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ABSTRACT

An analog model is used to predict the tropical cyclone tracks in the Atlantic and east Pacific basins. The
model is self-adapting in its search of ensembles of optimal historic analogs by creating a norm that minimizes
the forecast error depending on the model parameters and the kind of prediction. Comparison with the Climatology
Persistence (CLIPER) reference model shows different results in the Atlantic and east Pacific basins using the
best track data as an independent verification dataset. In the Atlantic, the self-adapting analog model achieves
a great circle error of same order as the reference but improves the forecasts by 15%–20% in the east Pacific.
In another trial, based on simulated operational data, the performance of both models measured by absolute
errors deteriorates compared to the best track data forecasts. However, the self-adapting analog scheme, which
is less sensitive to noise, shows positive skill against CLIPER for all lead times in both basins.

1. Introduction

Tropical cyclones are natural events with very de-
structive impact. Hurricanes Mitch and Georges that
made landfall over North America in 1998 showed, once
again, the importance of increasing the accuracy of trop-
ical cyclone track prediction. The cyclone track depends
in a nonlinear way on many parameters, such as the
large-scale wind and pressure fields, the surface con-
ditions, and the field of moist convection (see, e.g., Hol-
land 1983; Elsberry 1995, etc.). Most tracks are rea-
sonably regular but, at times, surprising loops or sudden
changes in direction or velocity are observed. Numerical
weather prediction (NWP) models forecasting tropical
cyclones and their tracks have substantially improved
during the last decade. In particular, when ensemble
methods are being introduced, they reduce the influence
of the initial uncertainty on the forecasts (see, e.g.,
Zhang and Krishnamurti 1997). In addition to the im-
provements of NWP models in predicting tropical cy-
clone motion, there is a need, as well, to improve on
the performance of empirical models. In this connection,
Leslie and Fraedrich (1990) point out the advantages of
combining NWP and empirical schemes, and, further-
more, error recycling methods (Fraedrich et al. 2000).

The purpose of this paper is to present an analog
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forecast scheme that is self-adapting compared to the
Hurricane Analog model (HURRAN; see Hope and
Neumann 1970). Fraedrich and Rückert (1998) devel-
oped this scheme to predict time series of nonlinear
chaotic systems. Motivated by their results, we apply it
to tropical cyclone track forecasts and extend it to en-
semble forecasts (Sievers 1998). For verification pur-
poses these forecasts are compared with the predictions
of the CLIPER model (Climatology and Persistence;
Neumann 1972; Neumann and Leftwich 1977), which
is generally used as a reference model. The outline of
this note is as follows: In section 2, the basic idea and
structure of the analog model and its extension to en-
semble forecasting is presented. Section 3 applies the
method to data in the Atlantic and east Pacific basins.
Finally, section 4 summarizes the results and highlights
the important features.

2. Self-adapting analog forecast scheme

In principle, forecasting future values of time series
utilizing a set of measurements is possible if patterns
of these values have a one-to-one correspondence to
states of an underlying dynamical system. The embed-
ding of the dynamical system in a state space spanned
by measured variables (see, e.g., Sauer et al. 1991) pro-
vides the theoretical background for analyzing and fore-
casting dynamical systems. Besides other statistical
models, one option is to use an analog scheme that
depends on the assumption that events with equal (at
least similar) initial states develop in equal (at least
similar) ways. In HURRAN (Hope and Neumann 1970),



624 VOLUME 15W E A T H E R A N D F O R E C A S T I N G

an analog to a given forecast situation is defined as a
tropical cyclone from the historical file having temporal
and spatial characteristics similar to a current storm.
After numerous trial-and-error type model runs, the au-
thors accepted those tropical cyclones as analogs, pass-
ing within 240 km of the current cyclone, moving within
22.5�, and occurring within 15 Julian days from the
current cyclone. This approach is extended here, fol-
lowing Fraedrich and Rückert (1998), who developed a
method that iteratively reduces a user-defined forecast
error by suitably fitting metric weights for the compo-
nents of the reconstructed states entering the analog
scheme. In this sense, the analog scheme is adapting
itself to an optimal prediction in the dependent dataset.
The building of the analog forecast model proceeds in
the following four steps.

