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ABSTRACT

Two statistical single-station short-term forecast schemes are introduced and applied to real-time weather
prediction. A multiple regression model (R model) predicting the temperature anomaly and a multiple regression
Markov model (M model) forecasting the probability of precipitation are shown. The following forecast ex-
periments conducted for central European weather stations are analyzed: (a) The single-station performance of
the statistical models, (b) a linear error minimizing combination of independent forecasts of numerical weather
prediction and statistical models, and (c) the forecast representation for a region deduced by applying a suitable
interpolation technique. This leads to an operational weather forecasting system for the temperature anomaly
and the probability of precipitation; the statistical techniques demonstrated provide a potential for future ap-
plications in operational weather forecasts.

1. Introduction

Although, in general, numerical weather prediction
(NWP) models are hard to beat in very short-term fore-
casting (up to 24 h), they do require a substantial amount
of computation time and the model forecasts are not
always stable at this timescale. In contrast, statistical
schemes require little computation time to make a fore-
cast and are adapted to the station’s climate but, in gen-
eral, do not include nonlinear behavior. Another im-
portant advantage of statistical methods over NWP mod-
els is that the latter often produces biased forecasts,
whereas the former are usually unbiased.

Due to some of these obvious advantages, statistical
methods have a long application history (Murphy 1998).
This paper builds on a series of studies conducted in
the past, starting with a Markov-chain model predicting
daily rainfall for a single station (Gabriel and Neumann
1962). Fraedrich and Müller (1983) extended this model
type to predict sunshine periods and probability of pre-
cipitation (PoP). This and related studies led to the in-
troduction of these techniques in weather services (Mill-
er 1984; Miller and Leslie 1984; Hess et al. 1989). Be-
sides probability of precipitation and daily sunshine, the
temperature plays obviously an important role in prac-
tical weather forecasting. Therefore, many have applied
statistical methods to 6–24-h temperature forecasting
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(Wilson 1985; Dallavalle 1996; Knüpffer 1996) as well
as the long-term prediction (more than a month ahead)
of monthly mean temperature (Nicholls 1980; Navato
1981; Madden 1981; Norton 1985). Thus, the first pur-
pose of this paper is to set up a statistical model of
short-term forecasting of the temperature anomaly and
the PoP, and to verify these forecasts. Motivated by the
forecast improvements achieved by combining inde-
pendent short-term prediction schemes (Fraedrich and
Leslie 1987a), a second purpose of this paper is to show
the skill gained in linearly combining these statistical
forecasts with the NWP model forecasts, the latter of
which is the direct model output (DMO) of the Europe
model (EM) of the German Weather Service (DWD).
This offers an alternative to the widely used model out-
put statistics (Glahn and Lowry 1972). Finally, the third
aim is to provide and illustrate the performance of an
operational statistical weather forecasting system that,
associated with an interpolation method (Smith and
Wessel 1990), leads to areal short-term predictions.

The outline of the paper is as follows: After a brief
description of the database (section 2) the statistical
models are introduced (section 3). The focus lies on the
multiple regression technique for forecasting tempera-
ture anomalies and a brief review is given for the mul-
tiple regression Markov model to predict the probability
of precipitation. These two statistical models are applied
to single weather stations and results are presented for
Hamburg Fuhlsbüttel as an example. In section 4, these
forecasts are combined with the NWP model forecasts
of the EM to improve the forecast accuracy. In section
5 the two statistical methods are applied to several
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FIG. 1. Construction of the NWP time series; the bold arrows refer
to the example described in the text.

FIG. 2. Mean annual temperature cycle for the main observation
times at Hamburg Fuhlsbüttel.

weather stations of central Europe to obtain an areal
forecast for this region. Finally, section 6 summarizes
the results and highlights the important features.

2. Data

The observed data (time series) of 68 DWD stations
are used for model building and forecast experiments.
These observed data contain the standard synoptic pa-
rameters at 6-hourly intervals with sample lengths vary-
ing between 8 and 46 yr. The longest time series data
is available for Hamburg Fuhlsbüttel and is used to pre-
sent and verify the different statistical models for tem-
perature anomalies and probability of precipitation, and
for the model combination. The combination is based
on numerical weather predictions utilizing forecasts of
the EM (Majewski 1991). This time series of model
data starts in 1991 and ends in 1995. It contains, among
other parameters, the 2-m temperature to the nearest
1/108C and four different types of precipitation, con-
vective rain, convective snow, large-scale rain, and
large-scale snow, to the nearest 1/10-mm. Therefore, the
NWP probability of precipitation is defined as either 0
or 1, if any one of these four parameters has a value
greater than 0 mm. The EM runs daily at 0000 UTC.
Each run generates forecasts at 6-h intervals for pro-
jections of 6–48 h. To obtain forecasts for the missing
generating times 0600, 1200, and 1800 UTC we use the
forecasts of the corresponding 0000 UTC EM run. For
example, the 6-h prediction at the 1200 UTC start time
uses the 18-h prediction of the 0000 UTC run (see Fig.
1).

