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Vorticity and geopotential height extreme values in ERA-Interim data
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The properties and dependences of lower tropospheric geopotential height (GPH) and
relative vorticity extreme values are investigated in high spatial resolution ERA-Interim
reanalysis data during the boreal winters from 1980–2014. A peak-over-threshold (POT)
analysis is applied to determine the local generalized Pareto distribution (GPD) parameters
with a 90th percentile threshold. In Northern Hemispheric storm tracks, the scale parameter
decreases along the storm track axis for vorticity, whereas it increases for GPH. The shape
parameters are weakly negative for both fields in the northern midlatitudes and over land,
suggesting upper bounds for the extremes. The association of GPD parameters with the
large-scale flow is assessed using monthly mean indices for the North Atlantic Oscillation
(NAO), Pacific–North American (PNA) pattern and El Niño Southern Oscillation (Nino3.4
index) as covariates. While the GPH parameters are related to the covariates in the regions
associated with the covariate loadings, the vorticity parameters are weakly related to all
covariates. It is noteworthy that the NAO dominates all covariates in the central tropical
Pacific. The probability for concurrent extreme events of vorticity and GPH is highest in
storm tracks with values of about 0.3–0.5.
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1. Introduction

Extreme weather events are an important part of the general circu-
lation and can cause significant economic damages. For instance,
European wind storms can cause damages of about 2 billion euros
each and are listed as one of the major natural hazard threats to
Europe (Malmquist, 1999; MunichRe, 2010; MunichRe, 2015).
The attribution and estimation of losses due to wind storms
is thus an active area of research (Klawa and Ulbrich, 2003;
Schwierz et al., 2010; Held et al., 2013; Welker and Martius, 2014).

The severity of storms depends on the large-scale circulation
(Raible, 2007) and atmospheric regime states (Franzke et al.,
2011; Franzke, 2013). We analyze the extremes as threshold
exceedances (Coles, 2001; Raible, 2007) and fit the generalized
Pareto distribution (GPD: Coles, 2001; Franzke, 2013). Analyzing
North Atlantic surface wind speeds, Franzke (2013) found that
the shape parameter of the GPD distribution is negative, which
suggests the existence of an upper bound of wind-speed extremes
(Coles, 2001). These results are consistent with theoretical
considerations about tail decay for climate variables by
Majda et al. (2009).

Extreme wind speeds in the North Atlantic region are asso-
ciated with strong midlatitude cyclones (e.g. Leckebusch and
Ulbrich, 2004). Although midlatitude cyclones are well-known

phenomena, there is no general agreement on a definition based
on a single field (Raible et al., 2008; Neu et al., 2013). Midlatitude
cyclones are determined either by geopotential height (GPH; or
pressure) minima or relative vorticity maxima (in the following
we will use vorticity for short; see e.g. Hodges, 1994; Blender
et al., 1997; Simmonds and Keay, 2000), or a combination of
both (Murray and Simmonds, 1991a,1991b; Koenig et al., 1993).
The methods have recently been intercompared for reanalyisis
data (Neu et al., 2013) and scenario simulations of future global
warming (Ulbrich et al., 2013). Whether cyclones are detected
using either GPH or vorticity depends, amongst other things, on
the resolution of the data. As both fields are related in a balanced
flow, it is expected that there is an agreement in the detection of
large vorticities to some degree. The variables have specific advan-
tages and disadvantages. For example, since vorticity in the lower
troposphere includes fronts in high-resolution data, a clear iden-
tification of vortices is hampered. In this case, it is helpful to con-
sider a lower resolution (Hodges, 1994). On the other hand, GPH
minima are displaced and even hidden in the mean flow. Tracking
schemes combining GPH minima and vorticty maxima, e.g. in
the Melbourne University tracking algorithm, reduce interrup-
tions caused by weak cyclones (see the analysis of Mediterranean
cyclones in Flocas et al. (2010) and references therein).
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Further, extreme cyclones are linked to the large-scale
circulation. In the North Atlantic, the dependence of extreme
cyclones on the North Atlantic Oscillation (NAO) discussed
in Sienz et al. (2010) resembles the findings of Pinto et al.
(2008), who focused on the 10% most intense cyclones. The
frequency of deep cyclones and their relationship to the NAO
and Pacific–North America pattern (PNA) has been studied in
National Centers for Environmental Prediction (NCEP)/National
Center for Atmospheric Research (NCAR) reanalysis data by
Gulev et al. (2001). According to their study, the NAO controls
the latitudinal shift in the North Atlantic, while the PNA is
responsible for variability of the frequency of deep cyclones in the
Eastern Pacific.

