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Abstract

Tree rings dominate millennium-long temperature reconstructions and many records originate from Scandinavia, an area for
which the relative roles of external forcing and internal variation on climatic changes are, however, not yet fully understood.
Here we compile 1,179 series of maximum latewood density measurements from 25 conifer sites in northern Scandinavia,
establish a suite of 36 subset chronologies, and analyse their climate signal. A new reconstruction for the 1483–2006 period
correlates at 0.80 with June–August temperatures back to 1860. Summer cooling during the early 17th century and peak
warming in the 1930s translate into a decadal amplitude of 2.9uC, which agrees with existing Scandinavian tree-ring proxies.
Climate model simulations reveal similar amounts of mid to low frequency variability, suggesting that internal ocean-
atmosphere feedbacks likely influenced Scandinavian temperatures more than external forcing. Projected 21st century
warming under the SRES A2 scenario would, however, exceed the reconstructed temperature envelope of the past 1,500
years.
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Introduction

Annually resolved, large-scale temperature reconstructions of

the last millennium rely on a handful of predictor records, which

often reflect heterogeneous patterns of local- to regional-scale

climate variability [1]. Due to the small number of highly resolved

proxy data available prior to the Little Ice Age (LIA; ,1350–1850

AD), the few tree-ring width (TRW; mm/year) and maximum

latewood density (MXD; g/cm3) chronologies from northern

North America and northern Eurasia that span the last

millennium, become increasingly important further back in time.

Long-term extra-tropical temperature estimates typically incorpo-

rate the same proxy records and use similar reconstruction

methodologies [2]. For instance, millennium-long tree-ring

composite data from the Torneträsk region in northern Sweden

(e.g. [3] and references therein) contribute to most large-scale

temperature reconstructions [4], thus clearly impact our under-

standing of the spatial extent, absolute timing and relative

amplitude of the Medieval Climate Anomaly (MCA; ,900–

1300 AD). At the same time, it appears particularly important to

note that multi-decadal variations in surface air and sea surface

temperature (SAT and SST) across the North Atlantic/Scandina-

vian sector are dominated by internal climate variability [5–9],

which may does not always agree with short-term events and long-

term trends observed in other areas or more generally larger

spatial scales. Consequently, reconstructions of hemispheric to

global average temperatures that partly rely on Scandinavian

proxy data, likely contain climatic fingerprints of internal

variability that might not be overly representative outside a

limited region (e.g. [10]).

One source of internal climate variability across Scandinavia is

the Atlantic Multidecadal Oscillation (AMO), which had a

periodicity of ,65–70 years during the last 150 years [11].

Observational and model evidence indicates that the Atlantic

Meridional Overturning Circulation (AMOC) plays an important

role in driving the AMO [12], which in turn controls summer

climate across the high northern latitudes (e.g. [7]). In addition to

the AMO, atmospheric circulation modes, such as the North

Atlantic Oscillation (NAO), the Arctic Oscillation (AO) or the East

Atlantic Pattern (EAP) may influence Scandinavian climate

variability on different timescales (e.g. [13–15]). Quantifying and

distinguishing between such internally driven ocean-atmosphere-

land dynamics and externally forced climate variations represents

a major challenge for the detection and attribution of anthropo-

genic-induced climate change (e.g. [6,8,16]). The combined

assessment of proxy-based climate reconstructions and model-

based climate simulations therefore becomes essential for allowing

studies to separate externally forced trends from internally driven

variations, whenever the climatic signal is distinguishable from

noise (e.g. [17]).

This study presents the largest update of regional MXD

measurements undertaken to date, allowing modern growth-
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climate responses to be analysed into the 21st century. We aim to

develop a new reconstruction of northern Scandinavian summer

temperature variability over the past five centuries, compare this

record with existing tree-ring evidence and model output, and

disentangle the role of external climate controls from internal

ocean-atmosphere oscillations.

