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• An assessment of a model chain from
atmosphere to local flood loss is
presented.

• Special attention is payed on deter-
ministic process representation.

• Scale differences from atmospheric
processes to local impact need to be
considered.
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resentation of hydrometeorological
extremes.

• Several technical and methodical con-
straints have been identified.
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A B S T R A C T

Comprehensive flood risk modeling is crucial for understanding, assessing, and mitigating flood risk. Mod-
eling extreme events is a well-established practice in the atmospheric and hydrological sciences and in the
insurance industry. Several specialized models are used to research extreme events including atmospheric
circulation models, hydrological models, hydrodynamic models, and damage and loss models. Although
these model types are well established, and coupling two to three of these models has been successful, no
assessment of a full and comprehensive model chain from the atmospheric to local scale flood loss models
has been conducted. The present study introduces a model chain setup incorporating a GCM/RCM to model
atmospheric processes, a hydrological model to estimate the catchment’s runoff reaction to precipitation
inputs, a hydrodynamic model to identify flood-affected areas, and a damage and loss model to estimate
flood losses. Such coupling requires building interfaces between the individual models that are coherent
in terms of spatial and temporal resolution and therefore calls for several pre- and post-processing steps
for the individual models as well as for a computationally efficient strategy to identify and model extreme
events. The results show that a coupled model chain allows for good representation of runoff for both long-
term runoff characteristics and extreme events, provided a bias correction on precipitation input is applied.
While the presented approach for deriving loss estimations for particular extreme events leads to reasonable
results, two issues have been identified that need to be considered in further applications: (i) the identifica-
tion of extreme events in long-term GCM simulations for downscaling and (ii) the representativeness of the
vulnerability functions for local conditions.
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1. Introduction

Floods are a natural hazard whose frequency is expected to
rise in many areas due to ongoing anthropogenic climate change
(IPCC, 2014). In addition, flood impacts are projected to increase
due to increasing exposure (Bouwer, 2013; Hirabayashi et al., 2013;
Kundzewicz et al., 2013). Since the occurrence of flood events cannot
be prevented, society has to take action to increase its resilience to
these changing conditions. This requires planning adaptation strate-
gies and realizing flood mitigation measures. Knowledge on poten-
tially flood-affected areas is needed to reduce impacts of future flood
events. This calls for greater understanding of possible meteorolog-
ical scenarios, hydrological processes, flooding probability, and the
vulnerability of the assets within flood affected areas.

A prominent approach to gaining insight into atmospheric pro-
cesses, and therefore meteorological extremes leading to severe
impacts, is based on numerical models. Using a modeling approach
to identify potential flood-affected areas and the damages that could
incur requires coupling several models to a model chain. The first
element insuchamodelchain isameteorologicalcomponentthatpro-
vides precipitation and temperature data, the key inputs for the rest
of the model chain. These variables can be generated with stochastic
weather generators. However, there are some known issues regarding
the representation of extreme events, such as capturing the depen-
dence between variables, and the dependence of variables in space
(Furrer and Katz, 2008; Semenov, 2008; Vandenberghe et al., 2010).
Alternatively, the variables can be simulated in dynamical models by
combining a Global Circulation Model (GCM) and a higher resolution
Regional Climate Model (RCM). This is necessary when dealing with
areas characterized by complex topography since the explicit simula-
tion of topographically influenced processes leads to a more reliable
simulation of extreme precipitation events (Keller et al., 2016).

The meteorological variables serve as input for a hydrological
model, which simulates the runoff. The runoff can lead to flooding,
which is simulated with hydrodynamic models. Eventually, a dam-
age and loss model is used to estimate damages that result from
simulated inundations. Although the individual parts of these mod-
eling components are well established and commonly used in their
respective research communities, a coupling of all these elements
such as the one presented in this study has not been reported so far.

Coupling GCMs and RCMs to hydrological models has been the
topic of numerous recent studies. In terms of spatial scales, such
applications bridge calculations made for a global scale (104 km) to
calculations made for the mesoscale (102 km). Most of these studies
focused on a particular application of linked GCM and hydrological
models. Several studies reviewed downscaling methods for hydro-
logical applications (e.g. Fowler et al., 2007; Kundzewicz and Stakhiv,
2010; Teng et al., 2012; Wilby, 2010). More recent studies focused on
specific methodological problems in this procedure, namely on scale
effects (Piniewski et al., 2013), rainfall statistics (Langousis et al.,
2016), and hydro-meteorological extremes (Madsen et al., 2014;
Tofiq and Guven, 2014; Sunyer et al., 2015). The results of these stud-
ies have confirmed the applicability of linking GCMs to hydrological
models via RCMs. Such model chains have been extensively used to
assess climate change impacts on hydrological variables (e.g. Camici
et al., 2014; Chen et al., 2013; Das et al., 2013; Fiseha et al., 2014;
Kara et al., 2016; Li et al., 2014; Salathé et al., 2014; Xu et al., 2015).

Coupling a hydrological model with a hydrodynamic model has
also been applied and evaluated in numerous studies. This part
of the model chain couples the mesoscale (1000 to 100 km) to
the micro-scale (1 km to 10 m). Such coupled models have been
assessed by Brandimarte and Di Baldassarre (2012), Cook and Mer-
wade (2009), Lerat et al. (2012), and Kim et al. (2012), among
others and have been extensively applied in studies that estimate
flood wave propagation (e.g. Laganier et al., 2014), retention effects
(e.g. Felder et al., 2017; Skublics et al., 2014; Vorogushyn et al., 2012),

and flood probabilities (Altarejos-García et al., 2012; Dutta et al.,
2013; Felder and Weingartner, 2017).

Finally, hydrodynamic models have been coupled to loss mod-
els to estimate flood losses. This approach has been applied in
several case studies where the input was mainly estimated using
observed hydrographs rather than modeled ones (e.g. Apel et al.,
2009; Cammerer et al., 2013; Ernst et al., 2010; Falter et al., 2015).
The scale of the models depends mainly on the aim of the respec-
tive study, and it typically encompasses the micro-scale (1–10 m). A
rough assessment of global flood risk using GCM and hydrodynamic
models with relatively coarse resolution has been conducted in sev-
eral studies (e.g. Winsemius et al., 2015). A recent study by Thieken
et al. (2016) complements this approach with statistical downscaling
to better represent local climate variables.

A review of studies in the recent literature is further summa-
rized in Table 1. It is apparent how all parts of the end-to-end model
chain have been covered by the literature. However, the coupling of
all models that are needed for a deterministic local flood loss esti-
mation using one single model chain has not been accomplished
yet to our knowledge. Therefore, the aim of the present study is
to assess the applicability, strengths, and weaknesses of a coupled
model chain that covers all of the above-mentioned models. The
first focus is on the general applicability of the model chain, i.e.
what modeling strategy is feasible considering the available com-
putational resources. The second question is whether such a model
chain sufficiently represents physical processes. This is assessed in
terms of long-term characteristics and in terms of extreme events.
Third, the model chain is assessed regarding its applicability for
spatial and temporal scales that range across various orders of mag-
nitude. With this approach, new opportunities and constraints of
model coupling across many scales can be evaluated, and sensitive
interfaces between the models can be identified. This is impor-
tant in order to develop a smooth transition of model variables
across the scales and in terms of identifying technical constraints.
The applicability test is conducted in view of the research question
on identifying extreme precipitation scenarios in order to delineate
their financial impacts (i.e. flood losses to buildings).

2. Description of the model chain

The approach followed in this study entails selecting extreme
events within a long climate simulation, applying the full model
chain to such cases, and comparing the results with recent events,
with the aim of gaining insight into physically plausible extreme
precipitation scenarios over a time frame beyond the short instru-
mental record. Compared to resampling approaches or the use of
stochastic weather generators, the main advantage of the proposed
approach is that it is less dependent on the period and the quality of
the instrumental record.

