sums and
in the annual temperature seasonality. The combination of decreased grass
species suitability of almost all investigated species and the strong increase in
precipitation and its extremes might increase the threat of floods, soil ero-
sion and landslides in that area. In addition, most of the arid eastern Kenya
plains are likewise projected to see a future decline in species co-occurrence
by several grass species. It should be noted, however, that the coverage of the
actual species presence and absence data is very sparse in the eastern part of
the domain, so these results must be treated with caution. The projected
range contraction of C. mezianus and C. dactylon, which today provide an
important source of fodder in seasons when conditions get particularly
harsh, and T. triandra, which is an indicator of healthy grassland ecosys-
tems, is a source of concern. The projected changes, both the increase and
decrease in co-occurrence, impact the local pasture availability and com-
position under climate change and therefore, might also change the wildlife
and pastoralmobility. This has the potential for new conflicts over access to,
and availability of, essential resources.

Even though the goal of our analysis is to investigate the impact of
climate change on the different grass species, we would like to point out that
climate variables are not the only, and perhaps, not the main factors that are
responsible for changes in grass species. With regard to savannahs, anthro-
pogenic climate change, and particularly the projected increase in precipita-
tion, could favour the spread of woody plants47 and therefore, indirectly put
further pressure on grassland species. Human disturbance and land degra-
dation due to overgrazing could further lead to a decline in various grass
species17. The combination of land fragmentation (e.g., due to infrastructure,
cropland expansion, protection, conservation, economic investments, or
increased population), and the projected changes in the habitats of the
investigated grass species may pose equally serious problems for pastoralists
and native wildlife. Additionally, habitat changes and disturbances might
enable invasive species to fill the emerging gaps and further expand their
habitats. This could exacerbate the ongoing replacement of valuable native
grass species by various invasive species (e.g., Parthenium hysterophorus,
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Xanthium strumarium, Prosopis juliflora, Lantana camara) and therefore,
further threaten the native biodiversity. It is known that such invasions are
facilitated by land degradation due to overgrazing and deforestation, as well as
by climate change48, although in a meta-analysis it was found that in some
areas of the world, landmanagement effects outweigh the influence of climate
change and increasing CO2 concentrations on grassland dynamics49.

Conclusion
Under present-day climate conditions, the arid lowlands of eastern and
northern Kenya seem favourable to all studied grassland species. However,
future climate change under the high-emission scenario RCP8.5 is expected
to alter the distribution and composition of grassland ecosystems.While C.
ciliaris andD.milanjiana, showa slight overall increase inhabitat suitability,
species such asC. dactylon, C. plectostachyus and C. mezianus are projected
to experience notable range contractions. TheTurkana region, in particular,
is expected to be severely impacted, with a near-complete absence of the
studied species under the high-emission scenario. These negative effects are
likely driven by increased precipitation and seasonal temperature, which
create unfavourable conditions for many grass species. Elevated regions
present less favourable conditions for some of the considered species under
present-day climate conditions. However, the projected higher tempera-
tures will possibly help some of the grasses to conquer these regions. With
this studywe tried to anticipate the currently still uncertain changes in grass
species, key for wildlife and livestock of pastoralists, under climate change.
Our results are valuable for assessing the economic potential of the region
and the sustainable long-term planning, for example when designing live-
stock and wildlife corridors or highway crossings. While our analysis
focused on climate change impacts on bioclimatic variables, future studies
should consider additional factors such as vegetation changes, land use, and
human activities, which could further influence grassland conditions.
Additionally, exploring the competitive dynamics among grass species and
potential benefits to other species not included in this studywould provide a
more comprehensive understanding of grassland evolution under future
climate scenarios. It should be noted that the results presented here provide
potential areas where grass species could grow, but our study does not
consider the human influence of grass cultivation or reseeding of degraded
rangelands, as has occurred in the recent past13,14.

