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Abstract It is open whether El Niño–Southern Oscillation (ENSO) varies under climate change and
how potential changes in the marine system are detectable. Here differences in the influence of ENSO on
biogeochemical tracers, pH, productivity, and ocean temperature are analyzed in a continuous 850–2100
Common Era (C.E.) simulation with the Community Earth System Model. The modeled variance in ENSO
amplitude is significantly higher during the Maunder Minimum cold than during the 21st century warm
period. ENSO-driven anomalies in global air-sea CO2 flux and marine productivity are two to three times
lower, and ocean tracer anomalies are generally weaker in the 21st century. Significant changes are
detectable in both surface and subsurface waters and are earlier verifiable and more widespread for carbon
cycle tracers than for temperature. This suggests that multitracer observations of both physical and
biogeochemical variables would enable an earlier detection of potential changes in marine ENSO responses
than temperature-only data.

1. Introduction

El Niño–Southern Oscillation (ENSO) is the most prominent source of natural variability in the global climate
system on interannual timescales, causing anomalies in winds, rainfall, circulation, thermocline depth, and
biological productivity [Fiedler, 2002]. Further, it is the major driver of interannual variability in atmospheric
CO2 [Bacastow, 1976; Siegenthaler, 1990; McKinley et al., 2004].

In the last 1000 years the global climate system underwent substantial changes [e.g., Lehner et al., 2013],
and the current anthropogenic warming is projected to continue [e.g., Stocker et al., 2013]. These climatic
changes might have the potential to substantially affect modes of natural variability such as ENSO or the
North Atlantic Oscillation [Collins et al., 2010; Li et al., 2011; Timmermann et al., 2007; Christensen et al., 2013],
which has implications for biogeochemical cycles and ecosystems [Keller et al., 2012].

For ENSO, there is some evidence from reconstructions that the (late) twentieth century ENSO variance
levels are not unprecedented, but higher than for any 30 year period within 1590–1880 [McGregor et al.,
2013] or even the past seven centuries [Li et al., 2013]. Further, ocean reanalysis data sets record a shift
of ENSO toward higher frequency since 2000 compared to 1979–1999 [Kumar and Hu, 2014]. However,
while there is agreement on strong multidecadal variability in ENSO, there is no hint for a clear systematic
trend over time in past ENSO variance and frequency [e.g., Emile-Geay et al., 2012; Phipps et al., 2013].
Model simulations even indicate that multidecadal variability of ENSO might arise entirely by chance
[Wittenberg et al., 2014].

The detection of changes in the mean state and in climate modes is a signal-to-noise (S/N) problem
[e.g., Hawkins and Sutton, 2012]. A recent study shows that for a timely detection of signals in the surface
ocean, the S/N ratio of biogeochemical variables is more favorable than, e.g., sea surface temperature [Keller
et al., 2014]. Further, there is a lack of studies addressing how ENSO affects air-sea fluxes of CO2, marine
productivity, ocean acidification, and biogeochemical tracers under different past, present, and future
climate conditions.

Here changes in ENSO variability and related changes in the marine biogeochemical systems are diagnosed
from results of the Community Earth System Model (CESM, version 1). We rely on a transient simulation
over the last millennium and the 21st century driven by solar, volcanic, and anthropogenic forcings.
Guiding questions are whether there are changes of ENSO characteristics under different periods and if and
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Figure 1. ENSO variability and climate forcings. (a) Wavelet spectrum based on the annual Niño3.4 SST anomalies.
(b) Simulated annual and 5 year moving average of Niño3.4 index, and global surface temperature (TS). All ENSO
events exceeding the threshold for the composites are marked with a circle. (c) Total solar insolation (TSI), volcanic
forcing (volc; total volcanic aerosol mass), and atmospheric CO2 (pCO2). The grey bars indicate the four different time
periods investigated.

how such changes affect the response of physical and biogeochemical tracers, marine productivity, and
air-sea carbon fluxes to ENSO in a statistically significant and detectable way.