The study design is shown schematically in Fig. 1. The meteoro-
logical inputs into the model chain are the results of three different
modeling approaches: dynamical downscaling based on ERA-Interim
reanalysis, dynamical downscaling based on a GCM, and the latter
followed by a statistical bias correction. These three precipitation
modeling approaches are used separately for the model assessment.
First, the model chain is calibrated and validated using input from
ERA-interim. This enables an assessment of the model chain’s ability
to represent the natural system. In a second step, the precipita-
tion modeled by a downscaled free GCM run is used as input both
in an uncorrected and in a quantile-mapped mode. A comparison
with observed precipitation and runoff data allows for an assess-
ment of the model chain regarding long-term system behavior. It is
assumed that if the model is able to represent the long-term char-
acteristics of hydrological variables, it is also applicable for extreme
events. As a showcase, the model is driven by a set of downscaled
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Table 1
Model types and their characteristic spatial resolution and a non-exhaustive overview of studies in which coupled models have been applied. The characteristic resolution is
understood as a rough statement on the magnitude and differs from model to model. Studies that remarkably differ from these characteristic resolutions, e.g. flood risk assessments
on a global scale, are not considered.

GCM RCM Hydrological model Hydrodynamic model Loss model

Characteristic spatial res. 105 m 104 m 103 m 10 m 10 m
Characteristic temporal res. Day Day Hour Second –
Sunyer et al. (2015) x x
Langousis et al. (2016) x x
Fowler et al. (2007) x x x
Kundzewicz and Stakhiv (2010) x x x
Wilby (2010) x x x
Teng et al. (2012) x x x
Madsen et al. (2014) x x x
Tofiq and Guven (2014) x x x
Camici et al. (2014) x x x
Piras et al. (2016) x x x
Duan et al. (2017) x x x
Cook and Merwade (2009) x x
Di Baldassarre et al. (2010) x x
Kim et al. (2012) x x
Lerat et al. (2012) x x
Vorogushyn et al. (2012) x x
Laganier et al. (2014) x x
Skublics et al. (2014) x x
Altarejos-García et al. (2012) x x
Falter et al. (2015) x x x
Thieken et al. (2016) x x x x
Apel et al. (2009) x x
Ernst et al. (2010) x x
Cammerer et al. (2013) x x
Winsemius et al. (2015) x x
Current study x x x x x

and bias corrected extreme events. For this particular purpose, a
number of candidates to precipitation events within a 400-year GCM
simulation are downscaled and fed into the model chain. This enables
the assessment of the model chain when it comes to extreme events
and losses.

2.1. Climate modeling

The input required by the hydrological component of the model
chain is the precipitation flux, as well as the temperature. These vari-
ables are produced in our study using two different RCM simulations,
the first driven by a GCM and the second by a reanalysis product. The
resolution of the final downscaled fields is 2 km in both cases.

2.1.1. Reanalysis
ERA-Interim is a reanalysis product from the European Centre

for Medium Range Weather Forecast. It is produced running the IFS
model at a spectral resolution of T255 and 60 vertical levels (Dee
et al., 2011). The setup includes a number of observational datasets
that are assimilated in the model with a 4-D variational analysis.
This dataset covers the period from 1979 up to the present day.
To drive the RCM, a selection of this data spanning 1979–2013 with a
6-hour temporal resolution was used. The highest spatial resolution
was used, with data interpolated to 0.75◦ × 0.75◦.

2.1.2. GCM
The GCM data used in this study consist of a simulation carried

out with the first version of the Community Earth System Model
(CESM, Hurrell et al., 2013). The model is a fully coupled GCM con-
sidering components of the atmosphere, land, sea ice, ocean, and the
carbon cycle. The model is run with a horizontal resolution of about
1◦ for all components.

Two different simulations were performed in the process. First,
a so-called control simulation, where forcings are kept constant to
850 CE conditions, was run for 500 years. Only the last 400 years
are used in this study to identify extreme precipitation events

(see details in the following section). Second, the latter simulation
was branched from a preindustrial (1850 CE) simulation provided by
the NCAR and continued until 2005. Details on the forcing used and
a description of the simulated climate is given in Lehner et al. (2015).
Note, however, that from the latter simulation only the period 1986
to 2005 is used in this study to deduce the bias correction of the
GCM-RCM part of the chain.

2.1.3. RCM
The RCM is version 3.5 of the Weather Research and Forecasting

Model (WRF) (Skamarock et al., 2008). This is a limited area model
that solves the non-hydrostatic equations of atmospheric dynamics
over a terrain-following coordinate system. It is a state-of-the-art
RCM that is customarily used for both meteorological and climate
purposes (García-Valdecasas Ojeda et al., 2017; Gómez-Navarro
et al., 2015; Stucki et al., 2016; Messmer et al., 2017, among oth-
ers). The model setup employed in this study is nearly the same
as that described by Gómez-Navarro et al. (2015), and implements
four nested domains that downscale the large-scale driving data
from either ERA-Interim or CESM to 2 km in its innermost domain
(Fig. 2). More recently, Gómez-Navarro et al. (2018) performed a
validation of this model configuration regarding its ability to simu-
late the precipitation regimes over Switzerland. The high resolution
in its innermost domain has been selected as it minimizes the
scale gap in the coupling with the next model chain, therefore
minimizing systematic errors. Further, it enables the explicit sim-
ulation of convective processes, rendering the parametrization of
such processes unnecessary. A growing body of literature supports
the increased performance of simulations with such high-resolution
(e.g. Ban et al., 2014; Keller et al., 2016; Zittis et al., 2017). Prein et al.
(2015) reviewed the recent bibliography about convection permit-
ting simulations. They report how the added value of this type of
simulations is especially notable at sub-daily scale and in summer.
This makes this setup especially suitable for reproducing summer
extreme events in areas of complex orography, precisely the phe-
nomena most relevant for the area of interest of this study. Further,
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Fig. 1. Chain of coupled models used in this study. The process representations
range from hundreds of kilometers (top) to a few meters (bottom). On the right, the
characteristic scale of the process representation is indicated.

this high resolution facilitates the explicit simulation of the physical
links between the large-scale circulation, the mesoscale processes
responsible for regional patterns of precipitation, and eventually
the discharge processes, which is the main purpose of the pro-
posed model chain. Such high-resolution has the drawback of a huge
computational cost that precludes the downscaling of the entire
400-year period, therefore the emphasis in case studies emerges as
an alternative.

The only difference between the model configuration in the simu-
lations driven by ERA-Interim (hereafter WRF-ERA) and those driven
by CESM (hereafter WRF-CESM) is that in the latter no nudging
scheme is employed, whereas in the former horizontal wind, temper-
ature, and humidity are nudged above the boundary layer. The ratio-
nale behind this procedure is that the GCM should not be regarded
as accurately as the reanalysis product, especially accounting
for the overestimation of zonal circulation (Bracegirdle et al., 2013)

Fig. 2. Configuration of the four two-way nested domains. The spatial resolutions are
54, 18, 6, and 2 km, for domains D1 to D4, respectively. The figure depicts the orog-
raphy and land sea mask implemented in the simulations. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

and other biases reported for this particular model setup (Lehner et
al., 2015).

Thus, in total, three different sets of RCM simulations are used
in this study — one continuous run driven by ERA-Interim in the
period of 1979–2013 using nudging, a second continuous run driven
by CESM for the period of 1986–2005, which is used for the bias cor-
rection, and finally a set of short runs around extreme cases which
are selected from a long 400-year CESM run according to the criteria
detailed in Section 3.3. Temperature data were directly derived from
the model output without further processing, after confirming that
there is no systematic bias (shown in Fig. 5).

