
Clim. Past, 17, 2031–2053, 2021
https://doi.org/10.5194/cp-17-2031-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Statistical characteristics of extreme daily precipitation during
1501 BCE–1849 CE in the Community Earth System Model
Woon Mi Kim1,2, Richard Blender3, Michael Sigl1,2, Martina Messmer1,2, and Christoph C. Raible1,2

1Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
3Meteorological Institute and Center for Earth System Research and Sustainability (CEN),
University of Hamburg, Hamburg, Germany

Correspondence: Woon Mi Kim (woonmi.kim@climate.unibe.ch)

Received: 28 May 2021 – Discussion started: 31 May 2021
Revised: 12 August 2021 – Accepted: 24 August 2021 – Published: 8 October 2021

Abstract. In this study, we analyze extreme daily precip-
itation during the pre-industrial period from 1501 BCE to
1849 CE in simulations from the Community Earth System
Model version 1.2.2. A peak-over-threshold (POT) extreme
value analysis is employed to examine characteristics of ex-
treme precipitation and to identify connections of extreme
precipitation with the external forcing and with modes of
internal variability. The POT analysis shows that extreme
precipitation with similar statistical characteristics, i.e., the
probability density distributions, tends to cluster spatially.
There are differences in the distribution of extreme precip-
itation between the Pacific and Atlantic sectors and between
the northern high and southern low latitudes.

Extreme precipitation during the pre-industrial period is
largely influenced by modes of internal variability, such as
El Niño–Southern Oscillation (ENSO), the Pacific North
American, and Pacific South American patterns, among oth-
ers, and regional surface temperatures. In general, the modes
of variability exhibit a statistically significant connection to
extreme precipitation in the vicinity to their regions of action.
The exception is ENSO, which shows more widespread in-
fluence on extreme precipitation across the Earth. In addition,
the regions with which extreme precipitation is more associ-
ated, either by a mode of variability or by the regional surface
temperature, are distinguished. Regional surface tempera-
tures are associated with extreme precipitation over lands at
the extratropical latitudes and over the tropical oceans. In
other regions, the influence of modes of variability is still
dominant. Effects of the changes in the orbital parameters on
extreme precipitation are rather weak compared to those of

the modes of internal variability and of the regional surface
temperatures. Still, some regions in central Africa, southern
Asia, and the tropical Atlantic ocean show statistically signif-
icant connections between extreme precipitation and orbital
forcing, implying that in these regions, extreme precipitation
has increased linearly during the 3351-year pre-industrial pe-
riod. Tropical volcanic eruptions affect extreme precipitation
more clearly in the short term up to a few years, altering both
the intensity and frequency of extreme precipitation. How-
ever, more apparent changes are found in the frequency than
the intensity of extreme precipitation. After eruptions, the re-
turn periods of extreme precipitation increase over the extra-
tropical regions and the tropical Pacific, while a decrease is
found in other regions. The post-eruption changes in the fre-
quency of extreme precipitation are associated with ENSO,
which itself is influenced by tropical eruptions.

Overall, the results show that climate simulations are use-
ful to complement the information on pre-industrial extreme
precipitation, as they elucidate statistical characteristics and
long-term connections of extreme events with natural vari-
ability.

1 Introduction

Extreme daily precipitation, which often causes devastating
flood events, is a difficult phenomenon to study due to its
rare occurrence and short-lived nature. At regional scale, ex-
treme precipitation events are caused by meso- and synoptic-
scale processes (Pfahl and Wernli, 2012; Pfahl, 2014) and
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at global scale, they are influenced by large-scale modes of
variability, such as El Niño–Southern Oscillation (ENSO) or
the North Atlantic Oscillation (NAO), among others (Kenyon
and Hegerl, 2010; Sun et al., 2015). In recent years, the topic
has attracted more and more attention as the behavior of ex-
treme precipitation is expected to change differently to that
of mean precipitation in a warmer world (Allen and Ingram,
2002; Trenberth et al., 2003; Pall et al., 2007). While mean
precipitation is expected to follow largely the “wet gets wet-
ter, and dry gets drier” rule (Trenberth et al., 2003; Chou
and Neelin, 2004; Chou et al., 2009), extreme precipitation is
projected to increase over the entire globe (Trenberth et al.,
2003; Donat et al., 2016; Fischer and Knutti, 2016). The “wet
gets wetter, and dry gets drier” pattern denotes the intensifi-
cation of the global hydrological cycle, which is controlled
by a tropospheric energy budget (Boer, 1993; Allen and In-
gram, 2002; Yang et al., 2003). Nevertheless, it is also noted
that this pattern for the future mean precipitation is more
heterogeneous over land areas in observations and climate
models (Roderick et al., 2014; Byrne and O’Gorman, 2015)
and breaks in the tropics in CMIP5 models (Chadwick et al.,
2013).

Unlike changes in mean precipitation which are largely
regulated by the available energy budget, changes in extreme
precipitation are constrained by the available maximum low-
level atmospheric moisture at a given temperature follow-
ing the Clausius–Clapeyron (C-C) relationship (Allen and In-
gram, 2002; Pall et al., 2007). The reasoning is as follows: the
low-level atmosphere can hold more moisture with increas-
ing temperatures, which in turn leads to an increase in ex-
treme precipitation (Trenberth et al., 2003; Pall et al., 2007;
Fischer and Knutti, 2016). The rate of increase of extreme
precipitation given by C-C is 6 %–7 % per 1 ◦C of warm-
ing. This relationship holds mostly true over higher latitudes
where the air is usually closer to saturation and relative hu-
midity is roughly constant (Allen and Ingram, 2002). Mean
increases in extreme precipitation are projected for many ter-
restrial regions by climate models in the Coupled Model
Intercomparison Project phase 5 (CMIP5) under different
climate change scenarios (Kharin et al., 2013; Scoccimarro
et al., 2013; Wang et al., 2017; Donat et al., 2019). However,
at regional scale, the changes are uncertain and vary from re-
gion to region (O’Gorman, 2012; Kharin et al., 2013; Pfahl
et al., 2017).

Observations indicate that the frequency and intensity of
extreme daily precipitation events have already increased
over large parts of the continents during the 20th century
(Asadieh and Krakauer, 2015; Donat et al., 2016, 2019;
Myhre et al., 2019; Papalexiou and Montanari, 2019). These
changes are coherently captured by many CMIP5 models
(Donat et al., 2016, 2019), though overall, significant inter-
model spread is found in the historical period and even more
in climate projections (Scoccimarro et al., 2013; Donat et al.,
2016; Wang et al., 2017; Donat et al., 2019). Additionally, the
models show some bias in the magnitude of extreme daily

precipitation (Stephens et al., 2010; Kopparla et al., 2013).
The discrepancies between observations and climate models
are potentially associated with the model-dependent sensi-
tivity of extreme precipitation to the increase in temperature
(Donat et al., 2016) and the model parameterization of sub-
grid scale physical processes which are relevant for extreme
precipitation (e.g., Champion et al., 2011; Van Haren et al.,
2015; Scher et al., 2017).

Many studies focus on the understanding of the nature of
extreme daily precipitation in the historic period covering the
last 50 to 100 years and their changes until the end of the 21st
century under climate change scenarios (e.g., Asadieh and
Krakauer, 2015; Donat et al., 2016, 2019; Wang et al., 2017;
Myhre et al., 2019). Studying extreme events in the historical
period is a reasonable approach as the analysis of such events
with short duration requires continuous records of daily pre-
cipitation and such records are only provided by the modern
instrumental observations and model simulations. Neverthe-
less, to understand the entire nature of these complex and rare
events, it would be ideal to investigate their characteristics
and long-term variability in the past when the anthropogenic
influences on the climate were not present yet.

