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Abstract. For the detection of climate change, not only the
magnitude of a trend signal is of significance. An essential
issue is the time period required by the trend to be detectable
in the first place. An illustrative measure for this is time of
emergence (ToE), that is, the point in time when a signal fi-
nally emerges from the background noise of natural variabil-
ity. We investigate the ToE of trend signals in different bio-
geochemical and physical surface variables utilizing a multi-
model ensemble comprising simulations of 17 Earth system
models (ESMs). We find that signals in ocean biogeochem-
ical variables emerge on much shorter timescales than the
physical variable sea surface temperature (SST). The ToE
patterns ofpCO2 and pH are spatially very similar to DIC
(dissolved inorganic carbon), yet the trends emerge much
faster – after roughly 12 yr for the majority of the global
ocean area, compared to between 10 and 30 yr for DIC. ToE
of 45–90 yr are even larger for SST. In general, the back-
ground noise is of higher importance in determining ToE
than the strength of the trend signal. In areas with high nat-
ural variability, even strong trends both in the physical cli-
mate and carbon cycle system are masked by variability over
decadal timescales. In contrast to the trend, natural variabil-
ity is affected by the seasonal cycle. This has important im-
plications for observations, since it implies that intra-annual
variability could question the representativeness of irregu-
larly sampled seasonal measurements for the entire year and,
thus, the interpretation of observed trends.

1 Introduction

Since the beginning of the industrialization, the climate
system has undergone substantial changes. Responsible for
these changes is the CO2 emitted by mankind through com-

bustion of fossil fuels, land-use change and industrial pro-
cesses (e.g.,Hegerl et al., 2007), which have brought the
global carbon cycle out of steady state. The carbon cycle and
the physical climate system strongly interact with each other
(Joos et al., 1999), as illustrated by the manifold impacts of
climate change on the global oceans. In addition to sea-level
rise and ocean warming (e.g.,Hegerl et al., 2007; Levermann
et al., 2013; Dutkiewicz et al., 2013), we observe and model
carbon-cycle related ocean acidification (Steinacher et al.,
2009) and deoxygenation (Frölicher et al., 2009; Keeling
et al., 2010). Consequently, a sound knowledge of the joint
processes is a necessity not only for the correct detection of
past and present trends, but also for robust projections of the
future. Still, it remains a challenge to identify clear external
forcing signals. An important issue is the presence of inter-
nal variability, which has the potential to enhance or mask
forced trends in the atmosphere, land, or ocean (e.g.,Latif
et al., 1997; Raible et al., 2005; Frölicher et al., 2009; Dol-
man et al., 2010; Keller et al., 2012). For instance,McKinley
et al. (2011) stated that carbon dioxide trends in the North
Atlantic require 25 yr to exceed the range of decadal-scale
variability. The correct assessment of trends is complicated in
the ocean. Especially for the carbon cycle, observational data
are scarce and limited in both time and space. Accordingly,
models are often the only possibility to investigate trends and
variability on respective temporal and spatial scales.

The detection of forced trends in the climate or carbon
cycle system is a signal-to-noise problem (see, e.g.,Santer
et al., 2011, and references therein). For a successful detec-
tion, the signal has to be of a magnitude that durably ex-
ceeds the envelope of background variability. One possible
way to quantify this is the estimation of the time of emer-
gence (ToE) of a signal, that is, the point in time at which
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the ratio between signal (= trend) and noise (= background
variability) exceeds a certain threshold.

The ToE method has been applied to a number of phys-
ical variables such as surface air temperature (Karoly and
Wu, 2005; Diffenbaugh and Scherer, 2011; Mahlstein et al.,
2011, 2012; Hawkins and Sutton, 2012; Mora et al., 2013)
and precipitation (Giorgi and Bi, 2009), the combination of
these two variables being indicative of future climate change
hotspots (Diffenbaugh and Giorgi, 2012), or the imminent
shift of climate regions (Mahlstein et al., 2013). A com-
mon approach to estimate ToE is the comparison of mod-
eled noise (usually the standard deviation of an unforced
control simulation) and observed (Karoly and Wu, 2005) or
modeled (Mahlstein et al., 2011; Hawkins and Sutton, 2012)
trends. Other approaches derive both signal and noise from
the same observational time series (Mahlstein et al., 2011,
2012) or forced model simulation (Giorgi and Bi, 2009; Dif-
fenbaugh and Scherer, 2011; Diffenbaugh and Giorgi, 2012;
Mora et al., 2013).