Step A: The first step consists of reconstructing the
state space and defining the error measure used. For
adapting the best weights, the library of states with zero
mean and unit standard deviation is split into a depen-
dent and an independent dataset, respectively. The de-
pendent dataset is used for model building, the inde-
pendent dataset for model verification. The weights are
adapted by minimizing an individual forecast error, e(tj),
which characterizes the distance between the observed
and the j-analog position of the cyclone track for all
lead times i � �6, �12, . . . , �72 h:

72 2

e(t ) � {[x (t � i) � x (t )]� �j l 0 l 0
i l

2� [x (t � i) � x (t )]} , (1)l j l j

where [x1(tj), x2(tj)] always denotes the meridional and
zonal position (longitude and latitude) of the j-analog
state, which is defined as x(tj) � [xl(tj), . . . , xD(tj)] with
the embedding dimension, D, in the dependent dataset;
[x1(t0), x2(t0)] is the position of the observed initial state.
The individual error, e(tj), has a close relation to the
verification error E [see Eq. (6)], but it is only used as
a sorting condition in step C.

Step B: In the second step the evaluation of the analog
forecasting scheme is described. Steps A and B together
form the basis for the analog forecast. Therefore, a met-
ric d(x(t0), x(tj)) is defined

D

2d[x(t ), x(t )] � G tanh[x (t ) � x (t )] (2)�0 j k k 0 k j
k

with the analog and observed states, x(tj) � [x1(tj), . . . ,
xD(tj)] and x(t0) � [x1(t0), . . . , xD(t0)], the real positive
metric weights, Gk, and the embedding dimension, D
(see section 3b). The hyperbolic tangent function is cho-
sen because it reduces the overlearning effects and saves
computational costs. The problem is to find the optimal
weights Gk (that is, to change the state space optimally)
so that the analogs found in the state space deliver the
best forecasts.

Step C: The scheme is improved by a learning rule

that optimizes the metric weights, modifying Fraedrich
and Rückert (1998) by including ensemble forecasts
with N ensemble members (ensemble size). In the fol-
lowing we have to distinguish between the expressions
‘‘near’’ and ‘‘best neighbor’’ of the reference state. The
former denotes an analog state with a small metric d
[see Eq. (2)], the latter a small corresponding forecast
error e(tj) [see Eq. (1)]. The (N � 1)-nearest neighbors
x(t1), . . . , x(tN�1) of the observed state x(t0) are iden-
tified within the dependent dataset. From these (N �
1)-nearest neighbours (a) the N-nearest neighbors are
selected and (b) with respect to their individual error
e(tj) the N-best neighbors are chosen discarding the
neighbor with the highest individual error. Note that the
number of the nearest and the best neighbor N is defined
by the ensemble size. The metric weights Gk are adapted
by comparing the squared distances, f k and bk, of the
N-nearest (n � 1, . . . , N) with the N-best (m � 1, . . . ,
N) ensemble members from the observed state x(t0):

N

2f � [x (t ) � x (t )] and�k k 0 k n
n�1

N

2b � [x (t ) � x (t )] . (3)�k k 0 k m
m�1

Then, the new metric weights are defined asG�k

� f �kG� � G , (4)k k �b �k

where the brackets denote the average over all states of
the dependent dataset. Note that the learning rule is
heuristic; that is, it is not guaranteed that new weights
find better analogs than the old ones. All states, even
those far away from each other, will try to improve the
weights. As a consequence there is an overlearning ef-
fect in some cases. That is, the mean forecast error grows
after passing a minimum, even though the weights are
still converging. This effect is reduced by introducing
the hyperbolic tangent function in Eq. (2). If the ar-
gument, [xk(t0) � xk(tj)]2, is small, tanh[xk(t0) � xk(tj)]2

is approximately [xk(t0) � xk(tj)]2, but for large values
the hyperbolic tangent function is limited by one.

Step D: This last step uses this learning rule iteratively
to optimize the metric, starting with the Euclidean met-
ric Gk � 1 (for k � 1, . . . , D), until a certain threshold
is achieved. Here, no defined threshold is used, but a
more subjective method is applied, which iterates the
scheme 400 times and then uses the metric weights that
achieve a minimum in the dependent dataset error
[� e(tj) for all ensemble members averaged over the
dependent dataset]. If the metric weights are optimally
adapted, the forecast analogs are searched in this optimal
phase space.

Ensemble mean forecasts: The ensemble mean fore-
cast of the meridional and zonal position x1,2(t � i) is
defined by the arithmetic mean over all N ensemble
members at lead time i:
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TABLE 1. Phase space components of the analog model for the
Atlantic basin. Note that the maximum wind component (20) is not
included in the east Pacific basin; long in � north, lat in � east, zonal–
meridional displacements in km, wind in m s�1.