Reconstructions of past climate events based on natural
proxies and historical documents can provide a glimpse of
the nature of extreme precipitation and floods in the past
(e.g., Brázdil et al., 2012; Kjeldsen et al., 2014; Machado
et al., 2015; Steinschneider et al., 2016; Zheng et al., 2018).
For instance, lake sediment records indicate that the fre-
quency of floods has increased during the Little Ice Age
in the Mediterranean French Alpine region (Wilhelm et al.,
2012). This period is also coherent with increased flood oc-
currences in central Europe described in the 500-year doc-
umentary records on river catchments (Glaser et al., 2010).
Frequent floods in this period seem to be associated with
large-scale atmospheric circulation patterns such as the At-
lantic low and Russian high (Jacobeit et al., 2003). In the
semi-arid regions in the western United States, the frequency
of extreme precipitation is inferred from tree-ring-based re-
constructions of the summer Palmer Drought Severity Index
for the last 500 years (Steinschneider et al., 2016). The recon-
struction indicates that the regions present a low-frequency
variability of extreme precipitation that ranges over ample
frequency bands, showing a variability from 2 to 30 years.
Natural proxies and historical reconstructions are undoubt-
edly invaluable sources of information on extreme events
for periods prior to the start of the modern instrumental era.
However, they also pose some limitations: they are not con-
tinuous in time and scarcely distributed across the globe,
therefore providing more local aspects of such events.

Nowadays, Earth system models that describe the physical
processes within the climate system provide abundant and
continuous data of global atmospheric variables, not only for
the historical and future periods but also for the past (Schurer
et al., 2013; Jungclaus et al., 2017; PAGES Hydro2k Con-
sortium, 2017). As these state-of-the-art climate models are
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already utilized to understand the present mechanisms and
future changes of extreme daily precipitation, they can also
help to explore the past natural variability of extreme pre-
cipitation, assuming that the corresponding transient exter-
nal forcing is properly adapted in simulations for the past
(Schmidt et al., 2011; Jungclaus et al., 2017).

The purpose of this study is to analyze and characterize ex-
treme daily precipitation for the period 1501 BCE to 1849 CE
(before the industrial revolution) using the Community Earth
System Model version 1.2.2. We base our analysis on sim-
ulations, which are either driven by orbital forcing alone or
by all external forcing functions, including the new continu-
ous volcanic record (Sigl et al., 2021). These simulations al-
low us to distinguish between signals of orbital and volcanic
forcing and internal variability. For the analysis, we em-
ploy the peak-over-threshold extreme value analysis (Coles
et al., 2001) to characterize the 3351-year pre-industrial ex-
treme daily precipitation on a global scale, to assess its long-
term connection to externally forced variability, such as the
changes in radiation driven by the orbital parameters and vol-
canic eruptions, to internal variability associated with large-
scale circulation patterns, and to surface air temperature. The
peak-over-threshold analysis is an amply used method to un-
derstand the characteristics of extreme events. For instance,
the method has been used to study the characteristics and
recurrence periods of wind-storm-related variables (Della-
Marta et al., 2009; Blender et al., 2017) and extreme precipi-
tation (Sugahara et al., 2009; Thiombiano et al., 2017) in dif-
ferent locations, and the association of extreme events with
large-scale modes of variability (Silva et al., 2016; Blender
et al., 2017; Thiombiano et al., 2017).

This paper is organized as follows: in Sect. 2, we introduce
the Community Earth System Model, the setup of the model
simulations, and the observational data sets used to evaluate
the model’s ability to represent daily precipitation. Section 3
outlines the theoretical basis of the peak-over-threshold ex-
treme value analysis and the methods employed for our anal-
ysis. The results are presented in Sect. 4, where we first eval-
uate the climate model against reanalysis data, then show
the distribution of extreme daily precipitation globally, and
finally assess how the extreme daily precipitation is statis-
tically related to orbital forcing changes, internal modes of
variability, and volcanic forcing. Lastly, conclusive remarks
are presented in Sect. 5.

2 Data

2.1 Description of the model, simulations, and
observational data

The Community Earth System Model (CESM; Hurrell et al.,
2013) version 1.2.2 is a fully coupled general circulation
model that is composed of several component models: the
Community Atmosphere Model version 5 (CAM5; Neale
et al., 2010) for the atmosphere, the Community Land Model

version 4 (CLM4; Lawrence et al., 2011) for land which
includes a prognostic carbon–nitrogen cycle, the Parallel
Ocean Program version 2 (POP2; Smith et al., 2010) for
the ocean, and the Community Ice Code version 4 Hunke
et al. (CICE4; 2010) for sea ice. The spatial resolutions of the
simulations are 1.9◦× 2.5◦ for the atmosphere and land, and
1◦× 1◦ for the ocean and sea ice. The atmosphere is resolved
at 30 and land at 15 vertical levels. The ocean has 60 vertical
levels. The time resolutions of the simulations are 6-hourly
and monthly, and the 6-hourly precipitation is aggregated to
a daily time resolution.

Using CESM, we perform two simulations covering the
period 1501 BCE–2008 CE (Table 1). The two simulations
are branched off from the last year of a spin-up simula-
tion with perpetual forcings. The spin-up simulation is per-
formed with the orbital parameters and forcings set constant
at 1501 BCE conditions, with a CO2 level of 274.21 ppm
(Bereiter et al., 2015), a CH4 level of 572.88 ppb, a N2O
level of 262.79 ppb (Joos and Spahni, 2008), and a total so-
lar irradiance (TSI) of 1360.38 Wm−2 (Vieira et al., 2011;
Usoskin et al., 2014). The land use and land-use changes
(LULUC) are set to conditions reconstructed for the year
850 CE (Pongratz et al., 2008). The spin-up simulation is run
for 1405 years until it reaches an equilibrium state.

The first simulation that branches off the spin-up sim-
ulation includes orbital parameters that vary in time from
1501 BCE to 2008 CE. All other forcings are kept the same
as in the spin-up period (Table 1). Hence, this simulation in-
cludes only the effect of the changes in the orbital parameters
and internal climate variability. Hereinafter, this simulation is
called the orbital-only simulation.

The second simulation is run with all time-varying exter-
nal forcings from 1501 BCE to 2008 CE (Fig. 1). The vari-
ables for the external forcings are the TSI, greenhouse gas
(GHG) concentrations, volcanic sulfate aerosols (VOL), and
LULUC. The TSI is reconstructed from114C (Usoskin et al.,
2014, 2016; Vieira et al., 2011) and obtained from the Paleo-
climate Modelling Intercomparison Project phase 4 (PMIP4)
database (https://pmip4.lsce.ipsl.fr/, last access: 20 Decem-
ber 2020). For GHG up to 1849 CE, the annual records of
CO2 are obtained from Bereiter et al. (2015), and of CH4 and
N2O from Joos and Spahni (2008). These annual time series
are smoothed by cubic spline interpolation. After 1850 CE,
the annual GHG is extended using the records from Mein-
shausen et al. (2017). LULUC up to 1500 CE is based on
the reconstructions from Pongratz et al. (2008), and after this
year, it is merged with the reconstruction from Hurtt et al.
(2011). Prior to 850 CE, the LULUC is set constant to 850 CE
values and it varies afterwards. This second simulation is de-
noted as the full-forcing simulation (see Table 1).

The record of volcanic sulfate aerosols from 1501 BCE to
1979 CE is obtained from Sigl et al. (2021), and afterward
until 2008 CE from Carn et al. (2016). To incorporate this
record into the transient simulation, we use the Easy Vol-
canic Aerosol Model version 1.2 (EVA; Toohey et al., 2016)
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Table 1. Forcing values for the simulations. The time-varying forcing in the last column is presented in Fig. 1.

