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Abstract
This study presents a new dynamical downscaling strategy for extreme events. It is based on a combination of statistical 
downscaling of coarsely resolved global model simulations and dynamical downscaling of specific extreme events constrained 
by the statistical downscaling part. The method is applied to precipitation extremes over the upper Aare catchment, an area 
in Switzerland which is characterized by complex terrain. The statistical downscaling part consists of an Artificial Neural 
Network (ANN) framework trained in a reference period. Thereby, dynamically downscaled precipitation over the target 
area serve as predictands and large-scale variables, received from the global model simulation, as predictors. Applying the 
ANN to long term global simulations produces a precipitation series that acts as a surrogate of the dynamically downscaled 
precipitation for a longer climate period, and therefore are used in the selection of events. These events are then dynami-
cally downscaled with a regional climate model to 2 km. The results show that this strategy is suitable to constraint extreme 
precipitation events, although some limitations remain, e.g., the method has lower efficiency in identifying extreme events 
in summer and the sensitivity of extreme events to climate change is underestimated.

1 Introduction

Extreme precipitation is a necessary precursor for flooding, 
which can cause high economic and human losses in densely 
populated areas. Extremely rare events are characterized by 
long return periods (Salvadori et al. 2011), and are used 
for risk assessments of critical infrastructure that requires 
special protection, such as nuclear power plants or dams 
(Requena et al. 2013). Moreover, extreme events may be 
affected by climate change, as pointed out by growing evi-
dence that relates climate change with an intensification in 
the frequency and severity of extreme episodes (Seneviratne 
et al. 2012). However, an important challenge in the char-
acterisation of the risks associated with these events is that 
they are, by definition, extremely rare. Given the relatively 
short instrumental records of rainfall, the characterisation of 
extremes whose return period exceeds centuries is affected 
by large uncertainties.

A prominent way to tackle this problem is through cli-
mate modelling. Large ensembles of simulations carried 
out with comprehensive Earth System models (ESM) (e.g. 
CMIP6, Eyring et al. 2016) provide a valuable source of 
information about the evolution of the hydrological cycle 
for the future. However, climate models only contain a sim-
plified representation of precipitation processes, and one of 
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the prominent drawbacks of state-of-the-art ESMs is their 
coarse spatial resolution, that limits their applicability in 
impact studies at local scales (e.g., Messmer et al. 2017; 
García-Valdecasas Ojeda et al. 2017; Felder et al. 2018). 
For this reason, the output of ESMs is brought to a higher 
spatial resolution using either statistical or dynamical down-
scaling methods (Maraun et al. 2010, 2015). For dynamical 
downscaling, Regional Climate Models (RCM) are run over 
a limited spatial domain at a higher spatial resolution (e.g. 
Torma et al. 2015; Fantini et al. 2016; Giorgi et al. 2016; 
Gómez-Navarro et al. 2018, among many others). How-
ever, the computational cost of such regional simulations 
is still considerably high. This has motivated the develop-
ment of hybrid approaches that take advantage of statistical 
relationships to extend the results drawn from short RCM 
simulations over longer time periods. Martinez et al. (2012) 
developed a statistical–dynamical downscaling procedure 
that relies on Empirical Orthogonal Function analysis to 
generate large-scale atmospheric patterns, which are then 
dynamically downscaled. This allowed the researchers to 
construct regional time series, and was successfully used to 
generate realistic regional series of wind with 6-hour resolu-
tion. Li et al. (2011) used a limited number of existing RCM 
simulations over North America to fit a linear regression 
model between the RCM output and the driving ESM fields. 
This statistical model was then used, together with a large 
set of ESM simulations, to produce a probabilistic projection 
of high-resolution temperature change in North America, 
which even allowed the researchers to quantify the different 
sources of uncertainty.

Within the RCM community, large on-going initiatives 
such as The Coordinated Regional Climate Downscaling 
Experiment (CORDEX) have been formed to coordinate the 
computational effort, therefore facilitating and maximising 
the exchange of information derived from these costly simu-
lations. Nowadays, the resolution in most RCM simulations 
is about 10 km (e.g., https ://guide lines .euro-corde x.net). 
This resolution is sufficient to demonstrate the added value 
of RCM compared to ESM simulations, especially regard-
ing precipitation processes (Torma et al. 2015; Fantini et al. 
2016; Bowden et al. 2016). However, there exists added 
value of going beyond 10 km, entering the scale of convec-
tion permitting simulations (Ban et al. 2014; Giorgi et al. 
2016; Zittis et al. 2017; Gómez-Navarro et al. 2018), in par-
ticular in areas of complex topography and during extreme 
precipitation events (Giorgi et al. 2016; Chan et al. 2017). 
Still, the high computational cost is the bottleneck that has 
limited the number of simulations currently available of this 
nature, and it may become an unavoidable limitation pre-
cluding the RCM community from taking full advantage of 
the new CMIP6 ensemble.

To overcome this limitation, some researchers have pro-
posed to make a previous selection of dates to be simulated 

to avoid the computational cost of running transient climate 
simulations. Meredith et al. (2018) presented a classifica-
tion algorithm based on geopotential height as a mean to 
select dates with an elevated potential for extreme precipi-
tation in a narrow river catchment. This approach enables 
a clever selection of events to be dynamically downscaled 
that discards situations of fewer interest, and so high-reso-
lution RCM simulations can be selectively performed sav-
ing important computational resources. Felder et al. (2018) 
aimed at simulating worst-case events using a range of 
computational models across spatial scales, from an ESM 
to a damage and loss model reaching the scale of individual 
buildings. To keep the physical consistency among models, 
the research team selected events within the ESM, using the 
extreme precipitation (averaged over Switzerland) as crite-
rion and dynamically downscaled these events to 2 km. The 
analysis of the downscaled events showed that this criterion 
leads to unsatisfactory results, and suggested that any refine-
ment of the approach shall include more variables from the 
ESM used as predictors. Chan et al. (2017) selected three 
large-scale predictors of extreme precipitation: Mean Sea 
Level Pressure, 850-hPa relative vorticity and static stability. 
They used regression analysis to identify large-scale precur-
sors of extreme precipitation events in convection-permitting 
climate simulations, and found that indeed these three vari-
ables have skill in predicting precipitation extremes in simu-
lations both at 12 and 1.5 km spatial resolution.