Methods
Study region
The study region comprises East Africa, with a focus on Kenya including
bordering areas in Ethiopia and Somalia. To facilitate the discussion of the
climate and species distribution patterns, we divide the study region into
physiographic units (Supplementary Fig. S1), loosely based on the agro-
ecological zones of Kenya50. Agro-ecological zones categorize a larger land
area into smaller sections that share similar traits regarding land suitability,
potential production, and environmental impact50. The nine physiographic
units pertain to three main regions:

- The hot and arid lowlands of the north and east (A, greenish areas in
Supplementary Fig. S1):

A1: East Kenyan plains (fromMarsabit andMandera in the north to
Tana River County in the south), including adjacent southern
Somalia

A2: Lake Turkana: Turkana County and north-western Marsabit
A3: North Ugandan plains (Kaabong and Moroto Districts)
A4: Kitui County

- The eastern rift highlands and plateaus (B, reddish areas in Supple-
mentary Fig. S1):

B1: Kenyan (and Ugandan) highlands to Lake Victoria
B2: Serengeti Plains (south-west Kenya and northern Tanzania)
B3: Tanzanian highlands (Ngorongoro, Meru, Kilimanjaro, Eastern

Arc Mountains)
B4: Ethiopian highlands (southward extension of the Ethiopian

highlands)
- The coast (C, purple area in Supplementary Fig. S1)

Soil and landscape data
For the species distribution modelling, we use 18 environmental variables
that characterize the study area (Supplementary Table S4, right column).
We use two topographic variables, elevation and slope, derived from the
ALOS World 3D (AW3D) digital elevation model provided by the Japan
Aerospace Exploration Agency (JAXA)51. We also include two variables
related to surface water, namely Euclidean distance to rivers and water
bodies, respectively,whichwegenerated ourselves. To account for tree cover
and photosynthetic active vegetation, we useHansen’s global tree cover data
set of 201052 and a normalized vegetation index (NDVI) generated from a
cloud-free Landsat-8 dry-season satellite data mosaic. For the character-
ization of the soils, we use the SoilGrids data sets provided by ISRIC53. The
following variables are considered from soil depth to bedrock: per cent sand,
clay, and silt; soil texture; cation exchange capacity (CEC); acidity ðpHH2O

Þ;
nitrogen (N); soil organic carbon (SOC); salinity; soil depth; and soil class.
The Afrisoils data set is used for Aluminium exchange capacity54. We
include anthropogenic influences in our model by means of the global
human footprint index (HFI) providedby theWildlifeConservation Society
(WCS)55. The spatial resolution of these raster data sets varies between 30m
(topographic as well as water, vegetation, and tree cover data), 250m (soil
data) and 1 km (HFI and soil data). Using a bilinear interpolation, we
resample them to a common resolution of 1 km.

Climate models
To quantify climate change, we use a model chain from global to regional
scales. The GCM used is the Community Earth System Model (CESM,
version 1.04)30. It consists of four components for atmosphere, ocean, sea
ice, and land, which are fully coupled. The horizontal resolution of the
atmosphere and land components is 1.25° × 0.9° (longitude × latitude).
Themodel is used to perform a historical simulation from 1850 to 2005 and
a future simulation under the high-emission scenario RCP8.5 from 2006 to
210056,57. In this study, we use two 30-year time slices, 1981–2010 and
2071–2100, to represent the present and a future climate, respectively.

The global model output of the two selected time slices is used to drive
the regional climate model, which in this study is the WRF model (version
3.8.1)29. In themodel setup, wemake use of a parent and a nested domain to
obtain afine horizontal resolution over Kenya (Supplementary Fig. S4). The
parent domain (D1) has a horizontal grid resolution of 27 km and covers a
large area of Africa, from the Sahel area to Madagascar (15° N–20° S, 5°
W–70° E). The nested domain (D2) has a grid spacing of 9 km and covers
Kenya, extending westward to north-eastern Congo. The vertical extent of
the atmosphere reaches up to a level of 50 hPa, separated into 49 eta levels.
The regional model solves the fundamental physical equations governing
the atmospheric dynamics, e.g., thermodynamics, radiation and moisture
transport, on this grid and thus obtains a dynamical downscaling. Sub-grid-
scale atmospheric processes, such as convection and microphysical cloud
processes, are parameterized using the optimal configuration for Kenya58.
Theoutputof themodel is obtained everyhour, thusproviding ahigh spatial
and temporal resolution.