Given these discrepancies and the dependence of extremes
on the large-scale circulation, the aim of this study is to
determine properties and relationships between extremes of low-
level relative vorticity and GPH, focusing on the two Northern
Hemispheric storm track areas and boreal winters. Thereby the
analysis is threefold.

(i) Extreme values of vorticity and GPH are diagnosed by a
peak-over-threshold (POT) analysis (Coles, 2001).

(ii) The relationship between the GPD parameters and large-
scale flow indices is investigated using covariates. Thereby,
we use monthly mean indices for NAO, PNA and Nino3.4.
The Nino3.4 index is included because of the high seasonal
predictability by atmosphere–ocean models.

(iii) The dependence of concurrent vorticity and GPH extremes
is assessed using two measures suggested by Coles et al.
(1999) to exclude the diagnostics of spurious dependences
in independent data. The dependence of concurrent
vorticity and GPH extremes sheds light on the appropriate
definition of lows and is relevant for detection methods.

This article is organized as follows. The data are described in
section 2 and the extreme value diagnostics in terms of the GPD
in section 3 The results are presented in section 4 and summarized
in section 5.

2. Data

The data analyzed in this study are 850 hPa vorticity and 1000 hPa
GPH from the ERA-Interim reanalysis (Dee et al., 2011). The data
have a spatial resolution of 0.75◦ covering the period 1 December
1979–28 February 2014. The analysis is based on boreal winter
(December–February, DJF). Thus, the first winter consists of
January–February data only; the last winter is DJF in 2013/2014.
To concentrate on the synoptic variability, we use daily data at
0000 UTC (Coordinated Universal Time). The time series are
not processed, e.g. by declustering, since we are also interested
in the dependence of concurrent vorticity and GPH extremes
(see aim (iii) in section 1). As large-scale covariates, we use
monthly means of the indices for the NAO, PNA and Nino3.4
from the Climate Prediction Center of the National Oceanic and
Atmospheric Administration (NOAA).

3. Extreme value statistics and covariates

Extremes are analyzed by the POT approach (Coles, 2001)
with a threshold u given by the 90th percentile determined
separately for each grid point. Extreme minima in the data
are analyzed as (positive) extremes of the negative data (by
multiplying them by −1). The exceedences x − u of the data x
are asymptotically distributed according to the GPD. The GPD is
a family of distributions for the argument z = (x − u)/σ with a
scale parameter σ and a shape parameter ξ , which determine the
decay and the support of the distribution:

f (z, ξ) =
{

(ξz + 1)−(1+ξ)/ξ ξ �= 0,
exp(−z) ξ = 0.

(1)

For positive values, ξ ≥ 0 (the Pareto or Fréchet limit), the
support of the probability density is given by positive arguments,
z ≥ 0. For negative shape parameters, ξ < 0 (the reversed Weibull
limit), the support has an upper bound, 0 ≤ z ≤ −1/ξ ; beyond
this value, the density vanishes. Negative shape parameters can
be found erroneously, as a small sample can yield a bias in
the parameter estimation. On the other hand, negative shape
parameters can hint at a physical upper bound in a variable. For
a discussion of the role and properties of the shape parameter in
dynamical systems theory, see Lucarini et al. (2014).

Covariates are linear predictors for parameters of extreme
value distributions (see Coles, 2001 and the application to North
Atlantic cyclones and the NAO index by Sienz et al., 2010). To
obtain relevant results, the significance of a predictor has to be
determined by a comparison with the so-called stationary model.
This stationary model is defined by fitting without any covariate.
The parameters in the GPD are modelled as functions of an

external time-dependent parameter Y(t), the covariate. In this
investigation, the scale parameter is fitted with a linear model:

σ = σ0 + σ1Y , (2)

with a constant term σ0 and sensitivity σ1. The formula for
the shape parameter is analogous. Covariates are widely used
as predictors for the modelling of extremes assuming causal
relationships (Coles, 2001).