In general, good predictor variables should include the 
main processes contributing to heavy precipitation on a scale 
that is captured by the ESM. Heavy and extreme precipita-
tion requires a steady supply of moisture and a lifting mech-
anism that brings the moist air to saturation (e.g., Doswell 
et al. 1996). In Switzerland moisture is transported towards 
the Alps from the south prior to and during regional-scale 
heavy precipitation events on the Alpine south side (Mar-
tius et al. 2006; Winschall et al. 2012). During regional-
scale heavy precipitation on the Alpine north side, sustained 
and intensive moisture transport against the orography can 
occur from the east during Vb weather situations, from the 
north and from the west (Piaget et al. 2015; Giannakaki and 
Martius 2016; Froidevaux and Martius 2016; Messmer et al. 
2017). The moist air masses reaching Switzerland are lifted 
within warm convey belts (Pfahl et al. 2014), along the orog-
raphy (Giannakaki and Martius 2016), or in areas of flow 
convergence (Giannakaki and Martius 2016).

Here, we propose a comprehensive and flexible frame-
work that blends statistical and dynamical downscaling and, 
similarly as the one presented by Meredith et al. (2018), it 
provides a suitable identification of candidates to be local 
extreme precipitation events in long ESM simulations. As 
tested for this method, we use it to forecast daily extreme 
precipitation in a region of complex orography, i.e. the 
catchment of the Aare river upstream of Bern (Switzerland).

https://guidelines.euro-cordex.net
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2  Data and methods

2.1  Community Earth System Model (CESM)

The Community Earth System Model (CESM, 1.0.1 
release; Hurrell et al. 2013) was developed at the National 
Center for Atmospheric Research. This ESM has been 
run with a horizontal resolution of about 1 ◦ (about 110 
km in the equator) in all physical model components, i.e. 
atmosphere, ocean, land and sea ice (Gent et al. 2011). 
Further, the carbon cycle was explicitly simulated. The 
reader interested in the full details of this particular 
model configuration is referred to Lehner et al. (2015) 
for a comprehensive description.

We use data from two CESM simulations: (1) a 400-
year simulation with perpetual AD 850 conditions, here-
after referred as CESM-control simulation, (2) a seamless 
850–2099 AD simulation driven by reconstructions of 
external forcings for the historical period 850–2005 and 
RCP8.5 forcing for the future period 2006–2099 (Lehner 
et al. 2015). In this study, we use this data but consider it 
as split in two periods: 1850–2005, hereafter referred as 
CESM-historical simulation, and 2006–2099, hereafter 
CESM-future simulation.

2.2  Weather Research and Forecasting Model (WRF)

The dynamical downscaling of the CESM simulations is per-
formed with the Weather Research and Forecasting model 
(WRF), version 3.5 (Skamarock et al. 2008). We use a setup 
with 4 nested domains reaching a spatial resolution of 2 km 
in its innermost domain spanning the Alpine region entirely 
(see Fig. 1). This high resolution allows us to explicitly sim-
ulate convective processes, which is of foremost importance 
in extreme event phenomena, precisely those that this study 
tackles (Ban et al. 2014; Giorgi et al. 2016). A comprehen-
sive description of the details of these simulations, as well 
as an evaluation of the model performance in the particular 
configuration employed in this study is presented in Gómez-
Navarro et al. (2018).

The simulations performed with WRF include (1) a 
transient present-climate simulation that continuously 
spans the period 1979–2005 and is driven by the CESM-
historical simulation, hereafter referred as WRF-refer-
ence period; (2) a transient simulation over the period 
2080–2099 nested to CESM-future simulation, hereaf-
ter WRF-future; (3) a number of single-day case studies 
selected from the CESM-control, CESM-historical and 
CESM-future simulations. The criteria for the selection of 
dates is described below, and in each case a short spinup 
of 12 h is used.

2.3  Artificial neural networks as statistical 
downscaling tool

An ANN is a mathematical model that acts as a function, 
relating certain n-dimensional input vectors to m-dimen-
sional output vectors (Schalkoff 1997). This model is not 
new in meteorological applications. Dawson and Wilby 
(1998) proposed a novel rainfall-runoff model based on 
ANNs, and used it to forecast the river flow in two differ-
ent UK catchments with a skill comparable to operational 
systems. Lee et al. (1998) used an ANN to build a model to 
forecast precipitation in Switzerland, a region characterised 
by complex orography. ANNs have also found early applica-
tions as downscaling technique in a very similar manner as 
we aim here (Zorita and Storch 1999). The reader is referred 
to the former references for a more comprehensive expla-
nation of the algorithm, as we just briefly outline its most 
important aspects in the following.

An ANN is composed of various layers, each of which 
contains so-called neurons, that can be regarded as computa-
tion units. A network contains at least an input layer (with 
n neurons, the dimension of the input vector) and an output 
layer (with m neurons, the dimension of the output vector). 