To model grass species, the absolute temperature ranges and pre-
cipitation amounts must resemble observations. To correct particularly the
bias of the global model CESM, the following two-step approach is applied:
(1) WRF is used to downscale the latest reanalysis, ERA5, provided by the
European Centre for Medium-RangeWeather Forecasts (ECMWF)59. This
simulation is composed of a 20-year climatology for the period of
1999–2018, which provides the baseline for the climate projection. ERA5
provides relatively high-resolution andgood-quality data for the region.The
chosen configuration results in a good match between precipitation and
temperature at weather stations58. (2) The monthly climatological differ-
ences between the future and present RCMsimulations based onCESM are
added to this simulation. This so-called delta change method is considered
to provide robust climate impact scenarios60,61 and is therefore widely
applied in studies on climate change e.g. refs. 62–64. In other words, the 19
bioclimatic variables (BioClim65) are first calculated for all three RCM
simulations: the ERA5, the present, and the future climate simulations
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(Supplementary Table S5). After that, the future and the present BioClim
variables are subtracted from each other and added to the ERA5-based
BioClim variables, resulting in an adjusted future climate simulation. The
delta change approach is applied to both temperature and precipitation. A
correction by a percentage change, which is usually applied to precipitation,
was not possible since there are grid pointswith no rainfall at all. Grid points
for which the delta change method results in a negative future precipitation
are set to zero. To obtain the same spatial resolution for all predictors, the
bioclimatic variables are resampled to a 1 km grid by means of bilinear
interpolation.

Species data and species distribution models
To understand the effect of climate change on the distribution of grasslands
in East Africa and particularly Kenya, we assess seven grass species that are
relevant as a source of food for livestock and wildlife (Supplementary
Table S1). The species are selected in two steps. An initial selection of
17 species is made based on our own extensive literature review. It is then
narrowed down to the eight most important species based on expert sci-
entific knowledge. One species is excluded after model evaluations due to a
lack of data (see below).

Presence data for the eight grass species are collected from five spatially
explicit databases:GlobalBiodiversity InformationFacility (GBIF)66–72, sPlot
–TheGlobal VegetationDatabase73, RAINBIO74, VegetationDatabase East
Africa (VDEA)8, and Swea-dataveg: A vegetation database for Sub-Saharan
Africa75. In addition to presence data, sPlot and VDEA also provide several
real absence data points. The different data sets are combined in a database.
All presence points (including historical observations) are retained; absence
points are selected through gridded randomization (grid size 5 × 5 km2)
retaining one random absence point per grid cell. Absence points within
5 km from a presence point are discarded. The number of these points for
each species is provided in Supplementary Table S1 and displayed in Sup-
plementary Fig. S5, while Supplementary Fig. S6 disaggregates the points by
repository and species. A high density of presence and absence points is
found in the western and southern parts of the study area, whereas the east
Kenyan plains are relatively sparsely covered. Reasons for this bias in the
sample distribution include the difficulty of accessing the sparsely populated
drylands in the east Kenyan plains, as well as security concerns.