Results

The 25 site chronologies show positive correlations with

growing season temperatures between April and August (see

supporting information (SI) Text S1 for details). The highest

correlation is found with June–August (JJA) temperatures,

corresponding to intense cell formation (lumen enlargement) and

wood lignification (wall thickening). Significant (p,0.001) positive

correlations with JJA temperatures (0.31–0.83) were obtained from

the 36 MXD records including 25 site and 11 subset chronologies

(Figure 1–3). Small differences in mean MXD (0.59–0.85 g/cm3),

but major differences in sample replication (18–1179 series), as

well as mean tree age (39–324 years) are found (Figure S1). Less

replicated site chronologies generally contain a lower temperature

signal. Five site chronologies from the network’s western margin,

which are based on 22–29 samples only, show modest correlations

(Table S1 and Figure S2), and thus were omitted as predictors in

the final reconstruction.

Subset replication ranges from 181–1179 series, and is

substantially larger than individual site replication (18–104 series).

Some differences in the growth-climate response were expected

within several subsets that combined physiological (species and

age), ecological (shore/offshore), and methodological (sampling

design) extremes. Nonetheless, all subset chronologies were

strongly correlated with regional summer temperatures (.0.76),

suggesting a considerably high degree of common variance within

the MXD network. Lower, but still significant (p,0.001)

correlations of 0.29–0.63 were found between the 36 MXD

chronologies and JJA coastal Norwegian SSTs averaged over the

65–70uN and 5–15uE region.

The 36 MXD chronologies reflect similar growth trends over

the past ,150 years (Figure 2A) and show strong cross-correlation

with each other (r = 0.72 for 1860–1977). All records contain

below average MXD values in the 1860s, ,1900s, and in the

1960s. Above average values are evident from ,1920–1950 and

during the last ,15 years. The highest MXD values occur in 1937.

The lowest MXD values are observed in 1902. A similar picture

derives from the eight instrumental records of JJA temperatures

and the corresponding CRUTEM3v grid-box mean (Figure 2B).

Cross-correlation between the eight station measurements is 0.70

(1860–1977), which is even below the analogous value of the 36

MXD chronologies. Minimum and maximum JJA values of the

individual station records represent a realistic range of local

temperatures that can be utilized as a target envelope for the

MXD chronologies (Figure 2C). This envelope remains relatively

narrow throughout the past 150 years; however, increased spread

between the station measurements is somewhat evident during the

first three decades of the 20th century. This period coincides with

decreased correlations among the individual MXD chronologies.

The good fit observed between the proxy and target data also

demonstrates that both high and low frequency coherence has

been maintained (Figure 2C). The composite record tracks the

recent and particularly the earlier warmth of the 1930s, remains

within the target envelope, encompasses 70% of northern

Scandinavian JJA temperature variations (CRUTEM3v; 1860–

2006), and further reflects 36% of coastal Norwegian SST

variability (SSTV2; 1860–2002). The correlation between instru-

mental SAT and Norwegian SST is 0.63 when calculated over the

common period 1860–2002, suggesting that SST similarly
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Figure 1. Spatial characteristics of the northern Scandinavian tree-ring network. (A) The 25 MXD site chronologies and the eight
instrumental stations incorporated within this study. Grey labels refer to five MXD sites from the westerly portion of the network that showed a
modest sensitivity to temperature and thus were not included in the final reconstruction. (B) Overview of the North Atlantic/Scandinavian sector. (C)
Temporal distribution of the 1,179 MXD samples during the past five centuries.
doi:10.1371/journal.pone.0025133.g001

Scandinavian Temperature Variability

PLoS ONE | www.plosone.org 2 September 2011 | Volume 6 | Issue 9 | e25133



influences Scandinavian MXD formation and SAT variation.

Detailed calibration/verification statistics are summarized in

Table 1.