Spin-up simulation Orbital-only simulation Full-forcing simulation

Time [years] 1405 3351 3351
(1501 BCE–2008 CE) (1501 BCE–2008 CE)

GHG

CO2 [ppm] 274.21 274.21 Bereiter et al. (2015) and
Meinshausen et al. (2017)

CH4 [ppb] 572.88 572.88 Joos and Spahni (2008) and
Meinshausen et al. (2017)

N2O [ppb] 262.79 262.79 Joos and Spahni (2008) and
Meinshausen et al. (2017)

VOL [Tg] no forcing no forcing Carn et al. (2016) and
Sigl et al. (2021)

TSI [Wm−2] 1360.38 1360.38 Vieira et al. (2011) and
Usoskin et al. (2014)

LULUC 850 CE conditions 850 CE conditions Pongratz et al. (2008)

Figure 1. Time series of the external forcing included in the transient full-forcing simulation for 1501 BCE–2008 CE.

to generate the temporal and latitudinal distribution of the
volcanic aerosols. Then, two modifications are applied to
this volcanic aerosol distribution to attain an atmospheric re-
sponse for the 1991 Pinatubo eruption, which is similar to the
respective response in Gao et al. (2008), the volcanic forc-

ing used in Paleoclimate Modelling Intercomparison Project
(PMIP) Last Millennium experiments (Schmidt et al., 2011;
Lehner et al., 2015; Otto-Bliesner et al., 2016): first, the total
volcanic aerosols are scaled by a factor of 1.49. By applying
the scaling, more similar responses of atmospheric temper-

Clim. Past, 17, 2031–2053, 2021 https://doi.org/10.5194/cp-17-2031-2021



W. M. Kim et al.: Statistical characteristics of extreme daily precipitation during 1501 BCE–1849 CE 2035

atures and incoming solar radiation to the eruptions in the
here-presented simulation and Gao et al. (2008) is ensured.
A similar scaling approach was used by Zhong et al. (2018),
but with a slightly higher scaling factor of 1.79, as they used
the 1815 Tambora eruption as reference. Second, the timing
of the maximum peaks of the eruptions is shifted by 4 months
in time after the respective eruption following the approach
in Gao et al. (2008). After this peak, the volcanic aerosols
decay smoothly as estimated by the EVA model.

To evaluate the daily precipitation obtained by CESM, the
precipitation of CESM is compared to that of ERA5, the lat-
est reanalysis product of ECMWF, during the period 1979–
2008 CE (Hersbach et al., 2020). ERA5 uses the 2016 ver-
sion of the ECMWF numerical weather prediction model and
the integrated forecasting system Cy41r2 data assimilation
(Hersbach et al., 2020). From ERA, we use the total precipi-
tation at a temporal resolution of an hour and at a spatial res-
olution of 0.75◦× 0.75◦. To be compared against CESM, the
hourly precipitation of ERA5 is accumulated to daily precip-
itation sums and the spatial resolution is interpolated to the
coarser grid resolution of 1.9◦× 2.5◦ to be consistent with
the resolution of CESM.

3 Methods

We apply the peak-over-threshold (POT) analysis to four data
sets of daily precipitation anomalies: the CESM orbital-only
and full-forcing simulations for the past period (1501 BCE–
1849 CE), the CESM full-forcing and the ERA5 reanalysis
for the present period (1979–2008 CE). The daily precipita-
tion anomalies are calculated by subtracting the multi-year
daily means, i.e., the means of the entire 1501 BCE–1849 CE
period for the CESM past simulations and 1979–2008 CE for
the present period in CESM and ERA5, from each daily pre-
cipitation value.

For the 1501 BCE–1849 CE simulations, the 99th per-
centiles relative to their distributions of the entire period are
taken as a threshold to define extreme precipitation. For eval-
uation in the period 1979–2008 CE, the 95th percentiles are
selected as a threshold in order to obtain enough extreme
events during this rather short period.

3.1 Peak-over-threshold extreme value analysis

The POT approach (Coles et al., 2001) states that the val-
ues y of a sequence of an independent random variable x, in
our case, the precipitation anomalies, that exceed a certain
threshold u, i.e., the 99th or 95th percentiles, are asymptot-
ically distributed following a generalized Pareto distribution
(GPD) with the density distribution function given as

H (y)=

1−
(

1+ ξy
σ

)−1/ξ
for ξ 6= 0

1− exp
(
−
y
σ

)
for ξ = 0,

(1)

where y = x− u are the positive exceedances of daily pre-
cipitation anomalies, σ is the scale parameter that charac-
terizes the spread of the distribution and the scaling of the
exceedances y, and ξ is the shape parameter that represents
the upper bound and tail behavior of the distribution (Suga-
hara et al., 2009; Blender et al., 2017). When ξ > 0, the up-
per bound is infinite and the distribution has a heavy tail. For
ξ = 0, the upper bound is also infinite, but the tail shape is
lighter as the distribution decays exponentially. When ξ < 0,
the distribution has a finite upper bound y ≤−σ/ξ (above
this upper bound, the probability vanishes) and a thin tail
(Coles et al., 2001). When the number of exceedances is
small and the estimated ξ is negative, there is a bias in
the estimation of ξ towards a larger standard error (Blender
et al., 2017). This occurs because since any sample has a
finite maximum, there is a bias towards estimated distribu-
tions with an upper limit; hence, there is a negative estimated
shape parameter (Giles et al., 2016). The behaviors of the
density distribution with different values of scale and shape
are illustrated in Fig. 2.

Equation (1) describes the stationary GPD model, in which
the scale and shape parameters remain constant. From the
stationary GPD model, the T -year return level yT associated
with the return period T (Coles et al., 2001; Khaliq et al.,
2006) can be estimated as

yT = σ [ζuT
ξ
− 1]/ξ, (2)

where ζu = P (x > u) is the ratio of exceedances in the sam-
ple. For the 95th percentile, this is ζu = 0.05, and for the 99th
percentile, this is ζu = 0.01.

The POT analysis requires independent values among ex-
ceedances (Coles et al., 2001). Hence, the record of extremes
needs to be de-clustered to reduce the persistence among the
clustered extremes. For this, we de-cluster the extreme pre-
cipitation at each grid point by taking the maximum value
within each cluster. Each cluster is composed of consecutive
days of extremes and the extremes separated by a maximum
of 1 d to other extremes. In other words, the minimum tem-
poral distance allowed between the extremes within a cluster
is 1 d, and between the clusters it is 2 d (Coles et al., 2001).
The result of the de-clustering can be quantified through an
extremal index, which is the ratio between the number of ex-
tremes after being de-clustered and the initial number of ex-
tremes. These de-clustered exceedances are the values used
for the analysis.

Then, a GPD is fit to the de-clustered extreme daily precip-
itation anomalies to generate a stationary GPD model with a
specific scale and shape parameter at each grid point. The
estimation of scale and shape parameters is performed using
the maximum likelihood method (Coles et al., 2001; Suga-
hara et al., 2009).

The parameter estimation for a stationary GPD model
through a maximum likelihood is given as follows: under
the assumption that the exceedances z1, . . .,zk are indepen-
dent variables, where k is the number of exceedances, the
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Figure 2. (a–d) Probability density distributions of extremes of a variable with different scale and shape parameters. (e) All distribution
functions together.

log-likelihood function l for the parameters σ and ξ is
l(σ,ξ )=−k log(σ )−

(
1+ 1

ξ

)∑k
i=1 log

(
1+ ξzi

σ

)
for (1+ σ−1ξzi)> 0, i = 1, . . .,k

l(σ )=−k log(σ )− σ−1∑k
i=1zi for ξ = 0.

(3)

Having the parameter vector β with β = [σ,ξ ], the max-
imization of the pair of log likelihood l(σ,ξ ) with respect
to the β is performed. This maximization leads to the max-
imum likelihood estimate of the scale σ and shape ξ . The

maximization is done numerically, as no analytical solution
is possible (Coles et al., 2001).