Fig. 1  Top: configuration of the four nested domains used to down-
scale CESM with WRF. Bottom: detail of the actual orography 
implemented in the 2-km resolution simulation over Switzerland. The 
black contour outlines the target of the study, the catchment of the 
Aare river upstream of Bern
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In between, there can be a number of so-called hidden lay-
ers, each of which including a variable number of neurons. 
Each neuron is connected to all neurons in the following lay-
ers through connections that are characterised by a weight. 
Given an input, the network calculates a unique output that 
results from a relatively simple and therefore computation-
ally inexpensive calculation that involves the input vec-
tor and all the weights, which act as the parameters of the 
model. Therefore, the calibration of the network consists 
of finding the set of weights that optimise the output of the 
network for a given metric. We use supervised learning, in 
which the training of the network consists of using a number 
of input–output couples from the reference period, i.e. the 
predictors and the predictand, to find the set of weights that 
minimise the difference between the transient RCM and the 
output of the ANN, averaged for the whole pool of samples 
that conform the reference period. The search of an optimal 
solution is computationally moderately demanding, and is 
based on the backward propagation algorithm, that can be 
viewed as an application of the chain rule in differentiation 
(Schalkoff 1997).

The performance of the ANN approach to select events 
is based on a number of skill metrics: correlation, Hit Rate 
and Symmetric Extremal Dependence Index (SEDI), com-
prehensively described in the Appendix. Note that the truth 
we aim at reproduce with the help of an ANNs is not the 
actual precipitation, but the one produced by the CESM-
WRF system. Therefore, “observation” refers hereafter to 
the daily precipitation simulated by WRF averaged over the 
Aare catchment upstream of Bern, whereas “prediction” 
refers to the output of an ANN once it is trained during the 
reference period to mimic the CESM-RCM relationships 
over such region.

Finally, we use the ANN from the R package neural-
net (https ://CRAN.R-proje ct.org/packa ge=neura lnet). The 
geometry of the network and the number of variables used 
as input predictors for the ANN are not part of the calibra-
tion, but have to be determined beforehand, according to a 
number of comprehensive tests described in Sect. 3.2.

2.4  Strategy for the selection of events

This work proposes a strategy for the selection of dates can-
didate to extreme event that consists of the following steps 
(Fig. 2):

1. The coarse fields from an ESM are dynamically down-
scaled with an RCM. This is a computationally demand-
ing step, so this reference period is inadmissibly short 
for most climate applications.

2. An ANN is trained to learn the relationship between 
the large-scale variables in the ESM and the daily pre-

cipitation simulated by the RCM in an orographycally 
complex region.

3. The calibration and validation periods are swapped to 
carefully assess the performance of the ANN with inde-
pendent data during the reference period.

4. Finally, the calibrated ANN can be used to statistically 
downscale a longer ESM simulation. This way, the ANN 
tries to emulate the series we would obtain running the 
RCM for the longer period in case it would be computa-
tionally feasible. This series shall be used in the selec-
tion of dates candidates to extreme events.

To demonstrate the feasibility of this approach, we imple-
ment it in the following sections. We use the WRF-reference 
simulation comprehensively described in Gómez-Navarro 
et al. (2018). The arguments for the selection of predictors 
are presented in Sect. 3.1, followed by a range of tests that 
allow to determine the optimal ANN geometry in Sect. 3.2. 
A comprehensive calibration using various statistics asso-
ciated to the forecast of extreme events is presented in 
Sect. 3.3. Finally, in Sect. 4 we apply the obtained ANN dur-
ing a perturbed climate period the ANN was not calibrated 

Fig. 2  Scheme of the different steps to obtain a tool for the selec-
tion of dates candidates to extreme events. First, a computationally 
extensive high-resolution simulation is carried out over the domain of 
interest during a reference period. Next, the dynamically downscaled 
dataset, together with the driving ESM, are used to calibrate an ANN. 
Only half of the reference period is used for the calibration, as the 
other half is reserved for validation of the ANN against the RCM data 
(this is symbolised with the white/grey shading). The role of the cali-
bration and validation periods is exchanged to ensure a correct valida-
tion. Finally, the calibrated ANN is applied to obtain a statistically 
downscaled series over a longer period that serves for the selection 
of events

https://CRAN.R-project.org/package=neuralnet
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for. This allows us to assess the limitations derived from the 
stationary hypothesis implicit in many statistical downscal-
ing exercises.

3  Event selection based on ANN 
during the reference period

3.1  Large scale variables—potential predictors 
of extreme events

Similarly to Chan et al. (2017), we first gain insight on how 
local extreme events in precipitation over the Aare catch-
ment (bottom panel in Fig. 1) are connected to the large 
scale atmospheric dynamics in the WRF-CESM coupled 
system. For this, we use a composite analysis applied to dif-
ferent variables using the 1-day extreme precipitation events, 
defined here as those days exceeding the 95th percentile of 
daily precipitation and applied to each season separately. 
All days in the WRF-reference simulation are filtered out 
according to this criterion and then averaged. The selec-
tion of the variables is based on previous studies (Martius 
et al. 2006; Winschall et al. 2012; Messmer et al. 2017): sea 
level pressure (SLP), geopotential height at 850 and 500 
hPa (Z850 and Z500), integrated water vapour and vapour 
transport (IWV and IWVT, respectively) and precipitation 
(PREC). The annual cycle is removed from each variable to 
obtain anomalies. Note that one limitation of this analysis 
is that these composites reflect the mean large-scale flow 
patterns. Thus, for individual events the large-scale flow and 
the moisture transport can substantially deviate from these 
composites as presented by Giannakaki and Martius (2016) 
who identified several relevant flow patterns associated with 
heavy precipitation events in Northern Switzerland.

Composites for selected variables for winter are presented 
in Fig. 3. Extreme daily precipitation events are related to a 
west-east oriented pressure anomaly dipole with high pres-
sure centred between the Iberian Peninsula and the Bay 
of Biscay and low pressure over eastern Europe (Fig. 3a). 
This pressure dipole has a barotropic vertical structure 
(Fig. 3b). The height thickness between 500- and 850-hPa, 
a measure of temperature anomalies in this layer, indicates 
a dipole with warmer air over western and colder air over 
eastern Europe (Fig. 3c). The strongest pressure gradient is 
located over Germany and Switzerland and suggests strong 
north to northwesterly winds over this region. Consistently 
extreme daily precipitation events in winter are associ-
ated with a strong north to northwesterly integrated water 
vapour transport (Fig. 3e). As expected, CESM generates a 
positive precipitation anomaly over Switzerland when sam-
pling over extreme precipitation events in the WRF simula-
tion (Fig. 3d). The autumn patterns (not shown) resemble 
the winter ones while the spring ones are rotated counter 

clockwise by 10° with respect to the winter pattern for all 
but the precipitation pattern (therefore not shown).