The proxy and instrumental data correlate at 0.80 over 1860–

2006. Correlation coefficients remain approximately constant

after 20-year high- and low-pass filtering, which is suggestive of

near equal fidelity among inter-annual to multi-decadal variabil-

ity. Nevertheless, a detailed examination of the proxy/target

relationship over different frequency domains indicates some

decadal-scale disagreements during the early and late 20th

century (Figure 2D–E), as well as some discrepancy in the timing

of positive extremes. The 20-year low-pass filtered timeseries

exhibit slightly higher reconstructed values, relative to measured

temperatures, from ,1915–1945 and slightly lower temperatures

from ,1985–2006. The level, direction and timing of disagree-

ment between the proxy and target records, however, do not

indicate any systematic ‘Divergence’ during the 20th century (e.g.

[18]).

The proxy reconstruction is found to be less sensitive to warm

than to cold extremes (Table S2), a trait shared with other MXD-

based temperature reconstructions, which typically better capture

cold temperature events (e.g. [3,19–21]). Five of the ten coldest

reconstructed and observed summers are common to both records,

whereas only two out of the ten warmest years are indicated by

both the instrumental and tree-ring data (Table S2). However, it

should be noted that both the warmest (1937) and coldest (1902)

instrumentally recorded summers are robustly retained by the

MXD data.

The new summer temperature reconstruction spans the period

1483–2006 and reveals inter-annual to multi-decadal fluctuations

without clear indication for cooler LIA and warmer recent

conditions (Figure 4A), which contrasts evidence from other

regions (e.g. [19,22]) and larger scales (e.g. [1,23]). Warming is

most pronounced around 1500, 1660, 1780, and 1930. Cooling is

most distinct during the first half of the 17th century. The ten

warmest summers occur sporadically throughout the reconstruc-

Figure 2. Agreement between high to low frequency variability of the tree-ring proxy and instrumental target data over the past
150 years. (A) Site and subsets RCS chronologies (orange) and their mean (red). (B) JJA temperatures of eight instrumental stations (grey), and the
grid-box mean (black). Dashed horizontal lines and corresponding values indicate the mean of the last decade (1997–2006). (C) Instrumental gridded
(black) and reconstructed proxy (red) temperatures superimposed on the min/max range of the station measurements (grey shading), expressed as
anomalies from 1961–1990, and split into (D) 20-year low-pass and (E) 20-year high-pass components. Correlation (1860–2006) of the unfiltered and
filtered timeseries is shown in red.
doi:10.1371/journal.pone.0025133.g002
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tion (Table S2). The warmest reconstructed JJA temperature

occurred in 1937 (3.11uC), while the coldest reconstructed summer

occurred in 1633 (24.19uC).

Spatial significance of the new reconstruction is approximately

restricted to the Scandinavian Peninsula and the Baltic Sea

.55uN and ,45uE (Figure S3A). This pattern is confirmed by

non-significant (p.0.1) correlations between the new Scandina-

vian reconstruction and independent MXD-based summer

temperature reconstructions from the Polar Urals, Pyrenees and

Alps that range between 0.1 and 20.07 (1483–1989). Spatial

correlations with SST are positive for the surrounding northeast

Atlantic, as well as the North and Baltic Seas. Positive correlations

with the western part of the North Atlantic around 60–70uW and

30–40uN are also observed (Figure S3B), however, probably reflect

a dynamic seasonal structure of surface air pressure rather than a

continual pattern of water circulation. This assumption is

supported by spatial field correlations between our new recon-

struction and gridded (5u65u) June–August SLP (HadSLP2r;

1860–2006) (Figure S4).

Below-average pressure anomalies centred over the Baltic Sea

are associated with the 20 coldest reconstructed summers that

exhibited in northern Scandinavia between 1659 and 1999 (Figure

S5A). These negative pressure anomalies are teleconnected with

positive pressure anomalies over the Bay of Biscay, thus describing

a European north/south dipole structure related to anomalous

cold westerly winds directed towards Scandinavia. Anomalously

high northern Scandinavian summer temperatures, on the other

hand, match a well-defined pattern of positive pressure anomalies

over the Baltic Sea, and negative anomalies west of Iceland (Figure

S5B). The southern European counterpart of negative pressure

extends over the Mediterranean basin.