2.2. Hydrological and hydrodynamic modeling

The deterministic, semi-distributed hydrological model PREVAH
(Viviroli et al., 2009b) was applied for the hydrological modeling
component. Various studies in areas similar to the present study
area confirm the applicability of the model, particularly for mod-
eling extreme events (Felder and Weingartner, 2017; FOEN, 2009;
Orth et al., 2015; Viviroli et al., 2009a; Zappa et al., 2015). The model
uses hydrological response units ( HRUs) that are directly routed to
the catchment outlet. For the present case, the HRUs are built based
on catchment characteristics (altitude zone, slope, aspect, land use,
soil type and glaciation) at a 2 km resolution. Twelve parameters
are calibrated (14 in case of glaciated catchments). Fourteen sub-
catchments with an average area of 200 km2 were independently
modeled; their location is shown in Fig. 3. For 9 out of these 14 sub-
catchments calibration was performed using hourly resolved dis-
charge data, leading to NSE skill-scores between 0.70 and 0.92. The
other 5 sub-catchments were parametrized using the regionalization
approach proposed by Viviroli et al. (2009a).

The outflow from the sub-catchments has to be routed through
the floodplains towards the river basin outlet. The output of the
hydrological model is fed into the hydrodynamic model as the upper
boundary condition or as lateral inflow. In this study, the 1D hydro-
dynamic model BASEMENT (Vetsch et al., 2016) was used, which
is based on the continuity equation and solves the Saint-Venant
equations for unsteady one-dimensional flow. The model structure
and its mathematical foundations are described in detail by Vetsch
et al. (2016). BASEMENT simulates water fluxes through floodplains
with their topography represented by cross-sections. For each time
step and cross-section, the model computes flow velocity and water
surface elevation. The hydrodynamic model is set up to incorpo-
rate all significant flood-prone areas and potential retention areas
in the main river valley. Riverbed cross-sections were provided by
the Swiss Federal Office of Environment (FOEN). These cross-sections
are expanded to the whole valley ground based on a 0.5 m laser
scan digital elevation model. This procedure enables the effects of
widespread inundation and retention processes on discharge rout-
ing to be captured (Cook and Merwade, 2009; Mejia and Reed, 2011).
A cross section spacing of 150 m and a perpendicular orientation
is chosen based on recommendations made by Ali et al. (2015),
Castellarin et al. (2009), and Samuels (1990). With this, the lake reg-
ulation and the retention effects of the lakes and the floodplains are
considered.

The hydrodynamic model is calibrated on observed data. The
calibration is based on an adjustment of the roughness (Strickler) coef-
ficients (kstr) of the single cross-sections. Separate values are set for
the riverbed, the adjacent levees, and the hinterland, aiming to recon-
struct observed propagation times and peak flows. The roughness
parameters are calibrated by representing the stage-discharge curves
of all available river gauging stations in the study area. These coeffi-
cients are transferred to the neighboring cross-sections. The behavior
of the lake outflows is described using the Poleni equation, whereas
the dimensionless factor l is empirically adjusted in order to recon-
structobservedfloodevents.Amoredetaileddescriptionoftheapplied
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hydrological and hydrodynamic model as well as a comprehensive
explanation of the calibration strategy is provided in Felder et al.
(2017). The model validation on observed flood events shows an error
of ±2 cm in terms of water level (mean flow depth: 2 m) or ±5 m3 s−1

in terms of discharge (mean runoff: 122 m3 s−1). The model coupling
with the hydrological model is external, which means that there is
no direct interaction between the models and backwater effects are
only treated within the spatial domain of the hydrodynamic model.

2.3. Loss modeling

A flood loss model is nested into the 1D hydrodynamic model
and consists of a 2D flood inundation model for each floodplain, a
building dataset, and a set of vulnerability functions. The flood loss
model computes losses to buildings (structural damages). Fatalities,
damages to infrastructure or house content, and indirect damages
due to business interruption are not considered in this study.

Flood dynamics in the floodplains are modeled with the 2D
inundation model LISFLOOD-FP (Bates and de Roo, 2000). This two-
dimensional hydrodynamic model is designed to simulate dynamic
flooding in complex terrains in a computationally efficient way. The
model computes water depths for each grid cell and time step. In this
study, the model was set up with a spatial resolution of 50 m. The
digital terrain model (DTM) is upscaled from a Lidar DTM with a high
spatial resolution (0.5 m). The channel flow is computed in a subgrid
mode (Neal et al., 2012). This subgrid channel module requires infor-
mation on the heights of the river bed and of the lateral levees, on the
river width, and on the shape of the river bed. These data are com-
puted at high resolution and aggregated onto the target resolution
by conserving the cross-sectional area of the river channel from the
high-resolution terrain model. The 2D hydrodynamic model is cali-
brated in terms of reproducing the stage-discharge relationships at
the gauging stations at bank-full discharge and the known channel
capacity along the river reaches. As in the 1D hydrodynamic model,
the roughness coefficients calibrated at the river gauging stations
are transferred to the remaining river reaches. The model is vali-
dated on the basis of documented flooding. The fit of the inundation
model (Bates and de Roo, 2000) computed on the basis of observed
discharges of the flood event in August 2005 and a comparison
between modeled and observed inundation extents ranges between
0.5 and 0.9, depending on the river reach. The lower values can
be explained by dam breaks that occurred in reality but are not
considered in the model.

The 1D hydrodynamic model provides the boundary conditions
(primary and lateral inflows and lake levels) for the 2D inundation

model. Hence, the 2D inundation model is nested into the 1D hydro-
dynamic model. The 2D inundation model provides the flow depths
during floods in the floodplains as the input for the loss compu-
tation module. The loss module consists of a dataset of buildings,
each object classified by type, functionality, volume, reconstruction
costs, and number of residents (Röthlisberger et al., 2017). The build-
ing footprints were provided by the Federal Office for Topography
Swisstopo. The volume of the buildings is derived from LIDAR data
provided by the Canton of Bern. The monetary values of the build-
ings (reconstruction costs) are calculated based on the above-ground
building volume by means of a heuristic determination of mean val-
ues for reconstruction costs per cubic meter (regional construction
costs according to SVKG (2012)). In addition, the number of residents
is attributed to each building using the residential statistics of the
Federal Office for Statistics.

The flow depths resulting from a model simulation were attributed
to each building and provide the basis for estimating an object-specific
degree of loss. The degree of loss is the ratio between the loss and
the total reconstruction cost of the building. It depends on the flow
depth and is used to compute the damage to the building by multiply-
ing it with the reconstruction value of the building. The relationship
between the degree of loss and the flow depth is described by an
empirically derived vulnerability function. A vulnerability function is
needed to determine losses based on the flow depths according to
the characteristics of the individual buildings. Currently, no specific
vulnerability function is available for Switzerland, and there is no
dataset available to validate the flood loss module due to data privacy
regulations in the study area. Hence, a selection of different flood vul-
nerability functions was applied to consider the uncertainties in the
floodlossestimation andtocapture arange ofpossible outcomesin the
flood loss estimations. For the present study, vulnerability functions
suggested by Dutta et al. (2003), Hydrotec (2001), Papathoma-Köhle et
al. (2015), and Totschnig et al. (2011) are used in the flood loss compu-
tation module. In summary, the flood loss module in this model chain
computes the damages on the single-building scale and aggregates
the losses to the basin scale for each model simulation.