Strictly, the modified NWP time series cannot be
compared with time series of forecasts of other models.
This obvious disadvantage is outweighted by the ad-
vantage of updating the forecasts with new observations.

3. Single-station models

Statistical single-station forecast models are devel-
oped for both the temperature and the probability of
precipitation. A multiple regression technique is used

for the prediction of temperature anomalies (R model).
This technique, in combination with a Markov process,
is used to predict PoP (M model). After a description
of the two models, the performance is presented using
the weather station Hamburg Fuhlsbüttel as an example.
A particular emphasis is taken on the joint (probability)
distributions of forecasts and observations (Murphy and
Winkler 1987). The denoted marginal and conditional
distributions are used ‘‘to identify the strengths and
weaknesses in the forecasts to provide the modeler and
forecaster with feedback and a basis for improving the
quality of such predictions’’ (Murphy et al. 1989). Fur-
thermore, the skill of both models is analyzed with ref-
erence to simple standard forecast models, like the cli-
mate mean and persistence.

a. Temperature forecast: Multiple regression
model and its verification

A multiple regression method (backward elimination)
is used to build the forecast model for temperature
anomalies. The anomalies are defined as deviations from
a mean averaged over all years ( j 5 1, 2, . . . , J) for
a given calendar day (i 5 1, 2, . . . , 366) and each
observation time (k 5 0000, 0600, 1200, 1800 UTC)
separately. Thus, for a certain day i of a year j at the
main observation time k one obtains the temperature
anomaly TAijk:

J1
T 5 T 2 T 5 T 2 T , (1)OAijk ijk ijk ijk ijkJ j51

where Tijk is the observed temperature. To smooth these
four annual cycles (Fig. 2) associated with the four main
observation time k, a 7-day running mean is applied.
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TABLE 1. The 12 covariates sorted with respect to their importance
for the single-station temperature prediction; the regression coeffi-
cient refers to the 12-h forecast of the annual Hamburg Fuhlsbüttel
model.

No. Type of covariate
Regression
coefficient

1
2
3
4
5

Temperature anomaly (1/108C)
Cloud cover (0–9 synop code)
Ceiling (0–9 synop code)
Zonal wind (Kt)
Type of middle clouds (0–9 synop code)

0.612
1.856

21.063
20.188
21.306

6
7
8
9

10

Type of low clouds (0–9 synop code)
Dewpoint anomaly (1/108C)
Pressure (DPa)
Meridional wind (Kt)
Cosine of the date

20.921
20.352

0.579
0.282
2.426

11
12

LOG [Visibility (m) 1 1]
Sine of the date

20.605
0.464

1) MULTIPLE REGRESSION MODEL

A classic multiple regression scheme (Draper and
Smith 1981; Perrone and Miller 1985; Wilks 1995; von
Storch and Zwiers 1998) is applied to each of the four
temperature anomalies and to the whole year (annual
model). In addition, it is possible to fit the model for
each individual season (winter is defined as December–
February; spring as March–May; summer as June–Au-
gust; and fall as September–November); this will only
be used for the application of the areal forecast (section
5). Furthermore, the time series data is divided into a
model building part (1949–79) and an independent ver-
ification part (say 1980 to 1995 for Hamburg Fuhls-
büttel). The standard routine synoptic observation pro-
vides 20 parameters for applying the regression scheme.
For practical use the number of covariates (or predic-
tors) is reduced as follows: First, the comprehensive
version of the model is built with all 20 covariates.
Second, the covariates are sorted with respect to their
importance [see Eq. (2)] using only the 0000 UTC start
time with the 12-h projection. Third, models are recon-
structed by successively reducing the number of the less
important covariates. Fourth, the final model version is
obtained when its rms errors (for all start and lead time
combinations in the independent dataset) begin to show
changes in the second digit (compared with the com-
prehensive model performance). Here it should be not-
ed, that the ranking of the predictors [with respect to
their importance, Eq. (2)] is different for each combi-
nation of start and lead times. Thus, a set of 12 re-
gression coefficients are estimated for each start time
(0000, 0600, 1200, and 1800 UTC) and for the 6-, 12-,
18-, and 24-h forecast projections. There are two types
of covariates: (a) direct use of the synoptic data (e.g.,
cloud cover from the 0–9 synoptic code number as the
predictor value) and (b) derived covariates. We use the
dewpoint anomaly (treated exactly like the temperature)
and the pressure anomaly from long-term annual mean
value. The natural logarithm is applied to the covariate
visibility due to the exponential characteristics (which
is also shown in the use of the exponential code table).
The meridional and zonal wind is derived from the wind
speed and the wind direction.