2. Model Data and Analysis Techniques

We use a continuous 850–2100 Common Era (C.E.) simulation with CESM1.0.1 [Hurrell et al., 2013]. The model
is run in fully coupled mode including an interactive carbon cycle [Moore et al., 2013]. The last millennium
simulation was branched from a 258 year long 850 C.E. control simulation, which in turn was branched
from a long 1850 C.E. control simulation with CCSM4 [Gent et al., 2011]. The transient forcing largely follows
the protocols of the Paleoclimate and Modelling Intercomparison Project 3 [Schmidt et al., 2011], applying
volcanic forcing [Gao et al., 2008], land use changes [Pongratz et al., 2008; Hurtt et al., 2011], and fossil
fuel emissions (post 1750 C.E., following Andres et al. [2012]). The total solar irradiance is taken from the
reconstruction by Vieira and Solanki [2010] but scaled to have an amplitude change from the Maunder
Minimum to present day of 0.2% rather than 0.1%. For 2005–2100 C.E., the representative concentration
pathway RCP8.5 [Moss et al., 2010] is used (see Figure 1c for an overview of the forcing).

ENSO here is represented by the Niño3.4 index, i.e., the spatial average of sea surface temperature (SST)
anomalies in the equatorial Pacific (5◦S–5◦N, 170–120◦W). Anomalies in all variables are obtained by
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detrending the data via a spline approach (cutoff period: 40 years) [Enting, 1987]. The predecessor of CESM1,
CCSM4, is known to be too sensitive to volcanic forcing [Ault et al., 2013; Meehl et al., 2011]. To minimize
interference by this strong sensitivity, we focus on time periods without major volcanic eruptions.

We compare four different time periods: (1) 1030–1129 C.E., a period with negligible interference of strong
natural or anthropogenic forcing; (2) 1645–1715 C.E., the so-called Maunder Minimum, a time period
characterized by comparably low solar activity [Eddy, 1976]; (3) 1850–2005 C.E., the industrial period with
strongly increasing anthropogenic forcing; and (4) 2005–2100 C.E., a period dominated by anthropogenic
warming following RCP8.5. Compared to a preindustrial (850–1850) global mean surface temperature of
14.67◦C, the four periods show a ΔT of +0.14◦C (1030–1129), −0.16◦C (1645–1715), +0.4◦C (1850–2005),
and +3.12◦C (2005–2100).

The response of marine physical and biogeochemical variables to ENSO is quantified by a composite analysis
based on monthly data. (Note that an analysis based on seasonal or annual averages provides comparable
results.) The composites for El Niño and for each climatic period are computed by averaging the anomalies
over time for periods where the Niño3.4 index exceeds one standard deviation (𝜎). The threshold 𝜎 is
taken from the Maunder Minimum and applied to all periods analyzed (composites are qualitatively similar
when 𝜎 is estimated for each period individually). We also calculate composites for La Niña conditions
(see the supporting information for examples) but do not discuss these any further as response patterns
to La Niña mirror those to El Niño in an approximately linear manner. To account for the autocorrelation
of monthly data, the numbers of events (= the degrees of freedom for the statistical tests) was reduced.
This results in the following numbers of events: 1030–1129 C.E., 9 El Niño/13 La Niña; Maunder Minimum,
8/12; 1850–2005 C.E., 29/29; 2005–2100 C.E., 20/22. Tests based on arbitrary 50 year periods are consistent
with the results presented here. This indicates that the time periods used (70–155 years) are of sufficient
length and that the results are not sensitive to the different lengths or numbers of events of the
four periods.

3. Results

The model captures the observed frequency of ENSO with periodicities of 2–7 years (Figures 1a and 1b).
The amplitude, however, is too strong, as was already shown for CCSM4 [Deser et al., 2012]. In conjunction
with major volcanic eruptions (years 1258, 1452, and 1815) we find strong La Niña events and a shift of
ENSO toward lower frequencies, both also visible in the sea level pressure-based Southern Oscillation Index
(not shown). These features, absent in observations and reconstructions, illustrate that CESM1 is indeed too
sensitive to volcanic activity.