In ocean biogeochemistry, the ToE method is not preva-
lent. Ilyina et al. (2009) and Ilyina and Zeebe(2012) ap-
plied a global biogeochemistry ocean model in combination
with an observation-derived detection threshold to investi-
gate the effect of imminent ocean acidification on carbonate
dissolution. Compared to present-day, they detected trends
in surface total alkalinity (TA) by 2040 and 2070, respec-
tively. Friedrich et al.(2012) used three Earth system mod-
els (ESMs) to detect anthropogenic trends in ocean acidifi-
cation, thereby the noise is defined as the amplitude of the
pre-industrial annual cycle. They concluded that, by 2010,
anthropogenic trends in the saturation state of aragonite (�A)
are already detectable in many parts of the global surface
ocean. An exception is the eastern equatorial Pacific, which
is strongly influenced by high ENSO-related natural vari-
ability. In line with these results, and based on a CMIP5
model ensemble,Mora et al. (2013) projected that global
mean pH exceeds the noise of historical variability by 2008
(±3 yr). Hereby, they defined the noise as the amplitude of
the minimum and maximum values of the historical sim-
ulation (1860–2005). Based on an eddy-resolving regional
ocean model,Hauri et al.(2013) investigated pH and�A in
the California Current System. For present-day, they found
that trends in both variables are already detectable with re-
spect to preindustrial variability levels.

Here, we utilize a model ensemble of 17 ESMs to investi-
gate the ToE of trends in surface ocean biogeochemistry. For
maximum comparability with the available observations, we
focus on three frequently measured carbon cycle variables,
dissolved inorganic carbon (DIC),pCO2 and pH, and sea-
surface temperature (SST). In the next section, models and
ToE methods are introduced. In the result section, we first
present the multi-model mean of the ideal case with respect
to observations, i.e., complete seasonal data coverage. Sec-
ondly, the impact of seasonality is addressed based on two
models. Finally, conclusions are given.

2 Methods

This study is based on an “ensemble of opportunity” com-
prising 17 Earth system models: NCAR CESM1 (Moore
et al., 2013), 5 models from the OCMIP5 framework: NCAR
CCSM3-BEC (Collins et al., 2006), NCAR CSM1.4-carbon
(Doney et al., 2006), BCCR BCM-C (Assmann et al., 2010),
IPSL-CM4 (Aumont et al., 2003) and COSMOS (Jungclaus
et al., 2006); and 11 CMIP5 models: (Taylor et al., 2011),
CanESM2 (Christian et al., 2010), GFDL-ESM2M (Dunne
et al., 2012), HadGEM2-CC and HadGEM2-ES (Palmer
and Totterdell, 2001), IPSL-CM5A-LR, IPSL-CM5A-MR
and IPSL-CM5B-LR (Séférian et al., 2013), MIROC-ESM
(Watanabe et al., 2011), MPI-ESM-LR and MPI-ESM-MR
(Ilyina et al., 2013), and NorESM1-ME (Tjiputra et al.,
2013).

We use historical simulations covering the years 1870–
1999 with annual resolution; for comparability, all model
output is regridded to a 1◦ × 1◦ grid. ToE is defined as

ToE= (2× N)/S , (1)

whereS is the trend andN a measure for variability.
For each grid cell,S is defined as the linear trend (per year)

over the period 1970–1999. A different approach is the com-
putation of the trend by applying a smoothing spline on the
time series; test calculations for 1970–1999 yield comparable
results. Figure1 exemplarily illustrates the two approaches
and the good agreement between them based on the model
NCAR CESM1. We note that by also applying the linear
trend from the 1970 to 1999 period in the future, any changes
in trends are not explicitly accounted for. Changes in trends
are likely to remain relatively small in the next few decades,
but trends will differ considerably between business-as-usual
and stringent mitigation scenarios by the end of this cen-
tury (e.g.,Steinacher et al., 2009; Cocco et al., 2013; Bopp
et al., 2013). ForN , the standard deviation (SD) over the en-
tire simulation, 1870–1999, is used. Prior to this last step,
the data are detrended via a spline approach (cut-off period:
40 yr;Enting, 1987).

For illustration purposes, we calculate ToE for DIC at a lo-
cation in the subtropical North Pacific (see also Fig.1). By in-
serting the respective values forS (0.94 mmol m−3 yr−1) and
N (7.24 mmol m−3), we obtain (2× 7.24)/0.94= 15.4 yr,
that is, a (rounded up) ToE of 16 yrs. The ensemble mean
of ToE is computed from the ToE of individual models, and
not from the ensemble mean ofS andN . Note that the pre-
sented ensemble mean patterns, i.e., the averages of all 17
models, are not necessarily physically consistent.

