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Abstract. This study addresses the possibility of carrying
out spatially resolved global reconstructions of annual mean
temperature using a worldwide network of proxy records and
a method based on the search of analogues. Several variants
of the method are evaluated, and their performance is anal-
ysed. As a test bed for the reconstruction, the PAGES 2k
proxy database (version 1.9.0) is employed as a predictor,
the HadCRUT4 dataset is the set of observations used as
the predictand and target, and a set of simulations from the
PMIP3 simulations are used as a pool to draw analogues
and carry out pseudo-proxy experiments (PPEs). The per-
formance of the variants of the analogue method (AM) is
evaluated through a series of PPEs in growing complexity,
from a perfect-proxy scenario to a realistic one where the
pseudo-proxy records are contaminated with noise (white
and red) and missing values, mimicking the limitations of
actual proxies. Additionally, the method is tested by recon-
structing the real observed HadCRUT4 temperature based on
the calibration of real proxies. The reconstructed fields repro-
duce the observed decadal temperature variability. From all
the tests, we can conclude that the analogue pool provided
by the PMIP3 ensemble is large enough to reconstruct global
annual temperatures during the Common Era. Furthermore,
the search of analogues based on a metric that minimises
the RMSE in real space outperforms other evaluated met-
rics, including the search of analogues in the range-reduced
space expanded by the leading empirical orthogonal func-
tions (EOFs). These results show how the AM is able to spa-
tially extrapolate the information of a network of local proxy

records to produce a homogeneous gap-free climate field re-
construction with valuable information in areas barely cov-
ered by proxies and make the AM a suitable tool to produce
valuable climate field reconstructions for the Common Era.

1 Introduction

Climate field reconstruction (CFR) methods (Rutherford
et al., 2005; Luterbacher et al., 2004; Mann et al., 2008;
Smerdon et al., 2010) aim at reconstructing the spatially
resolved time evolution of climate fields based on the
information contained in a relatively sparse network of
proxy archives, which usually encode only local information
about past surface climate. The reconstruction of the two-
dimensional evolution of past near-surface temperature, in
contrast to pointwise temperature reconstructions, can pro-
vide insights about the physical mechanisms that are respon-
sible for past climate variability and also about the spatial
temperature response to external forcing. However, the in-
formation about past climate variability is contained in proxy
records that archive past environmental conditions on the lo-
cal scale. To achieve spatially resolved reconstructions, the
different proxy records have to be combined in proxy net-
works to cover wider regions, and additionally some type
of method is required to interpolate, and sometimes also to
extrapolate, this information and reconstruct complete grid-
ded climate fields. The most widely applied CFR methods
make use of the observed spatial co-variability in climate
fields to upscale the scattered information provided by the
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proxy records to finally obtain a complete gridded recon-
struction of particular climate variables. However, this is not
the only strategy possible. In this study, we test the perfor-
mance of a more recent CFR method, the analogue method
(AM), that does not necessarily estimate the spatial climate
co-variability from observations but instead combines proxy
records and climate simulations to reconstruct the global near
surface temperature field.

There are different types of statistical CFR methods.
Point-by-point regression (Cook et al., 2004) establishes a
series of linear regression models between each grid cell of
a gridded observational dataset and several proxy records lo-
cated in the vicinity of that particular grid cell. Once this lo-
cal regression model is calibrated, the local climate is recon-
structed based on those few proxy records, repeating this pro-
cedure for all grid cells until the area of interest is covered.
Other CFR methods, based on principal component regres-
sion (Luterbacher et al., 2004) or canonical correlation anal-
ysis (Smerdon et al., 2010), estimate from observations the
modes of spatial co-variability in the climate variable and use
the leading modes as predictands in a multivariate regression
model in which all available proxy records are used as pre-
dictors. Other methods are based on the regularised expecta-
tion maximisation algorithm (Rutherford et al., 2005; Mann
et al., 2008) originally designed to fill in gaps in panel data.
This method also estimates the spatial climate co-variability
from observations, although not in the form of spatial modes
as principal components regression or canonical correlation.

Statistical CFR methods share common features. One of
them is that they are usually based on the assumptions of a
linear link, which should be stable over time, between vari-
ations in the proxy record and variations in the local cli-
mate. Another common assumption is that the climate spa-
tial co-variability is the same in the current climate as it was
in the past. More modern methods, like Bayesian hierarchi-
cal modelling (BHM) (Tingley and Huybers, 2009; Werner
et al., 2013; Luterbacher et al., 2016), set up a more com-
plex Bayesian statistical model that describes the link be-
tween the local climate and the proxy record and the spatio-
temporal co-variability in the climate fields. The parameters
of this statistical model are estimated by a Bayesian strategy,
resulting in a probabilistic reconstruction of past climate con-
ditional on the values attained by the proxy records in each
time step in the past. These more flexible methods may de-
scribe the link between proxy record and climate variable in
more complex ways than just as a linear function and may in-
corporate previous mechanistic knowledge about the nature
of the proxy record. Similarly, the precise form of the statis-
tical model that represents the spatio-temporal co-variability
in the climate field is supported by our knowledge of the
present climate, and thus is also based, although indirectly,
on the observed climate co-variability.

The AM was originally introduced in the 1970s for
weather forecasting (Lorenz, 1969). It is however a rather
general framework that allows it to be used in different con-

texts, and in particular it has found application in various ar-
eas of palaeoclimatology. Overpeck et al. (1985) studied the
sensitivity to the choice of different distances and demon-
strated how the method is able to produce good results using
pollen data and biological assemblages. Guiot et al. (1989)
used it to produce climate reconstruction based on two Eu-
ropean pollen records. More recently, the method has been
employed in combination with tree ring reconstructions as a
means to fill gaps in the predictor matrix (Nicault et al., 2008;
Guiot et al., 2010). Furthermore, Nicault et al. (2008) used a
pseudo-proxy approach similar to the one we use through this
work to assess the performance of the reconstruction. In this
work, we use the AM to produce a CFR reconstruction fol-
lowing an approach similar to Franke et al. (2010) and more
recently Gómez-Navarro et al. (2014). Used in this way, the
method uses a data-based approach to represent the spatial
co-variability in the climate fields. Thereby, instead of esti-
mating those spatial functions from observed data as tradi-
tional statistical CFR methods do, or prescribing functional
spatio-temporal co-variability functions as BHM methods
do, the AM samples entire fields of a particular climate vari-
able that have been generated in climate model simulations.
Those fields that most closely resemble the proxy patterns at
a certain time step in the past are selected for the spatially
resolved reconstruction. The reconstructed field may be de-
fined as the most similar simulated field, an average of the
most similar fields, or, in more complex settings, a function
of the whole set of most similar fields. In the case of the most
simple setting, in which only the most similar field is selected
for the reconstruction, the spatial co-variability is automati-
cally ensured, either that from observations or from a state-
of-the-art climate model. In other settings, in which the re-
constructed field is constructed from several analogue fields,
the reconstructed spatial co-variability will not exactly match
that from observations or from a simulation, but in general it
will be reasonably close. This is one of the main advantages
of the AM and can be extended to the reconstruction of other
variables that are not represented by the proxy records. Given
a time step in the past, once the field most similar to the proxy
pattern has been identified, fields of other variables that have
been simultaneously observed (or simulated) can be taken as
reconstructions that are physically consistent with the pattern
provided by the proxy data.

The concept of the AM is therefore similar to offline data
assimilation techniques that have been applied in the palaeo-
climate context over the last few years (Bhend et al., 2012;
Steiger et al., 2013; Hakim et al., 2016). These methods use
a statistical function (typically a Kalman filter) to update the
prior estimation, taken from a simulated climate field, based
on the information from the proxy data (e.g. Hakim et al.,
2016). The main difference between the AM and the latter
techniques is that it does not update the prior information,
but directly uses one sample (or a function of a selection of
them) of the model data pool as a reconstructed value. As a
consequence, the AM does not introduce additional spatial
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information not originally included within the pool of ana-
logues. This can be seen as an advantage since non-climatic
noise of individual proxies cannot result in spatial patterns
that are inconsistent with model physics. Hence, if the in-
formation from an individual proxy is physically inconsis-
tent with the majority of records, this will result in generally
larger distance functions, but does not necessarily introduce
larger errors in the proximity of the affected record. The AM
has been used with different terminologies and settings in
several research areas, ranging from the early stages of nu-
merical weather prediction (Van Den Dool, 1994), through
the estimation of future regional climate change (downscal-
ing) (Zorita and von Storch, 1999), to the reconstruction
of past surface climate from long instrumental sea-level-
pressure records (Schenk and Zorita, 2012).