3. Data and methods

3.1. Study area and data availability

The study was conducted for the catchment of the Aare River up
to Bern (see Fig. 3). The catchment is located at the northern edge
of the Swiss alps and covers about 3000 km2. The catchment’s ele-
vation ranges from 500 to 4200 m a.s.l., with a mean elevation of
1600 m a.s.l. The southern part of the catchment consists of alpine

Fig. 3. Study area and sub-catchments. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



1230 G. Felder et al. / Science of the Total Environment 635 (2018) 1225–1239

Fig. 4. Seasonally accumulated precipitation over Switzerland for the period of 1985–2005 in the OBS dataset (top), the raw WRF-CESM simulation (middle), and the former after
QM correction (bottom). The Aare catchment is highlighted in the maps as the focus of this study. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

mountains. Several alpine peaks within this area exceed 4000 m a.s.l.,
and parts of it are glaciated (8% of the total catchment area). The
northern part of the catchment consists of a relatively flat valley,
where widespread potential floodplains are present. Two natural
but artificially managed lakes are located between the northern
and the southern part of the catchment. The alpine (southern) part
of the catchment can roughly be subdivided into four major sub-
catchments that each cover approximately 500 km2 and drain into
one of the lakes. The lakes have a balancing effect since they dampen
peak discharges and attenuate low flow situations. The alpine sub-
catchments determine the regime of the whole study area, which
is driven by glacier- and snow melt, with high flows in summer
and low flows in winter. The northern sub-catchments cover about
500 km2 in total; their outflow is mainly driven by rainfall. Since
they directly contribute to the catchment’s runoff without drain-
ing into a lake, they can significantly influence the peak discharge
of the catchment. The typical response time of the whole catch-
ment amounts to 1–2 days. The complex physiographic setup of the
catchment bears considerable consequences for atmospheric mod-
eling as the complex topographic structure is not captured by the
spatial resolution in the CESM. This drawback justifies the necessity
of dynamically downscaling the GCM in order to produce physically
realistic meteorological fields suitable for this complex catchment.

Further, the presence of lakes and widespread potential floodplains
calls for a hydrodynamic model that is able to capture retention and
inundation effects on discharge behavior.

3.2. Observational dataset

Discharge time series in a 10 min temporal resolution covering
at least 30 years were available for nine sub-catchments, as well
as for the catchment outflow. Data were provided by the Swiss
Federal Office of Environment. The discharge time series of the
sub-catchments are used for the calibration and validation of the
hydrological model. The discharge time series gauged at the catch-
ment outflow is used for the calibration of the hydrodynamic model,
as well as for the validation of the coupled hydrologic-hydrodynamic
model.

To validate the simulated precipitation and to carry out a bias
correction, a gridded observational dataset is used. It consists of the
RhiresD dataset, provided by MeteoSwiss (2015). This observational
dataset, hereafter referred as OBS, is based on daily precipitation
sums measured by the MeteoSwiss high-resolution rain-gauge net-
work. The dataset is provided on a 2 km resolution, and has been spa-
tially matched onto the 2 km grid of the WRF simulation’s innermost
domain.

Fig. 5. Annual precipitation cycle in the Aare catchment in the observational dataset, as simulated by WRF, and then after correction taking into account precipitation over the
same region. The bold line represents the monthly mean temperature for the period from 1979 to 2013.
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3.3. Selection of extreme cases

Although the aim of this study relies on showing the feasibility of
the full model chain, we showcase it with an application in the sim-
ulation of meteorological extreme events. Such events are selected
within the 400-year control run conducted with CESM.

The proposed method is based on the assumption that the pre-
cipitation simulated by the GCM is related to the one obtained in
the RCM. Thus, the precipitation averaged over a region that encom-
passes Switzerland (12 grid points in the GCM) is evaluated. A set of
grid points is used in order to avoid misinterpretations, as the GCM
uses subgrid parametrizations (in particular for precipitation) that
could lead to artifacts at single grid points nearby or above topog-
raphy. Out of this time series, the most extreme cases are selected
according to the following selection procedure:

• The selection is carried out separately and for each season
independently.

• The daily precipitation series are aggregated in running win-
dows of variable length (1, 2, 3, 5 and 10 days). The resulting
series are considered independently.

• The series corresponding to each window are inspected, and
the 4 single most extreme events for each temporal frame are
selected.

Note that this algorithm does not explicitly exclude days where
precipitation leads to multiple events, i.e. the precipitation which
occurred on the most extreme day may also have contributed
to a 2-day extreme event, etc. All in all, the selection com-
prises 5 × 4 × 4 = 80 events that require the simulation of
4 × 4 × (1 + 2 + 3 + 5 + 10) = 336 days. Thus, the selected
number of events leads to a feasible number of days to be down-
scaled with the RCM with the available computational resources.
Also, the use of various temporal windows accounts for the fact that
some extreme floods are not always produced by one heavy, isolated
precipitation event, but are rather caused by precipitation accumu-
lation over several days. Furthermore, selecting extremes separately
by season aims to minimize problems due to seasonality improperly
reproduced by the GCM. That is, extremes in all seasons are studied,
regardless of when, across the annual cycle, the GCM produces the
strongest precipitation.

It can be argued that these events might not necessarily corre-
spond to extreme episodes in the real, externally forced climate. To
demonstrate that this is not a bottleneck for this selection, the control
simulation has been compared to a transient simulation for the 1000–
2010 period (Lehner et al., 2015) in terms of extreme precipitation
over Switzerland. Both simulations were carried out with the same
CESM configuration. The results (not shown) indicate that the sever-
ity of extreme events is hardly distinguishable between control and
transient simulations, and that the severity of these episodes remains
stationary during the last millennium. Therefore, the extreme events
within the control simulation are a sensible surrogate for the ones
that can be expected in more realistic externally forced simulations.
In any case, these cases are selected to serve as test bed for the
model chain, and its value resides in its intrinsic physical consistency.
Therefore, the interpretation of what type of events they represent
is a consideration that does not affect the generality of the results
regarding the model chain that is presented hereafter.

3.4. Bias correction of precipitation

The data produced by the GCM are not as accurate as those pro-
duced by reanalysis products (Wang et al., 2014). A prominent, well
known bias is the overestimation of zonal circulation over Europe
(e.g., Bracegirdle et al., 2013). These biases are introduced in the RCM
through the domain boundaries, and they induce systematic biases
in the precipitation flux simulated in the innermost domain of the

RCM. In addition, the RCM itself is a source of errors and uncer-
tainties arising both from the parametrization of certain sub-grid
processes and from a limited understanding of some components
of the climate system. It is important to acknowledge and assess
systematic biases, although they are to some extent inherent in all
areas of climate modeling. A comprehensive analysis of the model
performance in both the WRF-CESM and WRF-ERA simulations is
presented in Gómez-Navarro et al. (2018). They identify biases in
WRF-CESM associated to wrong seasonality in the driving model,
which leads to an underestimation (overestimation) of precipitation
in summer (winter). Such biases play a key role in this study, as the
hydrological processes simulated in the following steps of the model
chain exhibit non-linear behavior that makes them very sensitive
to small deviations in precipitation fluxes. Therefore, some relevant
results regarding the ability of the RCM to simulate observed climate
are presented. These are relevant for the discussion of the outcome
of the rest of the model chain.

As a mean to compensate for systematic biases in the out-
put of the RCM, a bias correction technique was applied, gener-
ating adjusted precipitation fluxes that are in principle more rep-
resentative of the observed precipitation rates than those in the
raw RCM output. This so-called Quantile Mapping (QM) technique
(Gudmundsson et al., 2012; Jakob Themeßl et al., 2011) calibrates
a non-parametric statistical model that can be used to adjust the
simulated events, with the underlying assumption being that the
biases found during the calibration period are consistent across dif-
ferent time periods and even during unobserved extreme events. In
a nutshell, bias correction is based on using a climate simulation
and an observational product to obtain the sampling quantiles of
both datasets independently. Then, this information is used to map
the daily simulated precipitation onto the distribution of observed
precipitation (Jakob Themeßl et al., 2011).