Our northern Scandinavian JJA temperature history agrees well

with a TRW-based reconstruction of summer AO indices [24]

(r = 0.39 between 1650–1975; Figure S5C). Amplification of the

Figure 3. Climate response of the tree-ring network revels significant positive correlations between MXD chronologies and June–
August temperatures. Correlation of the 36 MXD site and subset chronologies against Scandinavian JJA temperatures (1860–1977). Information on
maximum latewood density (MXD; g/cm3), mean segment length (MSL; years), and replication (series) is provided for each dataset. Grey [green/blue]
site codes refer to less-sensitive (pre/post-2000) chronologies. The red dot refers to the sensitive subset herein used for reconstruction purpose, with
the dashed line highlighting the corresponding maximum correlation with JJA temperature (0.83). Note that all correlations exceed the 99.9%
significance level.
doi:10.1371/journal.pone.0025133.g003

Table 1. Calibration and verification statistics indicate proxy/target agreement on all frequency domains.

Full Calibration Late Calibration Early Calibration Extra Calibration

1860–2006 1934–2006 1860–1932 1816–1859

r 0.80 0.76 0.83 0.89

(low/high) (0.76/0.81) (0.70/0.78) (0.89/0.84) (0.96/0.88)

DW 1.55 2.10 1.42 1.73

Extra Verification Early Verification Late Verification Full Verification

RE 0.64 0.64 0.63 0.45

CE 0.61 0.39 0.38 0.41

Correlation coefficients of 12 proxy/target pairings, independently computed over different split periods and frequency domains, and for unfiltered and 20-year low-
and high-pass filtered data range from 0.70–0.96 with a mean of 0.83 (p,0.001). Corresponding Durbin and Watson (DW) [48] statistics range from 1.42–2.10 (Table S3),
and RE/CE statistics range from 0.45–0.64/0.38–0.61.
doi:10.1371/journal.pone.0025133.t001

Scandinavian Temperature Variability

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25133



strong positive agreement, however, may possibly result from

overlapping data within this study and the AO estimate, and the

fact that the AO study considered overall temperature sensitive

proxy data [24]. Correlations between the temperature and AO

reconstructions increase to 0.61, 0.70 and 0.73 after 10-year, 20-

year and 30-year low-pass filtering, respectively. This frequency-

dependence supports the strong multi-decadal coherency between

variations in northern European summer temperature and high

latitudinal pressure fields.

Comparison between our new record and five existing northern

Scandinavian summer temperature reconstructions reveals a

sound picture over the past two centuries (Figure 4B), but

describes some offset prior to ,1800. It should be noted that these

records are not methodologically independent and include some

common data (Table S3). The five existing records show slightly

lower correlations (r = 0.52–0.80) with gridded JJA temperatures

(CRUTEM3v; averaged over 65–70uN and 20–30uE; 1860–1970)

than the new reconstruction (r = 0.85). The five existing records

express an average cross-correlation of 0.59 for the 802–1970

common period. Our new reconstruction correlates with the

individual existing reconstructions between 0.42 and 0.76 (1483–

1970), and at 0.74 with their average. After 20-year low-pass

filtering, this value slightly decreases to 0.67. The five individual

records fall within the uncertainty range of our new reconstruction

and portray a similar sequence of warm and cold periods.

Comparison of our reconstruction with the SAT and SST of

four ensemble simulations reveals that the model output falls

within the proxy uncertainty but contains marginally less

amplitude (Figure 4C). Some offset between cooler reconstructed

and warmer simulated temperatures is found during the last half of

the 20th century with the proxy values better matching the

instrumental target. Comparison of the reconstructed and

simulated temperature variations and trends with external solar,

volcanic and CO2 forcing (as used in the model) retains a rather

weak link over the past 500 years (Figure 4D). Since systematic

perturbations of external forcing are not evident in the

reconstructed and simulated Scandinavian temperature history,

internal climate dynamics must have played an important role in

determining past summer temperatures within this region. It

should be noted that the four SAT (SST) model ensembles

correlate on average at 0.50 (0.48) with each other (1500–2100).