The AM shares some similarities with the particle-filter
method put forward by Goosse et al. (2006). The particle-
filter method initially runs a set of simulations for a rela-
tively short period of time, after which they are compared
with available local proxy reconstructions of (usually) annual
or seasonal temperature. The simulations that do not resem-
ble the patterns of reconstructed temperature are discarded
and those that resemble the reconstructed temperatures are
continued forward in time, or are used as a seed of a spin-off
simulation ensemble by stochastically perturbing the initial
conditions. This method therefore requires a large number
of simulations and so far has only been implemented with
climate models of reduced computing requirements. Thus,
the spatial resolutions and in general the complexity of the
model-generated reconstructions are not as sophisticated as
full state-of-the art Earth system models (ESMs). In the AM,
in contrast, the analogue patterns are searched through the
complete simulated time, independently of whether the dates
of the identified analogues are close to the date of the proxy-
reconstructed temperature pattern. The advantage of this ap-
proach is that the size of the simulation ensemble that pro-
vides the pool of analogues does not need to be as large as in
the particle-filter method. The price paid is, however, that the
external forcing of the analogues may be very different from
the external forcing of the target pattern. The underlying as-
sumptions are that the spatial covariance of the temperature
field is not strongly dependent on the external forcing, or in
other words that the shape of the temperature anomaly pat-
terns that are caused by the external forcing are either inde-
pendent of the nature of the forcing or that internal variabil-
ity is able to generate anomaly patterns that resemble those
caused by the external forcing. If the pool from which the
analogues are drawn is large enough, this condition might be
fulfilled. This study aims at ascertaining to what extent this
underlying assumption holds so that the reconstructions gen-
erated by the AM can be trusted.

Since the evolution of the past temperature is not known
with certainty, the reconstruction performance of the method
is assessed here with the help of virtual experiments con-
ducted with data generated in realistic climate simula-

tions. The assessment is based on pseudo-proxy experiments
(PPEs) (Mann and Rutherford, 2002; Zorita et al., 2003;
von Storch et al., 2004; Rutherford et al., 2005; Smerdon,
2012; Werner et al., 2013; Gómez-Navarro et al., 2014).
Palaeoclimate simulations do not generate proxy records,
such as tree-ring widths, that may be consistent with the cli-
mate evolution simulated by a climate model, but pseudo-
proxy records that mimic some of the statistical quantities
observed in real proxy records can be generated from cli-
mate simulations (Smerdon, 2012). These statistical quan-
tities may in general comprise the link between the proxy
record and the local temperature, the statistical persistence
of the proxy record, the gaps present in the proxy record,
etc. Although, in particularly PPE, only some of these sta-
tistical properties are implemented in the pseudo-proxies to
test their influence on the final reconstructions. In addition,
the network of pseudo-proxies can also be tailored to mimic
the network of real proxy sites that are used today to recon-
struct the climate of the past few centuries. Once a network
of pseudo-proxy records is created within a climate simula-
tion, any reconstruction method can be applied to this net-
work to pseudo-reconstruct the target variable. The pseudo-
reconstructed variable is then compared with the correspond-
ing variable simulated by the climate model, allowing for an
assessment of the performance of the method in these ideal
circumstances. This is likely an optimistic estimation of the
true performance since real proxies include sources of non-
climate variability that are not straightforward to represent
with a simple statistical model and that are likely to cause
larger reconstruction errors.

The present work is, therefore, not aimed at presenting a
climate reconstruction and studying the implications for the
history of recent climate change. Such an assessment is be-
yond the scope of this paper and will be addressed in future
studies focused on this topic. Instead, the goal of this contri-
bution is to propose and evaluate, mostly with the help of a
number of PPEs where the temporal evolution is borrowed
from a climate model run, the performance and major limita-
tions of a CFR method based on the AM. The method aims at
producing a reconstruction of the mean annual near-surface
air temperature (SAT).

2 Data

The study does not critically rely on a particular set of proxy
data nor on observations, as the focus is on the evaluation of
the performance method itself. Therefore, the study is mainly
based on pseudo-proxy experiments in which the PMIP3
simulations (Braconnot et al., 2012; Taylor et al., 2012) pro-
vide the test bed of the AM. Still, selecting a realistic network
that mimics the location of real proxies is crucial to achieve
meaningful results that can then be translated to the real prac-
tice of reconstructions. Nevertheless, the AM has also been
tested with observations in the period 1850–2012 (Sect. 5).
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This requires having both a network of actual proxies and
their previous calibration against observations. Both datasets,
as well as the set of simulations used to draw analogues, are
briefly described in the following. Furthermore, two different
designs of the pseudo-experiments, which are necessary for
testing the AM are introduced.

2.1 Observational dataset

Version 4.3 of the HadCRUT4 dataset (Morice et al., 2012)
consists of gridded near-surface air temperature series, calcu-
lated as anomalies relative to the 1961–1990 mean. It spans
the period from 1850 to the present with monthly resolution.
The product blends the HadSST3 and CRUTEM4 datasets
for sea and land surface temperatures, respectively, and thus
provides global coverage with a horizontal resolution of 5◦.
The method for producing this dataset generates an ensemble
of 100 realisations that allows the characterisation of uncer-
tainty. The ensemble median is used in this study.

An important caveat of HadCRUT4 is the fact that it con-
tains missing values stemming from the lack of meteoro-
logical observations in certain barely populated areas. These
gaps remain in the final product since the method applied
to the observations does not include data extrapolation. To
avoid this drawback, a slightly modified version is consid-
ered where missing values have been infilled using a two-
stage GraphEM interpolation (Guillot et al., 2015).

2.2 Proxy network

The PAGES 2k Consortium has compiled a global dataset of
proxy temperature records. Records were assembled by ex-
perts to represent the evolution of temperature over the last
2000 years. Quantitative criteria for record length, resolu-
tion, and other factors were devolved to select a large dataset
that can be culled to address a wide range of research ques-
tions (http://www.pages-igbp.org/ini/wg/2k-network/intro).
The first version of this dataset, containing 511 proxy
records, was used to generate temperature reconstructions
for seven continental-scale regions using various reconstruc-
tion methods (PAGES2K Consortium, 2013). It has since
been updated and expanded to include marine records and
additional metadata (PAGES2K Consortium, 2017). Some
records in the 2013 version were excluded because of more
stringent selection criteria, which have now been applied
more uniformly across regions. We use version 1.9.0 of this
dataset, the predecessor to the slightly revised upcoming ver-
sion 2.0.0, which will shortly be published (PAGES2K Con-
sortium, 2017). Thus, the version used herein represents an
intermediate snapshot between versions 1 (PAGES2K Con-
sortium, 2013) and 2 (PAGES2K Consortium, 2017). In to-
tal, 682 records are included from 640 terrestrial and ocean
locations (Fig. 1). The records belong to 10 types of proxy
archives and vary in time resolution and record duration, the
majority of them being tree rings (61 %), with assumed an-
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Figure 1. Top: pointwise correlation between the raw proxy series
in the PAGES-SEL network and the SAT in the infilled HadCRUT4
dataset during the period 1911–1995. Each type of proxy is indi-
cated with a different symbol. Bottom: number of years in which
each record contains valid data, i.e. lighter colours indicate shorter
records.

nual resolution. Unfortunately, not all proxies span the full
period, as shown in the bottom map in Fig. 1, which depicts
the number of years where each proxy does not contain miss-
ing values within the period 1–2012. For further details about
the database, especially regarding the nature and temporal
evolution of data availability, we refer to PAGES2K Con-
sortium (2017). The records with lower time resolution are
interpolated to emulate annual resolution, and seasonally re-
solved proxies are also processed to remove the annual cycle.
This dataset is hereafter referred to as PAGES-FULL.