In the case of non-stationary GPD models (Coles et al.,
2001; Blender et al., 2017), the scale and/or shape parameters
vary linearly with time t or with other external variables (co-
variates). In our analysis, we only allow scale parameters to
change but shape parameters remain constant, similar to the
approach used by Sugahara et al. (2009) and Blender et al.
(2017). In our non-stationary GPD models, the scale param-
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eter in Eq. (1) becomes

σ (t)= σ0+ σ1t or σ (t)= σ0+ σ1C(t), (4)

with C(t) being the time series of a covariate. Again, GPDs
are fit to the de-clustered extreme daily precipitation anoma-
lies to generate non-stationary time- and covariate-GPD
models. Time-dependent scale and shape parameters for the
non-stationary model are also estimated using the maximum
likelihood method following Eq. (3), assuming σ (t)= σ0+

σ1C(t) or σ (t)= σ0+σ1t (Coles et al., 2001; Sugahara et al.,
2009). The parameter vector β in this case is β = [σ0,σ1,ξ ]

(El Adlouni et al., 2007).
The performance of the non-stationary GPD model is mea-

sured relative to the stationary GPD model using the de-
viance statistics (Coles et al., 2001; Blender et al., 2017):

D = 2(L1−L0), (5)

where L1 and L0 are the log likelihoods of the non-stationary
and the stationary GPD model, respectively. The deviance
statistics follows the χ2

m distribution, and with m= 1 and a
99 % confidence interval, a threshold for D is 6.634. Hence,
the relative performance of the non-stationary GPD model
is statistically significant at a 99 % confidence interval when
D is larger than 6.634. This indicates that the non-stationary
GPD model is significantly better than the stationary GPD
model at 99 % confidence interval, and the non-stationary
GPD explains the variability of extreme precipitation at a
grid point better than the stationary GPD. If this is the case,
we assume that there is an association between the corre-
sponding covariate, or the time variable, with extreme pre-
cipitation at that grid point or region.

3.2 Non-stationary GPD models with external forcings,
modes of internal variability, and surface air
temperature

We use several external forcings, modes of internal variabil-
ity, and surface air temperature anomalies (TSs) as covariates
of the GPD models for the 1501 BCE–1849 CE simulations.
For the external forcings, we consider five variables in total:
three orbital parameters combined in one variable (ORB; ec-
centricity (ECC), longitude of perihelion (PER), and obliq-
uity (OBL); Berger, 1978), TSI, insolation (INS), clear-sky
net surface shortwave radiation (FSN), and VOL (Fig. 3).
ORB and TSI are annually resolved one-dimensional time
series. INS and FSN are the output variables from the model
simulations and resolved monthly and spatially at each grid
point. The VOL forcing is monthly and latitudinally resolved
and is already described in Sect. 2.1. INS, FSN, and VOL are
annually averaged to obtain a yearly resolution. This proce-
dure is applied to have consistent time resolutions among all
external forcing variables and to exclude the effects of sea-
sonality. Finally, all variables are normalized with respect to
their 3351-year means and interpolated to a daily time reso-
lution.

INS and FSN can be interpreted as the variables that re-
flect the combined effects of ORB and TSI on regional and
global scales. Additionally, FSN also includes the effects of
volcanic eruptions by exhibiting negative peaks on its time
series after some strong eruptions but only in the transient
simulation (Fig. 3).

Each of these variables is included in the scale parame-
ters of each individual GPD model in Eq. (1) using Eq. (4),
except for ORB. For ORB, all three parameters are incorpo-
rated together in the scale parameter of one GPD model as

σ (t)= σ0+ σ1ECC(t)+ σ2OBL(t)+ σ3PER(t). (6)

The resulting combined effect is that σ increases approxi-
mately linear with time t .

For the volcanic forcing, in addition to the analysis of the
entire period, we also assess the short-term influence of vol-
canic eruptions on extreme precipitation. For this, we se-
lect a 3-year period before (pre-eruption period) and a 3-
year period after (post-eruption period) all eruptions from the
1501 BCE–1849 CE transient full-forcing simulation. Only
the eruptions that fulfill the following conditions are included
in the analysis: tropical eruptions that occur in January
and exceed 2.66 Tg of volcanic stratospheric sulfur injec-
tion (VSSI). This reference VSSI is based on the El Chichón
eruption in 1982 CE, whose effects on the radiation and cli-
mate were clearly detectable (Hofmann, 1987). We also as-
sure that no other eruption has occurred 5 years before and
after each of the selected eruptions. After applying these cri-
teria, the total number of eruptions included in the analysis is
57. These eruptions occur in the same month (January) and at
similar latitudinal locations (tropical). Therefore, the asym-
metric cooling due to extratropical eruptions (Oman et al.,
2005; Schneider et al., 2009) and season-dependent climatic
responses to tropical eruptions (Stevenson et al., 2017) are
not considered for the analysis.

It is important to mention that all reconstructed external
forcings such as TSI and volcanic eruptions contain inherent
uncertainties derived from reconstruction models or methods
and from the dating of events (Sigl et al., 2015; Jungclaus
et al., 2017; Matthes et al., 2017). An attempt to reduce such
uncertainties is an active research topic (e.g., Sigl et al., 2015;
Matthes et al., 2017) that is beyond the scope of this study. A
possible implication of uncertainties from the external forc-
ings in our analysis is briefly discussed in the results section
(Sect. 4.4).

A stationary GPD fit (Eq. 1) is applied to the pre-eruption
and post-eruption periods separately to estimate the return
periods of extreme precipitation, then to assess the post-
eruption changes in extreme precipitation. Additionally, the
numbers of days and the intensities of extremes for these two
periods are calculated. As strong volcanic eruptions influ-
ence the evolution of ENSO states (McGregor and Timmer-
mann, 2011; Ohba et al., 2013; Wang et al., 2018; McGregor
et al., 2020), we also identify imprints of ENSO on post-
eruption extreme precipitation by splitting the years of erup-
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Figure 3. Time series of externally forced variability included as covariates in the non-stationary GPD models for the orbital-only and
full-forcing simulations. Note that the VOL-covariate GPD model is only generated for the full-forcing simulation.

tions (year 0) into three ENSO states, based on the Niño3.4
index: El Niño (> 0.5 K), La Niña (<−0.5 K), and neutral
state (>−0.5 K and< 0.5 K). Then, the numbers of extremes
in each ENSO state are counted and compared to the num-
bers in the same states during the year before the tropical
eruptions.

To generate the non-stationary GPD models with the inter-
nal modes of variability as covariates, we use eight modes of
variability: Eastern Atlantic–West Russian (EA-WR) pattern,
North Atlantic Oscillation (NAO), Northern Annular Mode
(NAM), Pacific Decadal Oscillation (PDO), Pacific North
American (PNA) pattern, ENSO, Southern Annular Mode
(SAM), and Pacific South American 1 (PSA) mode. The pro-
cedures to calculate the modes of variability are explained
in the Supplement. These modes of variability are both cap-
tured by CESM and ERA5, as the patterns are comparably
similar among the data sets (Figs. S1, S2, and S3 in the Sup-
plement). Then, we constrain the regions of action of some of
these modes to only one hemisphere: EA-WR, NAO, NAM,
PDO, and PNA are only associated with extreme precipita-

tion in the Northern Hemisphere, while SAM and PSA only
influence extreme precipitation in the Southern Hemisphere.
There is no spatial restriction for ENSO; therefore, ENSO
can be associated with extreme precipitation in both hemi-
spheres.

All of these modes have a monthly time resolution and
each of them is inserted in a GPD model without an interpo-
lation to the daily time resolution. For the internal variability,
we assume that what influences the extreme daily precipi-
tation is not the daily fluctuations of these modes but their
monthly mean values.

TS is obtained by subtracting the 1501 BCE–1849 CE
monthly means of surface air temperature from each monthly
value in the simulations. Two kinds of TSs are considered
for the non-stationary analysis: one is the globally averaged
means of TS (TS-G; Fig. S4 in the Supplement) and another
is the spatially (latitude and longitude) gridded TS (TS-R).
The former is used to assess the influence of global tempera-
ture and the latter is used to assess the influence of regional
temperature on daily extreme precipitation. Both TSs are re-
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solved monthly and similar to the modes of internal variabil-
ity; they are not interpolated to daily time resolution. The
influence of TSs is compared against to those of the modes
of variability.