The amplitude of ENSO changes over time. The highest 𝜎 of annual SST anomalies in the Niño3.4 region
is found for the coldest period, the Maunder Minimum (0.85◦C), the lowest 𝜎 for the warmest period,
2005–2100 C.E. (0.57◦C). The periods 1020–1129 C.E. (0.68◦C) and 1850–2005 C.E. (0.79◦C) are in between
(see power spectra in the supporting information). A test of the variance reveals that Maunder Minimum and
both 1030–1129 C.E. and 2005–2100 C.E. are significantly different from each other (F test, 5% level). While
it is unclear whether these simulated changes are realistic, they permit us to investigate the response in
different physical and biogeochemical variables to potential changes in ENSO in the self-consistent setting
of an Earth System Model.

Figure 2 presents El Niño composites spanning the equatorial Pacific for anomalies of dissolved inorganic
carbon (DIC), O2, pH, and potential ocean temperature (TEMP). All variables exhibit a seesaw pattern
between east and west. We find a significant response mainly in the upper kilometer but exceptionally
also down to 2000 m and below. During El Niño, the reduced upwelling in the eastern equatorial Pacific
brings less carbon- and nutrient-rich waters to the surface. The resulting negative anomalies in DIC and
nutrients are spreading westward along the equator. The reduction in DIC in surface waters leads to a
reduction in the partial pressure of CO2 and, consequently, in the outgassing of CO2 to the atmosphere.
This results in a positive anomaly in the net air-sea flux of CO2 in this region (Figure 3). Similarly, the reduced
input of nutrients into the euphotic zone causes a reduction in biological productivity (Figure 3) along
the equator.

Statistically significant differences between the El Niño composites emerge for the different climatic periods
in the equatorial Pacific (Figure 2, stippled areas). Locally significant and widespread changes are detected
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Figure 2. El Niño anomalies of potential temperature (TEMP; ◦C), dissolved inorganic carbon (DIC; mmol/m3), total
pH , and dissolved oxygen (O2; mmol/m3). Column 1 shows the period 1645–1715 (Maunder Minimum); columns
2 and 3 show the deviation of the periods 1850–2005 and 2005–2100 compared to this reference period (e.g.,
2005–2100—Maunder Minimum). The sections span the entire equatorial Pacific and represent meridional averages
(10◦S–10◦N). Only statistically significant values compared to the background variability are shaded (t test, 5% level).
Stippling (1850–2005 and 2005–2100) indicates where the composites are significantly different compared to the
composite 1645–1715 (t test, 5% level). Anomalies of 1030–1129 (not shown; see supporting information) are also
weaker compared to the Maunder Minimum, however, not significantly.

in the upper kilometer between the 21st century and the Maunder Minimum period in all tracers, though
significant changes are less widespread for temperature than for DIC, O2, and pH. Locally significant changes
are also detected between the industrial and the Maunder Minimum period for DIC, O2, and pH, but not for
temperature. In other words, ENSO-driven changes in biogeochemical tracers are detected earlier and in
larger areas than those in temperature.
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Figure 3. El Niño anomalies of air-sea CO2 flux (mmol/m3 cm/s) and vertically (top 150 m) integrated net primary
production (NPP; mgC/m2/d). Row 1 shows the period 1645–1715 (Maunder Minimum); rows 2 and 3 show the
deviation of the periods 1850–2005 and 2005–2100 compared to this reference period (e.g., 2005–2100—Maunder
Minimum). Only statistically significant values compared to the background variability are shaded (t test, 5% level).
Stippling (1850–2005 and 2005–2100) indicates where the composites are significantly different compared to the
composite 1645–1715 (t test, 5% level). The numbers represent globally integrated values (per year). Anomalies of
1030–1129 (not shown; integrated values are given in the text) are also weaker compared to the Maunder Minimum,
however, not significantly.