By using covariates, an analysis is possible in non-stationary
conditions. If the impact of a linear climatological trend is
assessed, time can be used as a covariate Y(t) = t. The covariate
analysis adds a predictive aspect in extreme value statistics
(EVS). The dependence of the extremal properties on large-scale
and slowly varying covariates reveals mechanisms and allows a
prediction (Franzke, 2013).

Note that the dependence pertains only to the scale and the
shape parameters, whereas the threshold u remains constant in
the GPD fit. The change of intensity is not accessible. This differs
from a block maximum analysis with a generalized extreme value
distribution fit, which includes an additional location parameter.
Thus, the dependence of the intensity on covariates is accessible
(for an application in hydrology, see Towler et al., 2010).

A main result is the significance of the covariate model (the
values of the coefficients σ0 and σ1 are not considered here). This
is assessed by the deviance statistic (Coles, 2001):

D = 2(L1 − L0), (3)

determined by the log-likelihoods L0 of the stationary model and
L1 for the covariate model. The deviance statistic is a relative mea-
sure to characterize the improvement of the covariate model (L1)
with respect to the stationary model (L0). We do not attempt an
intercomparison of the significance of the different indices here.

Roughly speaking, D indicates whether the covariate model is
‘better’ than the stationary model. The improvement is significant
at the 1% level if D > D99% = 6.634, with the 99th percentile D99%

of the χ2
k distribution for k degrees of freedom, here k = 1.

The parameters are fitted with the R routine gpd.fit in the
ismev package by maximum-likelihood estimation (MLE); see R
Core Team (2013). This routine allows the inclusion of covariates
and provides the log-likelihood results L1 and L0 for the covariate
and stationary models; see (3).

A declustering of the extreme time series is not applied, since
such methods may yield irreproducible results and inhibit the
multivariate analysis of the two data sets. We fit the parameters
of the GPD and compare the geographical distribution of their
values, with emphasis on the two Northern Hemispheric storm
tracks. We do not assess extremes of lows embedded in cyclone
tracks, since the tracking of cyclones involves a further filter
and introduces uncertainty and irreproducibility (Blender and
Schubert, 2000; Raible et al., 2008; Neu et al., 2013).
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Figure 1. Standard deviation of (a) daily 850 hPa relative vorticity [10−5 s−1] and
(b) 1000 hPa GPH (m). [Colour figure can be viewed at wileyonlinelibrary.com].

4. Results

First we compare the standard deviations of vorticity and GPH
to determine the regions of highest variability. A band-pass filter
characterizing the midlatitude storm tracks is not applied. We
then follow aims (i)–(iii) in section 1. The GPD parameters scale
and shape yield information about the decay and possible upper
bounds. The relationships of the large-scale flow and the GPD
parameters are determined by extracting the covariate time series
with the maximum significant deviance at each grid point. Finally,
we determine the ratio of concurrent extremes, with special atten-
tion on avoiding misinterpretation due to artificial dependences.

4.1. Standard deviation

The standard deviation of the vorticity is concentrated in the
storm tracks of the Northern Hemisphere (Figure 1). In both
storm tracks, the maximum of the standard deviation of GPH
is shifted eastward to the maximum in vorticity (the standard
deviations are based on daily data). Note that the extremes of
vorticity in the storm-track exit regions are not independent, since
their return times are non-exponential (Blender et al., 2015).

4.2. Extreme-value parameters

The scale parameters are highest in the midlatitude storm
tracks (Figure 2). The scale parameter represents the spread and
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Figure 2. Scale parameter for (a) 850 hPa relative vorticity [10−5 s−1] and (b)
1000 hPa GPH [m]. [Colour figure can be viewed at wileyonlinelibrary.com].

determines the scaling of the exceedances z = (x − u)/σ above
threshold u in (1); for a vanishing shape parameter, the scale
equals the exponential decay scale. In the Northern Hemispheric
storm tracks, the scale parameters of vorticity and GPH behave
differently. In the Pacific, the scale for vorticity decreases along
the axes, while the scale of GPH shows two separated maxima.
In the Atlantic, the scale increases along the axis for vorticity
and GPH. The scale parameter follows the standard deviation
(Figure 1) and the bipolar maximum of the scale in the North
Pacific is consistent with the broad standard deviation.