This simple method ensures that the sampling distribution of
the corrected values mimics the one in the observations. Thereby,
not only the mean and variance but also higher-level moments
of the distribution are reproduced. It relies however on two
important assumptions. The first assumption is that the corrected
dataset inherits the properties of the observational product, which
is considered a perfect surrogate of actual precipitation. Second,
the sampling distributions of quantiles in the simulation and
observations is assumed to be an accurate estimation of the actual,
unknown, distributions, which is closely related to the length of the
period used. This transient 20-year simulation spans the period of
1986–2005 with exactly the same configuration as the one used to
simulate the extreme events. Clearly, some extreme cases exceed the
precipitation range covered by the 20-year simulation, so extrap-
olation becomes necessary. The underlying assumption is that the
bias in percentiles beyond 95% is constant, which is equivalent to
assuming a straight line of slope 1 in a quantile-quantile diagram.

The use of QM needs to be accompanied by a word of cau-
tion. Post-processing techniques are in the focus of recent and
intense debate (Maraun, 2016). As described above, QM establishes
a relationship between two probability distributions. Therefore, a
choice must be made regarding the data to be used to calculate such
distributions, e.g. the precipitation in each grid point or the precipi-
tation average in a certain area of interest. Using either of these data,
QM (and more generally every bias-correction technique) has the
effect of a statistical downscaling, which breaks down the physical
consistency of the model. This is the case when the spatial structure
of the simulated field is disturbed due to the different corrections
carried out in different grids. To minimize this side effect, a less
aggressive correction is applied, namely using the single couple of
distributions obtained from the daily precipitation averaged over the
Aare catchment in both the WRF-CESM and in OBS for the period
1985–2005. Then, both distributions are used to correct each grid cell
independently. The use of just one general transformation is meant
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to minimize the risk of statistical over-fitting, which might disturb
the intended physical consistency with the RCM. Furthermore, it
should be considered that although this procedure ensures that the
correction is accurate across all distribution moments in the area
used to establish the distributions, it may lead to worse corrections
when it is applied in areas away from it, as shown in the following
sections. This effect implies that the correction is especially suited
for the Aare catchment, although it may lead to erroneous correc-
tions in other areas that are not considered in the rest of the model
chain. Finally, note that QM is applied in this study twice, first for the
continuous 1985–2005 run and then for the selected events. Daily
PDFs are used to correct daily series of precipitation in the former
case, in which all days without a minimum threshold are considered.
However, to correct the selected events the PDFs are obtained for the
precipitation aggregated over the corresponding temporal windows,
e.g. 5-day events are corrected according to the PDFs obtained for
precipitation in chunks of 5 days.

3.5. Initial conditions for the hydrological and the hydrodynamic model

As explained in Section 3.3, the number of days that can be
downscaled is limited due to limited computational resources. Such
event-based modeling is based on several assumptions on the ini-
tial catchment conditions. The initial state of the hydrological model
was set to average seasonal conditions in terms of storage levels, soil
moisture, and snow-water-equivalent. Therefore, four sets of initial
conditions were defined. The same procedure was applied to define
the initial conditions of the 1D hydrodynamic model, namely the ini-
tial lake levels and the tributary inflows. The model was run for a
period of 12 days. Therefore, at least 2 days after the precipitation
event were modeled as well (exact number depends on the length of
the scenario). This ensures that no peak discharges are missed, even
when they occur after the actual precipitation event.

4. Results

First, an evaluation of the model chain regarding long-term runoff
characteristics is presented, since acceptable model performance on
a long-term basis is required for a reliable assessment of extreme
event characterization. Then, the evaluation focuses on the modeling
and reconstruction of extreme events, which is of particular impor-
tance for further applications of similar model chains for flood loss
modeling.

4.1. Long-term characteristics of precipitation simulation

Precipitation biases in the WRF-CESM simulation illustrate how
the bias correction procedure applied on a daily basis to the full sim-
ulated period (Section 3.4) adjusts the precipitation values over the
Aare catchment. Fig. 4 illustrates the systematic biases present in the
WRF-CESM simulation showing the maps of accumulated precipita-
tion for each season in the observations (top), the raw WRF-CESM
simulation (middle), and the bias-corrected one (bottom). A com-
prehensive discussion of these biases, as well as a comparison with
biases of the WRF-CESM and WRF-ERA simulations and deficiencies
in the simulation of the large-scale circulation within CESM, is pro-
vided by Gómez-Navarro et al. (2018). Fig. 4 demonstrates how WRF
systematically overestimates winter and spring precipitation, while
it underestimates summer precipitation. The deviations of the mod-
eled precipitation amounts from the observed ones are not constant
over the different seasons. This calls for studying extreme events
independently for each season. These biases can be removed to a great
extent applying QM, as depicted in the bottom row. The deficien-
cies regarding the annual precipitation cycle are apparent in Fig. 5,
where the precipitation averaged over the Aare catchment for each
month is shown for the simulation as well as for the output of the

QM correction. Clearly, the bias correction adjusts the representation
of the annual cycle, increasing (decreasing) their values in the warm
(cold) seasons and narrowing differences with the observations. The
bold lines represent the monthly mean temperature derived from the
WRF-ERA simulation and from the observed dataset. They confirm
that the seasonal pattern of the mean temperature is well repre-
sented by the WRF-ERA simulation, which is important for a reliable
modeling of snow accumulation or snow melt.

The overall performance of the three precipitation products under
consideration is further shown in Fig. 6, where the quantiles of
the modeled 1-day areal mean precipitation intensities are com-
pared to the quantiles of the observed mean areal precipitation. The
areal mean precipitation based on the downscaled reanalysis data is
congruent with the observed quantiles in low-intensity cases. How-
ever, it systematically overestimates the observed quantiles above an
intensity of 20 mm, and particularly above 60 mm. This means that
mean areal precipitation derived from this dataset is systematically
too high in the upper range of quantiles. A similar pattern is observed
in the downscaled but uncorrected CESM data (WRF-CESM-RAW).
The overestimation of quantiles between 50 mm and 80 mm is even
more distinct in the WRF-ERA-based dataset. The quantile mapping
of these data corrects the overestimation of these quantiles, as shown
on the right hand side of Fig. 6. Although the fit is not perfect, there
is no systematic under- or overestimation of the observed quantiles,
even in the upper range of precipitation intensities.

The bias correction procedure has been applied to each event
individually, and is illustrated for one particular case in Fig. 7, which
shows the precipitation accumulated in a 1-day extreme event in the
summer. This event led to heavy precipitation in the central part of
Switzerland, and thus it is a good case for our consideration of severe
flooding in the area of interest. WRF-CESM underestimates summer
precipitation; therefore this event is corrected towards higher pre-
cipitation by the bias correction method. The effect of the correction
is shown in the map (Fig. 7, right panel) leading to extensive areas
where precipitation exceeds 170 mm in 24 h, whereas in the original
model output precipitation barely reaches 120 mm.