Table 1 shows the 12 input covariates taken at the
observation time 0000 UTC for the 12-h prediction of
the annual Hamburg Fuhlsbüttel model. The covariates
(i 5 1, . . . , 12) are sorted with respect to their impor-
tance Ii, which is defined as

T

2I 5 (a X ) , (2)Oi i it
t51

where the ai are the corresponding regression coeffi-
cients and the Xit are the values of the covariates and
all cases t 5 1, . . . , T in the independent forecast sam-
ple. Additionally, Table 1 shows the corresponding re-
gression coefficients for the 0000 UTC observation time
and the 12-h forecast. The temperature is the most im-

portant covariate representing the persistence of the sys-
tem. If a positive anomaly is observed, the positive re-
gression coefficient causes a positive contribution for
the forecast. The other covariates represent the clima-
tological setting of the station. For example, the merid-
ional wind component contributes negatively to the fore-
cast. Two artificial covariates—the sine and cosine of
the date—are used to test whether there is a remaining
small contribution to the annual cycle, which appears
not to be the case so that the main part of the annual
cycle is excluded when utilizing temperature anomalies.

2) FORECAST VERIFICATION

The basis of forecast verification for the independent
sample 1980–95 is the joint distribution of the forecasts
and the observations, from which the traditional sum-
mary performance measures can be deduced.

In Fig. 3 the bivariate histogram for the 12-h predic-
tions versus observations is presented for the annual R
model together with the corresponding scatter diagram
using 18C class intervals. The scatter about the diagonal
gives a qualitative impression of the model reliability.
Note that even for extreme anomaly conditions the scat-
ter does not increase essentially and the joint distribution
appears to be symmetric about and along the diagonal.
We recognize that the dispersion of the errors is nearly
Gaussian around the climate mean state of zero tem-
perature anomaly indicating minimal or no forecast er-
rors. The largest joint relative frequencies occur in the
domain where the error between observation and fore-
cast is below 18C. Thus, all off-diagonal frequencies of
the joint distribution correspond to forecasts with errors
larger than 18C. Adding all relative frequencies of the
error interval 628C, we obtain 80% of the 6-h forecasts
(not shown) and 70% of the 12-h forecasts. The 18- and
24-h predictions (not displayed) show similar behavior
with the difference being, that the joint distributions
become wider and plainer due to deteriorating forecast
accuracy.
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FIG. 3. The bivariate histogram of the joint distribution of the 12-h
forecasts vs the observations and the corresponding scatter diagram
for an annual model of Hamburg Fuhlsbüttel for the independent
sample (1980–95).

TABLE 3. Definition of the classes for the weather states using codes
of the World Meteorological Organization.

First-order Markov chain with 3 classes

Class WW CL W1

Cumulus
Stratus
Rain

0
1
2

00–16, 18, 19–24, 28, and 30–49
00–16, 18, 19–24, 28, and 30–49

17, 25–27, 29, and 50–99

0–4
5–9

0–4
0–4
5–9

TABLE 2. Rms errors and correlation coefficient of all models and prediction lead times.

Forecast model

Rms error (8C)
(h)

0 6 12 18 24

Correlation coefficient (%)
(h)

0 6 12 18 24

Climate
6-h persistence
AR (1) process
R model

3.9
0.0
0.0
0.0

3.9
2.2
2.1
1.7

3.9
2.9
2.7
2.2

3.9
3.0
2.8
2.4

3.9
3.1
2.9
2.7

—
100.0
100.0
100.0

—
84.4
84.6
89.0

—
73.1
73.1
81.6

—
70.5
70.7
76.3

—
69.0
69.0
71.2

As indicated above, traditional performance measures
also play an important role in verification schemes.
Moreover, they are summary measures of the joint dis-
tributions and can facilitate comparisons among pre-
diction lead times and between different models. Table
2 shows the root-mean-square error (rms error) and the
correlation coefficient between observations and fore-
casts. In this context the rms error is more important,
because the correlation coefficient is more phase and
less amplitude dependent. The R-model disposes of the
highest accuracy for all lead times. The 6-h persistence
and the first-order autoregressive or AR(1) process,
which is a combination of an optimally weighted per-
sistence and climate model plus white noise, show the
same behavior. Only the climate mean forecast has an
initial error due to the concept of this model. The per-
formance of the 6-h persistence model indicates the sys-
tem’s tendency to remain in its initial state. The im-
provement of the AR(1) process being significantly low-
er compared to the R-model justifies the use of the more
complicated R model.