ToE is a measure for the point in time when the trend sig-
nal (S × ToE) exceeds two times the background variabil-
ity N – i.e., the approximate 95 % confidence interval of the
background variability. The choice of the detection thresh-
old differs between studies, other approaches are, for exam-
ple, one SD of seasonal or annual means (Hawkins and Sut-
ton, 2012), observation-based thresholds (Ilyina et al., 2009;
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Figure 1. NCAR CESM1: annual time series (light blue), corre-
sponding smoothing spline (dark blue), and linear trend (red) of
dissolved inorganic carbon (DIC; mmol m−3) at 22◦ N, 158◦ W, the
proximate location of the Hawaii Ocean Time-series (HOT;Keeling
et al., 2004). The grey bar represents two times the standard devia-
tion of the detrended time series (i.e., annual-spline). The spline is
calculated with a cut-off period of 40 yr. The linear trend is based
on the years 1970–1999 of annual, as indicated by the grey verti-
cal lines. The intersect between the red vertical line and the upper
border of the grey bar (x = 2015) shows when the trend leaves the
envelope of background variability and, from then on, is detectable.
Consequently, the ToE at this location is 16 yr (2015–1999).

Ilyina and Zeebe, 2012) or the range of the pre-industrial an-
nual cycle (Friedrich et al., 2012). Here, we use the rather
conservative value of two SDs of interannual variability. For
a threshold of one SD, the ToE would be half, accordingly.

By calculatingS over a time period of 30 yr, to a certain
degree we can rule out interference of low-frequency vari-
ability in the detection of the trend (see e.g.,McKinley et al.,
2011). A ToE of only a few decades, as is especially the
case for the three carbon cycle variables (see Sect.3.1), is
thus a strong indicator for the significance of the respective
trend. This is confirmed by a significance test (t test, 5 %
level) of the trend of the underlying 30 yr time series (not
shown): for all 17 models, all trends in pH are significant.
The trends inpCO2 are also significant, yet with localized in-
significant exceptions in the Southern Ocean (BCCR BCM-
C, IPSL-CM5A-MR) and the upwelling region off Peru and
Chile (CanESM2). Trends in DIC are significant in large
parts of the global oceans, exceptions are the high latitudes
and the equatorial Pacific. Statistically significant trends in
SST are less widespread and corresponding regional results
are highly model-dependent.

In using these definitions, we assume that (i) the trend
from 1970 to 1999 is linear, (ii) the SD is constant over time
and, by using annual averages, (iii) that trends and SD pat-
terns are comparable for annual, seasonal or monthly data.
To verify (i), the global trends of surface DIC and SST for
the period 1970–1999 are investigated. For all models, we
find that trends in global surface DIC can be represented by
a linear function. SST shows larger inter-annual variability,
yet likewise with a linear underlying trend. For (ii), we in-
vestigate the detrended data (1870–1999) of DIC and SST of
all 17 models (not shown). The comparison of SD fields cal-
culated for the first and second 65 yr (F test, 5 % level) illus-
trates that differences only occur in very localized instances,
consequently we suggest that this assumption is confirmed.
Assumption (iii) can be confirmed for the trend patterns. The
standard deviations, however, differ considerably in magni-
tude – we address this issue in Sect.3.2.

3 Results and discussion

In the ocean, observations are scarce and often limited in
time, e.g., to specific seasons. We address this by splitting
our analysis in two parts. First, the complete model ensem-
ble is used to investigate the “best case” with respect to ob-
servations, i.e., complete annual data coverage (Sect.3.1). In
a second step, and based on two individual models, the focus
is on the months January and July to estimate the impact of
seasonality (Sect.3.2).

3.1 ToE – ensemble mean

Figure2 shows the ensemble mean ToE patterns of dissolved
inorganic carbon (DIC),pCO2, pH and sea-surface tempera-
ture (SST), all variables on surface level. We find that trend
signals in the three carbon cycle variables emerge on much
shorter timescales than the physical climate variable SST.
The ToE pattern of SST is very noisy, varying typically be-
tween 45 and 90 yr. The exception are areas around the equa-
tor in the Atlantic, Indian and western Pacific Ocean, with
values of approximately 35 yr. A large coherent area with
ToE> 80 yr can be found in the (eastern) equatorial Pacific.
The trend in DIC appears in large parts of the global oceans
after approximately 10–30 yr; higher values are found at high
latitudes, especially the Arctic Ocean (≈ 50 yr), and local-
ized in the equatorial Pacific (up to≈ 70 yr). ToE ofpCO2
and pH show a very similar pattern. However, the trends
emerge much faster forpCO2 and pH than for DIC: after
≈ 12 yr for the majority of the global ocean area, 14–18 yr
in the Arctic Ocean and≈ 20 yr in the equatorial Pacific.
A likely reason for these different timescales of DIC and
pH/pCO2 are nonlinear processes in ocean chemistry de-
scribed by the buffer factor (or Revelle factor;Revelle and
Suess, 1957), which result in increases ofpCO2 of approxi-
mately 10 times the magnitude of the corresponding relative
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Figure 2. ToE (years) of dissolved inorganic carbon (DIC;
mmol m−3), sea-surface temperature (SST;◦C),pCO2 (ppmv), and
total pH. Ensemble mean, all variables on surface level. Note the
different scales for DIC/SST andpCO2/pH.