Significant differences in coherency are found before and after

1850 for the SAT (0.04 and 0.56) and SST (0.09 and 0.51)

ensemble members. A similar pattern with overall higher

correlations is obtained after 20-year low-pass filtering. Early/late

correlation averages are 0.21/0.92 for SAT and 0.17/0.90 for

Figure 4. Reconstructed and modelled northern Scandinavian summer temperature variations over the past five centuries. (A)
Actual (black) and reconstructed (red) JJA temperature anomalies (uC) with error estimates (grey) and the ten warmest and coldest decades
superimposed (colour boxes). (B) Comparison of the actual and reconstructed temperatures with five existing (green) reconstructions (see Table S3
for details). (C) Comparison of the actual and reconstructed temperatures with CCSM3 SAT (pink) and SST (blue) model simulations. Mean and
variance of the data are scaled against JJA temperature (1860–2006), expressed as anomalies (1961–1990) and 20-year low-pass filtered. (D) Solar (TSI;
Total Solar Irradiance), volcanic (ODI; Optical Depth change in the visible band), and CO2 (ppm) forcing as used in the model simulation.
doi:10.1371/journal.pone.0025133.g004
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SST, indicating less externally forced agreement prior to the

industrial era, for instance. Correlations between our new

reconstruction and the four SAT (SST) ensemble members (after

20-year low-pass filtering) average at 0.37 (0.24) over the full

1483–2006 period of overlap, with only small differences before

and after 1850.

The combined proxy/model approach allows variations in pre-

and post-industrial northern Scandinavian summer temperature to

be assessed over the period 500–2100 (Figure 5). The tree-ring

data indicate lower temperatures before ,700 and around ,800,

and then again in the early 17th century commonly known to be

part of the LIA. The first warm spell is recorded at ,760, a

prolonged interval of generally warm summers occurred between

,1000 and 1100, warm summers also appeared ,1430, ,1770,

and again in the 1930s and the 1970s. The early values, however,

should be interpreted cautiously, because the amount of available

TRW and MXD measurement series used in five northern

Scandinavian proxy records decreases back in time. Nevertheless,

our synthesis clearly demonstrates that summer temperatures have

previously been as markedly warm as the observed 20th century

conditions including the high temperatures of the 1930s and

1970s. Despite this, the model output further suggests that, under

the SRES A2 scenario, temperatures will exceed the range of past

variability from ,2030 onwards (Figure 5).

Discussion

Our MXD compilation represents a major update in one of the

key regions in a circumpolar network [20,22], enabling the

relationship between forest productivity and recent climate

variability to be evaluated into the 21st century. The ability of

MXD chronologies from northern Scandinavian conifers to

capture the timing, amplitude and geographical distribution of

recent temperature fluctuations is evidently confirmed. There is no

indication for any systematic ‘Divergence Issue’ (e.g. [18]), namely

the failure of tree growth to track high and low frequency

temperature changes. Furthermore, our results reliably repro-

duced not only inter-annual temperature variations, but also long-

term trends over a well-defined spatial domain (e.g. [20,22]). Such

findings are consistent with updated tree-ring compilations from

northern Siberia [25] and the European Alps [26], although the

actual reconstructions themselves reflect different signals of

regional climate fluctuations. Constraints in capturing low

frequency temperature variability that could potentially result

from either the tree-ring data used or the detrending methodology

applied, have been addressed by the inclusion of young trees

resulting in an even distribution of series start dates throughout

time and by the performance of RCS detrending (for details see

below). Uncertainty ranges associated with the resulting temper-

ature reconstruction have been estimated via cumulative error

estimates (see below), which likely resulted in a rather conservative

uncertainty range. The effects of site location, shore position,

species-specific response, tree age, sampling design, growth

standardization, and proxy calibration have been considered,

and are expressed by the temporal variation of error estimates.