The corresponding composites for summer are shown 
in Fig. 4. Extreme daily precipitation events are associated 
with a surface low pressure system centred over Austria and 
the Czech Republic. At 500 hPa, two low pressure minima 
are found. A stronger one located over northern France and 
a weaker one over south-eastern Europe. The thickness 
between 500- and 850-hPa shows warm air over western 
Europe, whereas over the British Isles and eastern Europe a 
cold anomaly is present (Fig. 4c). The moisture fluxes over 
Switzerland are weaker than in winter, and the main source 
of humidity in these situations is the Mediterranean Sea, in 
good agreement with results of Messmer et al. (2017). A 
positive precipitation anomaly is found over Switzerland in 
the ESM (Fig. 4d), which again shows the link between the 
precipitation simulated by the RCM and its driving dataset, 
i.e. the relationship exploited by Felder et al. (2018).

In summary, we find that extreme precipitation events 
identified in the WRF simulation are related to large scale 
circulation patterns of the driving CESM simulation. The 
flow patterns vary depending on the season. In winter (and 
similarly for autumn and spring) a west east dipole pattern 
with low pressure at the east becomes an important predictor 
of extreme events. In summer a low pressure system centred 
over Austria and the Czech Republic indicates a so-called 
Vb-cyclone situation (e.g., van Bebber 1891; Stucki et al. 
2012; Messmer et al. 2015, 2017). This information is used 
below to define meteorological indices that are exploited 
by the ANN.

3.2  Network geometry and predictor variables

Once the variables candidate to be used as predictors are 
identified, we need to determine the geometry of the ANN, 
which includes the number of variables considered, but also 
the number and size of neurons in the hidden layers. The 
geometry of an ANN used in this study consists of an input, 
an output and a single hidden layer. The output layer of the 
model is the predictand, and consists of a single number, i.e. 
the daily mean precipitation in the Aare catchment. Thus, 
we need a single neuron in the output layer. The input layer 
contains the predictors, and has as many neurons as the num-
ber of variables considered for the downscaling. For the sake 
of simplicity, we set one single hidden layer, whose size is 
variable. Its number of neurons is not determined arbitrarily, 
but exhaustive tests are carried out to identify in each season 
the optimal number of neurons of the hidden layer that yields 
the highest skill of the ANN (steps 1 and 2 in Fig. 5).

A number of variables obtained from the ESM are con-
sidered as input for the network. The full list is shown in 
Table 1, and is based on previous literature (e.g., Martius 
et al. 2006; Chan et al. 2017) as well as the composite 



 J. J. Gómez-Navarro et al.

1 3

analysis described in Sect. 3.1 (note that we use different 
variables according to each season). Although in principle 
all variables are considered by the model to avoid prejudges 
and gain in generality, a first test allows to stablish which 
variables seem more closely related to the output variable, 
i.e., precipitation over the Aare catchment (see diagram 
labelled 1 in Fig. 5). To do so, each variable is used sepa-
rately to build a simple ANN where it is the only input, 
and a single neuron exists in the hidden layer. In each case, 
the ANN is calibrated using half of the reference period, 
i.e. 1979–1992, and the fitted ANN is used to produce a 

prediction for the other half, i.e. 1993–2005. This is then 
compared to the expected output, i.e. the dynamically down-
scaled precipitation, and their mutual correlation is calcu-
lated, which serves as metric to build the aforementioned 
ranking of the variables. In this step, other metrics than cor-
relation were considered, such as Root Mean Square Error or 
Mean Averaged Bias. The results indicate modest sensitivity 
to the choice of the metric, so correlation was finally the 
metric used.

In a second step (see diagram labelled 2 in Fig. 5), the 
ranking is used as the base to calibrate more complex ANNs 

Fig. 3  Composite analysis 
for extreme 1-day precipita-
tion events for winter, i.e. DJF 
months: a Sea level pressure, 
b 500-hPa geopotential height, 
c difference between 500- and 
850-hPa geopotential height, d 
precipitation and e water vapour 
transport vertically integrated 
up to 700 hPa

(a) (b)

(d)(c)

(e)
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that include a growing number of variables and their interac-
tions, and allow to determine the optimal geometry. To do 
so, we loop in the variables in the order defined by the previ-
ous ranking, including them in a growing set of predictors. 
In each step i of this loop, another loop is considered in j, the 
number of neurons in the hidden layer, which varies between 
1 and i. Therefore, a total of N

2+N

2
 ANNs, where N is the total 

number of variables in Table 1, are tested for each season. 
As before, the period 1979–1992 is used for calibration and 
1993–2005 for validation. From all the combinations of 
number of variables and neurons, the optimal one, in the 

sense of maximising the correlation, is chosen as ultimate 
ANN geometry to perform the downscaling. Note that the 
role of calibration and validation periods is exchanged to 
complete the full reference period, allowing the cross valida-
tion of the results without circularity.

These tests result in a distinct combination of predictors 
and number of neurons in the hidden layer for each season 
separately. These configurations, together with the correla-
tions obtained during the validation are shown in Table 2. 
Note that the number of variables does not grow mono-
tonically, but reaches an optimal number for each season. 