The shape parameter for vorticity (Figure 3) is positive in the
subtropics and decreases northward, with a zero crossing along
50◦N in the North Atlantic and along 40◦N in the North Pacific;
along these lines the extremes are exponentially distributed (1).
In the exit regions and on land, the shape parameter is mostly
negative, which indicates either an upper physical bound or the
lack of extreme data in support of the distribution. For GPH, the
shape parameter is weakly negative except in a restricted region in
the tropical Pacific. GPH extremes are obviously limited by upper
bounds. This finding is explained by the averaging property of
the inverse Laplacian for balanced flow.

4.3. Covariate models

Here, we assess the dependence of extreme value parameters
on the large-scale flow through covariate modelling (section 3).
For covariates, we consider the indices of the monthly mean
large-scale flow anomalies NAO, PNA and Nino3.4. Our main
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Figure 3. Shape parameter for (a) 850 hPa relative vorticity and (b) 1000 hPa
GPH extremes. [Colour figure can be viewed at wileyonlinelibrary.com].

aim is to determine the statistical significance of a covariate
model (2) relative to the stationary model, using the deviance
statistic D defined in (3). The analysis is performed at every grid
point for vorticity and GPH to determine the deviance for the
scale and shape parameters. The best covariate model is selected
by the maximum D. Furthermore, it has to achieve statistical
significance, which is given if D > D1−α , where D1−α is the
(1 − α) quantile of the χ2

1 distribution and α is the significance
level; here, α = 1% (Coles, 2001). The best models are displayed
for the scale and shape parameters for vorticity (Figure 4) and
GPH (Figure 5).

The best model pattern for vorticity (Figure 4) has a detailed
structure indicating that the significance is a sample dependent
random variable with a deviance statistic close to significance. We
compared the analysis with the lower threshold D95% = 3.841
for the deviance corresponding to 5% significance and found
similar results. A noteworthy outcome is that indices like NAO
and PNA do not contribute significantly in the core regions of the
North Atlantic and North Pacific storm tracks, as illustrated by
the maxima in the daily standard deviation (Figure 1). The NAO
and PNA phases have a significant impact on extremes, which
does not correspond to a simple shift as is the case for the mean
storm-track response to the teleconnection patterns. This might
suggest a nonlinear response of the extremes to the teleconnection
patterns. The NAO index is relevant in the northern and eastern
subtropical North Atlantic. In the central tropical Pacific, the
Nino3.4 index and PNA index show some coherent structure for
scale and shape parameters (note that both are correlated with
r ≈ 0.4). The shape parameter follows the scale parameter, but is
less predictable.
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Figure 4. Vorticity extremes: best covariate model for (a) scale and (b) shape
parameters. 1: stationary, 2: Nino3.4, 3: PNA, 4: NAO. [Colour figure can be
viewed at wileyonlinelibrary.com].

The best models for the GPH parameters show more coherent
patches than those for vorticity (Figure 5), most probably due to
the coarse-grained character of this field. The NAO index domi-
nates in the North Atlantic (the exit region of the storm track) and
in the southern North Atlantic in both parameters. In the Pacific,
unforeseen results are detected. While the indices for Nino3.4
and PNA are found for the scale parameter in the eastern Pacific,
the steering of the shape parameter is less clear. The relationship
between the frequency of deep cyclones and the PNA found by
Gulev et al. (2001) is recovered in both parameters in the eastern
North Pacific. The NAO steering in North America, however, is
not found here. The most noteworthy finding is the presence of
the NAO covariate in large parts of the Pacific, including South-
east Asia. Even in the central tropical Pacific, the NAO index is the
best covariate for both parameters. This is also observed with the
lower significance threshold D95% = 3.841. A similar dominant
link between an index of the tropical cyclone activity and the
NAO was found by Elsner and Kocher (2000), without a link to
ENSO. A physical mechanism is given by the wave train described
by Li et al. (2008) between Eurasia and southwestern China.