No. Content No. Content

1
2
3
4
5
6
7
8
9

10

lon(t0)
lat(t0)
	lon(�6 to 0 h)
	lat(�6 to 0 h)
lon(t0 � 6 h)
lat(t0 � 6 h)
	lon(�12 to �6 h)
	lat(�12 to �6 h)
lon(t0 � 12 h)
lat(t0 � 12 h)

11
12
13
14
15
16
17
18
19
20

	lon(�18 to �12 h)
	lat(�18 to �12 h)
lon(t0 � 18 h)
lat(t0 � 18 h)
	lon(�24 to �18 h)
	lat(�24 to �18 h)
lon(t0 � 24 h)
lat(t0 � 24 h)
Julian date
Max wind

N1
x (t � i) � x (t � i) � x (t ) � x (t ). (5)�1,2 1,2 j 1,2 0 1,2 jN j

Before estimating the final metric weights the number
of the ensemble members N (ensemble size) is chosen,
running the scheme several times with a different num-
ber N to obtain the optimal ensemble size, NBasin.

3. Tropical cyclone tracks: Data, model building,
and forecasting

Independent ensemble mean forecasts of the self-
adapting analog scheme are made after the model build-
ing process. The results are compared with two different
analog models (the best adapted analog, N � 1, and the
ensemble based on the Euclidean metric) and the CLI-
PER reference model.

a. Data

The dataset for the Atlantic and east Pacific basins
(National Hurricane Center, Miami, FL) contains the
following parameters: the zonal and meridional position
of the cyclone center, the date and time (UTC), maxi-
mum sustained wind speed (kt), and central pressure
(hPa) every 6 h. The central pressure is not always
available in the datasets and therefore not used in this
study. Due to data inhomogeneities, the wind speed in
the east Pacific basin dataset is also not used; in the east
Pacific basin, the wind speed of the presatellite era (up
to 1969) enters in classes of 25, 45, and 75 kt though
later a more detailed range of wind speed classes is
available. All data are the so-called best track data, that
is, the final archived track of a storm after all infor-
mation are examined. The accuracy of the data has
changed since the beginning of the registration of trop-
ical cyclones due to better monitoring facilities (e.g.,
satellites). However, the need for large datasets calls for
using the less accurate data (Aberson 1998). Thus, the
Atlantic basin set contains 28 643 observations from
1886 to 1996; the east Pacific basin set holds 16 188
observations in the 1949–96 period (for more details,
see Jarvinen et al. 1984; Brown and Leftwich 1982).

b. Model building: Embedding dimension, ensemble
size, and metric weights

Before building the self-adapting analog scheme the
dimension of the phase space needs to be defined. The
embedding theorem (see Sauer et al. 1991) requires a
sufficient embedding dimension D � 2Da � 1, where
Da is the attractor dimension of the underlying dynam-
ical system. It guarantees that D observed variables span
a state space that completely embeds the dynamical sys-
tem. The only available estimates on the dimension of
tropical cyclone tracks suggest Da 
 8 (Fraedrich and
Leslie 1989), which leads to an embedding dimension
of D 
 17. This dimension derived for the Australia

regions is applicable to other basins assuming the cy-
clone track forecasts in the Australia region to be more
difficult than in other regions. So the dimension used
is expected to be an upper limit. Each entry in the dataset
provides the following four parameters: zonal and me-
ridional position, the time, and the maximum sustained
wind speed. The displacements for a time lag of 6 h are
used up to 24 h in the past, which leads to two positions
and 16 displacements. Furthermore, the Julian date and,
for the Atlantic basin, the current maximum sustained
wind speed are included. Thus the Atlantic basin phase
space has 20 dimensions and the east Pacific basin phase
space has 19. The components (listed in Table 1) are
used as input parameters in the self-adapting analog
scheme.