The simulated El Niño-driven tracer anomalies are weaker during the warmer climate periods. In a warmer
climate, the equatorial Pacific is subject to increasing thermal stratification and a weakening of the Walker
circulation and the associated trade winds [Collins et al., 2010]. Both features are present in our simulation
and result in a shallower and less tilted thermocline (see supporting information for the associated decrease
in mixed layer depth). Consequently, the El Niño-driven anomalies in the west do not penetrate as deep into
the ocean during warm than during cold periods. The larger density gradient between surface and deeper
ocean tends to hinder the penetration of the ENSO anomalies to deeper layers. In the east this behavior is
less distinct. Here the Pacific-wide trend toward a shallow thermocline and the decrease in the west-east tilt
of the thermocline have opposite effects on the thermocline, and changes in stratification are smaller in the
East than West Pacific (Figure 4).

The weakening of the ENSO response is also visible at the surface. Figure 3 shows El Niño patterns of
air-sea CO2 flux and vertically integrated (top 150 m) net primary production (NPP). Both variables show
locally significant differences in parts of the equatorial Pacific in 2005–2100 C.E., but rarely in 1850–2005 C.E.,
compared to 1645–1715 C.E. (Maunder Minimum). This is also the case for SST and surface DIC (see
supporting information). Globally integrated NPP anomalies are much smaller in the 21st century than
during the other three periods, e.g., −0.1058 pg C/yr (1030–1129 C.E.) versus −0.0541 pg C/yr (2005–2100).
These values are affected by anticorrelated anomalies in the equatorial Pacific and Indian Oceans, which can
be attributed to the frequent co-occurrence of ENSO and Indian Ocean Dipole (IOD) events [e.g., Currie et al.,
2013]. CESM1 features a correlation between ENSO and IOD of approximately 0.6, which is in agreement
with the observational evidence for an occasional, however, not mandatory concurrency of the two modes
[Cai et al., 2014]. For the equatorial Pacific (20◦S–20◦N, 140◦E–70◦W), NPP anomalies are −0.1746 pg C/yr
(1030–1129), −0.1415 pg C/yr (1645–1715), −0.1413 pg C/yr (1850–2005), and −0.1157 pg C/yr (2005–2100).
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Figure 4. Profiles of potential density of all four time periods, averaged
for regions in the eastern (solid; 90–150◦W, 10◦S–10◦N) and western
(dashed; 160◦E–150◦W, 10◦S–10◦N) equatorial Pacific. The inset shows
the absolute values of 1645–1715; the main plot shows the anomalies
of the other three periods relative to 1645–1715.

The globally integrated net air-sea
CO2 flux reveals largest anomalies
(0.0643 pg C/yr) during the coldest
period, Maunder Minimum, and very
small anomalies (0.0158 pg C/yr) during
the warmest period, 2005–2100 C.E.
The anomalies for La Niña show a
comparable decrease (Maunder
Minimum: −0.0638 pg C/yr; 2005–2100
C.E.: −0.0142 pg C/yr). The mean global
air-sea CO2 flux during the four periods
is 0.37 pg C/yr (1030–1129), 0.38 pg
C/yr (Maunder Minimum), 0.80 pg
C/yr (1850–2005), and 2.62 pg C/yr
(2005–2100). Hereby, the decrease in
the ENSO response partly coincides
with the increase of the mean air-sea
CO2 flux due to anthropogenic
CO2 emissions.

4. Discussion and Conclusions

Here we investigate changes in the
ENSO-related variability of the ocean
climate-carbon cycle system in a
850–2100 C.E. simulation with the Earth
System Model CESM1.

The investigated periods differ in global mean surface air temperature. Yet we stress that ENSO dynamics
result from the complex interplay of different background states (e.g., thermocline depth, mean zonal winds,
and the east-west gradient of SST) and feedback processes (e.g., thermocline and zonal advective feedbacks)
[see, e.g., Collins et al., 2010; Capotondi, 2013], which confound any simple relationship between ENSO and
global surface temperature. Further variability in ENSO dynamics on shorter timescales arises from westerly
wind bursts [Eisenman et al., 2005].