3.3 Statistical tests used for the model evaluation
against ERA5

We compare the daily precipitation in CESM and ERA5 for
the present period (1979–2008 CE) in order to evaluate the
model’s ability to depict the daily precipitation. For this, we
analyze the 30-year global- and land-averaged trends of the
annual mean daily precipitation and the spatial means of the
entire and extreme (the values above the 95th percentiles)
daily precipitation. The signs of the monotonic trends of the
global- and land-averaged total daily precipitation are com-
pared to each other and their statistical significance is cal-
culated using the non-parametric Mann–Kendall trend (M-
K) test (Mann, 1945; Wilks, 2011; e.g., Westra et al., 2013).
Under the null hypothesis, the M-K test assumes no trend
in the time series. The means of the total and extreme daily
precipitation between CESM and ERA5 are compared using
the non-parametric Mann–Whitney (M-W)U test (Mann and
Whitney, 1947; Wilks, 2011; e.g., Kim and Raible, 2021) at
each grid point. The null hypothesis of the M-W test states an
equal distribution of the two data sets. To assess the similarity
of the spatial patterns, the Pearson r correlation coefficients
are calculated using the spatial mean values of total and ex-
treme precipitation between CESM and ERA5. The null hy-
pothesis of the test assumes no correlation between two data
sets. Hence, if the null hypothesis is accepted, no signifi-
cantly similar spatial precipitation pattern between both data
sets is observed.

4 Results

4.1 Comparison between ERA5 and CESM in the
present period 1979–2008 CE

In this section, we compare the daily precipitation in ERA5
and CESM for the period 1979–2008 CE to evaluate the
model’s ability to represent the mean and extreme daily pre-
cipitation. For this comparison, we use the full-forcing sim-
ulation.

The 30-year global and land-only averaged annual means
of the daily precipitation anomalies in ERA5 and CESM
are shown in Fig. 4. During 1979–2008 CE, both ERA5 and
CESM show a small but statistically significant positive trend
for the global daily precipitation at a 99 % confidence interval
(Fig. 4a). However, when only the daily precipitation anoma-
lies over land are considered, significant positive trends are
absent in both data sets (Fig. 4b). ERA5 shows no statisti-
cally significant trend of the daily precipitation over land,
while CESM indicates a slight negative but significant trend
during this 30-year period. This difference in trends between

the global- and land-averaged daily precipitation suggests
that the changes in the mean daily precipitation over land
during the last few decades are more heterogeneous than the
global changes of daily precipitation resembling findings of
Contractor et al. (2021).

Regarding the spatial distribution, some differences be-
tween ERA5 and CESM are evident, particularly in terms
of the magnitudes of the mean daily precipitation (Fig. 5a).
Compared to ERA5, CESM largely underestimates the daily
precipitation over the tropical and North Pacific oceans, In-
dia, central Asia, Australia, southern South America, almost
all of Africa, and western North America. The model over-
estimates the daily precipitation over the tropical Atlantic,
northern and central South America, and large parts of Eu-
rope, among others. The differences in the magnitudes are
also present in the extreme daily precipitation (daily pre-
cipitation above the 95th percentiles relative to their 1979–
2008 CE distributions) (Fig. 5b). However, CESM overesti-
mates extreme daily precipitation in regions where the mean
daily precipitation is underestimated, and vice versa. The dis-
crepancy between the reanalysis or the observation and the
model simulation in the magnitudes of the mean and extreme
daily precipitation is a known problem in many climate mod-
els (Stephens et al., 2010; Flato et al., 2014). This discrep-
ancy demonstrates again the difficulties of models to realis-
tically represent physical processes related to precipitation,
mainly associated with short-lived and spatially small-scale
events (e.g., Champion et al., 2011; Van Haren et al., 2015;
Scher et al., 2017).

Regardless of these differences in the magnitudes of the
mean and extreme daily precipitation, CESM represents rel-
atively well the spatial patterns of mean daily precipitation.
CESM distinguishes properly the drier from the wetter re-
gions, which are identified as the regions with precipitation
values below and above the spatial 80th percentile of the to-
tal mean precipitation, respectively (brown contour line in
Fig. 5). The spatial Pearson correlation coefficients of the
mean total and extreme precipitation between ERA5 and
CESM are 0.88 and 0.92, respectively, and both values are
statistically significant at the 99 % confidence interval. These
values demonstrate that the model is able to realistically rep-
resent the mean total and extreme spatial pattern of daily pre-
cipitation.

The POT analysis is applied to the extremes in ERA5
and CESM, and estimated parameters of the stationary GPD
models from the analysis are presented in Fig. 6. The ex-
tremal indices, which are the ratios between the numbers
of de-clustered extremes and initial extremes, show reduced
numbers of extremes over the tropical oceans after de-
clustering. In some regions in the tropics, the de-clustering
method leaves only around 40 % of the initial numbers of
extremes, indicating that the reduction of extreme events is
particularly strong over this latitudinal belt, a known region
of convective organization with temporal clustering. Over the
extratropics, the extremal indices range from 0.8 to 1, mean-
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Figure 4. Time series of annually averaged mean daily precipitation over the (a) entire globe and (b) land only in ERA5 (black) and CESM
(red). The values on the figures indicate the trends and ** denotes that the trends are statistically different to zero at the 99 % confidence
interval based on the Mann–Kendall trend tests.

Figure 5. Mean values of ERA5 and CESM, and the percentages of difference between both data sets calculated as (ERA5−CESM)/ERA5
for (a) the total daily precipitation and (b) the extreme daily precipitation (daily precipitation above the 95th percentiles relative to 1979–
2008 CE distributions). The brown line indicates the 80th percentile level to discern wet regions (above the 80th percentile) from others.
Dotted regions in the difference plots indicate where the distributions of total or extreme precipitation are statistically similar at the 99 %
confidence interval based on the M-W U tests. Pearson r coefficients between the spatial mean values of ERA5 and CESM are denoted in
bold on the difference plots accompanied with ** when the r values are statistically significant at the 99 % confidence interval.

ing that de-clustering does not strongly affect the number of
extremes in these regions. The extremal indices illustrate that
over the tropics, mainly over the oceans, clustered precipita-
tion events that last for several days are common, while short-
lived extreme precipitation events are prevalent over the ex-

tratropics. Hence, de-clustering causes a strong reduction in
the number of extremes in the tropics, which is more pro-
nounced in the CESM simulation.

The scale parameters in ERA5 and CESM, which indicate
the spread of extreme precipitation, largely follow the spatial
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Figure 6. Extremal indices, parameters of the stationary GPD models, and return periods of the extreme thresholds in Fig. 5 for (a) ERA5
and (b) CESM. Striped regions indicate where the standard errors from the parameter estimation are higher than the estimated values. The
dark blue line on the composite of the scale parameters denotes wet regions in Fig. 5. The regions where the annual total precipitation is less
than 250 mm are excluded from the analysis and marked as white.

pattern of the mean extreme daily precipitation in Fig. 5b.
The parameters show higher values over wetter regions and
comparably lower values over other regions. This behavior
of the scale parameters is expected as the parameter is related
to the scaling of the exceedances in the density distribution,
which is associated with the mean values of the extremes in
Fig. 5b (see also Fig. 2). Hence, the difference in the scale
parameters between ERA5 and CESM is expected, as both
data sets present different mean extreme precipitation.

For the shape parameter, CESM shows more regions with
negative shape parameters than ERA5 and more standard er-
rors from the parameter estimation over these regions. As
mentioned in Sect. 3.1, this occurs due to the small sample
size for the parameter estimation over the regions where the
shape parameters are negative (Blender et al., 2017). Exclud-
ing these regions, ERA5 and CESM share some positive val-
ues over the same regions and some coherent regions with
relatively high shape parameters in the Indian, the southern
Atlantic, and Pacific oceans.

The return periods of extreme precipitation in both CESM
and ERA5 largely follow the pattern of the extremal indices.
It exhibits long return periods over the tropics where the ex-
tremal indices are lower and short return periods over the
extratropics where the extremal indices are higher. This be-
havior of the return periods is expected, as a low number of
extremes indicates a low occurrence of events and therefore
an increased return period of the events. Note that the return
period over the tropics should be interpreted as a return pe-
riod of a clustered event instead of a return period of a single
or a short-lived precipitation event.