increases in DIC. In contrast to DIC, relatively high ToE val-
ues are found for bothpCO2 and pH in the Southern Ocean
and in the upwelling region off Peru and Chile (both regions,
localized> 30 yr). Taking past changes since the beginning
of the industrialization into account, the low ToE values, es-
pecially forpCO2 and pH, indicate that anthropogenic trends
are already detectable in large parts of the global surface
oceans. This is in agreement withMora et al.(2013) for pH
andFriedrich et al.(2012) concerning the saturation state of
aragonite (�A), another measure for ocean acidification.

A direct evaluation of ToE is difficult, if not impossible,
due to the lack of suitable observations. However, it is fea-
sible for the underlying fields signalS and noiseN (Fig. 3a
and3b). These two variables are of added value since they
allow determining the importance ofS and N for the re-
sulting ToE fields. The top row of Fig.3a and 3b shows
S, the trend/decade over the years 1970–1999, the second
row illustratesN , the standard deviation of the (detrended)
years 1870–1999. To evaluate these patterns, we compiled
a number of observations (Table1). These time series re-
markably illustrate the importance of natural variability. The
Bermuda Time Series Station (BATS), located near Bermuda
in the North Atlantic, and Station ALOHA, the site of the US
JGOFS Hawaii Ocean Time-series program (HOT) located
in the central North Pacific, contribute trends over multiple
yet overlapping time periods. It is striking how a different
start (BATS) or end (ALOHA) year can change the trend es-
timation of a time series. At ALOHA, trends of DIC and
SST even switch from negative to positive and vice versa,
depending on the time period. This issue is addressed in a re-
cent study byFay and McKinley(2013). These authors in-
vestigated trends in surface oceanpCO2 measurements be-
tween 1981 and 2010 for periods of 4 yr to up to 30 yr. They
found that, on shorter timescales, trends of surfacepCO2 are
sensitive to variability presumably linked to climatic oscil-
lations and, consequently, may vary between different peri-
ods. Accordingly, this caveat has to be taken into account
when comparing modeled and observed trends over relatively
short time periods. Fay and McKinley also find that the in-
fluence of climatic oscillations fades when analysis periods
are between 25 and 30 yr, as used in this study to determine
trends. We note that a direct comparison between the trend
signals computed by Fay and McKinley and our trend sig-
nal is hampered by the fact that Fay and McKinley use rela-
tively sparse observational data to determine trends. Conse-
quently, a comparison of modeled and observed trends has to
be undertaken with caution. For DIC, features like a stronger
trend at BATS compared to ESTOC are captured by the en-
semble mean. Overall, however, the models slightly under-
estimate the observed trends by up to 5 mmol m−3 yr−1. For
pCO2, both model mean and observations show robust pos-
itive trends for large parts of the global oceans. Yet, the en-
semble locally underestimates the observed trends, for exam-
ple at station ALOHA (with respect to 1988–2002: 10 ppmv).
For pH, the models capture the general trend , i.e., preva-
lent ocean acidification. Both models and observations il-
lustrate this with comparable negative values. For SST, the
model ensemble shows widespread positive trends, the ex-
ception is a localized area in the Southern Pacific. The ob-
served trends span a wide range from positive to negative,
due to natural variability as discussed above. A compari-
son of the positive observed values with the ensemble indi-
cates that models and observed time series are in the same
range of magnitude. Further, we utilize the SST fields of the
reanalysis data set HadISST1 (Rayner et al., 2003). Based

Biogeosciences, 11, 3647–3659, 2014 www.biogeosciences.net/11/3647/2014/



K. M. Keller et al.: ToE in ocean biogeochemistry 3651

Table 1.Observed trends/year of dissolved inorganic carbon (DIC; mmol m−3), pCO2 (ppmv or µatm), total pH and sea-surface temperature
(SST;◦C), all variables on surface level. Note that we include only directly measured DIC, that is, not salinity-normalized.