b. PoP forecasts: Multiple regression Markov
model and its verification

The PoP forecast technique is based on Markov-chain
models (Gabriel and Neumann 1962; Fraedrich and
Müller 1983) utilizing time series Xt 5 i, which can be
defined for discrete states i (h or j) 5 1, . . . , s occurring
at discrete time steps t 5 1, . . . , n (or m). In the theory
of Markov chains, see, for example, Kemeny et al.
(1976), the observed event Xt 5 i, which can be regarded
as the outcome of a trial at time t, depends only on the
outcome of the directly preceding trial t 2 1. Thus, the
outcome is not associated with a fixed probability, but
with a pair corresponding to a conditional (or transition)
probability (prob):

prob(X 5 j | X 5 h, . . . , X 5 i)t 1 t21

5 prob(X 5 j | X 5 i) 5 p . (3)t t21 ij

The transition probabilities pij can be estimated by
the maximum likelihood method (Anderson and Good-
man 1958; Kemeny et al. 1976). Thus, the Markov-chain
model consists of a transition probability matrix map-
ping an initial state probability vector linearly into a
predicted state probability vector that defines a proba-
bility distribution: the vector components correspond to
discrete classes or states i 5 1, . . . , s of the probability
distribution; they are nonnegative and sum up to unity.

In this study, the Markov-chain model utilizes three
classes of discrete weather states (cumulus, stratus, and
rain; see Table 3), which are mutually exclusive and
collectively exhaustive.

Combining the two variables W1 (weather condition
of the past 6 h) and WW (weather condition of the
observation time) has the advantage that they cover the
whole 6-h time interval compared to the amount of rain
(RR) frequently measured over a 12-h interval (World
Meteorological Organization 1988). The division of the
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TABLE 4. Ranked list of the covariates.

No. Type of covariate
Regression
coefficient

1
2
3
4
5
6
7
8
9

10

Intercept
Cloud cover (0–9 synop code)
Pressure (DPa)
Log [Visibility (m) 1 1]
Ceiling (0–9 synop code)
Zonal wind (Kt)
Low clouds (0–9 synop code)
Low cover (0–9 synop code)
Pressure tendency (DPa)
Meridional wind (Kt)

0.5622
0.0382

20.0026
20.0030

0.0071
20.0019

0.0051
0.0030

20.0069
0.0027

11
12

Temperature (1/108C)
Dewpoint (1/108C)

20.0046
20.0008

‘‘no rain’’ class into two classes is supported by the fact
that the covariate, low clouds (CL), has a strong cor-
respondence with the precipitation. The initial condition
is defined with respect to the classes, WW and CL,
whereas the final condition uses WW, CL, and W1 to
determine the transition probabilities at the correspond-
ing lead time of a first-order Markov-chain model fore-
cast. For each class (0, 1, and 2) the Markov-chain mod-
el provides a transition probability for each forecast pro-
jection. For example, the 6-h forecast of an annual mod-
el yields for Hamburg Fulhsbüttel

p p p 0.61 0.24 0.15   ̂ ̂ ̂00 01 02
  ˆ(P) 5 p p p 5 0.17 0.50 0.33 .̂ ̂ ̂   10 11 12   

p p p 0.10 0.17 0.73 ̂ ̂ ̂ 20 21 22

For example, the probability of class 2 (rain) given an
observation of class 1 (stratus) is 33% for the next 6 h.

1) MULTIPLE REGRESSION MARKOV MODEL

This Markov-chain model is now extended by com-
bination with a standard multiple regression technique
(Miller 1984; Miller and Leslie 1985; Kirk and Frae-
drich 1998). The PoP (Kirk and Fraedrich 1998) for a
given state j 5 1, 2, 3 at current time t and for h hours
ahead is

12

PoP( j, t, h) 5 a ( j, t, h)X ( j, t, h), (4)O i i
i51

where Xi( j, t, h) are the covariates and ai( j, t, h) the
corresponding regression coefficients. These regression
coefficients are estimated for each class (cumulus, stra-
tus, and rain) and the 12 single-station standard synoptic
data. Like the R model, it is possible to establish sea-
sonal models (only used in section 5). This leads to 12
regression coefficients for each class and for each fore-
cast projection. In contrast to the temperature forecast
predicting for a time point (say the temperature in 6 h)
the PoP forecast predicts for a time interval (say the
PoP during the next 6-h time interval). Table 4 lists the
12 covariates of the 12-h prediction of an annual model

ranked in order of their importance. Here, the same
modifications apply to the synoptic parameters as for
the R-model, except for the temperature and the dew-
point anomalies being replaced by their actual values.