In summary, some differences between ERA5 and CESM
exist in the parameters of the GPD models due to differences
in the mean extreme daily precipitation. Still, the spatial pat-

terns of the GPD parameters and return periods of simulated
extreme daily precipitation anomalies resemble the patterns
of the reanalysis, presenting coherent regions with maximum
and minimum parameter values. Wet and dry regions and the
regions with maximum and minimum GPD parameters are in
general coherent between ERA5 and CESM. This indicates
that the model represents the large-scale spatial patterns of
the mean and extreme precipitation relatively well. The focus
of this study is on the long-term changes and characteristics
of extreme daily precipitation on a global scale rather than
on the characteristics or impacts of a handful single events.
Therefore, we use the daily precipitation from CESM as it
is in the next section, i.e., without applying any further cor-
rections, such as bias correction (e.g., Chen et al., 2020) or
downscaling methods (e.g., Yang et al., 2012). Still, we take
into account the differences between ERA5 and CESM in
the magnitudes of extreme precipitation when interpreting
our results and discussing possible implications in the con-
clusions.

4.2 Distribution of extreme daily precipitation for the
period 1501 BCE–1849 CE in CESM

Here, the POT analysis is applied to the time series of ex-
treme daily precipitation in the 3351-year orbital-only and
full-forcing transient simulations to generate the stationary
GPD models at each grid point and to illustrate the character-
istics of the distribution of extreme precipitation. The thresh-
olds for the extremes (the 99th percentiles of daily precipi-
tation relative to their distributions of the entire period), the
means of all precipitation above the extreme percentile limit,
and extremal indices are presented in Fig. 7. The parameters
of the stationary GPD models from the full-forcing simula-
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tion are shown in Fig. 8. The POT analysis of the orbital-only
simulation exhibits similar results; thus, the corresponding
figures are not shown here.

The spatial patterns of the mean extreme precipitation
and extreme indices (Fig. 7) are similar to those during the
present period in Fig. 5b, discerning the wetter and drier re-
gions. Similar to results found in Fig. 6, the scale parame-
ters (Fig. 8a), which describe the spread of the distribution or
scaling of the extremes, largely follow the spatial pattern of
the mean extreme precipitation with higher values over the
wetter regions in the Pacific and Indian oceans, south and
east Asia, and the east and west coasts of North America,
among others. Relatively lower values of the scale parameter
are found in Europe, Africa, and northern South America.

For the shape parameters (Fig. 8b), the regions with higher
estimation errors (striped area) are reduced compared to
Fig. 6. This is expected because the numbers of extreme pre-
cipitation events increase so that the parameter estimation is
more reliable. Positive shape parameters dominate over the
tropical and west Pacific and Indian oceans. Over land, the
wetter regions in Asia, the southeast coast of South Amer-
ica, and the east and west coasts of North America dominate
more negative values. Similar to Fig. 5, the spatial pattern
of the return periods (Fig. 8c) exhibit high return periods lo-
cated over the tropics and relatively lower values over the
extratropics.

The scale and shape parameters together (Fig. 8d) describe
the generalized Pareto distributions that characterize the den-
sity distributions of extreme precipitation at each grid point.
The density distribution of extreme precipitation is separated
into four types given in Fig. 2: (I) high scale – positive shape
characterized by a higher spread, heavy tail, and no upper
bound of extremes (Fig. 2a); (II) high scale – negative shape
characterized by a high spread, thin tail, and an upper bound
(Fig. 2b); (III) low scale – positive shape characterized by a
low spread, heavy tail, and no upper bound (Fig. 2c); and fi-
nally, (IV) low scale – negative shape characterized by a low
spread, thin tail, and an upper bound of extremes (Fig. 2d).
High and low values of scale parameters are defined as the
values above and below the median of all scale parameters
in Fig. 8a. In Fig. 8d, clustering of the same types of distri-
bution is noticeable. For instance, type I (high scale – posi-
tive shape) dominates over the west and the tropical Pacific
Ocean; type II (high scale – negative shape) is located over
the south and north Pacific and Atlantic oceans, south and
east Asia, and eastern North America; type III (low scale –
positive shape) is found over some regions in the Southern
Ocean, northern Asia, Amazon, and Africa; lastly, type IV
(low scale – negative shape) distributions occur over some
regions in the Southern Ocean and in the northernmost At-
lantic Ocean. In general, over the ocean, the types of distri-
bution seem to be more homogeneous than those over land.
In addition, there are clear differences in the types of distri-
bution between the Pacific and Atlantic sectors and between
the northern high and southern low latitudes. To conclude,

the results show that the POT analysis is able to identify the
large-scale characteristics of extreme precipitation by sepa-
rating distinct and coherent regions for similar types of dis-
tributions.

4.3 Association of extreme precipitation with external
forcings including the tropical volcanic eruptions

To assess the long-term influence of externally forced vari-
ability on extreme precipitation, the time series of the vari-
ables mentioned in Sect. 3.2 (Figs. 3, S1 and S2) are included
as covariates in the non-stationary GPD models (Eq. 4).
Then, the deviance statisticsD (Eq. 5) are calculated to quan-
tify the performance of the covariate GPD models in the
orbital-only and full-forcing simulations relative to the sta-
tionary GPD models in Fig. 8.

The regions where each covariate, the time, and external
forcing GPD models outperforms the stationary GPD mod-
els with the statistically significant D values (with D more
than 6.634 at 99 % confidence interval) are shown in Figs. S5
and S6 for each of the simulations. The regions where both
orbital-only and full-forcing simulations share a common
significant D are presented in Fig. 9. We assume that these
regions with coherent D between the two simulations are
where the extreme precipitation is truly influenced by the co-
variates.

The time, ORB, and INS share some common regions over
the tropical Atlantic, the Indian Ocean, central Asia, and
central Africa. These variables present a time series with a
monotonic linear trend. Thus, over these regions, there is a
linear increase in extreme precipitation during 1501 BCE–
1849 CE. The influence of TSI is spread randomly across the
globe, implying no robust association of this variable with
the variability of extreme precipitation. FSN, which consid-
ers the overall changes in the net surface shortwave radiation,
exhibits similar regions of association with extreme precipi-
tation to those in ORB and INS, mostly over the tropics. Still,
the regions of association of FSN with extreme precipitation
are larger, as additional internal effects involved in the sur-
face radiation balance and not only the external forcing are
included in this covariate. For example, the regional temper-
ature variability affected by internal variability has an impact
on FSN. Overall, the roles of the external forcing in the vari-
ability of extreme precipitation during 1501 BCE–1849 CE
are constrained to certain small regions shown in Fig. 9.

The VOL shows a random spread similar to TSI. This rel-
atively limited influence of volcanic aerosols on extreme pre-
cipitation can be related to the timescale of the influence of
volcanic eruptions on the climate. It is known that the ef-
fect of volcanic eruptions on precipitation is only in the short
term, in the range of a few years (Robock, 2000; Iles et al.,
2013; Iles and Hegerl, 2014). Hence, volcanic eruptions may
not alter the long-term variability of extreme precipitation
analyzed here. Considering the timescale of the effects of
volcanic eruptions on precipitation, short-term influences of
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Figure 7. The thresholds for extreme precipitation (defined as the 99th percentiles of daily precipitation relative to the 3351-year distribu-
tions), means of the values above these thresholds, and extremal indices in the 1501 BCE–1849 CE full-forcing simulation. The brown line
indicates the spatial 80th percentile level to discern wet regions (above the 80th percentile) from others.

Figure 8. (a) Scale, (b) shape parameters of the stationary GPD models, (c) return periods of extreme thresholds (see Fig. 7), and (d) the
combination of the scale and shape parameters with: above (high) and below (low) the median of the scales, and positive and negative shape
parameters. On the composite of scale parameters in panel (a), the wet region in Fig. 7 is denoted as a dashed dark blue line, and the median
of scale parameters is overlaid as a dashed light blue line. Again, the regions where the annual total precipitation is less than 250 mm are
marked as white.

volcanic eruptions on extreme precipitation are specifically
analyzed by taking the periods of 3 years before and 3 years
after the eruptions (Sect. 3.2).