In addition to this, two slightly different subsets of the
dataset are used. The PAGES-SEL includes only those
records with native annual resolution, i.e. without interpo-
lation in time; that start before 1881; and that have less
than one-third of missing values during the calibration period
1881–1995. This subset contains 514 records. The PAGES-
SCREEN is a more restrictive subset, which was screened for
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a statistically significant correlation with regional tempera-
tures. We use the regional plus FDR (false discovery rate;
Ventura et al., 2004) screening from PAGES2K Consortium
(2017). This procedure selects only those proxy records with
significant (p < 0.05) grid cell correlations within a search
radius of 2000 km and corrects for FDR. This screening re-
duces the redundancy of records in areas where they clus-
ter, particularly western North America and the Himalayas
(Fig. 1), but also removes records from areas where the proxy
density is sparse. This subset consists of just 197 records. Al-
though the influence of using different subsets is addressed
in Sect. 6, most of the analysis hereinafter is based on the
PAGES-SEL subset.

2.3 Model simulations

The AM method requires a pool of plausible SAT fields to be
used for the search of analogues. The size of this pool is cru-
cial, as it needs to cover as many potential climate situations
as possible that might have occurred over the Common Era.
To account for this, we use an ensemble of ESM simulations,
i.e. the simulations of the last millennium within the frame of
the PMIP3 initiative (Braconnot et al., 2012). This ensemble
is part of the Coupled Model Intercomparison Project Phase
5 (Taylor et al., 2012, CMIP5) and is produced with different
state-of-the-art models that are also used in the assessment
of future climate change (IPCC, 2013). The heterogeneity of
this ensemble (different parameterisations, components in-
cluded, etc.) is beneficial for this application since it allows
the analogues to be drawn from a wide range of the spec-
trum of plausible climate situations, each of them consis-
tent within their own model physics. Although different in
some details, all models agree in many fundamental aspects
of the temperature evolution over the Common Era. They are
fully coupled ocean–atmosphere general circulation models
run with similar spatial resolution. Furthermore, the length
of the simulations and the forcings implemented is similar,
although not entirely consistent across the ensemble (Bra-
connot et al., 2012; Schmidt et al., 2012; Taylor et al., 2012).
In total, 16 simulations are considered from seven ESMs, re-
sulting in a pool size of 18 327 years.

3 Methods

3.1 Calibration of the reconstructions

The PAGES 2k datasets consist of a network of raw, uncal-
ibrated proxies. Thus, using this dataset in the AM method
requires a prior calibration of the proxy series to tempera-
ture that can be compared to the modelled temperature in the
search for analogues. Such calibration is a complex task since
different proxies respond to temperature in a different fash-
ion, and their relationship is contaminated by an unknown
and different level of non-climatic noise. Furthermore, dif-
ferent proxies span different periods, which leads to a dataset

populated with a number of missing values that vary through
time. These drawbacks require a simple method capable of
handling this heterogeneity. It should produce a network of
reconstructed temperature records that preserves the largest
fraction possible of the climate-related variability. Thereby,
a simple univariate linear regression model is employed to
deduce a statistical relationship between each proxy and the
SAT. The regression is calculated against the closest grid
point in the HadCRUT4 dataset during an overlapping pe-
riod. This fit is performed for each location independently.
The regression parameters estimated during the calibration
period are then used to obtain a local SAT reconstruction.

The period 1911–1995 is used for the calibration, thereby
avoiding the use of the full observational record, and set-
ting some observational data aside for the validation of the
reconstruction. Figure 1 shows the correlation between the
observations and the raw proxy series during the calibra-
tion period. The correlation ranges between −0.56 and 0.63,
with 65 % of values with an absolute value below 0.2. Al-
though the correlation is modest, it is important to note that
these proxies have been carefully selected by experts accord-
ing to their demonstrated ability to reflect temperature vari-
ations with respect to the choice of the calibration period
(PAGES2K Consortium, 2017). Furthermore, these correla-
tion values are robust with respect to the choice of calibration
period. Various periods have been tested, including the use of
the whole period, and differences are hardly appreciable (not
shown).

3.2 The AM as reconstruction technique

The AM was first introduced in the 1970s for weather fore-
casting (Lorenz, 1969). Recently, it has been implemented
in a variety of applications in climate research, from hurri-
cane prediction (Sievers et al., 2000; Fraedrich et al., 2003)
to downscaling (Zorita and von Storch, 1999) and upscaling
Schenk and Zorita (2012) techniques. For the interest of this
study, the suitability of this technique to generate CFRs has
been recently demonstrated for temperature (Franke et al.,
2010) and precipitation (Gómez-Navarro et al., 2014) for Eu-
rope. Although the method is explained elsewhere, we briefly
outline its key ideas here, following the notation by Gómez-
Navarro et al. (2014).

The algorithm requires a set of observations of the mul-
tivariate predictand T(t) available over some time t , with
concurrent observations of a multivariate predictor P(t). This
predictor shall also be available at time t0 where no observa-
tions of the predictand, the target field variable, are available.
The basic idea of the AM is that the value of these unknown
T(t0) can be approximated by a known value of T(t) if the
predictors P(t) and P(t0) at the target time t0 and a time t in
the observation period are sufficiently similar. The set of val-
ues P(t) with the simultaneous information of the predictand
T(t) generally denote the pool of potential analogues. Thus,
at a given time t0, the method compares P(t0) with all the
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members of the pool by using a metric:

1(ti)= dist(P(t0),P(ti)), ∀i ∈ pool. (1)

The element in the pool with the smallest 1(ti) is called the
analogue, P(̃ti). Thereby, the reconstructed predictand is de-
fined as the value of the predictand at the analogue point in
time, which minimises the metric T(t0)= T(̃ti).

Although the basic idea is simple, there is still flexibility
for tailoring the method to fit different requirements. First,
the similarity in Eq. (1) can be defined in multiple ways by
using different metrics, some of which are introduced in the
next sections. Additionally, the method can be set to not just
select one analogue but also to identify a set of analogues
(e.g. Sievers et al., 2000; Fraedrich et al., 2003). For exam-
ple, the N closest analogues in the pool (in the sense of the
distance given by Eq. 1) can be used to produce a weighted
average:

T̃(t0)=
N∑
i=1

ωiT(̃ti), (2)

where T(̃ti) denotes the predictand fields of the closest ana-
logues, weighted by ωi . Again, the weighting can be per-
formed in different ways, e.g. by the distance according to
the selected metric or simply by equal weights. Here, we con-
sider only the cases N = 1 and N = 5 and set all weights to
1/N , which produces a simple average of analogues. It is
important to note that the use of several analogues (N > 1)
filters out noise, and thus the estimation uncertainty is lower,
but has the counterpart of underestimating the time variance.

3.3 Search for analogues in the real space

The measure of similarity described in Eq. (1) makes use of
a distance between two patterns of temperature that has to be
evaluated over the network of proxy sites. Note that such dis-
tance shall be defined flexibly enough to accommodate pos-
sible missing values. In this analysis we use two different
metrics: correlation and RMSE.

Correlation is defined as

ρ(P(ti),P(tj ))=
(P(ti)−P(ti)) · (P(tj )−P(tj ))√
(P(ti)−P(ti))2(P(tj )−P(tj ))2

, (3)

where the line over a vector indicates that the mean value
across coordinates is computed. RMSE is defined in this no-
tation as

RMSE(P(ti),P(tj ))=

√
(P(ti)−P(tj ))2

M
. (4)

Correlation is a measure of the degree of similarity of two
patterns, but does not penalise two fields that may differ by
a large constant value. This reduces the ability of the metric

to detect changes in the global temperature, as will be shown
later. RMSE is a metric that simultaneously penalises the lack
of spatial co-variability and differences in mean values. Note
that this metric is equivalent, except for a multiplicative con-
stant, to the Euclidean distance between the two vectors P(ti)
and P(tj ). Both metrics can be generalised in a natural way
to account for missing values in proxy sites. In that case, the
summations implicit in the scalar product and in the aver-
ages skip those sites, and the constantM has to be decreased
accordingly.

3.4 Search for analogues in the EOF space

As a variant, the search for analogues can be carried out in the
low-dimension space expanded by the leading EOF patterns
of the temperature variability. The rationale for using this
transformation is that although a temperature field has many
dimensions, i.e. as many as there are grid points, these grid
points are strongly interdependent, thus reducing the effec-
tive degrees of freedom of the phase space. Furthermore, part
of this variability may be spurious and attributable to non-
climate-related variability in the proxy records, i.e. noise. By
decomposing the variability in the in the main modes of the
field, temperature variability can be compressed into a much
smaller number of independent variables, each one uncorre-
lated to the others (von Storch and Zwiers, 2002). The use of
EOF techniques to reduce the dimensions for the search of
analogues has been explored in previous studies (Zorita and
von Storch, 1999; Fernández and Sáenz, 2003).