Region and years DIC pCO2 pH SST

North Atlantic
1983–2011 (BATS)a 1.53± 0.12 1.62± 0.21 −0.0016± 0.0022 −0.0075± 0.021
1988–2011 (BATS)b 1.51± 0.08 2.13± 0.16 −0.0022± 0.0002 −0.011± 0.002
1995–2004 (ESTOC)c 0.41± 0.12 1.55± 0.43 −0.0017± 0.0004 0.002± 0.019
1985–2008 (Iceland)d 1.44± 0.23 – −0.002± 0.005 –

North Pacific
1973–2005 (Line P)e – 1.36± 0.16 – –
1992–2008 (KNOT)f 1.3± 0.3 – – 0.039± 0.021
1994–2008g – 1.54± 0.33 −0.020± 0.007 –

Pacific (near Hawaii)
1988–1996 (ALOHA)h −0.24± 0.46 1.4± 0.2 – 0.02± 0.02
1988–2002 (ALOHA)h 2.64± 0.25 2.5± 0.1 – −0.02± 0.01
1988–2007 (ALOHA)i – 1.88± 0.16 −0.0019± 0.0002 0.026± 0.016

Equatorial Pacific
1974–2004 (Niño 3.4)j – 1.13± 0.31 – −0.01± 0.02
1974–2004 (WPWP)j – 1.91± 0.22 – 0.05± 0.01

Southern Ocean
1991–2007 (Indian Ocean)k – 2.11± 0.07 – −0.11± 0.03
1995–2008 (Indian/Pacific)l 1.0± 0.6 2.2± 0.2 – 0.01± 0.06
1998–2010 (Pacific)m 0.43± 1.17 1.1± 0.4 – −0.06± 0.02
2001–2008 (Atlantic)l 0.2± 0.3 0.2± 1.0 – 0.11± 0.12

a Bates et al.(2012), b Bates(2012), c Santana-Casiano et al.(2007), d Olafsson et al.(2009), e Wong et al.(2010), f Wakita et al.(2010), g

Ishii et al.(2011), h Keeling et al.(2004), i Dore et al.(2009), j Feely et al.(2006), k Metzl (2009), l Lenton et al.(2013),
m Brix et al. (2013).

on annual means, we calculate trend and standard deviation
over the period 1970–1999 (not shown). The ensemble mean
trend pattern captures the main features of the reanalysis,
with comparably strong trends in the equatorial and North
Pacific, and the North Atlantic. However, the modeled trends
are slightly lower and in general more homogeneous. The
reanalysis shows a stronger gradient between regions with
strong and very weak trends. Further, the reanalysis shows
negative trends in the Pacific from 20 to 40◦ N, which are
not present in the ensemble mean. Globally, we find a pattern
correlationr between model ensemble and reanalysis of 0.44
(90–20◦ S: 0.56; 20◦ S–20◦ N: 0.36; and 20–90◦ N: 0.68).
Concerning standard deviation, the picture is similar. Both
ensemble mean and reanalysis capture main variability fea-
tures such as the ENSO region or parts of the North Atlantic.
However, again the ensemble mean is more homogeneous.
The reanalysis indicates very low inter-annual variability in
the high latitudes, especially the Southern Ocean, which is
not the case for the model ensemble. We find a global pattern
correlationr of 0.88 (90–20◦ S: 0.82; 20◦ S–20◦ N: 0.81; and
20–90◦ N: 0.89).

To evaluateN , we can verify the presence of main char-
acteristics of natural variability. One prominent feature is El
Niño–Southern Oscillation (ENSO;Fiedler, 2002), located
in the equatorial Pacific. This climate mode, the most impor-

tant factor concerning natural variability in the climate sys-
tem on global scales, is known to have substantial impact on
the ocean carbon cycle in the affected area (e.g.,Le Quéré
et al., 2010; Wanninkhof et al., 2013) and the global air–sea
CO2 flux in general (Siegenthaler, 1990; McKinley et al.,
2004). We find clear indications of ENSO in the SD pat-
terns of SST, DIC andpCO2, and a weak signal for pH. An-
other area of high natural variability is the North Atlantic,
which is influenced by modes like the North Atlantic Oscil-
lation (NAO; Hurrell and Deser, 2009) or changes in the At-
lantic Meridional Overturning Circulation (AMOC;Carton
and Häkkinen, 2011), both known for affecting the ocean car-
bon cycle (e.g.,Keller et al., 2012; Perez et al., 2013). A fur-
ther region with high variability in the ocean carbon system
is the Southern Ocean (see e.g.,Bacastow, 1976; Marinov
et al., 2006; Lovenduski et al., 2007; Le Quéré et al., 2007;
Resplandy et al., 2013b), where we find a corresponding sig-
nal in the ensemble SDpCO2 pattern.