ENSO is a robust feature across all periods. The simulated amplitude of ENSO changes over time with the
lowest variance in the warmest period. While it is unclear whether these simulated changes are realistic,
they are in agreement with a recent modeling study (using CESM1), which identifies a connection between
a decrease of the east-west gradient of SST in the equatorial Pacific, as it is projected under climate change,
and a reduction of ENSO amplitude [Manucharyan and Fedorov, 2014]. The authors attributed the response
of ENSO to a weakening of the Walker circulation.

In response to ENSO, significant anomalies are present in both physical and biogeochemical tracers. These
anomalies constitute a seesaw pattern between east and west and range from the surface ocean down
to 2000 m and below. The tracer anomaly patterns in response to El Niño and La Niña are approximately
symmetric, although a recent study found nonsymmetric and nonlinear behavior in CCSM4 thermocline
depth anomalies leading to an unequal duration of El Niño and La Niña events [DiNezio and Deser, 2014].

Between the different periods, we detect statistically significant differences in the ENSO response of
tracers, marine productivity, and net air-sea carbon fluxes. The simulated ENSO-driven anomalies are
generally weaker and do, by tendency, not penetrate as deep into the equatorial Pacific during warm
compared to cold periods.

The weakening of the ENSO response is evident in globally integrated NPP and air-sea CO2 flux, with values
that diminish by a factor of between 2 and 3. The decrease in air-sea CO2 flux anomalies toward the end of
the simulation coincides with the anthropogenic increase of the mean air-sea CO2 flux, which amplifies the
impact loss of ENSO-driven variability on interannual timescales. Further, the model indicates differences
in the carbon fluxes during “Eastern Pacific” (EP) and “Central Pacific” (CP) El Niño events. During the EP
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type, there might be less outgassing of carbon in the equatorial Pacific than during CP El Niños, which were
frequently observed in the last decade.

While ENSO itself is robust over time, significant changes in ocean physics, carbon cycle, and pH responses
are found for the different periods. If applicable to reality, this has important implications for the ecosystem
and might affect socioeconomic factors such as Pacific fishery [e.g., Fiedler, 2002; Chavez et al., 2011].

In the model, significant changes in response to ENSO are traceable in both surface and subsurface waters
and earlier detectable and more widespread for carbon cycle variables than for physical variables such as
ocean temperature. These results suggest that multitracers comprising both physical and biogeochemical
variables might allow an earlier detection of changes in marine ENSO responses than physics-only
approaches, which in turn might permit a more timely and cost-efficient implementation of adaptation and
mitigation measures.

The additionally required measurements of carbon cycle variables could be gathered by equipping the
observation systems in operation (e.g., Argo and Tropical Atmosphere-Ocean/Triangle Trans-Ocean Buoy
Network) with the respective instruments. Such data would be highly valuable since observations of the
ocean carbon cycle are scarce and limited in either time or space. Currently, Pacific-wide or global data
sets describing the space-time variability of biogeochemical, ocean acidification, and ecosystem-relevant
variables on adequate timescales are largely missing.

References
Andres, R. J., et al. (2012), A synthesis of carbon dioxide emissions from fossil-fuel combustion, Biogeosciences, 9, 1845–1871.
Ault, T. R., C. Deser, M. Newman, and J. Emile-Geay (2013), Characterizing decadal to centennial variability in the equatorial Pacific during

the last millennium, Geophys. Res. Lett., 40, 3450–3456, doi:10.1002/grl.50647.
Bacastow, R. B. (1976), Modulation of atmospheric carbon dioxide by the Southern Oscillation, Nature, 261, 116–118.
Cai, W., A. Santoso, G. Wang, E. Weller, L. Wu, K. Ashok, Y. Masumoto, and T. Yamagata (2014), Increased frequency of extreme Indian

Ocean Dipole events due to greenhouse warming, Nature, 510, 254–258.
Capotondi, A. (2013), ENSO diversity in the NCAR CCSM4 climate model, J. Geophys. Res. Oceans, 118, 4755–4770, doi:10.1002/jgrc.20335.
Chavez, F. P., M. Messie, and J. T. Pennington (2011), Marine primary production in relation to climate variability and change, Annu. Rev.