Fig. 4  As Fig. 3 but for sum-
mer, i.e. JJA months (a) (b)

(d)(c)

(e)
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Similarly, the inclusion of more neurons in the hidden layer 
does not necessarily improve the ANN. As expected, the 
precipitation of the ESM emerges as an important variable 
predicting precipitation in the target region, but in all cases 
the addition of further large-scale predictors improves the 
performance of the ANN. Indeed, in autumn zonal wind at 
850 hPa is more skilful predicting local precipitation than 
the precipitation of the ESM. In agreement with the results 
in Sect. 3.1, the variables most relevant for DJF, MAM and 
SON are similar, being wind at various levels very illumi-
nating predictors of extreme events. This is indicative of 
the close relationship between extreme events in this region 
and the moisture provided by the large-scale circulation. 
Summer again stands out as a distinct season, where the 
moisture provided by the Mediterranean Sea associated to 
low pressure centres in central Europe (note the presence 

of IWVTXFRANCE and SLPCZECH, in the most relevant 
variables for JJA in Table 2), as well as instability measures 
(KI), emerge as important key variables to predict summer 
precipitation in this region.

3.3  Results of the event selection in the reference 
period

To assess the performance of the event selection based on 
ANNs, we compare it with the skill achieved by the sim-
ple approach employed by Felder et al. (2018). They used 
only extreme precipitation in the CESM-control simulation 
averaged over the Switzerland (bottom map of Fig. 1) as a 
criterion to identify dates which potentially deliver extreme 
precipitation over the Aare catchment. The selected dates 
correspond to the four most extreme precipitation events 

Fig. 5  Steps to find the optimal ANN geometry, which is then used to 
produce a statistical downscaling that can be used to validate the skill 
of the ANN during the WRF-reference period. (1) All variables con-
sidered are tested individually with a trivial ANN to build a ranking. 
Each ANN is calibrated during 1979–1992, and assessed by compar-
ing the output of the ANN with the dynamically downscaled data 
set for the period 1993–2005. (2) This ranking is used to iteratively 
find the optimal network geometry among more realistic ANNs that 
allow interactions between variables. For this, all possible combina-
tions are evaluated within a loop, which goes from 1 to N, where N 
is the total number of variables candidates to be included in the input 

layer. In the step i of this iterative process, another loop is considered 
that evaluates ANNs with a variable number of neurons in the hidden 
layer between 1 and i. A case with i variables and j ≤ i neurons is 
represented in the figure. The calibration and assessment periods are 
defined as in the former step. (3) Once the number of variables and 
neurons is identified (labelled n and m, respectively), these param-
eters are fixed, and the WRF-reference period is statistically down-
scaled to validate the skill of the ANN. For this analysis a more com-
prehensive validation is carried out by splitting the full period in two 
halves and using the complementary part to calibrate and validate, 
respectively
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for each season in CESM-control, i.e. 16 cases in total, and 
were dynamically downscaled with WRF. Their results dem-
onstrated that the precipitation obtained for these cases in 
winter and summer over the target region was far lower than 
expected, and motivated the new method presented in this 
study. The results by Felder et al. (2018) are extended here 
to the four seasons and analysed in more detail. The down-
scaled precipitation in all the selected cases is relatively 
large, exceeding all but one case the 90th percentile (see 
Table 3). Still, the precipitation obtained for these events is 
lower than the maximum precipitation during the reference 
period in nearly all cases. Given the length of the CESM-
control simulation that was used to search for extremes, the 

selection of dates aimed at providing physically consistent 
precipitation events with return periods of up to 400 years. 
However, the method failed in this regard. Only 1 event in 
summer leads to precipitation that can be considered as 
extreme in a 400-year frame, whereas for 10 out of 15 cases 
the estimated return period is below 10 years.

The skill of event selection based on precipitation within 
the ESM alone can be further assessed using the whole 
WRF-reference simulation. This way, we can compute vari-
ous skill metrics between the precipitation predicted by the 
ESM over the target region and the one simulated by WRF 
during the complete reference period 1979–2005 (left col-
umn of Fig. 6). The precipitation within the ESM alone is 

Table 1  Variables directly taken 
or derived from the ESM used 
as predictors in the ANN

Some variables are used systematically for all seasons, whereas others are used for certain seasons only, 
based on the results of the composite analysis described in Sect. 3.1. 3D refers to variables in several verti-
cal levels, i.e. 1000, 850, 700 and 500 hPa. IWV refers to integrated water vapour. SLPGRAD is calcu-
lated as the difference between the SLP averaged in the regions 46◦–49◦N , 7 ◦–12◦W , and 45◦–51◦N , 28◦
–38◦E . IWVFRANCE is defined as IWV averaged over the region 46◦–49◦N , 1◦–7◦W . IWVTXFRANCE 
is the zonal component of the integrated water vapour transport averaged over the region 39◦–45◦N , 5◦
–15◦E . SLPCZECH is SLP averaged over the region 45◦–52◦N , 10◦–20◦E . Z500FRANCE is the geopoten-
tial height at 500 hPa averaged over the region 45◦–53◦N , −2 − 8◦E

Season Acronym Levels Description

All PREC Surface Precipitation
All SLP Surface Sea level pressure
All Q 3D Water vapour mixing ration
All RH 3D Relative humidity
All T 3D Temperature
All U 3D Zonal wind
All V 3D Meridional wind
All Z 3D Geopotential height
All KI Surface K-Index
All TTI Surface Total totals index
All DIV Surface, 500 Divergence
All PV 3D Potential vorticity
DJF, MAM, SON SLPGRAD Surface SLP gradient
DJF, MAM, SON IWVFRANCE Atm. integrated IWV over France
JJA IWVTXFRANCE Atm. integrated Zonal component of IWV over France
JJA SLPCZECH Surface SLP over the Czech Republic
JJA Z500FRANCE 500 Geopotential over the France

Table 2  Combination of variables and number of neurons in the hidden layer that, once calibrated in half of the reference period (1979–1992), 
lead to ANNs that maximise the correlation in the other half (1993–2005) for different seasons

Season Predictors Hidden 
neurons

Correlation

DJF PREC, U700, U850, U500, V500, RH700, SLPGRAD, V700 8 0.83
MAM PREC, U850, RH850, U700, U500, RH700, Z850, HR500, Z700, Z1000, Z500, SLP, KI, U1000, Q700, 