4.2. Long-term characteristics of runoff simulation

The discharge quantiles derived through the coupled hydrological-
hydrodynamic modeling of the corresponding precipitation datasets
are shown in Fig. 8. As the WRF-ERA based precipitation dataset is
used to calibrate the hydrological model, the systematic overesti-
mation of medium and high quantiles in the WRF-ERA precipitation
is corrected to a certain degree, meaning that the overestimation
of higher runoff quantiles is not as distinct as it is with precipi-
tation. As depicted in the study design shown in Fig. 1, the same
WRF-ERA-based calibration is applied for the hydrological modeling
of the WRF-CESM-based data. In the case of raw WRF-CESM, this
procedure leads to good representation of observed runoff quantiles
with respect to low and medium flows, and to an underestimation of
extreme flows that exceed 400 m3 s−1. Using the corrected version,
the distribution of the runoff quantiles scatters around the observed
quantiles. Although the flows between 350 and 450 m3 s−1 are slightly
underrepresented, there is no systematic over- or underestimation.
Comparing the runoff quantiles of the WRF-CESM-RAW and the WRF-
CESM-QM data shows the benefit of applying a quantile mapping
procedure on the precipitation dataset, as this clearly improves the
representation of the runoff quantiles.

4.3. Hydrometeorological extremes

The representation of extremely high flows can be assessed
by comparing the annual maximum floods estimated using
hydrological-hydrodynamic modeling based on the three different
precipitation datasets with the observed annual maximum floods.
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Fig. 6. Quantiles of the 1-day areal mean precipitation sums of the WRF-ERA dataset, the uncorrected downscaled WRF-CESM dataset and the quantile-mapped downscaled
WRF-CESM-QM dataset for the study area. Each dataset covers a period of 20 years.

For this purpose, a generalized extreme value (GEV) distribution was
fitted to the annual maximum peak flows using a maximum like-
lihood approach for parameter estimation and a Weibull approach
to determine the empirical plotting positions, following the recom-
mendations of Makkonen (2008) and DWA (2012). The uncertainty
bounds were calculated based on the residual distribution as pro-
posed by Coles (2004). The comparison of the resulting GEV distri-
butions is shown in Fig. 9. The WRF-ERA based annual maximum
floods lie systematically above the observed ones, which is in line
with the quantile analysis in Fig. 8. Accordingly, the correspond-
ing tail distribution of the fitted GEV distribution is not congruent
with the empirical distribution. The annual maximum floods based
on the raw WRF-CESM precipitation dataset are systematically too
low, and the corresponding GEV-distribution fitted to these data lies
significantly below the empirically derived one. Furthermore, fit-
ting a distribution function on annual maximum floods based on the
WRF-CESM dataset leads to a negative shape parameter n and there-
fore to an upper-bounded distribution function, which is clearly not
in line with the empirical distribution. Again, these findings corre-
spond with the quantile comparison in Fig. 8. The annual maximum
floods based on the corrected WRF-CESM dataset are shown in the
right part of Fig. 9. Although the modeled annual maximum floods
slightly deviate from the observed ones, the corresponding fitted
GEV distribution function is nearly congruent with the distribution
of the observed values. This particularly applies for the tails of the
distributions. This means that the hydrological and hydrodynamic
modeling of the WRF-CESM-QM precipitation dataset allows for the

reconstruction of both long-term runoff characteristics and extreme
events, which enables the further analyses.

The seasonal distribution of the annual maximum floods is
mainly determined by the catchment characteristics presented in
Section 3.1. The highest extreme flows usually occur in summer. This
can be explained by the high snowfall line, the glacier contribution,
and the relatively high initial lake levels during summer and low ini-
tial lake levels during winter. Therefore, extreme flows during winter
are rather exceptional due to these initial conditions, and the sea-
sonal bias in the precipitation inputs shown in Fig. 5 is not directly
transferred to the seasonal distribution of extreme runoffs.

The next step, following the scheme shown in Fig. 1, is the iden-
tification of extreme events in the 400-year GCM simulation. Based
on the criteria detailed in Section 3.3, a number of situations poten-
tially leading to extreme values have been selected for downscaling.
Unfortunately, not all cases selected by the algorithm could be down-
scaled in the end due to a purely technical reason: in two cases
(a 3-day event and a 10-day event, both in summer) numerical
instabilities precluded the execution of the RCM. The magnitude of
the precipitation as simulated by the RCM is shown for winter and
summer in Fig. 10.

The PDFs of precipitation are presented for the several temporal
windows used in the case selection algorithm (the results for spring
and autumn are not shown for the sake of brevity, although they
exhibit similar behavior and support similar conclusions). Firstly,
a comparison of the blue and orange curves demonstrates once
again, but from a different point of view, the systematic biases and

Fig. 7. Example of extreme precipitation event in the summer. The panel on the left (a) shows the 1-day accumulated precipitation for an extreme event in the control simulation.
The panel on the right (b) shows the precipitation field after QM correction. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 8. Long-term runoff quantiles estimated with the WRF-ERA dataset, the uncorrected downscaled CESM dataset (WRF-CESM-RAW), and the quantile-mapped downscaled
CESM dataset (WRF-CESM-QM) for the study area. The quantiles are compared with quantiles of the observed data.

seasonality issues discussed in Section 4.2. The WRF-CESM-RAW
simulation underestimates precipitation for the summer and overes-
timates it for the winter. This is consistent across temporal windows
from 1- to 10-day PDFs. Still, it should be noted that this systematic
bias is corrected for each event with QM using the corresponding
distributions derived for each temporal frame. This figure allows
the selected events to be placed in a climatic context. Once down-
scaled, in all cases the precipitation values are extreme compared to
the climatological mean. However, the precipitation values for these
events are far lower than the expected values above the 99th per-
centile. The values are lower because the selected events were the
four most extreme within a 400-year period, which should represent
the far right tail of the 20-year climatological precipitation shown
by the blue curve in each panel. As this is not always the case, it can
be concluded that the events cannot be regarded as extremes with
return periods of hundred of years, i.e. the event selection procedure
seems to have missed such situations. This situation becomes more
problematic when the spatial structure of precipitation is evaluated
(not shown). In some cases the precipitation is severe when spatially
averaged over a large area, as demonstrated in Fig. 10. However,
due to the complexity of the topography, it occurs in areas beyond
the boundaries of our area of interest, which renders the situation
uninteresting for our analysis. These drawbacks do not represent a
bottleneck of the model chain, as the criteria still lead to situations

that are certainly extreme and of interest, but it severely limits the
scope of the conclusions that can be drawn regarding the event dura-
tion these extremes represent. This issue is further discussed in the
following sections.

4.4. Damage and loss estimation

The flood losses in the precipitation scenarios are shown in
Fig. 11. Generally, the selected precipitation scenarios show high loss
variability. The flood losses are in the range between 0.1 and ca.
3 billion Swiss Francs. This is related to the exposure of 800–7600
buildings associated with 3500–36000 residents, with a total value
of 19,000 buildings and 98,000 residents. Several factors explain the
high variability in flood losses. The estimated loss depends not only
on the precipitation sum, but also on the spatio-temporal pattern in
rainfall, the characteristics of the values at risk in the floodplains,
and the applied vulnerability functions. The precipitation event lead-
ing to the highest loss estimation has a total precipitation sum of
144 mm over 5 days. This is a flood event in August. Thus, the alti-
tude of the rainfall-snowfall limit leads to a high amount of rainfall
and no snowfall. In comparison, the historic flood event that caused
the most flood losses in the Canton of Bern was the Flood of August
2005 with a mean areal precipitation of 160 mm over the study
area in 48 h. This flood event resulted in 341.3 mio. Swiss Francs