The differences in mean, return period, and number of ex-
treme precipitation between the post- and pre-eruption pe-
riods are shown in Fig. 10. In terms of the intensity of ex-
treme precipitation (Fig. 10a), the tropical equatorial Pacific
region presents a statistically significant increase after erup-
tions. Other regions with significant increases or decreases
are spread across the globe. It is noted that the post-eruption
changes in the intensity of extreme precipitation are not as
evident as the changes in the number of extreme precipitation

(Fig. 10b and c). The return periods of extremes in Fig. 10b
indicate a decrease after eruptions in the tropics, west Indian
Ocean, and land in the midlatitudes, including the southern
US, central South America, and central and southern Europe.
An increase is found in Asia, Australia, Africa, northern Eu-
rope, northern South America, and northern North America.
These changes in the return periods reflect the changes in
the number of extreme precipitation (Fig. 10c): where the
return periods decrease, the number of extreme daily precip-
itation increases, and vice versa. Moreover, the percentages
of changes in the number of extremes are clearly higher than
those in the intensity of extremes. This result indicates that
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Figure 9. The external-forcing-GPD models that outperform the stationary GPD models at the 99 % confidence interval based on the
D statistics and explain better the variability of extreme precipitation. Orange shades indicate the regions where the D statistics in the
full-forcing simulation are statistically significant and red shades where both full-forcing and orbital-only simulations present significant
D statistics. Note that the VOL-covariate model is not generated for the orbital-only simulation. The corresponding plots for each of the
simulations can be found in Figs. S5 and S6 in the Supplement. The lower panel of external forcing shows the best model among time-,
ORB- and INS-covariate models by comparing the D statistics among these three models.

except for the tropical ocean and some small isolated regions,
tropical eruptions influence more clearly the frequency than
the intensity of extreme precipitation.

The patterns of the return period and the number of ex-
tremes in Fig. 10b and c resemble the precipitation anomaly
pattern induced by El Niño events (Dai and Wigley, 2000),
which is mainly characterized by an increase in precipitation
over the tropical equatorial Pacific Ocean and the tropical re-
gions from America to Africa, and a decrease over the eastern
Pacific sector including Australia and Indonesia. Although
there is a lack of consistency among natural climate proxies
in the responses of ENSO to tropical volcanic eruptions dur-
ing the last millennium (Dee et al., 2020), model-based stud-
ies largely demonstrated that tropical volcanic eruptions alter
the states of ENSO and can lead to El Niño-like conditions
after the peaks of eruptions (McGregor and Timmermann,
2011; Wang et al., 2018; McGregor et al., 2020). Moreover,

precipitation responses to volcanic eruptions are magnified
during El Niño state after eruptions (Stevenson et al., 2016).

Figure 10d exhibits the differences in the number of ex-
treme precipitation during each of the ENSO states between
the year of eruption (year 0) and the year before the erup-
tion. Increases in the number of extremes are noticeable over
a large part of the globe during El Niño phases in year 0,
also over regions where the number of extremes increases in
Fig. 10c. During La Niña, the anomalies are opposite to those
during El Niño, presenting negative values over the tropi-
cal equatorial Pacific, central South America, and southern
Africa. During the neutral state, an increase in the frequency
is evident over the tropical equatorial Pacific region, same as
during El Niño phases, while in other regions, decreases in
the frequency are found. All ENSO states show a reduction
in the number of extremes over the Asian monsoon region in
year 0. The result indicates that the increases and decreases
in the frequency of extremes over large parts of the globe
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Figure 10. (a) Rates of change in the mean extreme precipitation, (b) differences in return periods, and (c) rates of change in the number
of extreme precipitation during the period of 3 years after the tropical volcanic eruptions relative to 3 years before the tropical eruptions.
The dotted regions in panel (a) indicate where the distributions of extreme precipitation between the pre- and post-eruption periods are
statistically similar at the 99 % confidence interval based on the M-W U test. (d) Rates of change in the number of extremes in different
ENSO states during the years of tropical eruptions (year 0) relative to the same ENSO states during the year before the tropical eruption.

in Fig. 10a and b are explained by different ENSO states,
mostly by El Niño and the neutral condition, influenced by
tropical eruptions. Besides, the decreases in extremes in the
high latitudes are also connected with the cooling caused by
the volcanic eruptions, as extreme precipitation depends on
the change of the atmospheric moisture availability, which is
modulated by the atmospheric temperature (Pall et al., 2007;
Myhre et al., 2019).

4.4 Association of extreme precipitation with large-scale
circulation patterns and surface air temperature

The same procedure as in the previous section (Sect. 4.3)
is repeated to find the association between the extreme pre-
cipitation and the modes of internal variability. At each grid
point, the D statistics which are higher than 6.634 (Eq. 5) of
all modes of variability are compared among each other, and
the one with the maximum D statistics is selected. Hence,
the mode of variability with the maximum D statistics is the
variable that best explains the occurrence of extreme precip-
itation compared to other modes of variability and stationary
conditions.

Figure 11a shows the regions where the orbital-only and
the full-forcing simulations coherently influence extreme
precipitation through the same mode of variability. In gen-
eral, the modes of internal variability GPD models outper-
form the stationary models across the globe. This result indi-
cates that modes of variability play a more important role in

explaining the long-term variability of extreme precipitation
in the pre-industrial period than the natural external forcings
do. In general, the modes of variability exhibit a significant
connection to extreme precipitation in the vicinity to their re-
gions of action. For instance, SAM is dominant in the South-
ern Ocean, and NAO and NAM in the North Atlantic region.
The influence of ENSO is broader. Over land, ENSO domi-
nates most of the Southern Hemisphere, eastern North Amer-
ica, southern Asia, and the eastern Mediterranean region. Al-
though the connection between ENSO and extreme precipi-
tation is strong and important (Kenyon and Hegerl, 2010), we
also assume that this dominance of ENSO is partially related
to the bias in CESM towards an overestimation of ENSO am-
plitudes (Stevenson et al., 2018). In Europe, the roles of EA-
WR and PNA dominate over the western regions and NAM
and NAO in the northern regions. In North America, PDO
is the leading mode in the western regions and ENSO in the
southeastern and central regions. Small areas are influenced
by NAM and PNA. In the Southern Hemisphere, PSA and
ENSO are dominant over land, while a slight influence of
SAM is found over northwestern Australia.

The result does not vary much when TS-G is included as
a covariate (Fig. 11b). Only a few sporadic points that de-
notes the influence of TS-G on extreme precipitation appear
over the Southern Hemisphere, indicating that the changes
in the global mean temperature affect little the long-term
variability of extreme precipitation compared to the modes
of variability. However, the influence of the surface tem-
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Figure 11. The non-stationary GPD models with (a) the modes of variability, (b) the modes of variability and TS-G, and (c) the modes
of variability and TS-R as covariates that outperform all other GPD models (the modes of variability, TS-G or TS-R, and stationary GPD
models) at 99 % confidence interval hence best explain the variability of extreme precipitation. The regions where both orbital-only and
full-forcing simulations share the same statistically significant D statistics are shown. The plots that correspond to each of the simulations
can be found in Fig. S7 in the Supplement.

perature in Fig. 11b changes when the regional temperature
anomalies TS-R instead of TS-G are included as covariates
(Fig. 11c). The dominance of TS-R over the modes of vari-
ability is highlighted in many land areas and the tropical
oceans. The land areas where TS-R is more important are
found largely at the extratropical latitudes in the Northern
Hemisphere and Southern Hemisphere, covering a large part
of northern Asia and North America, southern South Amer-
ica and Africa, Australia, the African transition zone, and
the Arabian Peninsula. It is clear that over northern Asia
the influences of PNA and NAM that appeared previously
in Fig. 11a and b are masked by those of TS-R. TS-R also
prevails over the tropical Pacific, where ENSO takes place.
In this region, the values of TS-R overlap with the Niño in-
dex, which is calculated as an average of the surface temper-
ature anomalies of the same area. Hence, it is reasonable to
interpret the predominance of TS-R in the tropical Pacific to
be similar to the influence of ENSO. However, this pattern
of TS-R simply indicates that the regional temperatures are
statistically more associated with the regional extreme pre-
cipitation than the averaged temperature condition, thus the
Niño index, over the area.