The SDMs are implemented in R (version 4.1.3)76. Based on a previous
study77 we used four algorithms frequently and successfully applied in
species distribution modelling, i.e. maximum entropy (MaxEnt)78, support
vector machine (SVM)79, random forest regression (RF)80 and boosted
regression trees (BRT)81, also known as generalized boosted regression
models. We evaluated the models using k-fold cross-validation to tune the
different algorithms and focused on the performance parameters area under
the curve (AUC82) and true skill statistics (TSS83). We only considered
algorithms forwhich themajority of speciesmodels achieve aTSSvalue of at
least 0.5 and an AUC of at least 0.8 for further analysis. This selection is
based on previous studies having either a similar objective or recom-
mending thresholds for these two performance parameters84,85. More spe-
cifically, we evaluate themodels by separating the presence and absencedata
of each species into a training and a test data set using a k-fold cross-
validation, with k = 10. In the final model, all presence and absence data are
included. The final model probabilities are calculated for the eight different
grass species. The probabilities are calculated over the area given in Fig. S1,
with a spatial resolution of 1 km. Only RF and BRT fulfilled the accuracy
performance requirements. RF (randomForest package)80 and the BRT
model (dismo package)81 are executed with the best parameter combination
for each species (Supplementary Table S7). The BRT model uses addi-
tionally the function gbm.step to define the optimal number of trees and
assumes a Bernoulli distribution.

Initially, a set of 37 predictors is used (see Supplementary Table S4).
These are correlatedwith each other using the Spearman spatial correlation,
which is a non-parametric test. Pairs or groups of variables with a Spear-
man’s rank of more than 0.6 are reduced to one variable to lower the risk of
overfitting and collinearity issues86,87. Thefinalmodel includes the following

11 predictors: annualmean temperature (Bio1), mean diurnal range (Bio2),
temperature seasonality (Bio4), annual precipitation (Bio12), precipitation
of driestmonth (Bio14), slope, tree cover (TC), soil texture, cation exchange
capacity (CEC), human footprint index (HFI), and distance to waterways
(d2ww). Details about the differences between the present and future cli-
mate are given in Section “Model verification: future climate response over
EastAfricaunderRCP8.5”. The true skill statistics (TSS)83 of thefinalmodels
range between 0.52 and 0.75 for the RF model (second line in Table 1) and
between 0.49 and 0.57 for the BRT model (second line in Supplementary
Table S2), which can be considered as a fair to good model performance.

The only species for which themodels fail to produce good predictions
in the finalmodel is Pennisetum stramineum. This poor performance is due
to the low number of presence data available for this species. As this issue
exceeds the scope of this study, this species is excluded from all further
analyses. Since theRFmodel generally performs slightly better than theBRT
model, the results given in this article are based on the RFmodel. However,
the results obtained with the BRTmodel are provided in the supplementary
material. The importance of the different predictors is assessed using two
different measures for the RF and the BRTmodels, respectively. For the RF
model, we calculate the “IncNode Purity”, which provides the total decrease
in node impurities. It indicates how useful a variable is for separating the
data into homogeneous groups. A higher IncNode Purity means a more
important variable. For the BRTmodel, we calculate the relative influenceof
each predictor, which provides an estimate of the predictor’s importance in
predicting the presence and absence of each grass species in per cent.

In a next step, the 14models (RFmodel and BRTmodel for each of the
seven species) are applied to the predictors of the future climate. It is worth
noting that the soil- and landscape-related predictors are kept constant; the
future climate is reflected exclusively in the bioclimatic predictors. To derive
binary suitability maps (suitable vs. unsuitable habitat), a grid point with a
probability of presence higher or equal to the TSS of the finalmodel (second
line in Table 1 and Supplementary Table S2) is defined as suitable for each
grass species, indicating potential presence of that grass species, while grid
points with probability values lower than the TSS are considered as
potentially unsuitable, indicating potential absence of the species. To
understand the changes between the future and the present climate, the
following conditions are applied to eachgrid point: (1) If themodels indicate
absence of a given species under both present and future conditions, the
species is considered to remain absent (“absent”). (2) If the models indicate
presence under bothpresent and future conditions, the species is considered
to remain present (“no change”). (3) If the models indicate presence under
present climate conditions and absence under future conditions, the species
is assumed to disappear from this location in the future (“contraction”).
Finally, (4) if the models indicate absence under present climate conditions
but presence under future conditions, the species is assumed to newly
appear at this location in the future (“expansion”).