Fig. 9. Comparison of annual maximum floods and corresponding fits of a generalized extreme value (GEV) distribution function. The return level plots are either based on
observed data (indicated in black) or on modeled data (indicated in blue). The annual maximum floods that result from the ERA-interim dataset lie systematically above the
observed ones, leading to a distinct overestimation of floods with return levels above 5 years. The annual maximum floods based on the uncorrected WRF-CESM-RAW dataset
are systematically too low, leading to an underestimation of high return level floods. Applying a downscaling procedure and using the resulting WRF-CESM-QM dataset leads to
good correspondence of observed and modeled annual maximum floods, and therefore to a nearly congruent fitted distribution function. The gray dots on the right side indicate
the peak discharges that result from the downscaled precipitation scenarios from the 400-year GCM-run. The distribution and the magnitudes of these peak flows confirm the
plausibility of the modeled events. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Probability density functions of precipitation in different temporal windows
over the Aare catchment derived from WRF-ERA (red), the WRF-CESM-RAW simula-
tion (blue), and observed data OBS (orange). To estimate the curves, Gaussian kernel
density estimators are used with a bandwidth that is illustrated in the bottom-right
corner of each panel. Row by row, the different panels show the winter (left) and sum-
mer (right) results for the five temporal windows considered based on the procedure
described in Section 3.3. The green vertical bars represent the precipitation obtained
in the selected events. Although there should be 4 bars per panel, one corresponding
to each event, computational instabilities were found in some events that hampered
their simulation. Intermediate seasons exhibit similar behavior and are therefore not
shown. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

in flood losses to buildings (FOEN, 2008). The discharge in Bern
had a return period of approximately 150 years. Based on this com-
parison, the scenarios simulated here are indeed extreme events.
However, the total aerial precipitation is below the probable max-
imum precipitation in the area as indicated by WMO (2009). The
second highest losses simulated here are due to a flood event in
winter. This shows that extreme precipitation events in winter com-
bined with warm air temperatures could lead to extreme flooding
despite the rather dampening initial conditions in winter. However,
such a scenario is beyond observed flood events in the observa-
tion period. Due to the topographic complexity of the study area,
a certain variability in flood losses is related to the varying spatio-
temporal characteristics of the derived precipitation events (Pattison
et al., 2014; Emmanuel et al., 2015). This is significant because of
the spatial distribution of the values at risk, i.e. the buildings. In the
present study, numerous buildings are located alongside the shore-
lines of lake Thun and in the floodplain of Interlaken. Thus, flood loss
is relatively high in case of precipitation distributions that lead to

high flows in these particular areas. In addition, the estimated losses
vary depending on the choice of vulnerability functions. This is in
agreement with previous studies on uncertainties related to vulner-
ability functions (Apel et al., 2008, 2004; Merz et al., 2004; Merz and
Thieken, 2009). The present modeling approach accounts for these
factors influencing extreme flood loss estimations.

5. Discussion

The presented model chain including simulations from atmo-
spheric processes to local flood risk covers several orders of mag-
nitude in space and time. Its application yielded useful information
with regard to its general applicability and the modeling strategies,
process representation, and issues related to the scale gap between
globally running GCMs and locally occurring flood losses. These three
topics are further discussed in the subsections below.

5.1. General applicability and modeling strategy

From a technical point of view, the results prove that coupling
several models from GCM to damage models is feasible. It allows
for a realistic assessment of floods and flood-prone areas, provided
that each model component sufficiently represents the involved pro-
cesses. Here, process representation is checked separately for each
model (except the loss model) by applying an independent model
calibration and validation. Once the single models are properly cal-
ibrated and validated, the performance of coupled models can be
assessed using long-term characteristics of intermediate variables
like precipitation and runoff.

However, a complete description of the flood risk (including
frequent and extreme events) would require downscaling the full
transient GCM run, which is impossible with the currently available
computational resources. Therefore, a comprehensive validation of
the full model chain in terms of flood risk is hardly achievable. Nev-
ertheless, the selected scenarios provide a basis for identifying flood
scenarios that exceed the protection goals of the flood defenses in the
study area. In the presented case study, the flood defenses are dimen-
sioned by aiming to protect against flood events with return periods
of roughly 80–100 years. It is shown that several precipitation sce-
narios lead to flow discharges higher than the carrying capacity of the
river channels and thus lead to severe flooding. Thus, the presented
method could complement the existing approaches for delineating
residual risks, i.e. the risk that remains after the implementation of
protective measures. The uncertainty in the flood loss estimation
procedure can be overcome to a certain degree by applying several
differing vulnerability functions, which provides some information
about the model sensitivity to vulnerability functions. It can be stated
that the derived flood loss estimations lie within a reasonable range
when compared to the highest observed events.

The GCM simulation that serves as a basis for identifying extreme
precipitation events spans 400 years of control run. Current computa-
tional resourcesdonot allow such along time periodtobe downscaled.
Therefore, a few sub-samples of interest must be selected from the
total GCM time series. A crucial point in this strategy is that the
time frames for downscaling have to be chosen before downscaling is
applied, therefore without certainty that the pre-selected event will
correspond to an extreme situation once downscaled. It is assumed
that the amount of precipitation modeled by the GCM and averaged
over the study area is a good indicator for downscaled extreme pre-
cipitation. This is qualitatively true, as can be observed in Fig. 10,
where the selected events are found in the right tail of the rainfall
distribution. However, the events correspond to lower percentiles
than expected (in all cases below the 99th). This is in part because
in some cases the downscaled extreme precipitation takes place out-
side the area of interest, i.e. outside the Aare catchment, but also
because in few events there is no extreme precipitation event at all.
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Fig. 11. Loss estimations based on the hydrological and hydrodynamic modeling of the identified extreme events. The different colors indicate the applied vulnerability function.
Multiple functions were applied to assess the sensitivity of the lack of validation data. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The efficiency of case selection using the much shorter but available
continuous simulation in the period 1986–2005 can be estimated to
some extent. The correlation between the GCM averaged series and
the downscaled precipitation for the Aare catchment is 0.21. Fur-
ther, the days within this period whose precipitation is above the
90th percentile in both datasets are identified. It turns out that only
20% of days belong simultaneously to the GCM and the downscaled
series, i.e. about 80% of days whose actual precipitation was above the
90th percentile in the downscaled control period were not flagged
by the selection algorithm described in Section 3.3. This simple anal-
ysis clearly illustrates the important differences between the GCM
and RCM outputs, and points out severe limitations in the method
used to identify candidates to severe precipitation episodes. At the
same time it demonstrates the necessity of downscaling strategies.
Therefore, the identification of events in the long-term GCM simu-
lation for downscaling is a crucial step in overcoming the scale gap
between globally running GCMs and local flood impacts that deserves
important improvements. If the aim of future modeling exercises is to
characterize situations that are realistically representative of extreme
events with long return periods, then this difficulty can become an
important bottleneck of the case study approach. Therefore, further
research is needed to refine the selection of candidates for extreme
events at regional scales.

The aim of this study, which has conditioned the chosen model-
ing strategy, is to keep the physical consistency over all modeling
steps from atmospheric to flood loss modeling. Unfortunately all cli-
mate models are affected by structural limitations that lead to biases
of different intensities that can condition its use in certain appli-
cations. Bias-correction techniques minimize such problems, but at
the expense of affecting the physical consistency (Maraun, 2016).
Therefore a compromise has to be established. The biases present
in the WRF-CESM simulation pertain especially the representation
of the annual cycle, and are noticeable enough to call for the use of
bias-correction techniques. However, the QM method has not been
applied in a per-grid basis. This minimizes the risk of over-fitting
of the raw precipitation product to the observations, which would
otherwise destroy the spatial coherence provided by the dynamical
downscaling, being an important issue further discussed by Gómez–
Navarro et al. (2018). The spatio-temporal structure as well as the
magnitude of the modeled precipitation is physically determined.

No further assumptions have to be made, and no further processing
steps beyond the calibration of the models to fit observations have
to be applied. This is a clear benefit compared to other precipita-
tion modeling approaches, e.g. stochastic weather generators (e.g.
Leander et al., 2005; Semenov, 2008) or similar stochastic approaches
(e.g. Foufoula-Georgiou, 1989; Vandenberghe et al., 2010).