Here, the leading modes of variability are obtained from
the observational dataset HadCRUT4 (where there are no
missing values). Once the leading L patterns that explain the
desired level of variance (set to 90 % in this study) are identi-
fied, the field can be approximated as the linear combination

P(t)'
L∑
i=1

αi(t)EOFi, (5)

where EOFi represent the spatial pattern and αi(t) the cor-
responding time series, which can be interpreted as the coor-
dinates of a vector α(t), whose calculation is described be-
low. Thereby, the rank reduction achieved by the change of
basis emerges from the fact that the vector P(t), originally
defined through M coordinates in the canonical basis, can
be described on the EOF basis by L, with L�M . Once the
predictor and predictand at each time step are expressed as
linear combination of the observed modes of variability, the
AM can be applied directly in this space, with the only mod-
ification that the metrics described in Eqs. (3) and (4) have
to be applied using the vectors α(ti) and α(tj ), instead of the
original fields P(ti) and P(tj ). For the EOF space we focus
on a single metric, i.e. RMSE.

Despite their apparent simplicity, the calculation coordi-
nates αi(t) deserve some words of caution when working
with fields that contain missing values. In the absence of
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missing values, the EOFi vectors form an orthonormal ba-
sis. In this case, each coordinate αi(t) can be easily obtained
as the scalar product:

αi(t)= P(t) ·EOFi t , (6)

where each row is an EOF pattern and the super index t de-
notes matrix transpose. However, when missing values are
present in the vector P(t), such gaps have to be introduced
in the vectors EOFi . Unfortunately, this modification in the
vectors destroys their orthonormality, which implies that the
former equation has to be generalised. It can be shown that
the general expression is

αi(t)= P(t) ·EOFti ·Cov(EOF)−1, (7)

where Cov denotes the spatial covariance matrix of the EOFi
vectors. In the particular case where they are orthonormal
(e.g. when there are no missing values) the covariance matrix
is the identity matrix of size L, and Eq. (7) becomes equal to
Eq. (6).

As a final remark, the coordinates αi(t) do not contain any
missing values, regardless of the gaps present in the origi-
nal vector P(t) as missing values are implicitly taken into
account in the matrix multiplication used to transform the
basis. Thus, all αi(t) coordinates have the length L, indepen-
dent of the presence of missing values. This simplifies the
definition of a distance. Still, the presence of many missing
values is undesirable since it increases the uncertainty of the
estimation of αi(t).

3.5 Design of pseudo-proxy experiments

As part of the performance evaluation of the AM method, we
use PPEs. These idealised experiments are profusely used in
literature to assess the performance of the CFR reconstruc-
tions of temperature (Smerdon, 2012, and references therein)
or even precipitation (Gómez-Navarro et al., 2014). The pro-
cedure extracts data from a climate simulation at a given set
of locations to build a synthetic network of local pseudo-
records. This synthetic dataset is used as input for the recon-
struction method with the aim to recreate the reconstruction
procedure, and then to compare this pseudo-reconstruction
with the original simulated field.

The design of PPEs may vary in complexity. The so-called
perfect PPEs use the closest grid point to the location of the
real proxy to extract a time series of the physical variable of
interest. The synthetic reconstructions used as input therefore
consist of a simple subset of the original field of the simula-
tion. This is clearly an oversimplification of reality since ac-
tual local reconstructions reproduce only a fraction of the ac-
tual climatic signal and include uncertain levels of noise and
missing values. A more realistic approach consists of con-
taminating the climate model series with a certain amount of
statistical noise and number of gaps, so that the starting point
of the CFR reconstructions more closely mimics real proxy
data.

In this study, we select one of the simulations from the
PMIP3 ensemble as a target to create the pseudo-proxies for
the PPE (in particular we use the simulation with the GISS
model labelled r1i1p121). We then build the pool of ana-
logues from all other simulations excluding this simulation
and reconstruct the target with the AM. Although the results
are largely independent of the choice of model, as we in-
deed demonstrate in Sect. 4.4, the rationale for this choice is
that this simulation is somewhat dissimilar to the other model
simulations in that it exhibits lower variability than the other
models. This somewhat dissimilarity renders the exercise of
reconstructing the target GISS temperature using the other
models as a pool of analogues more difficult, and it therefore
results in a slightly stricter test.

The network of proxies on which we base most of our re-
sults is the PAGES-SEL network, although other networks
are explored in Sect. 6. All networks of pseudo-proxies con-
sider the real missing values in the PAGES 2k network and
thus mimic the reduction in available real proxy records back
in time. We first employ perfect PPEs (with no contamination
with noise), which allows the assessment of an upper limit
of the performance of the method and is referred to here-
after as NoNoise PPE. In the next step, we consider a more
realistic scenario where white noise is added to the series.
Other types of statistical noise with different properties can
be considered, e.g. red noise produced by an autoregressive
process, which allows the simulation of the climate memory
contained in natural proxy records. Therefore, this study also
considers additional tests with red-noise pseudo proxies, pre-
scribing a plausible time decorrelation of 5 years. The decor-
relation time in actual proxies is not well known and clearly
depends on the nature of the proxy record. Hence, the choice
of 5 years is a pragmatic choice that helps to illustrate the
possible effects of red-noise pseudo-proxies without the aim
of being overly accurate. In both cases, with red and white
noise, the amplitude is set so that it reduces the pointwise cor-
relation with the original series in each proxy location to 0.5.
This level of noise, which corresponds to a signal-to-noise
ratio (by standard deviation) of 0.58, is comparable to simi-
lar studies (von Storch et al., 2008; Smerdon, 2012; Gómez-
Navarro et al., 2014). In this experiment the same missing
values present in the PAGES-SEL reconstructions are intro-
duced to mimic a more realistic pseudo-proxy network. This
experiment is referred to as R0.5 PPE. In a final setup, a set of
even more realistic PPEs is carried out in which each pseudo-
proxy is constructed with different amounts of white noise,
so that the correlations with the original series equal the cor-
relation values between the real proxy records and observed
temperatures, i.e. the values shown in Fig. 1. This is referred
as RProxy PPE.
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Figure 2. Pointwise correlation (calculated for the whole reconstructed period) between the original simulation and a reconstruction based
on perfect pseudo-proxies. The maps show the results when three different metrics are used for the search of analogues (by rows), as well
as when different numbers of analogues are combined to draw the reconstruction (by columns). Green diamonds indicate the location of the
pseudo-proxies employed, based on the PAGES-SEL network.

4 Evaluation of the AM in PPEs

In this section, only PPEs are used to evaluate the perfor-
mance of the AM to reconstruct global annually-resolved
temperature. In all cases the full PMIP3 ensemble has been
considered by leaving out one simulation, and the proxies’
locations are based on the PAGES-SEL network, as described
in Sect. 3.5.

4.1 NoNoise PPE

Figure 2 shows the pointwise correlation maps (calculated
for the full reconstructed period) between the original sim-
ulation and the pseudo-reconstructions based on perfect
pseudo-proxies with one and five analogues for a similar-
ity measure based on RMSE, correlation, and RMSE in the
EOF space. All methods tend to produce positive correla-
tions, which is indicative of the ability of the reconstruc-
tion method to recover the original variability based on a
limited number of locations. Still, there are large differences
among the different settings. The reconstruction based on the
metric of correlation is less reliable than the one based on

RMSE. The lack of performance likely stems from the less
demanding criterion of (dis-)similarity between the two vari-
ables that correlation provides, ignoring shifts in the aver-
age fields and thus focusing just on the spatial co-variability.
In this sense, RMSE presents a compromise, penalising ana-
logues that strongly differ from the target field both in terms
of spatial variability and absolute values. The RMSE simi-
larity is more demanding, and eventually the identified ana-
logues are physically closer to the target pattern. The search
within the space spanned by the first EOFs leads to a similar
pointwise correlation as in the former case, which is some-
what expected since the metric is the same. Furthermore, the
phase space, although severely reduced in terms of number
of dimensions, still preserves 90 % of the original variance
by construction. The inclusion of more analogues has the ef-
fect of increasing the temporal correlation. This effect, also
described by Gómez-Navarro et al. (2014), is due to the can-
cellation of errors in the averaging process. The cancellation
of errors has the counterpart of also averaging out a larger
part of the reconstructed variability. Thus, there is a trade-
off between temporal accuracy and variance. This is further
illustrated by Fig. 3, where the ratio of the standard devia-
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Figure 3. As in Fig. 2, but for the logarithm of the ratio of the standard deviation of the reconstruction and the original simulation. Red
(blue) shading depicts areas where the reconstruction overestimates (underestimates) variability.

tions in the reconstruction and the simulation is presented.
Overall, all reconstructions tend to preserve, and even over-
estimate, the original variability well. This is a result of the
lower variability in the simulation used as a target (based on
the GISS model) versus the model ensemble as a whole, and
thus resampling the pool of analogues tends to produce larger
variability than the target. This overestimation of variability
becomes strongly ameliorated when five analogues are used,
as expected according to the discussion above.