In order to estimate the importance of trend and natural
variability in shaping the spatial patterns of ToE, we com-
pare patterns inS andN with the resulting ToE. For DIC,
some areas of high ToE values, such as the Arctic Ocean
and the eastern equatorial Pacific, are characterized by anti-
correlated high variability levels and low trends. In the west-
ern equatorial Pacific, high ToE is due to high variability
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Figure 3a. Trend per decade (S), standard deviation (N ) and, as
measures for the inter-model spread (IMS), standard deviations of
S (IMSS ), N (IMSN ), and ToE (IMSToE; years) of dissolved inor-
ganic carbon (DIC; mmol m−3) and sea-surface temperature (SST;
◦C).

alone, asS shows medium levels. The opposite is the case
in the North Pacific, where high ToE is caused by weak trend
signals. The ToE pattern ofpCO2 seems to be dominated by
N , supported by anti-correlated lowS on local scales in the
Southern Ocean.N of pH is relatively homogeneous, with
elevated variability levels in the Arctic Ocean, the Southern
Ocean and, locally, the eastern equatorial Pacific. These ar-
eas imprint on the ToE pattern, yetS seems to be more im-
portant. For the carbon cycle variables,S andN are found to
be anti-correlated in some regions. The opposite is the case
for SST, which shows both high trends and variability in the
equatorial Pacific, the North Pacific, and parts of the North
Atlantic. The associated high ToE values illustrate the dom-
inance ofN , which masks the strong trends in these areas.
In the equatorial parts of the Atlantic, western Pacific and
Indian Ocean, the absence of strong variability allowsS to
govern the ToE field. In conclusion, we see that in areas with
high natural variability, even strong trends both in the physi-

Figure 3b. Trend per decade (S), standard deviation (N ) and, as
measures for the inter-model spread (IMS), standard deviations of
S (IMSS ), N (IMSN ), and ToE (IMSToE; years) ofpCO2 (ppmv)
and total pH.

cal climate and carbon cycle system are masked over decadal
timescales.

When working with a model ensemble, it is important to
consider the inter-model spread (IMS). It illustrates where
and when the models diverge and is thus a measure for uncer-
tainty. Figure3a and3b show the standard deviation across
all 17 models ofS (IMSS), N (IMSN ) and ToE (IMSToE).
The four IMSS fields show related patterns, with high IMS
in the Southern Ocean (all four variables), the Arctic Ocean
(DIC and, weaker, pH andpCO2) and the North Atlantic
(SST). The IMSN field of SST mirrors the pattern of IMSS in
the North Atlantic, and the same is true for DIC in the sub-
tropical Pacific and the eastern Arctic Ocean. IMSN of pH
indicates a large-scale zonal structure and shows, together
with pCO2, high IMS in the upwelling region off Peru and
Chile. The IMSToE field of DIC resembles the pattern for
N , with high IMS in the Arctic and the equatorial Pacific
Ocean. IMSToE of pH andpCO2 are much alike, with large
IMS localized in the Arctic and Southern Ocean and the east-
ern equatorial Pacific. IMSToE of SST is very noisy, however
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Figure 4. NCAR CESM1: Trend per decade (S), standard deviation (N ) and ToE (years) of dissolved inorganic carbon (DIC; mmol m−3)
for the period 1975–2004.S andN are calculated on a basis of annual averages (#30, row 1), monthly averages, including full seasonal cycle
(#360, row 2), January only (#30, row 3), and July only (#30, row 4).

with generally lower values around the equator. Possible rea-
sons for the model spread in the Southern Ocean include
the inadequate representation of bottom-water formation pro-
cesses in many CMIP5 models (Heuzé et al., 2013) and a sys-
tematic wind bias inherent to many models, which impacts
physical processes like Antarctic Circumpolar Current and
Southern Ocean water mass formation and, consequently, the
ocean carbon cycle (Swart and Fyfe, 2012). In areas with
high natural variability, such as the equatorial Pacific or the
North Atlantic, IMS might arise from differences in time and
space of the representation of climate modes such as ENSO
or NAO (e.g.,Keller et al., 2012). Another possible factor is
the model resolution, especially in areas dominated by local
processes such as coastal upwelling.