The hydrological and hydrodynamic models can be calibrated and
validated using observed discharge data, which is a widely accepted
and well-researched approach. However, assessing the long-term
runoff characteristics of a meso-scale catchment requires modeling
a time series of several years, which calls for the application of a 1D
hydrodynamic model. To model long time series with a more detailed
2D hydrodynamic model would exponentially increase computation
time and is therefore not feasible. A 2D representation, however,
incorporates lateral flows and therefore remarkably increases the
accuracy of estimating flooding extent on building scale and improves
the loss estimation. One way to overcome the tradeoff between
computation time and degree of detail is to combine a 1D model
with a 2D model. The 1D model is used to model the long-term
runoff characteristics. The 2D model is only used for inundation
modeling in case of extreme events, where the 1D model out-
puts serve as boundary conditions. Eventually, the output of the 2D
model builds the basis for loss estimation. Such a modeling approach
combines reasonable computation times for modeling long-term
runoff characteristics and detailed model outputs as a basis for loss
modeling.

The limitation of loss modeling lies in the unknown uncertainty
of the vulnerability functions. This issue can be resolved by increas-
ing the quantity and quality of observational data, which provide
the basis for empirically deducing vulnerability functions. Alterna-
tively, Schröter et al. (2014) showed that the predictive capability of
the loss model can be improved by incorporating more explanatory
variables or by choosing a Bayesian network-based loss modeling
approach. However, these approaches do not help overcome the
issues associated with a lack of validation data.

5.2. Representation of atmospheric and hydrological processes

The atmospheric processes in the GCM are explicitly resolved
based on basic, well-established physical laws and are therefore
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coherently structured in space and time according to physical bound-
aries and climate forcings. However, the coarse resolution of global
models hampers their direct application in areas with complex
topography. Likewise, the dynamical downscaling step solves simi-
lar sets of equations as the GCM, therefore maintaining this coherent
structure. RCMs have the advantage of improving the representation
of simulated physical processes in case of strong topographic influ-
ences since the underlying model topography is more finely resolved
and directly incorporated. Thus, fields produced by a GCM and down-
scaled by a RCM are coherent in their spatio-temporal behavior.
However, model deficiencies and errors attributable to a great extent
to uncertainty in parametrized sub-grid processes lead to certain
systematic errors that have to be addressed.

In this particular application, the comparison of precipitation
intensity quantiles showed that the downscaled WRF-CESM-RAW
precipitation time series does not sufficiently represent the observed
long-term rainfall characteristics over the study area in a 20-year cli-
matic simulation. Therefore, a variant of quantile mapping correction
is applied in order to minimize perturbations in the physical consis-
tency while compensating for systematic biases. The WRF-CESM-QM
dataset is more appropriate for a description of the rainfall charac-
teristics for all intensities, even in a topographically complex study
area, and therefore leads to plausible precipitation event estimations
in mountainous regions, which justifies the application of such a
complex model chain. This is certainly in line with other applications
of downscaled rainfall data (Bowden et al., 2016; García-Valdecasas
Ojeda et al., 2017; Gudmundsson et al., 2012; Maule et al., 2013;
Jakob Themeßl et al., 2011, among others). Applications based on
CESM datasets are spatially and temporally coherent on a large scale.
Furthermore, the empirical frequencies of particular synoptic situa-
tions and seasonal patterns are inherently incorporated and do not
have to be taken into additional consideration.

The simulation of hydrological processes by conceptual
hydrological modeling is well established for normal flows as well
as for extreme events. For the present study, the appropriateness
of conceptual hydrological modeling is demonstrated by the good
skill scores that resulted from the model calibration and valida-
tion for each sub-catchment. However, the hydrological model
PREVAH (Viviroli et al., 2009b) applied in this study is a concep-
tual, semi-deterministic model. This means that many processes,
e.g. evapotranspiration or soil water flows, are incorporated using
empirical formulas rather than deterministic calculations. Further-
more, the primary model output is a discharge time series for the
outlet of a pre-defined catchment, with no direct deterministic flow
representation inside the catchment. In consequence, the presented
approach does not allow for loss estimations for areas lying within
the hydrologically modeled sub-catchments described in Section 3.1
and shown in Fig. 3. The hydrodynamic model provides a better
physical representation of the flows within and around the riverbed.
In this way, runoff conditions are calculated precisely in terms of
water level and flow durations. In case of extreme events, inundation
and retention effects that may be crucial for runoff determination
(Felder et al., 2017) are also incorporated. This model set-up calls
for careful planning of the spatial arrangement of the hydrological
and hydrodynamic models. The hydrological model shall be applied
in areas where runoff formation takes place and where ideally the
damage potential is low. The hydrodynamic model must be applied
in all potentially flood-prone areas and in areas with a high damage
potential.

The actual setup of the 2D inundation model nested into the
hydrologic-hydrodynamic model chain reliably represents the flood-
ing processes in the floodplains and allows for flow depths to be
attributed to the individual buildings. Thus, this setup allows for
flood losses to be estimated at building scale with an aggregation
of the object-related losses to the basin scale. However, the deter-
ministic approach of the model chain ends with the attribution

of flow depths to buildings. The subsequent loss estimation is
partly based on empirical stage-damage functions, and thus the last
step in the model chain differs from the previous physically based
approaches.

5.3. Temporal and spatial scales

As indicated in Table 1, the resolutions of the applied models
range from 100 km to 10 m in space and from days to seconds in
time. The present study presents two key considerations for over-
coming these scale gaps. Firstly, incorporating intermediate models
enables capturing flood-triggering processes that occur on interme-
diate scales. In the present case, the hydrological model simulates
the catchment reaction to the precipitation events on an hourly res-
olution in time and on a 2 km resolution in space. The hydrodynamic
model covers the next scale gap, as it simulates the runoff pro-
cesses at a resolution of 10 s and 10 m. Secondly, the application of
a dynamic downscaling technique followed by QM is important and,
when necessary, the long-term characteristics of precipitation fields
should be debiased.

The presented model chain has a relatively high level of flexibility
when it comes to temporal scale. As soon as all sub-modules are to
be run on sub daily temporal scales, the time steps of all subsequent
models can be adapted to the necessary time step. In practice, the
small catchments (below 200 km2) require an hourly time step for
reliable estimation of peak river discharges.

6. Conclusions

This paper presents a model chain able to bridge the spatial scales
from global circulation down to the building scale and from hun-
dreds of years to single flood events. To our knowledge, this is the
first study dealing with such a wide range of scales. The presented
approach is suited for the identification of extreme flood events. A
model chain from the atmosphere to flood risk is a potentially use-
ful additional method for characterizing design floods with very low
return periods in planning disaster risk reduction. With this tem-
poral flexibility and the coherence of the spatio-temporal rainfall
patterns, the approach is promising for future flood risk assessments.
A coupled model chain, linking atmospheric processes and synoptic
situations to local flood losses, is particularly promising for risk iden-
tification for insurance portfolios. In contrast to approaches using
weather generators, the presented approach is physically more con-
sistent in mountainous regions where topographical effects are rele-
vant for locally high precipitation intensities. Although the approach
is promising, further improvements are required before it is suitable
for practical application. First, the use of bias-correction techniques
is necessary to remove prominent biases in downscaled precipita-
tion, which precludes the pure physical consistency of the model
chain. Second, the process of selecting extreme events to be dynami-
cally downscaled is critical for the extrapolability of the results from
few cases to conclusions regarding the full period spanned by the
GCM. The simple selection procedure applied in this study leads to
downscaled events that are not as extreme as expected, indicat-
ing that the event selection strategy should be improved in future
studies.
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