T850, VPO700, VPO850, T700, Q500, SLPGRAD, Q1000, TTI, V700, T500, RH1000, Q850, VPO500, 
V1000

2 0.69

JJA PREC, IWVTXFRANCE, SLPCZECH, RH700, Z500FRANCE, Z1000, Z850, SLP, KI 2 0.69
SON U8500, PREC, V700, SLPGRAD, RH700, V500, U700, RH500, Z700, U500, RH_850, Z850, Z500, Z1000 3 0.80
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a poor predictor of precipitation at local scale. Consider-
ing all days, correlations are around 0.4 in all seasons (note 
that the Hit Rate trivially converges to 1 at low percentiles 
by its very definition). However, when higher percentiles 
are considered, the skill rapidly deteriorates in all seasons. 
Above the 90th percentile, the correlation ranges between 
0.3 (in winter) and 0.1 (in summer), and the Hit Rate is about 
0.3 in all seasons. For percentiles above the 99th percentile, 
the Hit Rate rapidly approaches zero and becomes insignifi-
cantly different from random chance in all seasons. SEDI is 
stable through most of the percentiles, as it is expected for 
the properties that define this index (Ferro and Stephenson 
2011). Again it shows that the selection of events has cer-
tain skill in moderate percentiles, but it rapidly deteriorates 
towards rarer events.

We focus now on the approach based on ANNs. The 
optimal geometry for each season is fixed as indicated in 
Table 2 and determined by the tests in Sect. 3.2. Next, we 
apply the approach represented by the diagram 3 in Fig. 5. 
This is, an ANN for each season is calibrated during the first 
half of the WRF-reference period, and used to forecast the 

daily precipitation in the Aare catchment during the second 
half. These periods are exchanged to ensure that the full 
period is statistically downscaled using independent data 
for the calibration. The validation, based on the comparison 
between the WRF output and the optimal ANN for each 
season, is summarised in the results of the middle column 
of Fig. 6. Correlations are systematically higher than those 
for the more simple method in all seasons and percentiles. 
Considering all days, correlation is about 0.8 in spring and 
autumn, with slightly higher and lower values in winter and 
summer, respectively. As before, the skill decreases towards 
higher percentiles, but in clear contrast to the performance 
of the simple approach by Felder et al. (2018), in all sea-
sons but summer the correlation is nearly constant up to 
the highest percentiles. The results are worse in summer, 
where the ANN monotonically decreases its performance 
towards higher percentiles. Still, in this season the ANN 
demonstrates valuable skill up to the 99th percentile, where 
correlation reaches a critical value of 0.3. This is again in 
contrast to the simple approach (left column of Fig. 6) show-
ing no skill above the 90th percentile. The Hit Rate also 
shows the seasonal differences. The ANN’s ability to select 
the right dates is best in winter, with probabilities of detect-
ing an event that actually happen above 0.6 in percentiles 
above 99th, and worst in summer, when it drops to 0.1. But 
even in that case, and unlike in the simpler approach, the 
ANN is able to capture the 99th percentile events better than 
pure chance. In both, spring and autumn, there is a some-
what unexpected improvement in the metrics beyond the 
90th percentile that is provoked by the ability of the ANN 
to capture the precise ordering of the most extreme cases 
(not shown), and implies that the ANN is able to adequately 
select between 60 and 80% of the extreme events in these 
seasons. SEDI remains remarkably stable, and even grows 
towards higher percentiles in all seasons but summer. The 
values are systematically higher across all percentiles than 
those of the simple approach, and the skill is comparable 
to that obtained for the 12–24 h precipitation forecasts of 
the ECMWF, where the seasonal cycle in the forecasting 
performance is also observed (North et al. 2013).

The ability of the ANN to predict the correct extreme 
events during the reference period is further evaluated by 
comparing the magnitude of the precipitation in observed 
and predicted extremes. This is presented through boxplots 
in Fig. 7. This figure shows, for each season, the distribution 
of precipitation in the days when it is observed to be above 
the 99th percentile (black), and compares it to the distribu-
tion when the days are those predicted by the ANN (blue). 
For comparative purposes, this figure also includes dark 
cyan boxes that represent the same results obtained when the 
precipitation in the ESM alone is used as predictor of precip-
itation, i.e. the simple approach used by Felder et al. (2018). 
First, we note that the left tail of the distribution is longer 

Table 3  Results of the downscaling of four single cases per season in 
the CESM-control simulation based solely on the precipitation simu-
lated over Switzerland by the ESM

The table depicts, separately for each season, the precipitation accu-
mulated over the Aare catchment in each of the four cases once 
dynamically downscaled with WRF (in winter only three cases could 
be run due to numerical instabilities). For each event, three numbers 
are presented: the precipitation value in mm, the percentile it repre-
sents within the PDF obtained for the WRF-reference period (1979–
2005), and the return period (in years) of such precipitation estimated 
using the data in the same period. In the latter case, when the value 
exceeds 400 years, it is indicated as “ > 400 ”. The return periods are 
obtained by fitting the parameters of a Generalised Extreme Value 
distribution to the data with the aid of the extRemes package of R 
(Gilleland and Katz 2016)

Prec. Perc. Ret. Per.