Note, that the covariate intercept, which is the most
important covariate, indicates the transition probability
that a pure Markov model would have without regres-
sion. All other covariates improve the performance of
the M model significantly and reflect the climatological
experience.

2) FORECAST VERIFICATION

To evaluate the PoP forecasts for the independent
sample 1980–95 the joint distribution p(d, f ) of ob-
servations d and forecasts f is decomposed into the two
conditional distributions p(d | f ), p(f | d) and the two
marginal distributions p(f ), p(d). The conditional dis-
tribution p(d | f ) of the observations given the forecasts
is called reliability; the conditional distribution p(f | d)
represents the forecasts given the observations and iden-
tifies as the discrimination ability or the conditional
sharpness (Murphy and Winkler 1987). The diagonal
line represents the perfect reliability, that is, p(d 5 1 | f )
5 f for all f. The lower panel of Fig. 4 displays the
reliability for 12-h prediction with small overforecasting
[f . p(d 5 1 | f )] at lower probabilities and small
underforecasting [f , p(d 5 1 | f )] for the rest.

The discrimination diagram illustrates that the model
is able to differentiate between dry and wet days but
that the general sharpness is relatively poor because the
climatological chance of rain for the next 12 h is almost
50% in Hamburg. The traditional performance measure
of probability forecasts, the half-Brier score (see Table
5), shows a significant improvement of the M model
over standard reference forecasts. Note that the PoP
forecasts are made for increasing time intervals (6, 12,
and 24 h).

4. Forecast combination

The numerical weather predictions and the single-
station stochastic model forecasts are combined in an
error minimizing fashion. This procedure consists of
two steps: downscaling and combination. The NWP
model forecasts are areal forecasts whereas the forecasts
of the statistical models are single-station forecasts. Be-
fore combination, it is necessary that these forecasts
possess the same spatial representation. That is, the
models’ forecasts needs to be compatible in their space
and time structure. Here, we apply the downscaling
method reducing an areal forecast to a point forecast.
This procedure is illustrated for the temperature anom-
aly at the station Hamburg Fuhlsbüttel. Next, the linear
combination scheme is applied (appendix) to the tem-
perature predictions (Thompson 1977; Fraedrich and
Smith 1989) and to probability forecasts following Frae-
drich and Leslie (1987a).
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FIG. 4. Sharpness (upper panel) and reliability (lower panel) dia-
grams for the 12-h forecast; black dots represent rain events and white
dots represent no-rain events; the shaded area is the region of positive
skill in relation to climate.

FIG. 5. Hamburg weather station (lower-left corner of the label) and
the surrounding nearest grid points of the NWP (Europe Model).

TABLE 6. The rms error in 8C of the NWP model forecasts for all
lead times of prediction.

Lead time
(h)

One
grid point

Four
grid points

Nine
grid points

6
12
18
24

2.8
2.9
3.0
2.9

5.0
5.1
5.1
5.1

3.3
3.4
3.4
3.4

TABLE 5. Half-Brier scores for PoP forecasts made by the M model
and standard reference forecasts for the weather station Hamburg
Fuhlsbüttel.

Forecast model 0 → 6 h 0 → 12 h 0 → 24 h

Climate
Persistence
Regression Markov

0.235
0.248
0.134

0.246
0.294
0.152

0.211
0.360
0.149

a. Downscaling

The observations at the station Hamburg Fuhlsbüttel
are compared with the forecasts of (a) nearest grid point
1, (b) with the mean of the nearest four grid points 1,
2, 3, 4, and (c) with the mean of the nearest nine grid
points 1, 2, . . . , 9 (see Fig. 5). The rms error for tem-
perature anomalies and the half-Brier score (Brier 1950)
for probability of precipitation are used as performance
measures.

Table 6 shows the rms errors of the NWP model
forecasts for all lead times. The highest accuracy of
2.88C is obtained by the prediction of the nearest grid
point only. It is almost lead time independent due to the
particular construction of the NWP time series (see Fig.