A slight offset between cooler proxy reconstructions and warmer

model simulations is observed during the latter half of the 20th

century (Figure 4). This discrepancy is potentially due to slightly

overestimated temperatures within the ensemble members, as

anthropogenic sulphate aerosols have not been included in the

model forcing. A sensitivity experiment, including this forcing,

though resulted in less warming during the 20th century [15]. It is

further noted that both reconstructed and simulated Scandinavian

SAT show only weak responses to natural external forcing, which

obviously indicates the importance of internal climate dynamics

within this region. As shown by [15], variations in SST, which in

turn are connected to the North Atlantic Thermohaline

Circulation, must be considered as important drivers of multi-

decadal climate variability across the North Atlantic/European

Figure 5. Proxy and model evidence of northern Scandinavian summer temperature variability from 1500–2100 AD. Reconstructed
(red this study and green mean of five existing records) and projected (pink surface air and blue sea surface) temperature anomalies of the 1961–1990
reference period and 60-year low-pass filtered. Green and blue shadings indicate the uncertainty envelopes derived from the annual minimum and
maximum values of the various proxy and model data, respectively.
doi:10.1371/journal.pone.0025133.g005
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sector and particularly over the Scandinavian study region. These

internal atmosphere-ocean variations might also be strong enough

to largely mask solar, volcanic, and even anthropogenic signals as

suggested by the herein reconstructed and simulated temperatures

of the past 500 years. Our results highlight the strength of a

combined proxy/model approach to examining climatic variabil-

ity, which extends the analytical skill of either using proxy

reconstructions or model simulations only. The joint consideration

of backward reconstructing and forward modelling further offers

longer timescales to be evaluated. The Scandinavian records,

however, differ from the situation commonly observed in Central

Europe where impacts of solar and volcanic forcing on past

temperature change have been undoubtedly identified (e.g.

[19,27]). Based upon the available findings, it appears likely that

the ocean may play a role in generating low frequency

temperature variability.

Another important source of internal low frequency variability

are atmosphere dynamics that comprise dominant pressure

patterns, such as the AO, the NAO and the EAP, which in turn

are often coupled with the underlying climate system (e.g. [5,28]).

These pressure patterns may possibly exhibit linkages to

temperature and precipitation fluctuations at decadal to multi-

decadal timescales north of ,20uN. This suggestion is supported

by the agreement between our new Scandinavian temperature

history and a previous reconstruction of the summer AO [24].

Nevertheless, it is premature to conclude that globally observed

effects of recent anthropogenic warming on ecology [29] may be less

intense over Scandinavia, where internal climate variability likely

moderated and modulated some of the latest temperature increase

observed in other regions and at larger scales. Despite their

dominance in large-scale temperature reconstructions, initial tests

suggest that such hemispheric approaches are not particularly

sensitive to the inclusion or exclusion of Scandinavian tree-ring data

especially after ,1300 AD (Figure S6). Caution is advised as more

detailed analyses at the hemispheric-scale are necessary to better

differentiate between regional and lager scale climate change and

even disentangle the relevant forcing agents at play. If Scandinavian

summer temperatures indeed exhibit less post 1980s warming

relative to earlier warm periods than many other regions across the

Northern Hemisphere, however, still needs to be quantified.

The unprecedented degree of projected anthropogenic warming

under the SRES A2 scenario as described by the modelling

component of this study, would though imply severe alterations to

ecosystem functioning and productivity, as well as trophic

amplifications across a broad range of marine and terrestrial

habitats and taxa [30,31]. Long-term stability of boreal population

dynamics, sustainable food webs and biodiversity conservations

are thus at risk [32,33]. Temperature proxies derived from oxygen

isotopic analyses of foraminifera located along the Norwegian

margin offer relatively high-resolution evidence on comparable

timescales and thus have been used to link terrestrial and marine

ecosystem responses to climate changes [34]. Previous temperature

reconstructions have relied on physical-chemical relationships,

namely that a 0.26% shift in the oxygen isotopes reflects a 1uC
change in water temperature [34]. More recent endeavours have

demonstrated the potential to develop shell-growth increments of

Artica islandica in Norwegian coastal waters, which can contain

well-defined climate signals [35–37]. Currently, these records only

span several centuries. Nevertheless, it may be possible to extend

them further, potentially even over the entire Holocene. If this

would be achieved, the combination of such archives and the new

MXD reconstruction presented here would enable further

elucidation of the influence of ocean dynamics and internal

forcing on temperature variability within this region.