Mar. Sci., 3, 227–260.
Christensen, J., et al. (2013), Climate phenomena and their relevance for future regional climate change, in Climate Change 2013: The

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by T. F. Stocker et al., Cambridge Univ. Press, Cambridge, U. K., and New York.

Collins, M., et al. (2010), The impact of global warming on the tropical Pacific Ocean and El Niño, Nat. Geosci., 3, 391–397.
Currie, J. C., M. Lengaigne, J. Vialard, D. M. Kaplan, O. Aumont, S. W. A. Naqvi, and O. Maury (2013), Indian Ocean Dipole and El

Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean, Biogeosciences, 10, 6677–6698.
Deser, C., A. S. Phillips, R. A. Tomas, Y. M. Okumura, M. A. Alexander, A. Capotondi, J. D. Scott, Y.-O. Kwon, and M. Ohba (2012), ENSO and

Pacific decadal variability in the Community Climate System Model Version 4, J. Clim., 25, 2622–2651.
DiNezio, P. N., and C. Deser (2014), Nonlinear controls on the persistence of La Niño, J. Clim., 27(19), 7335–7355.
Eddy, J. A. (1976), Maunder minimum, Science, 192, 1189–1202.
Eisenman, I., L. Yu, and E. Tziperman (2005), Westerly wind bursts: ENSO’s tail rather than the dog?, J. Clim., 18, 5224–5238.
Emile-Geay, J., K. M. Cobb, M. E. Mann, and A. T. Wittenberg (2012), Estimating central equatorial Pacific SST variability over the past

millennium. Part II: Reconstructions and implications, J. Clim., 26, 2329–2352.
Enting, I. G. (1987), On the use of smoothing splines to filter CO2 data, J. Geophys. Res., 92, 10,977–10,984.
Fiedler, P. (2002), Environmental change in the eastern tropical Pacific Ocean: Review of ENSO and decadal variability, Mar. Ecol., 244,

265–283.
Gao, C., A. Robock, and C. Ammann (2008), Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for

climate models, J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.
Gent, P. R., et al. (2011), The Community Climate System Model version 4, J. Clim., 24, 4973–4991.
Hawkins, E., and R. Sutton (2012), Time of emergence of climate signals, Geophys. Res. Lett., 39, L01702, doi:10.1029/2011GL050087.
Hurrell, J. W., et al. (2013), The Community Earth System Model: A framework for collaborative research, Bull. Am. Meteorol. Soc., 94,

1339–1360.
Hurtt, G., et al. (2011), Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use

transitions, wood harvest, and resulting secondary lands, Clim. Change, 109, 117–161.
Keller, K. M., et al. (2012), Variability of the ocean carbon cycle in response to the North Atlantic Oscillation, Tellus Ser. B, 64, 18,738,

doi:10.3402/tellusb.v64i0.18738.
Keller, K. M., F. Joos, and C. C. Raible (2014), Time of emergence of trends in ocean biogeochemistry, Biogeosciences, 11, 3647–3659.
Kumar, A., and Z.-Z. Hu (2014), Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction

with ENSO, Clim. Dyn., 42, 1243–1258.
Lehner, F., A. Born, C. C. Raible, and T. F. Stocker (2013), Amplified inception of European Little Ice Age by sea ice-ocean-atmosphere

feedbacks, J. Clim., 26, 7586–7602.
Li, J., S.-P. Xie, E. R. Cook, G. Huang, R. D’Arrigo, F. Liu, J. Ma, and X.-T. Zheng (2011), Interdecadal modulation of El Niño amplitude during

the past millennium, Nat. Clim. Change, 1, 114–118.
Li, J., S.-P. Xie, E. R. Cook, M. S. Morales, D. A. Christie, N. C. Johnson, F. Chen, R. D’Arrigo, A. M. Fowler, X. Gou, and K. Fang (2013), El Niño

modulations over the past seven centuries, Nat. Clim. Change, 3, 822–826.
Manucharyan, G. E., and A. V. Fedorov (2014), Robust ENSO across a wide range of climates, J. Clim., 27, 5836–5850.