Model verification: future climate response over East Africa
under RCP8.5
To understand future changes in the distribution of East African grasslands,
we first examine changes in climate characteristics by presenting the future
climate change signal simulated by the RCM. We focus on mean annual
temperature and annual accumulated precipitation. As we use only one
simulation and one particular global and regional climate model, it is
important to compare our climate change signals with other climate
modelling results, such as theWorldClim data set (version 1.4)88. The main
difference between WorldClim and the data set generated for this study
consists of the downscalingmethod. TheWRFmodel performs a dynamical
downscaling (see Section “Climatemodels”), whileWorldClim is basedon a
statistical downscaling of global climate model simulations with horizontal
resolutions ranging from 100 to 250 km. The statistical downscaling of
WorldClim can be inaccurate in tropical regions, due to the sparsity of
observational data89.

For the comparison, we use the WorldClim data for the years
2061–2080 under RCP8.5, which are closest to the RCP8.5 climate change
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scenario for 2071–2100 used in our own climate simulation. Supplementary
Figs. S7 and S8 show the difference inmean annual temperature and annual
accumulated precipitation between the future and the present-day period
for each model included in the WorldClim data set. The top left panel
presents the results obtained with our dynamical downscaling approach
(CESM-WRF).

Looking at temperature, the ensemble members of WorldClim pro-
duce a wide range of different warming patterns over East Africa (Supple-
mentary Fig. S7). One reason for the considerable differences between the
model simulations is that theunderlying global climatemodels differ in their
climate sensitivity. For example, ACCESS1-0, GFDL-ESM2G, HadGEM2-
AO, HadGEM2-CC, HadGEM2-ES, and IPSL-CM5A-LR have a relatively
highclimate sensitivity and therefore,project a greater temperature increase.
In addition, the climate change patterns appear rather smooth, and the
effects of geographic features are not visible. This can be expected, as the
driving global models are coarsely resolved, and the statistical downscaling
approach used inWorldClim relies heavily on observational data, which are
sparsely available for our study region. It contrasts with the dynamically
downscaled simulation used in this study (Supplementary Fig. S7 top left,
CESM-WRF), which shows a more realistic representation of all lakes. For
example, the cooling effect of water is visible for Lake Victoria and Lake
Turkana. The dynamical downscaling approach is also particularly valuable
for properly representing the complex topography of East Africa, with
physical consistency between the variables of our model approach, tem-
perature and precipitation, almost maintained. For example, in the region
around the Lake Turkana, a comparably small temperature increase is
projected for the future compared to the surroundings. This relative cooling
is linked to a strong increase in precipitation over the same region (Sup-
plementary Fig. S8 top left, CESM-WRF). It should be noted that the bias
correction used in the dynamical downscaling approach of this study could
have some implications for physical consistency. Nevertheless, the method
is considered to provide robust climate impact scenarios60,61 and is therefore
widely applied in studies on climate change e.g. refs. 62–64 as previously
mentioned in Section “Climate models”.

Regarding precipitation, most of the WorldClim ensemble members
project a general wetting of the study region (black box in Supplementary
Fig. S8); exceptions are ACCESS1-0, HadGEM2-AO, GISS-E2-R,MIROC5
and NorESM1-M. In addition, the precipitation patterns differ strongly
between different models, in one case even showing inverted signs of the
gradient from the coast to the centre of the study region (compare IPSL-
CM5A-LR with MPI-ESM-LR). The dynamical downscaling approach
(Supplementary Fig. S8 top left, CESM-WRF) likewise predicts a general
wetting over the study region, but as with temperature, it showsmuchmore
finely resolved precipitation patterns compared to the other simulations.
This includes, for example, convective behaviour over the lakes. The pre-
cipitation pattern of MRI-CGCM3 model (Supplementary Fig. S8, bottom
centre), having the highest horizontal resolution among the global simu-
lations (Supplementary Table S6), is relatively similar to that projected by
our CESM-WRF approach.