Increased efforts to obtain new high-resolution proxy archives in

tandem with an ensemble of model simulations is recommended

not only to disentangle effects of external climate forcing from

internal climate variability, but also to improve our understanding

of associated spatiotemporal shifts in ecosystem responses to

climatic variations. The expected outcome of such work would be

relevant not only for climatologists, but also for ecologists,

epidemiologists, oceanographers and even economists throughout

the multiple effects of climate change on biological resources.

Materials and Methods

No additional sampling permits beside those organized by Mauri

Timonen (MT; among the co-authors) were required to develop the

herein presented MXD dataset (Dr. Yrjö Norokorpi, Area

Manager, Natural Heritage Services of Metsähallitus, granted

15.09.2006 permission for tree-ring sampling to MT and the WSL

research team of UB, DF, DN and JE). A total of 1,179 tree-ring

core or disc samples were collected between 1978 and 2006 at 25

Scandinavian conifer sites located north of 65uN (Figure 1).

Eighteen site chronologies consisted of pine (Pinus sylvestris), while

seven were based on spruce (Picea abies). All of the 1,179 MXD

measurement series were processed at the Swiss Federal Research

Institute WSL (see [38] for methodological details). Pith-offset – the

amount of years between the innermost ring and the expected

germination age – was estimated for each core sample to range

between 0 and 170 years. Non-climatic, i.e. biological-induced age

trends were removed from the raw MXD measurement series using

the Regional Curve Standardization (RCS) method on a site-by-site

basis [39]. Series were first aligned by cambial age; a mean of the

age-aligned series was then calculated and smoothed with a cubic

spline of 10% the series length [40]. The resulting timeseries is

termed the Regional Curve (RC) and used for detrending, i.e.

deviations of the individual measurements from the RC were

calculated as ratios. Dimensionless indices were transformed back to

calendar years, and averaged per site using a robust bi-weighted

mean. The variance of the subsequent mean chronologies was

adjusted for changes in sample replication and inter-series

correlation [41], with only periods whose replication exceeded 10

series were analysed further.

Gridded CRUTEM3v data (1860–2006) [42] averaged over

65–70uN and 20–30uE were employed as predictor variables for

the reconstruction of Scandinavian summer temperatures (SI).

Variability resulting from differences in site location, species-

specific responses, lakeshore position (i.e. the distance between

trees and the nearest lake), tree age, sampling design, standard-

ization methodology, and model calibration was integrated in the

estimated reconstruction error (see SI for details).

Eight homogenized station records (also included in the

CRUTEM3v data) with continuous temperature measurements

spanning .70 years were selected from the Global Historical

Climatology Network (GHCN-adjusted; Figure 1 and Table S1),

to estimate a likely range of northern Scandinavian temperature

variations. Differences between local station records were used to

calculate a data target envelope used for comparison with the

MXD chronologies. The combined Tornedalen record was

considered for extra-verification back to 1816 [43], and gridded

SSTs from coastal Norway (65–70uN and 5–15uE, 1892–2002)

were utilized for comparison (SSTV2) [44]. Correlations with

gridded SAT and SST data, as well as comparison with MXD-

based summer temperature reconstructions from the Polar Ural

[25], the Pyrenees [45], and the Alps [19], were performed to

evaluate the spatial signature of Scandinavian temperature variabil-

ity. A composite analysis of gridded 500-hPa geopotential height field
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data [46] was used for the reconstructed 20 coldest and warmest