Spatially, the performance, measured by the pointwise cor-
relation in Fig. 2 is quite homogeneous, despite the unequal
distribution of the proxies and especially despite the smaller
number of proxies in the Southern Hemisphere. Within the
Northern Hemisphere, the area where the reconstruction is
less accurate is clearly the North Atlantic, which stands out
across all reconstructions. In this sense, the EOF-based re-
construction seems more robust since it does not present the
slight negative correlations that appear near the North At-
lantic, Caribbean Sea, and Sahara. The areas south of 40◦ S
show low correlations, which can be clearly associated to the
lack of proxies that provide information for the reconstruc-
tion. Regarding variability, the spatial structure is coherent
across methods. Still, the strong underestimation of variance

in all reconstructions in the western North Atlantic is no-
table. This underestimation can be directly linked to strong
variance in the simulations used as a target (not shown). The
consistency of these deficiencies demonstrates how the AM
method is always constrained by the quality of the data used
as a pool for the analogues search. In this case, the features
observed in the target field are not shared across models,
which leads to the inability of the method to find suitable
analogues that capture certain features.

Based on the results that emerge from Figs. 2 and 3, the
rest of the analysis focusses solely on the reconstructions car-
ried out with the search of analogues in the real space and
based on RMSE similarity (hereafter RMSE-AM) and the
search of analogues in the EOF space (hereafter EOF-AM).
Similarly, only reconstructions using an average of five ana-
logues are discussed. However, although not shown, the anal-
ysis has been carried out with all combinations of settings,
and significant deviations from the results expected from the
discussion above are highlighted.

A very important aspect of this pool of analogues is that
it is heterogeneous since the analogues come from few very
different climate models. Thus, an important question to be
addressed is whether there are models that are selected more
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frequently, and whether there is a strong relationship between
the year being reconstructed and the year that corresponds to
the closest analogue. This is shown in Fig. 4, where the num-
ber of times each model has been selected is shown for each
method (panels a and c). All models across the pool are se-
lected at some point in the reconstruction (with the exception
of model number 5, which is the model explicitly excluded
for being the target of the PPE). Still, some models are more
frequently selected than others. Numbers 1 and 13 are overall
the most frequently chosen in both methods and correspond
to the BCC and the IPSL models, respectively. Conversely,
models 15 and 16 are the less frequently chosen models and
correspond to two realisations of the MPI model. It is worth
noting that the other simulations with the GISS model (num-
bers 4 to 11) are not selected more frequently than the rest
of models, despite being simulations of the same model as
the target. This is indicative of the ability of the search algo-
rithm to identify similarities in the spatial patterns regardless
of particular model features, and this supports the robustness
of the reconstructed fields with respect to the biases present
in some models. Thin black lines denote the occurrence of se-
vere volcanic activity and are aimed at facilitating the iden-
tification of relationships between this external forcing and
year selection. It turns out however that the method selects
analogues independently from this factor. Similarly, there is
no strong one-to-one relationship between the simulated and
reconstructed years, i.e. simulated modern (or earlier) years
are not necessarily selected to reconstruct recent (or earlier)
years (see scatter dots in panels b and d). This is indicative
of the sufficiently large amount of variability contained in
the pool, which, thanks to the amount of internal variability
provided by the various simulations, is able to provide ana-
logues independently of the model year. The only signal of
a temporal link between the targets and their analogues ap-
pears as a clustering of modern simulated years that are used
as analogues for years within the 20th century (see the clus-
tering of dots in the top right corners in panels b and d). This
is attributable to the effect of recent warming of the indus-
trial period, i.e. warm years appear more frequently, and they
are preferably found during the last centuries of the pool of
simulations.

4.2 R0.5 PPE

This section explores the performance loss when noisy
pseudo-proxies are used to mimic the effect of non-climate-
related variability in real proxy data. As outlined above, the
noise consists of additive white noise and the introduction of
missing values that mimic the temporal distribution of miss-
ing values present in the PAGES-SEL network. Note that,
for the sake of brevity, the analysis hereafter is limited to the
RMSE-AM and EOF-AM methods for analogue search, al-
though the other methods have been explored and the results
are consistent with the former section, i.e. the RMSE met-
ric outperforms correlation as a measure of distance between
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Figure 4. Selection of analogues used to carry out a perfect PPE.
Bars in panels (a, c) indicate the number of times the analogue has
been taken from each of the 16 models. The points in panels (b,
d) indicate the relationship between the reconstructed year (x axis)
and the model (colour) and simulated year (y axis) used as analogue
for the reconstruction. Black horizontal and vertical lines show the
timing of major volcanic eruptions according to Sigl et al. (2015).
Panels (a, b) correspond to the reconstruction based on RMSE and
(c, d) based on Euclidian distance in the EOF space.

analogues. Similarly, only the reconstruction obtained as an
average for the five best analogues is discussed since the one-
and five-analogue versions differ in the bias–variance trade-
off described in the perfect scenario context in the previous
section.

The performance of the reconstructions with these more
realistic PPEs is illustrated in Fig. 5. The top row depicts the
correlation between the original simulation and the recon-
structions based on realistic PPE contaminated with noise
and populated with missing values. The correlation is gen-
erally lower than in the case of perfect pseudo-proxies, indi-
cating the reduced performance of the reconstruction method
in this scenario. This is expected since the quality of the
pseudo-proxies has been considerably degraded in this PPE.
However, the decrease in the correlation is remarkably small,
from 0.35 to 0.28 and from 0.39 to 0.24 on average for the
RMSE and EOF methods, respectively. In particular, the spa-
tial structure of the correlation maps hardly changes with re-
spect to perfect PPE, the spatial correlation between the per-
fect and noisy cases being 0.94 and 0.95 for RMSE and EOF,
respectively. The modest impact of the addition of a strong
component of noise is attributable to the use of an extensive
network of proxies: the information contained in the network
is to a great extent redundant and represents the same climate
signal, which implies that the degradation of the information
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Figure 5. Similar to Figs. 2 and 3 but for realistic PPE. Top (bottom) row indicates the correlation (ratio of standard deviations) between the
original simulation used as a target and the reconstructions obtained selecting analogues from the PMIP3 pool.

at a given location can be, to a great extent, recovered by
the reconstruction method through the use of nearby infor-
mation and by the spatial coherence of the climate field. This
recovery of degraded information gives confidence about the
CFR methods in general, and in the AM in particular, and
suggests that the use of a large network of independent prox-
ies can overcome, to a certain extent, the problems derived
from the use of noisy local reconstructions. The two maps
in the lower row depict the ratio of standard deviation in
the reconstruction and the simulation on a logarithmic scale.
Both figures are hardly distinguishable (spatial correlation
0.97 and averaged bias of −0.02) and coherently point out
how the reconstruction recovers about 80 % of the original
variance independently from the particular method (the log-
arithm of the ratio averages −0.1 and −0.8 for RMSE and
EOF, respectively). The loss of variance with respect to the
NoNoise PPE is particularly strong in the western North At-
lantic. This underestimation of variance disappears and even
becomes an overestimation of variance when just one ana-
logue is considered (not shown). However, this variant of
the method presents lower temporal correlation (not shown),
as the correlation–variance trade-off is always present across
experiments.