4.4. Dependence of extremes

A straightforward measure for the conditional probability for
extremes of vorticity ζ and GPH, denoted as Z, is given by

Pζ ,Z(p) = P(ζ > ζp|Z < Zp) = P(ζ > ζp, Z < Zp)

P(Z < Zp)
, (4)

c© 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. 143: 634–640 (2017)
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Figure 5. GPH extremes: best covariate model for (a) scale and (b) shape
parameters. 1: stationary, 2: Nino3.4, 3: PNA, 4: NAO. [Colour figure can be
viewed at wileyonlinelibrary.com].

where P(ζ > Zp, Z < Zp) is estimated by the number of
coincidences of threshold crossings, ζ > ζp, with the threshold
ζp and for Z below Zp (Coles et al., 1999). Since the extremes are
defined by the same threshold p = 0.9, the probabilities for ζ and
Z are the same, P(ζ > ζp) = P(Z < Zp) = 1 − p. Therefore, the
conditional probabilities are symmetric:

Pζ ,Z(p) = P(ζ > ζp|Z < Zp) = P(Z < Zp|ζ > ζp). (5)

The result for the conditional probability P(ζ > ζp|Z < Zp) in
Figure 6 demonstrates relationships with values between 0.3 and
0.4 for relative vorticity and GPH in regions with balanced flow;
there is no relationship in the Tropics and in higher latitudes.

Note that, in the measure Pζ ,Z(p) defined in (4), the quantile
is constant with p = 0.9 for all grid points. This pertains
to a common and standard perception of extremes. From a
mathematical perspective, the extremal limit needs to be justified.
Unfortunately, such a detailed analysis is difficult for large arrays
of grid-point data.

Coles et al. (1999) consider the possible misinterpretation of the
dependence of two variables X and Y . For identically distributed
variables X and Y , they define the limit

χ = lim
z→z∗ P(X > z|Y > z), (6)

where z = z∗ is given by support of the common marginal
distribution, χ is within 0 and 1. Misinterpretation can appear
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Figure 6. Estimated conditional probability for coinciding extremes of 850 hPa
relative vorticity and 1000 hPa GPH. [Colour figure can be viewed at
wileyonlinelibrary.com].

in the class of asymptotic independent data where χ = 0. In real
data, artificial values χ > 0 can be detected below the limit z∗. To
handle this case, Coles et al. (1999) defined an additional measure

χ̄ = lim
u→1

log P(X > u)

log P(X > u, Y > u)
− 1. (7)

χ̄ is in the range −1, ..., 1. The pair (χ , χ̄) is suggested as a reliable
measure for extreme dependence. The following limiting cases
are used to define asymptotic dependence:

χ > 0, χ̄ = 1, (8)

where in this case the value of χ determines the dependence,
whereas asymptotic independence is defined by

χ = 0, χ̄ < 1, (9)

where in this case the value of χ̄ determines the dependence.
In the analysis of Pζ ,Z(p) in (4), we obtained considerable

degrees of dependence between extremes of ζ and Z (Figure 6).
To exclude the aforementioned artificial dependences, we follow
the approach suggested by Coles et al. (1999) and determine χ

(6) and χ̄ (7). Due to the automatic calculation of the limits in
the gridded data, this analysis is a rough estimation of χ and χ̄ .
Nevertheless, we assume that this additional aspect is helpful to
exclude artificial dependence.

The measure χ in Figure 7 follows the conditional probability
Pζ ,Z(p) to a large extent. The same property is visible in χ̄

in Figure 8. In areas where χ̄ ≈ 1, we may consider the value
of χ as the dependence according to (8). This prevents the
misinterpretation of χ > 0. In areas where χ = 0, we consider
the value of χ̄ as a dependence measure according to (9).
Thus we conclude that the relationship in P(ζ > ζp|Z < Zp)
in Figure 6 is reliable and not an artefact with a hidden underlying
independence of both variables in the storm tracks.