Acknowledgments
We thank Joachim Segschneider and
an unknown reviewer for their helpful
comments, Clara Deser for comments
on the manuscript, and Axel
Timmermann for discussion. The
research leading to these results
was supported through EU FP7
project CARBOCHANGE “Changes
in carbon uptake and emissions by
oceans in a changing climate” which
received funding from the European
Community’s Seventh Framework
Programme under grant agreement
264879. Additional support was
received from the Swiss National
Science Foundation through project
200020_147174. Simulations with
NCAR CESM1 were carried out at
the Swiss National Supercomputing
Centre in Lugano, Switzerland.
The model results presented in
this study are available from the
corresponding author upon request
(keller@climate.unibe.ch).

The Editor thanks two anonymous
reviewers for their assistance in
evaluating this paper.

KELLER ET AL. ©2015. American Geophysical Union. All Rights Reserved. 524

http://dx.doi.org/10.1002/grl.50647
http://dx.doi.org/10.1002/jgrc.20335
http://dx.doi.org/10.1029/2008JD010239
http://dx.doi.org/10.1029/2011GL050087
http://dx.doi.org/10.3402/tellusb.v64i0.18738


Geophysical Research Letters 10.1002/2014GL062398

McGregor, S., A. Timmermann, M. H. England, O. Elison Timm, and A. T. Wittenberg (2013), Inferred changes in El Niño-Southern
Oscillation variance over the past six centuries, Clim. Past, 9, 2269–2284.

McKinley, G., C. Rodenbeck, M. Gloor, S. Houweling, and M. Heimann (2004), Pacific dominance to global air-sea CO2 flux variability:
A novel atmospheric inversion agrees with ocean models, Geophys. Res. Lett., 31, L22308, doi:10.1029/2004GL021069.

Meehl, G. A., et al. (2011), Climate system response to external forcings and climate change projections in CCSM4, J. Clim., 25, 3661–3683.
Moore, J. K., K. Lindsay, S. C. Doney, M. C. Long, and K. Misumi (2013), Marine ecosystem dynamics and biogeochemical cycling in the

Community Earth System Model [CESM1(BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios,
J. Clim., 26, 9291–9312.

Moss, R. H., et al. (2010), The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756.
Phipps, S. J., H. V. McGregor, J. Gergis, A. J. E. Gallant, R. Neukom, S. Stevenson, D. Ackerley, J. R. Brown, M. J. Fischer, and T. D. van Ommen

(2013), Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years, J. Clim., 26, 6915–6936.
Pongratz, J., C. Reick, T. Raddatz, and M. Claussen (2008), A reconstruction of global agricultural areas and land cover for the last

millennium, Global Biogeochem. Cycles, 22, GB3018, doi:10.1029/2007GB003153.
Schmidt, G. A., et al. (2011), Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev.,

4, 33–45.
Siegenthaler, U. (1990), Biogeochemical cycles—El Niño and atmospheric CO2, Nature, 345, 295–296.
Stocker, T., et al. (2013), Technical summary, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., Cambridge Univ. Press, Cambridge,
U. K., and New York.

Timmermann, A., S. J. Lorenz, S.-I. An, A. Clement, and S.-P. Xie (2007), The effect of orbital forcing on the mean climate and variability of
the Tropical Pacific, J. Clim., 20, 4147–4159.

Vieira, L. E. A., and S. K. Solanki (2010), Evolution of the solar magnetic flux on time scales of years to millenia, Astron. Astrophys., 509,
A100, doi:10.1051/0004-6361/200913276.

Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng (2014), ENSO modulation: Is it decadally predictable?, J. Clim., 27,
2667–2681.

KELLER ET AL. ©2015. American Geophysical Union. All Rights Reserved. 525

http://dx.doi.org/10.1029/2004GL021069
http://dx.doi.org/10.1029/2007GB003153
http://dx.doi.org/10.1051/0004-6361/200913276

	Detecting changes in marine responses to ENSO from 850 to 2100 C.E.: Insights from the ocean carbon cycle
	Abstract
	Introduction
	Model Data and Analysis Techniques
	Results
	Discussion and Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