The results obtained with the experiments where red in-
stead of white noise is added to the original series resemble
those shown in Fig. 5 and are not shown due to the great
similarity with the figures corresponding to white noise. All
metrics evaluated indicate that the performance of the recon-

struction is indistinguishable when either white or red noise
is considered. Therefore, the presence of memory in prox-
ies seems to play a secondary role in the performance of the
AM and does not noticeably degrade the output of the re-
construction. Note that this result agrees with previous find-
ings in similar studies that were aimed at the reconstruction
of precipitation (Gómez-Navarro et al., 2014). The effect of
red-noise pseudo-proxies has been tested in previous stud-
ies in the context of regression-based methods and the com-
posite plus scaling method (von Storch et al., 2008), where
it was found that, in the case of regression methods, red-
noise pseudo-proxies lead to a stronger underestimation of
past variability than white-noise pseudo-proxies. However,
the influence on other measures of skill that do not rely on
the amplitude of variations, like correlation, has so far not
been investigated. It is therefore reassuring that the AM does
not lead to either an additional reduction in past variations or
to a loss of correlation skill.

4.3 RProxy PPE

Figure 6 depicts the same results as Fig. 5 but for the more
realistic PPE, which consists of reducing the correlation by
adding white noise in an amount that mimics the values
observed in the calibration. The decrease in the correlation
compared to a situation with spatially homogeneous noise is
apparent (note the different scale for correlation). The inclu-
sion of more realistic values of correlation severely reduces
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Figure 6. As in Fig. 5 but for the hyperrealistic PPE in which the correlations equal the values obtained during the proxy calibration, i.e.
Fig. 1.

the ability of the AM method to reconstruct the original sim-
ulation. The correlation between the pseudo-reconstruction
and the target is especially reduced in the tropics and North
America, locations where the skill obtained in more simple
PPEs is very remarkable, and perhaps overestimated under
the light of this analysis. There are however areas where the
correlation is still well preserved, such as in Europe, cen-
tral Asia, and the western Pacific. A striking finding with re-
spect to the former case is the large difference between the
RMSE-AM and EOF-AM methods. Although both methods
deal with the same amount of uncertainty, the former clearly
outperforms the latter regarding its ability to reproduce the
temporal evolution in the target, despite the addition of noise
and missing values. Still, the spatial structure of correlation
is very similar in the RMSE-AM variant, and in particular the
method remains able to deliver performance in regions with
poor proxy coverage. Regarding the preservation of variance,
both methods exhibit the same underestimation of variance,
which stems from the averaging over five analogues, and is
absent in both cases when only one analogue is used to re-
construct (not shown). Thus, both methods behave similarly
regarding the replication of variance.

Based on the results of these PPEs, we conclude that the
RMSE-AM method is overall the most reliable since its per-
formance is more robust across the experiments and analyses
we have carried out.

4.4 Other simulations as targets

All PPEs analysed so far are based on the use of a single
model as a target. This section explores the sensitivity of the
results to the use of the simulations MPI-ESM-P r1i1p1 or
CCSM4 r1i1p1 as targets, instead of the GISS r1i1p121. The
left column in Fig. 7 shows the correlation between the tar-
get SAT and the pseudo-reconstructed SAT for three models:
GISS (which is the model discussed so far) and MPI-ESM-
P and CCSM4, in a case where the PPE are designed with
red noise as described in Sect. 4.2. The middle column de-
picts the ratio of standard deviation of the reconstruction and
the target, whereas the right column shows RMSE to illus-
trate other performance metrics than simply correlation and
demonstrates how it supports the same conclusions. We focus
the discussion on the comparison between GISS and MPI-
ESM-P, as the one corresponding to CCSM4 is very similar
and therefore omitted. The skill of the pseudo-reconstruction
is qualitatively very similar, although there are some regional
differences, which, however, do not modify the main picture
derived from the previous sections. The correlation pattern
in the MPI-ESM-P case is very similar to that obtained in the
GISS case, with high values of the correlations in the North-
ern Hemisphere and lower values in the Southern Hemi-
sphere. Both cases also display relatively lower correlations
in the central North Atlantic and central Pacific. The correla-
tions are low in the Southern Ocean, possibly due to the very
sparse proxy network here. The patterns of RMSE (right col-
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Figure 7. Correlation (left), logarithm of the ratio of the standard deviations (middle), and RMSE (right) between the target SAT and the
pseudo-reconstructed SAT based on a PPE with additive white noise as in Sect. 4.2. All reconstructions use the same AM setup based on
searching analogues that minimises RMSE and then averaging the five closest analogues. The only difference across rows is the model used
as a target for the PPE: GISS (top map, equivalent to Fig. 5), MPI-ESM-P (middle), and CESM4 (bottom).

umn) are also similar in both cases. The RMSE tends to be
higher in the GISS case, confirming our initial assumption
that the variability in the GISS model stands slightly out of
the ensemble of models, though not dramatically. The RMSE
is higher in the polar regions, where it may attain values
of the order of 2–3 K, and rather uniform and lower values
around 0.5 K around the rest of the globe. There is a remark-
able difference between both cases in the western North At-
lantic, where the GISS case displays rather large values of the
RMSE that are not seen in the MPI-ESM-P case, for which
there is no clear explanation at this point. Regarding the
preservation of variance (see middle column in Fig. 7), there
are small regional deviations, which seem model-dependent,
although the main picture that stands out in all the three cases
is that the reconstruction using five analogues leads to a slight
but generalised loss of variance. Therefore, the main conclu-
sion we can draw from the analysis above is that the choice
of simulation as a SAT target does not largely affect the per-
formance of the AM in reconstructing global SAT, and the
conclusions drawn from the analysis of the GISS model used
as a target can be safely extended to other models.

5 Reconstruction of the observational period

In this section, the ability of the reconstruction method is ex-
plored using real proxies to reconstruct the observed tem-

perature field in the period 1850–2012. For this, a selection
of the PAGES-SEL network during the period 1850–2000 is
extracted and calibrated during the 1911–1995 period against
the infilled HadCRUT4 observational dataset in the way de-
scribed in the Sect. 3. The series obtained after calibration
are used as input for the RMSE-AM and EOF-AM variants
of the AM, and the output is compared to the original obser-
vations, with the aim of establishing the performance of the
reconstruction.

Figure 8 depicts the results of the comparison between the
reconstructed and observed series of SAT and is the counter-
part to Figs. 5 and 6 with actual proxies instead of PPE. Note
however that correlations in this figure are not fully compara-
ble to the former as they have been calculated over different
periods (in the former the full 2000-year period is used). As
the number of proxies varies through time, the skill obtained
is not directly comparable, but is somewhat overestimated by
the availability of proxies in more recent periods. As before,
the results focus on the RMSE and EOF methods, and when
five analogues are chosen to obtain the reconstruction. Re-
gardless of the particular method used in the search of ana-
logues, and despite being a favourable test due to the larger
number of available proxies in the period considered for the
calculation, the correlation maps between the reconstruction
versus the target (top row) exhibit lower values than both
with perfect PPEs and with noisy pseudo-proxies with spa-
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Figure 8. Similar to Figs. 5 and 6, but for a reconstruction of observations based on a calibration of proxies in the period 1911–1995. The
correlation is calculated for the period 1850–2010.

tially homogeneous noise (Figs. 2 and 5, respectively). This
lower temporal correlation may be due to two reasons. One is
that the level of noise employed in the first realistic PPE, in-
spired by its application in similar studies (von Storch et al.,
2008; Smerdon, 2012; Gómez-Navarro et al., 2014), is an
underestimation. Indeed, the pointwise correlations between
the observed temperature and the proxies during the calibra-
tion period range between−0.56 and 0.63, with an average of
0.06, which would suggest a higher level of noise in the real
world than in the PPE. However, a second reason could orig-
inate in a deficient simulation of the typical temperature pat-
terns found in the real world. These low correlations impose
an upper limit to the temporal evolution that the calibrated
series are able to represent. This can be seen more clearly
when comparing Figs. 6 and 8, where especially the RMSE-
AM method exhibits a very similar spatial pattern and values
(again, recall that the PPE is again in disadvantage as corre-
lations in Fig. 6 are calculated for the whole Common Era,
including early periods more densely populated with miss-
ing values). Note that these figures correspond to very differ-
ent datasets (a PPE versus a real reconstruction of an obser-
vational dataset), although by construction of the PPE they
have the spatial proxy network and the correlation between
the proxy and the corresponding local SAT series during the
instrumental period in common.