DJF 13.1 76.4 1.0
35.2 96.2 1.0
85.3 99.9 10.6
– – –

MAM 26.6 97.2 1.1
28.2 97.5 1.2
61.4 99.6 4.9
78.1 99.8 11.3

JJA 12.0 94.2 1.0
29.7 99.8 3.5
43.3 99.9 23.7
86.0 100.0 > 400

SON 13.9 91.6 1.0
21.4 95.9 1.1
41.9 99.2 2.6
86.0 99.9 18.0
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in the events predicted by the ANNs (compare black and 
blue boxplots across seasons), and the precipitation in the 
cases selected by the simple approach is strongly underesti-
mated. This is the expected behaviour, as we already know 
from the previous analysis that about 50% of the events are 
incorrectly attributed by the ANN to extreme events in this 
percentile. Still, in all seasons but summer the median is well 
captured, as well as the right tail of the distribution, i.e. the 
absolute most extreme events during the period. In agree-
ment with the analysis above, in summer the predictive skill 
is the lowest. Only around 10% of the cases are correctly 
predicted (see Hit Rate in Fig. 6) and these correspond to 
two marked outliers. In this regard, it noteworthy that all the 
absolute maxima for each season during the reference period 
have been captured by the ANNs.

4  Detection of extremes in climate change 
projections

For the ANNs to be successful, and more generally for any 
statistical downscaling tool, the inferred predictor-predictand 
relationships must be stationary between the period used to 
calibrate and the one where the model is applied. But given 
that the actual climate is not completely stationary, these 
relations could not be either, which can limit the reliability 
of statistical methods for downscaling under perturbed cli-
mate conditions. We have taken the opportunity provided 
by the WRF-future simulation to evaluate the performance 
of statistical downscaling under the unfavourable circum-
stances of a climate severely perturbed with respect to the 
one used to calibrate the model.

In detail, the optimal ANN calibrated during the 
WRF-reference period has been used to downscale the 

Fig. 6  Agreement between various predictors of simulated precipita-
tion over the Aare catchment and the eventually dynamically down-
scaled one. Each row represents the result for a given season. The left 
column compares the precipitation averaged over Switzerland in the 
ESM data with the WRF-reference simulation during the 1979–2005 
period (i.e. the approach by Felder et al. 2018). The central column 
shows the same, but with respect to the output of the ANNs calibrated 
for each season separately. The right column compares the WRF-
future simulation with the output of the ANNs driven by the CESM-

future in the period 2080–2099, but calibrated during the reference 
period (see Sect. 4). Three metrics are shown: correlation (red), Hit 
Rate (blue) and SEDI (green). The results are shown as a function of 
the percentile p used to filter out the series to keep the days where 
precipitation is above the given quantile. The solid lines represent the 
median, whereas shadows represent the 5–95 range, as obtained by 
bootstraping the sample with repetition. Dashed lines represent the 
threshold to reject the null hypothesis of skill by random chance at 
the 95% confidence level
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CESM-future simulation during the period 2080–2099. 
This prediction is compared with the WRF-future simula-
tion following the same protocol than in the Sect. 3.3. The 
result of this analysis is presented in the right column of 
Fig. 6. Compared to the reference period, the ANN gener-
ally presents lower predictive skill. In winter, correlation 
ranges between 0.75 and 0.6, whereas it is above 0.8 in the 
reference period. The Hit Rate is very similar up to the 80th 
percentile, but above this point the probability of predict-
ing extreme events drops faster, reaching 0.4 for the 99th 

percentile (compare this with the value about 0.7 during the 
reference period). This worsening of the skill is also visible 
in lower SEDI values in the highest percentiles. A similar 
behaviour is found in spring, albeit with slightly lower cor-
relations, closely resembling the results during the reference 
period. The Hit Rate is very similar in both periods until the 
90th percentile, where the increase of the Hit Rate observed 
in the reference period is absent in the future period, thus 
also SEDI is reduced. In summer, the ANN presents the 
lowest correlations, but they are remarkably similar to those 
during the reference period, showing that the reduction of 
skill of the ANN under future climate conditions is not very 
pronounced for summer. Indeed, above 80th percentile the 
Hit Rate is higher under future climate conditions, leading to 
values comparable to other seasons. In autumn, correlations 
are strongly reduced compared to the reference period, and 
are close to those for summer. This difference is also found 
in the Hit Rate above 80th percentile, which leads to the 
lowest Hit Rate of all seasons in the future simulation, and 
the strongest reduction of SEDI. This is in clear contrast to 
the behaviour of the reference period.

The lower skill in selecting the days with the most severe 
precipitation under future conditions compared to the refer-
ence period is related to the generally lower correlation and 
Hit Rate (see middle and right columns in Fig. 6), in particu-
lar during autumn. This reduced performance is attributed 
to the fact that the ANNs are trained to learn the relation-
ships between synoptic and local-scale variables during a 
relatively short period, which are then implicitly assumed 
to be stationary as part of the statistical downscaling exer-
cise. The reduction in skill under future climate conditions, 
however, suggest that at least part of this stationary is not 
perfectly fulfilled, so that climate change can indeed affect 
the mechanisms learned by the ANN and exploited during 
the statistical downscaling, making the calibration sensitive 
to the period used as reference. This has important implica-
tions in the way the results of this approach in the detection 
of trends shall be interpreted, as discussed below.

Figure 7 represents the distribution of extremes observed 
(orange) and predicted by the ANNs (red) under climate 
change conditions. As before, for comparison we include 
the results when the extreme events are searched with the 
precipitation in the driving ESM alone (brown). As with 
the reference period, the longer left tails are expected as 
a consequence of the non-perfect Hit Rate. Unlike in the 
reference period, a systematic bias stands out, i.e. a gen-
eral underestimation of precipitation in the cases selected 
by the ANNs. Although it is far from the low skill of the 
simple approach, the median for the ANN-selected cases is 
below the 25th percentile for the WRF-future simulation. 
Regarding the most extreme events, in winter and spring the 
ANNs are able to predict the most extreme events, whereas 

Fig. 7  Distribution of daily precipitation in the Aare catchment. Each 
boxplot represents different datasets and periods. Black, blue and 
dark cyan correspond to the WRF-reference simulation, and high-
light daily precipitation above the 99th percentile during the refer-
ence period (1979–2005): black corresponds to observed extremes, 
whereas blue and dark cyan corresponds to the extreme precipitation 
days in WRF, but as predicted by the ANN and the precipitation in 
the ESM alone, respectively. Red, orange and brown represent the 
same information but for the WRF-future simulation (2080–2099), 
discussed in Sect.  4: orange represents the actual extreme events 
observed in the WRF-future simulation, whereas red and brown cor-
respond to the cases predicted by the ANN and the precipitation in 
the ESM alone, respectively
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in summer and autumn the two most extreme events are not 
identified with the ANNs, respectively.