5. Summary and conclusions

In this study, the properties and dependences of extreme relative
vorticity (at 850 hPa) and geopotential height (GPH at 1000 hPa)
are determined in high-resolution ERA-Interim data (0.75◦). The
analysis covers the boreal winter seasons DJF during 1980–2014.
Extreme behaviour is analyzed by POT independently for all grid
points with a common 90th percentile threshold.

Three major aims underlie this study:

(i) the POT analysis and the calculation of the scale and shape
GPD parameters;
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Figure 7. Dependence measure χ between 850 hPa relative vorticity and 1000 hPa
GPH extremes. [Colour figure can be viewed at wileyonlinelibrary.com].
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Figure 8. Dependence measure χ̄ between 850 hPa relative vorticity and 1000 hPa
GPH extremes. [Colour figure can be viewed at wileyonlinelibrary.com].

(ii) the significance of the large-scale covariates NAO, PNA
and Nino3.4 as linear predictors for the GPD parameters;
and

(iii) the mutual dependence of the vorticity and GPH extremes
in terms of a conditional probability.

We fit the two parameters of the GPD, scale and shape, by
maximum-likelihood estimation. The behaviour of the scale
parameter differs for vorticity and GPH. For vorticity, the scale
parameter decreases along the storm-track axes in the North
Atlantic and North Pacific. For GPH, the scale parameter shows
no decay but a broad distribution. In the North Pacific, the
scale parameter indicates a bipolar distribution, with a split into
western and eastern parts.

The shape parameters for vorticity decrease along the storm-
track axes and change sign, indicating upper bounds in the exit
regions. In the North Atlantic, the boundary with zero shape is
roughly along 50◦N and in the North Pacific along 40◦N, where
the probability density is exponentially distributed. The shape
parameters are weakly negative for vorticity on land, while the
GPH shape parameters for GPH are weakly negative globally.

Covariate models for the two parameters using monthly mean
indices for NAO, PNA and Nino3.4 are assessed and compared
with the stationary model. Clearly, there is an overlap of the
information in PNA and Nino3.4, which is not assessed here.

The global structure is remarkably diverse, with a dominance of
the stationary model, in particular for the shape parameters and
for vorticity in general. Only in a few cases are the covariates
interpretable predictors: for example, the Nino3.4 index explains
the two parameters of vorticity in the tropical Pacific and the
NAO the GPH scale in northern and Central Europe and in
the northern tropical Atlantic. A surprising finding is the clear
dominance of the NAO covariate in the central tropical Pacific
and southeast Asia. This finding corroborates previous analyses
of Li et al. (2008), detecting a Eurasian wave-train, and Elsner
and Kocher (2000), who found a linear relationship between the
NAO and global tropical cyclone counts.

The relationship between GPH extremes and large-scale
teleconnection patterns is significant in a few regions. This can
be considered as a basis for the modelling of extremes (Coles,
2001). The relationship is much weaker for vorticity extremes,
most probably because the teleconnections are pressure-based.

The mutual dependence of vorticity and GPH extremes
is highest in the midlatitude ocean basins, with conditional
probabilities in the range 0.3–0.5. This includes the two Northern
Hemispheric storm tracks. In mountainous regions and in the
Tropics, the conditional probability is negligible. To avoid a
misinterpretation of this result, the analysis of Coles et al. (1999) is
applied, with two measures that concurrently determine extremal
dependence and exclude artificial dependence in real data of
independent processes.

The frequency of the concurrent extremes in vorticity and GPH
can be crucial for use of the fields as indicators of severe storms.
Although the fields are related, due to the geostrophic balance,
there is no dynamic relationship between the extremes at the grid
points.

The absence of a coincidence in high orography is expected,
because both fields (mainly 1000 hPa GPH) are interpolated.
This is accounted for in most cyclone-tracking algorithms by the
exclusion of regions with an orography of 1000 or 1500 m. The
analyses have been repeated for the coarser resolutions of 1.5 and
2.5◦ in the ERA-Interim data. The main results for the covariate
models and the dependence are confirmed. The present study
might have relevance for the detection and tracking of extreme
cyclones and their interpretation.
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