In summary, the dynamical downscaling results suggest a warming of
2–3.5 °C and a future wetting of the study region under the high-emission
scenarioRCP8.5.More specifically, pronouncedwarming is found innorth-
eastern Kenya and moderate warming in the north-western part. The
precipitation pattern also shows a clear structure, with the greatest increase
in precipitation projected for the north-western part of Kenya, whereas
conditions are expected to become dryer compared to present-day climate
in the south-west under RCP8.5. Importantly, the dynamical downscaling
results are within the uncertainty range of the WorldClim ensemble
members, but with more realistic and finer-scale patterns, almost main-
taining the physical consistency between the bioclimatic variables.

Novel climate in the future under RCP8.5
One important assumption under which machine learning algo-
rithms are applicable is that the distribution and therefore, the range
of the training and prediction data set are similar. To check if this

assumption is met in our data set, we look for so-called “novel cli-
mates” under future climate conditions, which are here defined as
climate states outside the range of the present climate within the
study area. This is performed by the following two different analyses:
The minimum and maximum of all the five bioclimatic variables (see
Section “Changes in bioclimatic predictors under the high-emission
scenario RCP8.5”) under present climate conditions are calculated
using (1) only grid points where presence or absence points are
available and (2) all grid points in the domain. These numbers are
then compared to the future climate (either including only the grid
point where presence and absence points are available or for the
whole domain). The number of variables that show under future
climate conditions higher or lower values than the maximum or
minimum value, respectively, in the present climate are summed up
at each grid point in the study domain (Supplementary Fig. S9). The
range of the future climate variables is mostly covered in the training
data set of the past climate for the study region. In the east of the
study region, there is a large area where the ranges do not overlap for
one variable (mainly mean annual temperature), and in the very
northwest and along the coast, two variables exceed the range of the
past climate in the future. Since a large part in the east of the study
region shows that one variable does not stay within the range of the
present climate when considering all grid points in the study area
(Supplementary Fig. S9b), only a slight improvement could be
obtained with more presence and absence samples in this particular
area. Nevertheless, due to the small sample size and the missing
overlap of the present and future climate in the eastern part of the
study region the results there must be interpreted with caution.

Limitations of the method
Even though the study is based on a unique and complex model chain that
combines global and regional climate models with a species distribution
model, it has some limitations which must be kept in mind. In some areas,
such as the arid and semi-arid regions in easternKenya, we have only sparse
coverage of presence and absence data for the different grass species.
Accordingly, the presented results and interpretations must be considered
with caution. It must further be noted that the climate change signal is
obtained fromone single realisation of a 30-year climate simulation and one
emissions scenario.Obtainingmore robust results on the sign of change and
particularly of the change in precipitation amounts and patterns would
require a larger ensemble of high-resolution climate simulations. Due to the
high computational cost of suchmodel simulations, an ensemble simulation
is far beyond the possibilities of this study. In any case the comparison of the
output of the physical model used here with different WorldClim simula-
tions suggests that the results obtained by our model simulation are within
the range of results shown by CMIP5 climate models.

Data availability
The data to reproduce the study is available at https://doi.org/10.5281/
zenodo.8217619. The Global Biodiversity Information Facility (GBIF) data
is available at https://www.gbif.org, the sPlot (The Global Vegetation
Database) is available at https://www.idiv.de/en/splot.html, the RAINBIO
data is available at https://gdauby.github.io/rainbio, the Vegetation Data-
base East Africa (VDEA) is available at http://www.givd.info/ID/AF-00-
004, and the Swea-dataveg (Avegetationdatabase for Sub-SaharanAfrica) is
available at https://kamapu.github.io/posts/sweadataveg/. Bioclimatic vari-
ables provided by WorldClim are available at https://www.worldclim.org/
data/bioclim.html.

Code availability
The code to reproduce the study is available at https://doi.org/10.5281/
zenodo.8217619.
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