Scandinavian summers of the period 1659–1999. This analysis

allowed the assessment of possible impacts of large-scale atmospheric

circulation patterns on more regional northern Scandinavian

summer temperature extremes. A suite of five published tree ring-

based summer temperature records from northern Scandinavian

was gathered for comparison with our new record (Table S3). The

five chronologies preserve inter-annual to multi-centennial variabil-

ity and were rescaled against the same instrumental target record

(CRUTEM3v) as the newly developed temperature reconstruction

presented in this study. Finally, we used an ensemble of four transient

simulations from the coupled Community Climate System Model

version 3 (CCSM3) [47], covering the 1500–2100 period to derive

proxy-independent temperature variations and run proxy/model

comparisons (see SI for details).

Supporting Information

Text S1 Supporting information.

(DOC)

Figure S1 Temporal coverage of the 1,179 MXD series, of which

387 were developed before 2000 AD with 792 added in 2006, covers

the entire Scandinavian peninsula north of 65uN and has a mean

segment length (MSL) of 161 years with an maximum latewood

density (MXD) of 0.72 g/cm3 (inset denotes the relationship

between tree age and MXD value). Site chronologies start between

1400 and 1844, and their autocorrelation ranges from 0.23–0.50.

(EPS)

Figure S2 Correlation of the 25 MXD site chronologies after

RCS detrending (circles) with monthly temperature means

(CRUTEM3v) computed over the common 100 yr interval

(1860–1977). Results are classified into 20 sensitive (green) and 5

less sensitive (grey; GLO, LOF, NAR, SKI, SKS) sites, with the

horizontal lines referring to their average response.

(EPS)

Figure S3 (A) Correlation (r.0.3) of the reconstruction against

gridded JJA SAT (1901–2006) and four MXD-based summer

temperature records: 1 = Polar Ural (0.06), 4 = Tyrol (20.07),

3 = Lötschental (0.13) and 2 = Pyrenees (0.00). (B) Correlation of

the reconstruction against gridded JJA SST (1901–2003).

(EPS)

Figure S4 Spatial field correlation (r.0.3) between the new

MXD-based reconstruction of northern Scandinavian summer

temperature and gridded (5u65u) SLP [HadSLP2r; 20] calculated

for the June–August season and 1860–2006 period.

(EPS)

Figure S5 Spatial composite analysis at 500-hPa geopotential

height of (A) the 20 coldest and (B) the 20 warmest reconstructed

summers (JJA; 1659–1999), and (C) temporal comparison (1650–

1975) of the reconstructed JJA temperatures (orange) with JJA

estimates of the AO (light blue). Smoothed lines are 30-year low-

pass filters and stars refer to the annual extremes composed.

(EPS)

Figure S6 Temperature reconstructions from Scandinavia

(green) and the Northern Hemisphere that were 60-year low-pass

filtered and standardized over their common period 831–1992.

The two Northern Hemisphere versions either include (brown) or

exclude (ochre) Scandinavian proxies.

(EPS)

Table S1 Characteristics of the (A) 25 MXD chronologies and

(B) eight instrumental stations used. Grey site codes refer to less-

sensitive chronologies, blue (green) refers to updated (pre-2000)

site. The mean inter-series correlation (Rbar) and the Expressed

Population Signal (EPS) were computed over 30-year windows

lagged by 15 years [14]. Setting refers to the number of inhabitants

if a station is located in urban terrain.

(EPS)

Table S2 (A) Temperature extremes of the target and proxy data

computed over the common period 1860–2006. Italic letters refer

to common extremes. (B) Reconstructed summer temperature

extremes and associated error estimates computed over the full

period 1483–2007.

(EPS)

Table S3 Summary information of the 5 Scandinavian tree-ring

chronologies used for comparison with this study. ‘Season’ refers

to the originally indicated response window, whereas ‘Response’

refers to correlations computed against Scandinavian JJA mean

temperatures over the 1860–1970 common period.

(EPS)
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