In the next step the dataset is divided into a dependent
dataset and an independent verification set. The verifi-
cation set contains all states from 1989 to 1996, with a
total of 1566 usable states in the Atlantic basin and 2019
in the east Pacific basin. A state is considered usable if
the lifetime of the individual storm equals or exceeds
the forecast period (72 h) plus 24 h for defining the
state. The dependent datasets consist of the remaining
record, with 12 671 states in the Atlantic basin (begin-
ning in 1886) and 4701 states since 1949 in the east
Pacific basin. The optimal number of ensemble members
(ensemble size) is derived for both basins by applying
the self-adapting analog scheme several times and in-
creasing the number of ensemble members from 1 to
30. The optimal ensemble size is reached when the cor-
responding self-adapting scheme achieves the best per-
formance within the verification dataset. The number of
the ensemble members for the Atlantic is NATL � 18,
and for the east Pacific basin is NEP � 22. A time lag
of at least 5 days (120 h) between the observation and
analog or between two analogs is used to find the nearest
independent neighbors in space but not in time. Now,
the scheme is run 400 times to find the optimal metric
weights. In Fig. 1 the dependent dataset error, that is
the sum of the individual forecast error for all ensemble
members averaged over the dependent dataset, versus
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FIG. 1. The dependent dataset error (unit in deg2) vs iteration step
(Atlantic basin); optimal weights are attained at 380 iterations (dia-
monds).

FIG. 2. Weights associated with the phase space components (Table
1) of the self-adapting analog scheme: (a) Atlantic and (b) east Pacific
basins; dashed lines show initial Euclidean weights.

iteration step is shown for the Atlantic basin to illustrate
the performance gain applying the self-adapting scheme.

The metric weights obtained by the self-adapting
scheme show similar behavior in both basins (Fig. 2):
The most important component is the zonal displace-
ment during the last 6 h, followed by the meridional
displacement during the last 6 h. The other zonal and
meridional displacements, the Julian date, and the max-
imum sustained wind speed in the Atlantic basin are
more important than the positions. The main difference
between the basins is that in the east Pacific basin the
weights for the zonal movement are larger than the ones
for meridional displacements.

c. Forecast and verification

The performance of the self-adapting analog model
is estimated utilizing the independent dataset. It is char-
acterized by the average great circle distance �EANALOG�
between predicted position and the observed best track
position. The great circle distance (km) is

�1E � 111cos [sin(y ) sin(y )MODEL 0 f

� cos(y ) cos(y ) cos(x � x )], (6)0 f 0 f

where (x0, y0) is the observed zonal and meridional best
track position and (xf , yf ) the forecast position. In ad-
dition, the skill score s is introduced to compare the
performance of the analog scheme with a reference mod-
el �Eref�. A positive skill score denotes that the analog
model is better than the reference and vice versa:

�E � � �E �ref ANALOGs � 100 . (7)
�E �ref

For the two selected basins, CLIPER-type models (Neu-
mann 1972; Neumann and Pelissier 1981a,b; Pike 1987;
Pike and Neumann 1987) are chosen as a reference mod-
el. They predict the zonal and meridional displacements
of the cyclones, depending on climatology and persis-
tence of the storm. The underlying methodology of CLI-
PER-type models is a linear regression scheme using,
as potential covariates, eight variables and their products
up to third order. These variables are the actual position,
zonal and meridional displacement during the last 24 h,
Julian date, and maximum sustained wind speed. To
reduce the number of covariates, only those that account
for more than 1% of the incremental variance are em-
ployed. This leads to 7 covariates for zonal and 13 for
meridional direction in the Atlantic basin. For the east
Pacific basin, the east Pacific Climatology Persistence
model (EP-CLIPER; Neumann and Leftwich 1977) is
used with the same potential set of covariates as in the
Atlantic basin, except for wind speed, which is not avail-
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FIG. 3. (a), (c) Skill score and (b), (d) forecast error in (a), (b) the Atlantic and (c), (d) the east Pacific basins with
lead time for the best track independent dataset: Self-adapting analog ensemble forecasts (plus signs), best adapted
analog (triangles), ensemble with Euclidean metric (squares), and CLIPER (diamonds).

able. In contrast to the Atlantic all covariates are used
up to second order, leading to 36 covariates in the EP-
CLIPER. Neumann and Leftwich (1977) point out that
the use of 36 covariates gave better operational results
rather than the use of a 1% cutoff in selecting predictors.