1). The high rms error values of the time series asso-
ciated with the four nearest grid points can be explained
by their position. Most of them are preferably situated
downstream of Hamburg and, therefore, underestimate
the effect of the prevailing westerly flow. The choice
of the nearest nine grid points compensates this effect,
but this time series does not achieve the accuracy of the
one with the nearest grid point. The values of this time
series represent an average over too large an area un-
derestimating local effects. Consequently, the time se-
ries built with the nearest grid point is the basis for the
combination scheme for the temperature anomaly and
also the probability of precipitation (not shown).

b. Combination of temperature forecasts

The important gains by the error minimizing com-
bination of two independent predictions are shown for
the forecasts f 1 based on the multiple regression tech-
nique and the forecasts f 2 of the nearest grid point of
the NWP model. The linear combination f* of these
two independent forecasts can be expressed as

f* 5 af 1 1 bf 2, (5)

where a and b are the corresponding weights (for more
details see the appendix). Again, the time series of the
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FIG. 6. Rms errors of independent temperature forecasts for all
models with increasing prediction lead time.

TABLE 7. The regression and NWP model weights, a and b, for
temperature forecast combination changing with increasing prediction
lead time.

Lead time
(h)

Weights

a b

6
12
18
24

0.95
0.74
0.64
0.49

0.07
0.28
0.36
0.46

FIG. 7. Line diagram of the half-Brier scores of all models with
increasing prediction lead time; initial errors are not included because
PoP forecasts are integral measures of the predicting lead time in-
terval.

weather station at Hamburg serves as an example to
demonstrate this scheme. Now, an increased model
building part (1949–91) for fitting the R model is used
because, for the combination, only the period 1991–95
is available. This latter period is divided into the fitting
part (1991–93) for the coefficients for the linear com-
bination and the independent verification part (1994–
95). To obtain stable results, the partitioning into dif-
ferent seasons is not applied.

Figure 6 presents the rms errors of the combination
forecasts and of the individual models used for the com-
bination scheme. In addition, some simple standard
models [climate, 6-h persistence, and the AR(1) process]
are also presented. The rms error of the NWP model
forecast is nearly constant. This results from the special
construction of the time series supplying the time res-
olution of 6 h. Note, that the initial error of the NWP
model forecasts cannot be estimated. For all lead times
the R model accuracy is superior to the one of the NWP
model that, however, decreases with increasing lead
time. The best accuracy is achieved by the combination
forecast. For the 6-h prediction the improvement can be
neglected compared to the R-forecast quality. For the
24-h prediction the improvement by combination reach-
es 14% compared to the R model alone and 17% com-
pared to the NWP model. Moreover, we see in Fig. 6
that the combination scheme gains nearly 12 h of lead
time over the R model alone.

The lead time dependence of the combination weights
a and b reflects the influence of the deterioration of the
R model compared with the constant skill of the NWP
model. In Table 7, the weight a corresponds with the
forecast of the R model and b with the NWP model.
The table shows that, for the 6-h forecast, the NWP
model forecast can almost be ignored but, with increas-
ing lead time, the importance of the NWP model in-
creases at the expense of the R forecasts. For the 24-h
prediction the weights attain similar magnitude, and the

contribution by each model to the combination is nearly
the same. The sum of the weights totals more than unity.
This implies that the NWP model forecasts have a cold
bias.

c. Combination of PoP forecasts

Statistical PoP forecasts and NWP model forecasts
are linearly combined following Fraedrich and Leslie
(1987a). The downscaling for PoP (not shown) suggests
also the EM time series built with the nearest grid point
of the four types of precipitation, convective rain, con-
vective snow, large-scale rain, and large-scale snow; if
any of these parameters is greater than 0 mm at the grid
point, PoP 5 1; PoP 5 0 otherwise.

The result for the combination of statistical PoP fore-
casts and NWP model forecasts is illustrated in Fig. 7.
The half-Brier score is displayed changing with increas-
ing integral lead time. Initial errors are not shown be-
cause PoP predicts a time interval. As recognized for
temperature anomaly forecasts, the highest improve-
ment using the combined forecast is achieved for the
24-h prediction with a gain of 18% compared to the
M-model alone and 33% compared to the NWP model.
Almost 18 h of lead time is gained via the combination
method over the M-model. We also see that the 24-h
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TABLE 8. The combination weight a of the PoP forecast changing
with increasing integral lead times.

Lead time
(h) Weight a

6
12
24

0.81
0.72
0.60

TABLE 9. Range of skill scores for all weather stations changing
with increasing lead time.

Lead time
(h)

Range of skill scores

Temp
anomaly

Probability of
precipitation

6
12
18
24

0.47–0.62
0.36–0.50
0.31–0.41
0.25–0.35

0.34–0.58
0.31–0.49
not available
0.25–0.39

FIG. 8. Infrared satelite image of central Europe for 12 Jan 1991.

predictions are more accurate than the 12-h forecasts.
This behavior can be explained by the fact that the rel-
ative frequency of rain has increased from the unfa-
vorable 50% level so that better predictions are possible.
This is also illustrated by the half-Brier score of the
climate mean forecast model.