3.2 Impact of seasonality

For 6 out of 17 models, we have monthly data available.
These are NCAR CESM1 (the complete simulation, 1850–
2005), NCAR CCSM3-BEC and NCAR CSM1.4-carbon
(25 yr, 1985–2009), and BCCR BCM-C, IPSL-CM4 and
COSMOS (30 yr, 1980–2009). A comparison based on an-
nual averages of the complete 130 yr and the monthly data

(NCAR CESM1: 1975–2004) provides very similar results.
Accordingly, we assume that time periods of 25 and 30 yr are
sufficient to capture main variability features and that results
based on this data are robust. As mentioned in Sect.2, we
find that the trend patterns of all four variables are indeed
comparable for the different timescales. The fields of stan-
dard deviation, however, differ. The regions mainly affected
by intra-annual variability are the high latitudes. For DIC, as
an example, the monthly averages over the time series dis-
play a clear seasonal cycle for four out of six models (NCAR
CESM1, CCSM3-BEC, NCAR CSM1.4-carbon and COS-
MOS), while others show comparably homogeneous patterns
throughout the year (BCCR BCM-C, IPSL-CM4). For both
pH andpCO2 we find seasonal signals for the models NCAR
CESM1, COSMOS and IPSL-CM4 and, more limited to the
Southern Ocean, BCCR BCM-C. SST shows a strong sea-
sonal cycle in all six models. To illustrate (i) the differences
between the models and (ii) to give an estimate of the impor-
tance of the seasonal cycle, we show results for DIC of two
models. These are NCAR CESM1, a model with distinct sea-
sonal cycle, and IPSL-CM4, a model with comparably small
intra-annual variability.
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Figure 5. IPSL-CM4: Trend per decade (S), standard deviation (N ) and ToE (years) of dissolved inorganic carbon (DIC; mmol m−3) for the
period 1980–2009.S andN are calculated on a basis of annual averages (#30, row 1), monthly averages, including full seasonal cycle (#360,
row 2), January only (#30, row 3), and July only (#30, row 4).

Figures4 and5 showS, N and ToE of surface DIC for
the models NCAR CESM1 and IPSL-CM4, respectively. The
fields are calculated using the same 30 yr of monthly data
(NCAR: 1975–2004, IPSL: 1980–2009), albeit with different
temporal resolutions: annual averages (#30, row 1), monthly
averages, including full seasonal cycle (#360, row 2), Jan-
uary only (#30, row 3) and July only (#30, row 4). For case
two (monthly averages), an alternative approach would be
to defineN as the full range of the seasonal cycle. In do-
ing so, it is possible to make a clear distinction between
inter- and intra-annual variability. However, we focus on the
combination of both since it is closer to what we find in re-
ality. For both models,S is comparable concerning magni-
tude and spatial patterns in all four cases. One exception is
the area around (IPSL) or east of Australia (CESM), which
shows strong trends in the annual averages. A comparison
of the cases “Annual” and “Monthly” illustrates the expected
loss of variability due to temporal averaging, especially in
this case where the seasonal cycle is still present in the
monthly data. Consistent with the ensemble mean, the two
“Annual” N fields show variability hot-spots in the equato-
rial Pacific and, locally, the Arctic Ocean. When the seasonal

cycle comes into play, general variability is increased sub-
stantially by a factor up to 4 and more. On a spatial scale,
“Monthly” captures the main features of “Annual”. Addi-
tional areas with high variability, that is, regions with a pro-
nounced seasonal cycle, are the North Atlantic, the western
North Pacific and the Southern Ocean, especially the Drake
Passage and Scotia Sea. Further, we look at January and July
as representatives of northern summer and winter. When fo-
cusing on single months, the seasonal cycle has no relevance
for the magnitude ofN . Consequently, the result areN fields
slightly higher than in the “Annual” case, reason being the
absence of averaging-based losses in the January/July cases.
One important difference between the models remains. The
January and July fields of IPSL are much alike. In contrast to
this (and representative for the majority of the models), for
NCAR, variability in the high latitudes on both hemispheres
is much higher in the respective summer season. For both
models and in agreement with the ensemble mean, ToE fields
are tightly linked toN . The differences between seasons in
the NCAR model are caused by the mentioned seasonal sig-
nal of intra-annual variability. To simplify the comparison,
Fig. 6 shows ToE “Annual” (row 1) and, for “Monthly” (row
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Figure 6. NCAR CESM1 and IPSL-CM4: ToE “Annual” (row 1;
same as in Figs.4 and 5) and, for the cases “Monthly” (row 2),
“January” (row 3), and “July” (row 4), the offset relative to this
case (e.g., row 2: ToEMonthly–ToEAnnual).