Two sets of forecast experiments are performed: (i)
The ideal forecasts utilize initial best tracks and (ii) the
simulated operational forecasts employ noisy initial
tracks, because under operational conditions, best track
data are not available. For both forecasts i and ii the
errors are determined by best track comparison. To sim-
ulate real-time conditions, Gaussian white noise is add-
ed to the best track as initial uncertainties before em-
ploying the analog scheme and the CLIPER reference.
The white noise intensity is prescribed by the mean

distance between best track and operational data, and
the related wind speeds, that is, 35 km and 10 knots
(Neumann 1981).

d. Results

The results of the forecast experiments are presented
for the independent verification set for best track data
(Fig. 3) and simulated operational data (Fig. 4). Figures
3a–d show improvements obtained by the self-adapting
analog ensemble forecasts (plus signs) over the best
adapted analog model (triangles) and the ensemble fore-
casts based on the Euclidean metric (squares). Com-
pared with CLIPER (diamonds) the self-adapting analog
scheme reveals positive (negative) skill in the east Pa-
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FIG. 4. Skill score in (a) the Atlantic and (b) the east Pacific basins with lead time: Self-adapting analog ensemble
forecasts for best track independent dataset (plus signs), for simulated operational independent dataset (triangles), and
CLIPER (diamonds).

cific (Atlantic) basin. More details are noted in the fol-
lowing:

R In the east Pacific (Fig. 3d) and Atlantic (Fig. 3b)
basins the great circle error of the ensemble mean
forecasts (plus signs) obtained by the self-adapting
model grows from about 120 km (190 km) at 24 h to
450 km (780 km) at 72 h.

R The self-adapting analog ensemble forecasts (plus
signs) gains 35% skill over the best adapted analog
model (triangles) for all lead times. Compared with
the ensemble forecasts based on the Euclidean metric
(squares) the skill gain decreases with lead time from
35% at 24 h to 10% at 72 h for both basins. That is,
both the optimal ensemble size and the best weights
substantially improve the analog forecasts.

R Compared to the performance of the reference models,
the self-adapting ensemble model performed quite dif-
ferently in the two basins. In the east Pacific basin,
the skill score is positive and varies between 15% and
20% (Fig. 3c). This corresponds to a great circle error
reduction of up to 120 km. At a lead time of 72 h,
the self-adapting ensemble forecasts gain 12 h com-
pared to the forecast of the EP-CLIPER model (Fig.
3d). In the Atlantic basin, however, a small negative
skill score is found. It increases from �10% at 12 h
to �3% at 72 h (Fig. 3a) enhancing the great circle
error by about 25 km at 72 h (Fig. 3b). We have no
explanation for the different performance behavior in
the two basins. A factor might be related to the more
climatological tracks in the east Pacific compared to
the Atlantic. Also the meridional component in the
Atlantic, which has larger weights in the scheme than
the zonal component (and vice versa in the east Pa-
cific), might cause the difference (see Fig. 2).

The simulated operational trials (with white noise be-
ing added to the initial best tracks) yield the following
results: In both basins the absolute forecast errors of the
self-adapting and the CLIPER model are increased com-
pared to the results using independent best track data.
The forecasts of the self-adapting analog model, how-
ever, are better than the ones of CLIPER utilizing on
the same simulated operational dataset. In particular, in
the Atlantic basin the ensemble mean forecasts of the
self-adapting model achieve a distinct improvement
over CLIPER (Fig. 4a). In the east Pacific basin, there
is also an improvement over CLIPER; the skill score
decreases up to 36 h and increases again for larger lead
times (Fig. 4b).

4. Discussion and conclusions

A self-adapting analog forecast scheme is utilized for
ensemble predictions of the tropical cyclones tracks in
the Atlantic and east Pacific basins. Starting with the
Euclidean metric and a given set of states defined by
the best track data, the model learns how to weight the
components of the predictor states by minimizing the
forecast error. The weights, which result from the self-
adapting scheme, are an indication of the importance of
the corresponding components. They show that the dis-
placements, the intensity, and the season are more im-
portant for the analog search than the actual position of
the cyclone center. Unlike the east Pacific basin where
movements are more zonal, the meridional components
are more important in the Atlantic basin with recur-
vature occuring frequently.

When comparing different analog models, it has been
shown that both ensemble forecasting and metric adap-
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tion lead to substantial forecast improvement. Compar-
ing the self-adapting ensemble forecasts with the CLI-
PER reference predictions using best track data as an
independent verification set shows different results for
the two basins with positive (negative) skill in the east
Pacific (Atlantic). Applying the CLIPER and the self-
adapting analog model to simulated operational data
with white noise added to the initial best tracks, the self-
adapting ensemble forecasts provide positive skill
scores for both basins (compared to CLIPER), showing
that the self-adapting ensemble model is not as sensitive
to noisy data as the CLIPER-type model. Nevertheless,
the real value of the model needs to be tested under
operational conditions.
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