The reconstructions of the temperature in the observa-
tional period produce overall positive correlations with the
real temperatures. These correlations match fairly well with

the values obtained with noisy PPE with spatially varying
noise levels, especially the RMSE-AM, and, depending on
the location, reach values above 0.5. The distribution of
pointwise correlation is affected by the location of the prox-
ies and seems to be slightly sensitive to the method em-
ployed, especially where the pointwise correlation is not sup-
ported by the existence of nearby proxies. Thereby, both
methods produce reconstructions that exhibit better perfor-
mance over Europe, northern Canada, eastern Asia, or Tas-
mania. However, RMSE shows locations where the recon-
struction leads to remarkable performance despite the low
number of proxies located nearby, such as the western Sa-
hara or the southern Indian Sea, whereas these spots of re-
markable correlation cannot be identified in the EOF recon-
struction. Conversely, the use of the RMSE similarity leads
to negative correlation in South America and near Antarc-
tica, which are missing in the EOF reconstruction. Regard-
ing the preservation of variance (bottom row), both methods
underestimate the variance, as expected to some extent when
using an average of five analogues. In this sense, the RMSE
method clearly outperforms the EOF-based method, which
unlike the former strongly underestimates variance in nearly
all locations. A noticeable agreement between both methods
is the consistent underestimation of variance in the Arctic.
This may result from the lower variance in the pool of ana-
logues in this region. All models consistently exhibit lower
variance in the Arctic compared to observations (not shown),
which leads to systematic variance underestimation and pro-
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Figure 9. Correlation maps similar to Fig. 8 for the RMSE-AM
variant of the AM method. The three maps depict the result obtained
using each of the three variants of the PAGES 2k network described
in Sect. 2.2. In all cases the green symbols indicate the location of
the proxies employed in the reconstruction.

vides an example of unavoidable bottleneck of the AM. It is
however worth noting that an alternative or complementary
explanation for the differences in variability between obser-
vations and simulations in the Arctic regions could be caveats
in the former. This is due to the fact that as outlined in the
dataset decryption above, observations in the high Arctic are
not real but are infilled using extrapolation techniques that
might introduce variance overestimation.

6 The role of spatial distribution of proxy sites

The reconstruction performance may also depend on the
proxy network used. Therefore, we assess the impact of
slightly different proxy networks on the reconstruction, us-
ing the PAGES-SEL, PAGES-FULL, and PAGES-SCREEN
networks described above. The observational period serves
as an example.

The correlation maps between the observations in the pe-
riod 1850–2000 and the different RMSE-AM reconstructions

based on these networks are shown in Fig. 9, where the
slightly different distribution of the proxies is also shown.
Using the original PAGES-FULL network generally im-
proves the pointwise correlation of the reconstruction com-
pared to the PAGES-SEL case (recall that this network con-
tains 682 instead of 514 records). This is especially so in
equatorial and sparsely covered areas, indicating that the ad-
dition of a few records, even when they do not provide real
annual resolution or when they contain significant numbers
of missing values, can have noticeable positive effects on the
reconstruction. A striking result is that the PAGES-SCREEN
network provides remarkable performance, despite that it just
contains 197 records. This suggests that the accumulation of
redundant proxies in certain areas, such as North America or
China, may have a counterproductive effect in the reconstruc-
tion performance. This is a somewhat counter-intuitive result
since the screening of the network produces a reduction in the
available information. However, our results indicate that the
performance is to a large extent preserved, probably because
the screened network contains fewer proxies that exhibit low
correlations with the instrumental temperature. The combi-
nation of the latter two results supports the argument that the
best possible network would ideally have a global but also
a very homogeneous coverage, making the total number of
records of secondary importance.

Figure 10 shows the temporal evolution of the globally
averaged SAT in the HadCRUT4 dataset and the RMSE-
AM reconstructions with one and five analogues using each
of the proxy networks described previously. This figure ad-
ditionally illustrates the reconstruction performance, and is
complementary to the correlation maps discussed so far. All
time series reproduce the global warming captured by ob-
servations remarkably well, including the short cooling pe-
riod during the 1960s. The differences between the different
settings of the method are minor and do not affect this gen-
eral good agreement, indicating that the long-term variability
can be reproduced with confidence regardless of the network
used to reconstruct the climate variability.

7 On the estimation of reconstruction uncertainties

The reconstruction of past climate should include an estima-
tion of the reconstruction uncertainty that sets the validity of
that estimation. Such uncertainty stems in general from dif-
ferent sources, and often some sources of uncertainty can be
better estimated than others. This is the case for the AM, as
briefly explained in this section. It is important to note that
the estimation of reconstruction uncertainty requires hypoth-
esising an underlying theoretical framework for the method.
For instance, an underlying assumption in all reconstructions
of past climates is that the proxy records still reflect the en-
vironmental conditions in the same way as they do in the
present climate. If this requirement is not fulfilled, the esti-
mated uncertainty is an unrealistic estimate. As an illustra-
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Figure 10. Time series of globally averaged SAT anomalies with
respect to the period 1961–1990. The bold black line represents
the infilled HadCRUT4 dataset, whereas colours indicate six recon-
structions based on N = 1,5 in Eq. (2) using the RMSE-AM ver-
sion with the three variants of the PAGES 2k network described in
Sect. 2.2.

tion, let us consider the well-known case of a simple univari-
ate regression model (see for instance von Storch and Zwiers,
2002).

T = Tm+ (P −Pm)α+ ε, (8)

where T and P denote temperature and proxy, respectively;
Tm and Pm denote their mean values; α is the regression co-
efficient; and ε is the error term. The uncertainty in the esti-
mation of T given P has two main sources. One is related to
the amplitude of the unresolved variance, given by the stan-
dard deviation of ε. However, the other main source is the
uncertainty in the estimation of α; let us denote it as δ(α).
As can be demonstrated within the linear regression theory,
this second contribution is approximately proportional to the
product (P −Pm)δ(α). Therefore, for values of P in the mid-
dle of the range of the predictor, the main contribution is the
amplitude of ε, whereas for values of P far away from Pm,
the main contribution becomes (P −Pm)δ(α).

In a similar way, in the application of the AM there are two
main contributions. One would be the amplitude of the error
term, i.e. the deviations between the actual and predicted T ,
assuming that the model analogue is perfect. This contribu-
tion is analogous to the unresolved variance, i.e. the variabil-
ity in T at a certain point that cannot be solely determined by
the given temperatures at the proxy locations. A second con-
tribution to uncertainty is the identification of the analogue it-
self. Unfortunately, the situation in the AM is more complex
than in the case of simple univariate regression. For target
patterns where good analogues can be easily be found, this
contribution will be very small. In general, and since we use
a large pool for the analogue search, it can be assumed that
for proxy patterns that are around the mean, the AM is gen-
erally able to find good analogues within the pool. However,
for proxy patterns well beyond the range of the pool, where

no good analogues can be found, the uncertainty cannot be
easily quantified. The reason for this is that such an estima-
tion would require an analytical model, being the counterpart
of the regression model outlined above. Unfortunately such a
frame model, able to carry out some sort of analogue extrap-
olation model that would allow the estimation of a range of
the predicted variable in ranges where no good analogue of
the predictor exists, has not been developed yet. Therefore,
for targets well beyond the analogue pool, this contribution
to uncertainty would be the largest, although unknown. Note
that this situation is, to some extent, similar to pollen-based
reconstructions using the analogue method (Overpeck et al.,
1985). When the pollen record shows a pattern that is not
present in the current pollen distribution, the climate recon-
struction and its uncertainty are virtually impossible to es-
timate. In this regard, new mathematical developments are
required to settle this issue.

Under light of the former discussion, in this paper we have
estimated just the uncertainty arising from one of the two
contributions discussed above, i.e. the variability in T at a
certain point that cannot be solely determined by the given
temperatures at the proxy locations. To do so, we do opt
by computing the standard deviations of the residuals (re-
constructions minus target). For this computation, we try to
mimic the situation that researchers face in real reconstruc-
tions, where the observed temperature field over a reference
period would be known, so that the residuals (deviations be-
tween observations and reconstructions) and their standard
deviation can be computed. To simulate as closely as possi-
ble this situation, we compute the standard deviation of the
differences using the 1850–2005 period, instead of the whole
GISS r1i1p1 simulation.