2), “January” (row 3) and “July” (row 4), the offset relative to
this case (e.g., row 2: ToEMonthly–ToEAnnual). ToE “Monthly”
of both models shows the expected substantially later ToE
as the “Annual” case. “January” and “July” show compara-
ble (±10 yr) ToE to the “Annual” case in large parts of the
global oceans, especially in the low and middle latitudes.
However, the NCAR model shows large deviations (up to
±60 yr and more) in the high latitudes, the equatorial Pa-
cific, the Indian Ocean and, more localized, in other areas.
This has important implications for observations. The “Jan-
uary/July” patterns are similar in parts of the global oceans.
This indicates that, at these locations, statements based on ir-
regularly sampled data are valid representatives for the whole
year. In large areas, however, intra-annual variability might
interfere such a generalization. An illustrative example is the
slowdown of the AMOC, which was suggested byBryden
et al. (2005) based on five cross sections in the North At-
lantic. These snap-shot measurements were distributed over
the seasons in such a way that they embraced the full range of
the seasonal cycle, and the observed slow-down was later at-
tributed mainly to “aliasing due to seasonal anomalies” (Kan-
zow et al., 2010).

4 Conclusions

Here, we investigate the time of emergence (ToE) of trends
in the surface ocean carbon cycle utilizing an ensemble of
17 state-of-the-art ESMs. The ToE is the time required until
a sustained trend exceeds a variability threshold (here two
standard deviations). Thus, ToE depends on reliable esti-
mates of both trend and variability. For example, an under-
estimation of the variability in the model compared to the
real ocean would bias ToE towards low values. Yet, the study
shows that the ensemble mean trend and standard deviation
patterns are in reasonable agreement with observations and
reanalysis data sets, which supports the robustness of the pre-
sented results.

ToE of pH andpCO2 has rather low values (around 10 yr)
in many regions of the surface ocean. It is, however, gener-
ally difficult if not impossible to reliably determine variabil-
ity and long-term trends in the surface ocean from data that
extend over such a short period only. Trends in surface ocean
variables can vary significantly between different 10 yr peri-
ods and even reverse sign (see Fig.1 and Table1, ALOHA
data for an illustration). As a consequence, model data, or
measurements, over a longer period are needed to reliably
determine anthropogenic trends (Fay and McKinley, 2013)
and the ToE. Here, trends and variability are estimated from
30 yr (1970 to 1999) and 130 yr of model data, respectively.
The choice of a 30 yr period minimizes the influence of cli-
mate modes such as NAO, ENSO or AMOC on trends as
demonstrated byFay and McKinley(2013) for surface ocean
pCO2 measurements, while at the same time the 1970 to
2000 period still provides an approximate measure of the cur-
rent and near-future anthropogenic trend in the surface ocean.
The ToE is indicative for the time required for the anthro-
pogenic trend to leave the variability band, but it should not
be confused with the period required to detect this trend in
observational or model data.

We find that trend signals in ocean biogeochemical vari-
ables emerge on much shorter timescales than the physical
climate variable SST. ToE fields ofpCO2 and pH are spa-
tially very similar to DIC, yet emerge much faster – after
≈ 12 yr for the majority of the global ocean area, compared
to ≈ 10–30 yr for DIC. Assuming that natural variability is
constant over time, we suggest that possible stronger future
trends would emerge accordingly faster. We find that, in gen-
eral, the standard deviation is of higher importance in deter-
mining ToE than the strength of the linear trend. In areas with
high natural variability, even strong trends both in the physi-
cal climate and carbon cycle system are masked by variabil-
ity over decadal timescales. This explains inconsistencies in
trends based on time series of insufficient length to overcome
natural variability, and illustrates the necessity for long-term
observations.

Considering past changes since the beginning of the indus-
trialization, the fast emergence of trend signals implies that
anthropogenic trends in the surface ocean carbon cycle are
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already detectable in large parts of the global oceans. This
finding is even more relevant as the highest rates of ocean
acidification are measured (Bates, 2012; Dore et al., 2009)
and modeled (Resplandy et al., 2013a) in subsurface waters.

A further finding of the study is that, in contrast to the
trend, the standard deviation is affected by the seasonal cycle.
This has important implications for the use of sparse observa-
tions. In some parts of the global oceans, there are hints that
statements based on irregularly sampled seasonal data might
be representative for the whole year. In large areas, however,
intra-annual variability might interfere such a generalization.

The study clearly illustrates the need for more long-term
measurements with sufficient seasonal data coverage. DIC
is a very important variable and crucial for our understand-
ing of processes. For the sole detection of trends, however,
pCO2 and pH seem to be a better choice. Further, observa-
tions are not only necessary for the correct detection of trends
and natural variability. Independent data sets are also key for
the robust forcing and evaluation of climate models which
are, since observations are still scarce, the measure of choice
for many research questions.
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