For the linear combination forecast f* to be a prob-
abilistic variable (as the two individual PoP forecasts)
requires that the weights satisfy the relation a 1 b 5
1 (Fraedrich and Leslie 1987a). Therefore, the combi-

nation scheme utilizes the weights a for the M-model
forecasts and b 5 1 2 a for the NWP model predictions;
their magnitudes correspond with the accuracy of the
individual forecast model contributing to the combi-
nation. The change of a (see Table 8) with increasing
lead time also indicates the corresponding amount of
accuracy that each single forecast contributes to the
combination. The weight a of the M model decreases
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FIG. 9. (a) The 12-h temperature anomaly forecast for 12 Jan 1991 initialized at 0600 UTC in 28C contour intervals and (b) the difference
between the observation forecast of the temperature anomaly in 18C contour intervals; the corresponding temperature forecast is attached
to the weather stations.

with increasing lead time. The highest improvement can
be achieved, when both individual models have similar
skill.

5. Area forecasts: Method and case study

The R model and the M model are fitted for 68 weath-
er stations to deduce an areal forecast of temperature
anomaly and of probability of precipitation for central
Europe. Because of the different sample lengths, we
choose two-thirds of the time series data as the model
building part and one-third as the verification part.

a. Method

The interpolation technique of Smith and Wessel
(1990) based on continuous curvature splines in tension
is applied to both temperature and PoP forecasts of the
irregularly distributed stations of central Europe to ob-
tain areal forecasts. The performance range of the sta-
tistical models at these stations is presented in Table 9.
It contains the range of the skill scores of the temper-
ature anomaly and the PoP forecast based on rms errors
and half-Brier scores (Brier 1950); the climate model
is used as the reference model, because it represents the
variability of the single-station time series.

For the temperature anomaly the geographical distri-
bution of the skill scores is irregular; for the PoP fore-
casts we note the lower values in the northeast and the
higher values in the southwest part of central Europe
(the more continental part). Consequently, in the south-
west the PoP predictions appear more accurate than in
the northeast, which is influenced by the near coast. An
illustrated example of the areal forecast is demonstrated
by the following case study.

b. Case study (12 January 1991)

The synoptic situation is characterized by a strong
upper trough over the British Islands and the Biscay
with the zonal flow changing to a meridional one over
central Europe for 11 January 1991. The next day (Fig.
8), the trough moves eastward with its axis and the
associated cloud field extending from the Baltic Sea over
the east of the Pyrenees to North Africa so that, south
of the Danube, continuous rainfall and, in the north
western part of central Europe, showers are observed.
The area coverage, based on 68 weather stations, is
presented for the 12-h forecast initialized on the main
observation time 0600 UTC of 12 January. Figure 9a
shows the predicted temperature anomaly (contoured in
28C intervals) and at each station the predicted tem-
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FIG. 10. Same as Fig. 9a but for 12-h forecast of PoP; circles around the weather station mark rainfall events.
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perature (i.e., temperature anomaly plus long-term mean
for the given day and the given time of day). Figure 9b
shows the difference between the observation and the
forecast (in 18C intervals). Positive temperature anom-
alies are predicted for nearly the whole area increasing
from the northwestern to the southeastern part except
for central Europe. Comparison with the dominant
weather situation shows that this decline of the positive
temperature anomaly in the north of central Europe cor-
responds to the shift of the cloud field. The difference
between forecasts and observations shows errors smaller
than 62.58C for the 12-h prediction (61.58C for the
6-h forecast, not shown) in large areas of central Europe.
The highest differences between forecasts and obser-
vations appear in the Alpine region, which is due to the
short lengths of the time series (,10 yr) and the to-
pography. But 89% of the weather stations show a dif-
ference that lies inside with their individual standard
deviation bounds. In Fig. 10, the 12-h forecasts of PoP
are presented in 20% increments. The observation
‘‘rain,’’ as defined in Table 3, is marked by a shaded
circle at the corresponding station. The precipitation
south of the Danube, which is connected to the cloud
field, and the rainfall in the northeast of central Europe,
is well predicted (Fig. 10). The showers as subscale
effects, however, are not so well predicted in the western
part of central Europe in the second half of the day.