In order to gain insight into the variability in the error at-
tributable to the variable number of missing values, we have
computed this contribution to the uncertainty for two situ-
ations, both within the main pseudo-reconstructions using
white-noise pseudo-proxies with a uniform correlation be-
tween the pseudo-proxy and the local temperature of 0.5 and
considering five analogues (that is, the PPE setup discussed
in Sect. 4.2). The first case is the best-case scenario, i.e. we
use the proxy records of the PAGES-SEL network available
in the year 1949, where no record has missing values. In the
second case, we use the proxy network representing the year
1500, i.e. selecting only the 257 proxies with no missing val-
ues in this year, to illustrate changes in uncertainties back in
time. The results are shown in the left column of Fig. 11 and
show that the uncertainties are larger in the polar regions,
and are of the order of 1–2 K, being smaller in the tropical
regions. This is reasonable since in the polar regions the spa-
tial correlation of temperature tends to be larger and there-
fore the temperature at the proxy locations is less capable of
determining the temperature at other locations. Furthermore,
the variability is larger in the arctic regions, which inflates
the error in this region. This can be seen in the right column
of Fig. 11, which shows the same error, but normalised divid-
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Figure 11. Left column: local standard deviation of the residuals (GISS r1i1p1 annual mean SAT minus pseudo-reconstructed SAT) over
the period 1850–2005. Top: using a pseudo-proxy network with as many missing values as the PAGES-SEL network in 1500 (257 records).
Bottom: using the maximum number of pseudo-proxy locations of the same network, which happens in 1949 (514 records). Right column:
same as left column, but normalised by the standard deviation of the target. The precise locations of the pseudo-proxies are indicated with
green symbols.

ing by the standard deviation of the target. Quite remarkably,
the number of proxies has little influence on the intensity and
distribution of errors. This is in good concordance with the
results discussed in Sect. 6 and once again demonstrates the
secondary role of the absolute number of proxies, as a grow-
ing number of proxies sometimes increases redundancy with-
out providing independent source of insight.

8 Conclusions

This study presents a framework to carry out global CFRs
using the AM based on a pool of the PMIP3 ensemble simu-
lations (Taylor et al., 2012). Although the application of the
method has been previously employed to carry out European
reconstructions of temperature (Franke et al., 2010) and pre-
cipitation (Gómez-Navarro et al., 2014), the validity of this
method to accomplish a global temperature field reconstruc-
tion has not been addressed so far. This is a relevant test since
the large dimensionality of the problem poses concerns about
the suitability of available simulations to provide a large-
enough pool of situations from which to draw analogues.
This study is also novel in being one of the first analyses
that benefits from the PAGES 2k proxy network (PAGES2K
Consortium, 2017). In this sense, this work takes advantage
of the most recent developments in both the climate model
and reconstruction communities (PAGES 2k-PMIP3 group,
2015) and represents an example of the power of exercises
blending both approaches to gain insight into climate vari-
ability within the Common Era.

A number of variations in the method are presented here
since the AM critically depends on the metric used to iden-
tify analogues (normally a distance measure between the ana-
logue and the target). Testing different metrics shows that
the RMSE, which is equivalent to the Euclidean distance, is
more suitable than correlation since it penalises deviations in
global averages. The search of analogues in the real space, as
well as the one expanded by the leading EOFs that explain
90 % of the total variance, has been explored. Although the
EOF version is in principle better suited for the search of ana-
logues due to the reduction in dimensionality of the problem,
our results indicate that the search in the real space provides
the best results with a consistent performance across the var-
ious tests carried out. Furthermore, it has the added value of
a slightly lower computational cost.

Regardless of the metric used and the nature of the recon-
struction (real reconstruction or PPE), the method draws ana-
logues without clear preferences for any model in particular.
Indeed, when the GISS model is used to perform PPE, the
rest of the GISS simulations are not selected preferably over
the rest of the ensemble. This indicates that the method draws
analogues according to climate situations, rather than sys-
tematic biases of a particular model, and thus provides con-
fidence in the method. Furthermore, the results indicate that
the inclusion of a large number of simulations from struc-
turally different models has beneficial effects on the quality
of the final reconstruction. Furthermore, the PPE results are
barely sensitive to the choice of the target, which indicates
that the performance obtained through PPE is a robust esti-
mate of the performance of the AM.
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The inclusion of a spatially constant amount of noise in
the more realistic pseudo-reconstructions does not dramati-
cally affect the CFR performance, supporting the robustness
of the method and the ability of the network of proxies to re-
tain the variability in the global mean temperature, in spite of
local noise. In particular, there is no difference in the perfor-
mance between the PPE when either white or red noise with
a decorrelation time of 5 years is used. This indicates that the
AM is not sensitive to the presence of memory in the local
proxies. Still, there is a large difference in the performance
obtained with actual proxies and that achieved in PPEs with
degraded pseudo-proxies. This difference suggests that the
amount of noise might have been underestimated in previous
studies based on PPEs (e.g. von Storch et al., 2008; Gómez-
Navarro et al., 2014), and lower signal-to-noise ratio shall be
employed in realistic PPEs. This is confirmed by our analysis
through a more realistic PPE configuration, where the level
of noise depends on the proxy site to mimic the one derived
from the calibration of real proxies.

Many statistical climate reconstruction methods tend to
underestimate climate variability, especially those based on
linear methods. The AM is an exception since the variabil-
ity in the reconstruction is provided by that of the pool of
analogues. Although this might be seen as an advantage, it
has the problem that systematic biases in the pool are trans-
ferred to the reconstruction. This is particularly the case with
the PMIP3 ensemble, which exhibits a reduced variability in
the Arctic compared to the infilled observations that might
become a prominent drawback in all reconstructions evalu-
ated here. The AM can be adjusted by varying the number
of proxies used to draw an analogue. If more than one ana-
logue is selected and averaged to generate the analogue, the
correlation is increased, but it has the counterpart of reducing
variability. This bias–variance trade-off is not unexpected, as
it is a common phenomenon that appears recurrently in all
branches of statistics.

The sensitivity of the CFR to various slightly different ver-
sions of the proxy network has also been evaluated. The skill
of the reconstruction does not critically depend on the total
number of records. Instead, it is more strongly affected by
their spatial distribution. In this sense, including redundant
proxies that cluster in some areas does not always have a
beneficial effect since they do not provide new information
but may bias the search of analogues towards those areas at
the coast, producing less accurate reconstructions in areas not
covered as well by proxies.

The AM produces climate reconstructions that are clearly
not free of uncertainties and errors. However, a full treatment
and characterisation of such errors is not tackled in this study,
as such an assessment would require new mathematical de-
velopment that is beyond the scope of this article. Still, we
investigate a part of such uncertainty, namely the part at-
tributable to the unresolved variance. We characterise it by
computing the standard deviation of the residuals using two
different networks of pseudo-proxies and demonstrate how

such uncertainty is bounded by 1–2 K in the polar regions,
with smaller uncertainty in tropical regions.

Finally, we would like to remark that as the performance
of the AM has been evaluated mostly through PPE in this pa-
per, and although we have tried to mimic the limitations of
actual data, we note that our estimation of skill can be op-
timistic, especially in the Southern Hemisphere. This is due
to the fact that reconstructions show less homogeneity back
through time than the models that are used in this study. For
instance, it has been reported that the co-variability between
both hemispheres is larger in models than in current recon-
structions (Neukom et al., 2014; PAGES 2k-PMIP3 group,
2015).

We conclude that the AM is a useful tool able to yield skill-
ful results in CFRs of past climate. It has particular features
compared to more commonly used CFR techniques, e.g. it is
a non-linear method that does not require the calibration of an
underlying statistical model. Thus, the method may comple-
ment more traditional approaches, providing additional in-
sight about past climate variability and allowing the assess-
ment of the robustness and weaknesses of other methods.

Data availability. Three independent datasets were used for the
analysis in this study. The HadCRUT4 dataset is described in the
references provided in Sect. 2.1 and is available under https://www.
metoffice.gov.uk/hadobs/hadcrut4. The model simulations used as
a pool of analogues were downloaded from the Earth System Grid
Federation: https://esgf-data.dkrz.de/search/cmip5-dkrz/. Note that
all available “past1000” simulations were selected. Finally, the
PAGES 2k temperature proxy database (currently version 2) is
available under https://figshare.com/s/d327a0367bb908a4c4f2. All
programs and scripts used to perform the analysis, as well as the
intermediate datasets, e.g. the pseudo-proxy reconstructions, are
available upon request.
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