The here-found associations of TS-R with extreme pre-
cipitation over land are in line with the preceding studies
(Pendergrass et al., 2015; Sillmann et al., 2017; Sun et al.,
2021), which have demonstrated that the present-day and fu-
ture extreme precipitation is regulated by surface tempera-
ture. Here, it is also shown that TS-R does not outperform all
the modes of variability over the entire land areas. There are
regions, including some in the extratropics, where the modes
of variability still play more important roles in regional ex-
treme precipitation. Some of these regions are North Amer-
ica, northern South America, western and southern Europe,
and southern Asia, where ENSO, PDO, EA-WR, and PSA
exhibit statistically significant associations.

Overall, the result indicates that both the modes of vari-
ability and regional temperature are more important than ex-

ternal forcings in the long-term variability of extreme pre-
cipitation during the pre-industrial 3351 years. Although the
linear increase in extreme precipitation due to the externally
forced variability is present in some regions, this influence is
masked when internal variability and regional surface tem-
perature are included. Moreover, this limited influence of ex-
ternal forcings on extreme precipitation signifies that the in-
herent uncertainties of external forcings have a minimal ef-
fect on the characterization of pre-industrial extreme precip-
itation.

5 Conclusions

We have examined the characteristics of pre-industrial ex-
treme daily precipitation and its long-term changes and as-
sociation to externally forced and internal variability during
1501 BCE–1849 CE. The period is of particular interest as
the orbital parameters have progressively changed during the
late Holocene (Wanner et al., 2008) and many civilizations
had flourished and vanished during this period. Thereby, the
role of changes in climate on these societal changes is also
highly debated (e.g., Hodell et al., 1995; DeMenocal, 2001;
Büntgen et al., 2011; McConnell et al., 2020). Our study is
based on climate simulations from CESM1.2.2, which cover
the period 1501 BCE–2008 CE, and the peak-over-threshold
(POT) extreme value analysis is used to analyze extreme
daily precipitation. The main findings of this study are the
following:

First, regions with similar statistical distributions of ex-
treme precipitation are identified using the POT analysis. We
have distinguished the regions in four different density dis-
tributions of extreme precipitation, and these regions tend to
cluster spatially. Clear differences in the distributions of ex-
treme precipitation are observable between the Pacific and
Atlantic sectors and between the northern high and southern
low latitudes.
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Second, past variability of extreme precipitation is
strongly associated with large-scale modes of variability such
as ENSO, NAM, PNA, EA-WR, and PSA, among others and
regional surface temperature. Largely, the modes of variabil-
ity present significant association with extreme precipitation
in the vicinity to their regions of action. In this study, the re-
gions where extreme precipitation is more associated either
by a mode of variability or by the regional surface tempera-
ture are distinguished. Regional surface temperature is linked
with extreme precipitation in general over lands at the extra-
tropical latitudes and in the tropical oceans. In other regions,
the influences of modes of variability are still dominant.
Some limited regions show an association of extreme pre-
cipitation with changes in the insolation caused by changes
in the orbital parameters during this period. This association
is reflected by a linear increase in extreme precipitation. The
POT analysis specifies geographical regions where the asso-
ciation with the climate variability is statistically significant,
though it does not elucidate in which way the climate vari-
ability influences extreme precipitation. Understanding how
each forcing and mode influences extreme precipitation is be-
yond the scope of this study, as additional dedicated sensitiv-
ity simulations and analysis would be required.

Lastly, changes in the frequency of extreme precipita-
tion are remarkable after strong tropical eruptions. Signif-
icant changes after tropical eruptions occur in the return
period. Hence, the frequency of extreme precipitation in-
creases over the extratropical regions and the tropical Pacific
and decreases in others. These post-eruption changes in the
frequency of extreme precipitation are associated with the
ENSO states, which are also influenced by the volcanic erup-
tions and agree with Stevenson et al. (2016). The influence
of volcanic eruptions on extreme precipitation is only notice-
able in the short term up to a few years (Iles et al., 2013;
Iles and Hegerl, 2014; Stevenson et al., 2016). Statistically
significant changes in the intensity of extreme precipitation
are noted but are more heterogeneously distributed across the
globe.

It is important to mention that some caveats need to be
clarified in this study. There is a clear discrepancy between
ERA5 reanalysis and CESM in representing the intensity
of extreme precipitation. This is a problem that still many
Earth system models suffer from (Flato et al., 2014; Wang
et al., 2017), and active research to reduce this difference is
currently undertaken (Kopparla et al., 2013; Shields et al.,
2016; Kawai et al., 2019). The fact that some regions over-
or underestimate extreme daily precipitation may have im-
plications for our results. For instance, the parameters of the
generated statistical models are higher or lower than the val-
ues from the reanalysis. These differences in the parameter
values can affect the estimation of return periods of extreme
precipitation. However, we noted that the mean spatial pat-
terns are rather similar between the two data sets. Therefore,
the general conclusion on the global-scale spatial distribu-
tions of extreme precipitation should not be affected. Another

point is that this analysis is based on a single climate model,
CESM; therefore, the result is strongly influenced by the
model-dependent internal variability (Fasullo et al., 2020).
For instance, strong ENSO amplitudes in CESM may over-
rate the influences of this mode of variability on the global
and regional extreme precipitation.

Nevertheless, this study provides a new approach to exam-
ine the nature of extreme daily precipitation in the past: we
showed that continuous long climate model simulations help
to partially understand the variability of extreme daily pre-
cipitation in the pre-industrial period. More volcanic erup-
tions are included from the newly available long record (Sigl
et al., 2021; Dallmeyer et al., 2021), which can increase the
robustness of the analysis of post-eruption extreme daily pre-
cipitation. Moreover, it is noted that the POT analysis is use-
ful to discern regions where extreme precipitation is influ-
enced by different climate factors.

Nowadays, understanding the variability of extreme pre-
cipitation is important to illustrate the entire natural mecha-
nism of these rare events and to predict their future changes
better. In the current context where the information on these
events in the pre-industrial past is limited, studies based on
available long climate simulations, such as the one employed
here, can be a valuable contribution to complement the in-
formation on extreme precipitation. More modeling studies
on extreme events in the past are needed to certify the results
presented. This approach would clearly help us to understand
the nature of these capricious, rare, and intense events in
more detail, to improve the model-dependent representation
of such events, and to distinguish the roles of the external and
internal variability on them.

Code availability. The peak-over-threshold extreme value anal-
ysis was performed using two R packages: ismev (https:
//CRAN.R-project.org/package=ismev, Heffernan and Stephen-
son, 2018) and extRemes (https://CRAN.R-project.org/package=
extRemes; Gilleland, 2021; Gilleland and Katz, 2016). A Python
script to calculate and plot the maximum D statistics is
stored on https://github.com/wmk21/EVT-D-statistics-comparison
(https://doi.org/10.5281/zenodo.5553094, Kim, 2021).

Data availability. NOAA Extended Reconstructed Sea Sur-
face Temperature version 5 (ERSSTv5) is available at
https://doi.org/10.7289/V5T72FNM (Huang et al., 2017), and
ERA5 reanalysis is available at https://doi.org/10.5065/D6X34W69
(European Centre for Medium-Range Weather Forecasts, 2017).
Post-processed CESM data used for the study are available
at https://doi.org/10.5281/zenodo.5513689 (Kim et al., 2021).
Complete CESM1.2.2 data are locally stored on the oschgerstore
provided by the Oeschger Center for Climate Change Research
(OCCR) and are available by request.
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