6. Summary and conclusions

Two statistical schemes are introduced for short-term
(up to 24 h) single-station forecasts: a multiple regres-
sion model predicting temperature anomalies and a
probability of precipitation forecast system. The veri-
fication of independent forecasts is shown in some detail
using the most accurate scheme for the weather station
Hamburg Fuhlsbüttel as an example. The verification
methods applied are outlined by Murphy and Winkler
(1987). The joint distribution allows an interpretation
of the forecast performance itself. Even if extreme tem-
perature anomalies are observed, the scatter of the cor-
responding forecasts increases only slightly. For ex-
ample, 80% of the 6-h forecasts lie in a range of 628C.
The rms error of the temperature forecasts achieves a
magnitude of 1.78C for the 6-h forecast (2.28C for the
12-h forecast) and the half-Brier score of the PoP fore-
casts yields 0.13 for the 6-h forecast (0.15 for the 12-h
forecast). The comparison with simple standard statis-
tical models like the climate mean shows a significant
improvement of accuracy obtained by the more ad-
vanced statistical models.

As the performance of the statistical models shows
good results, the linear combination of these models
with numerical weather predictions achieves further im-
provements in forecast accuracy. The combination tem-
perature forecasts yield a 14% gain for the 24-h pre-
diction with respect to the R model alone, and 17% gain
with respect to NWP model. The combined PoP forecast

achieves 18% with respect to the R model and 33% with
respect to NWP model. While statistical models based
only on observations are independent of NWP models,
the MOS technique, to provide the best results, requires
a recomputation whenever the NWP model is changing.
Therefore, the linear combination scheme offers an al-
ternative way to improve the direct model output (DMO)
instead of the widely used model output statistics or
Kalman filtering methods because only the weights need
to be recomputed whenever the NWP model version
changes.

The results of the statistical weather forecasting sys-
tem illustrate the possibility of deriving an areal forecast
for Europe using a standard interpolation technique that
is economical in computing time. Due to the small tech-
nical expense, such schemes may be suitably introduced
to regional weather forecast centers. Extensions are pos-
sible if the observations of neighboring weather stations
are included. An operational statistical system running
every 6 h is shown in the Internet (http://www.dkrz.de/
wetter/prognosen/).
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APPENDIX

Combination of Two Independent Predictions

The appendix describes the mathematical optimal lin-
ear method for combining two independent forecasts of
continuous variables. The derivation of the combination
scheme follows the method of Fraedrich and Leslie
(1987a) for probability forecasts and results by Thomp-
son (1977) and Fraedrich and Smith (1989).

Let f 1 and f 2 denote two independent forecasts of
the same event in the future (e.g., the temperature anom-
aly in 6 h, and d the corresponding observation of this
event). The aim of a linear combining scheme is to reach
a higher accuracy in predicting the observation d than
using each single forecast alone. For continuous vari-
ables, one of the classic measures of performance is the
ensemble mean square error (mse).

The linear combination f* of the two independent
forecasts can be expressed as

f* 5 af 1 1 bf 2, (A1)

with the weights a and b. The corresponding mse for
the combination forecast f* is
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2mse 5 ^(f 2 d) &*
2 2 2 2 25 ^a f 1 b f 1 d 1 2abf f 2 2af d 2 2bf d&1 2 1 2 1 2

2 2 2 2 25 a ^f & 1 b ^f & 1 ^d & 1 2ab^f f &1 2 1 2

2 2a^f d& 2 2b^f d&.1 2 (A2)

Here, ^f 1f 2& is the covariance between the forecasts
f 1 and f 2; ^f 1d& and ^f 2d& are the covariances between
either f 1 and the observation d or f 2 and the obser-
vation d. In addition, ^ & with i 5 1, 2 is the variance2f i

of the corresponding forecast and ^d2& is the variance
of the observation characterizing the time series. For a
time series of temperature anomalies ^d2& is the cli-
matological variability.

The objective of this combination scheme is to find
the optimal weights a and b. Therefore a and b are
chosen in such a manner that the mse is minimized by
the combination forecast. Regarding mse as a function
of a and b, the minimum can be found by deriving this
function:

]mse
25 2a^f & 1 2b^f f & 2 2^f d& 5 0 (A3)1 1 2 1]a

]mse
25 2b^f & 1 2a^f f & 2 2^f d& 5 0. (A4)2 1 2 2]b

Solving this system of equations yields to

2^f &^f d& 2^f f &^f d&2 1 1 2 2a 5 (A5)
2 2 2^f &^f & 2 (^f f &)1 2 1 2

2^f &^f d& 2 ^f f &^f d&1 2 1 2 1b 5 . (A6)
2 2 2^f &^f & 2 (^f f &)1 2 1 2

Note that the weights do not fulfill the condition a
1 b 5 1 like the optimal weights linearly combining
probability forecasts (Fraedrich and Leslie 1987a). This
condition of probability leads to only one unknown
weight a.
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