The signal of climate change on extreme events should 
be sought in a shift in the blue and red boxplots in Fig. 7, 
respectively. However, instead of a systematic shift towards 
more severe extremes, which could be expected according 
to other studies (e.g. Seneviratne et al. 2012; Rajczak et al. 
2013, 2016; Messmer et al. 2017) as well as basic thermo-
dynamic relationships (e.g. O’Gorman 2015), we notice a 
rather stationary behaviour with modest changes attributable 
to sampling uncertainty. Further, the analysis of the distribu-
tion of these extremes in consecutive periods shows a lack of 
trend towards more severe or frequent extremes (not shown). 
Therefore, the ANNs suggest a lack of sensitivity of extreme 
precipitation events to climate change in all seasons.

This contrasts with the results we can draw by comparing 
the WRF-reference and WRF-future runs (see the horizontal 
shift in the black vs. orange boxplots in Fig. 7). Using the 
full transient runs, we find more severe extremes in win-
ter, summer and to a lesser extent in autumn, with a strong 
opposite behaviour in spring. This behaviour is concurrent 
with an overall increase in precipitation not only in the 
extremes but also on average in these seasons (not shown), 
which better agrees with the sensitivity of extremes to a 
warming climate reported for the aforementioned studies. 
Similar conclusions can be drawn from the application of 
Extreme Value Theory to these data. Figure 8 depicts the 
return level plots for daily precipitation in each season in 
the WRF-reference and WRF-future simulations. In win-
ter and summer, the return levels are systematically higher 
in the WRF-future simulation than in WRF-reference. The 
lower climate change signal described above for autumn can 
be understood under the light of this analysis as a mixed 

behaviour between the events with return levels below and 
above 5 years. In contrast to winter and autumn, the events 
with longer return periods are ameliorated by climate change 
in autumn according to these simulations, although the 
uncertainty in this range is large due to the modest number 
of events that support this conclusion. Finally, as described 
above respect to Fig. 7, spring stands out in the return level 
plot as an anomalous season, where climate change seems 
to reduce the occurrence of extreme events.

Based on the discussion above, the apparent lack of sen-
sitivity to climate change identified by the ANNs has to be 
attributed, at least in all seasons but spring, to a limitation 
of statistical downscaling regarding its ability to identify 
extremes under perturbed climate conditions, rather than 
to an outcome of the CESM-WRF simulations. This is a 
problem than can introduce subtle and non-systematic biases 
that largely affect the study of trends, so it would be desir-
able to identify its causes. In this regard, in the application 
of statistical downscaling it is recommended to use predic-
tors that clearly capture the local thermodynamic state of 
the atmosphere through which the climate change signals 
are communicated (Hewitson et al. 2014). In principle, the 
downscaling exercise we present based on ANNs fulfils this 
condition, as we introduce through the input layer variables 
that represent the thermodynamic state of the atmosphere, 
e.g. temperature, relative humidity or geopotential height. 
However, we do not force these thermodynamic relation-
ships to be more strongly exploited than others not closely 
related to climate change. It is the calibration during the 
reference period what implicitly determines the relative 
importance of all physical mechanisms through the deter-
mination of the set of weights that define the ANNs behav-
iour. A possible modification of this approach could try to 

Fig. 8  Return levels for daily 
precipitation over the Aare 
catchment in the WRF-refer-
ence (black) and WRF-future 
(orange) simulations. The 
analysis relies on the Peak Over 
Threshold (POT) approach of 
Extreme Value Theory. Solid 
lines depict the Generalised 
Pareto Distribution fitted to the 
values above the 95 percentile 
(dots) for each simulation. 
Dashed lines represent the 
confidence interval, obtained 
from the observed information 
matrix. This analysis is carried 
out using the POT package of 
the R language (https ://cran.r-
proje ct.org/web/packa ges/POT/
index .html)

https://cran.r-project.org/web/packages/POT/index.html
https://cran.r-project.org/web/packages/POT/index.html
https://cran.r-project.org/web/packages/POT/index.html
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minimise the importance of certain mechanisms through 
the removal of some variables not related to the moisture/
thermodynamic state of the atmosphere. This could improve 
the predictability of extreme events under perturbed climate 
conditions at the expense of a having sub-optimal perfor-
mance during the reference period. However the identifica-
tion of what variables can be removed is cumbersome and 
prone to the introduction of further biases. This is illustrated 
by the results obtained with the simple approach by Felder 
et al. (2018), which can be seen as an extreme example of 
this idea (compare dark cyan vs. brown boxes in Fig. 7). This 
simple approach, which completely ignores the thermody-
namic state or even the large-scale dynamic of the atmos-
phere, seems to capture certain sensitivity to climate change, 
especially in winter when the large-scale precipitation is a 
better predictor of its local counterpart. But in spring the sig-
nal is reversed, and generally the skill of the approach is so 
low and barely distinguishable from random chance that this 
climate change signal might be simple statistical artefact.

5  Conclusions

This study proposes and evaluates the feasibility of a dynam-
ical downscaling strategy to study extreme precipitation 
events at local scales from low-resolution comprehensive 
ESMs. It is based on the simulation of case studies, rather 
than on running continuous and in many cases unaffordable 
simulations. The main advantage is the reduced computa-
tional cost, which in turn can be used to increase the spatial 
resolution, thus becoming an approach especially suitable 
for the simulation of extreme precipitation in regions of very 
complex topography (Ban et al. 2014; Gómez-Navarro et al. 
2018). The central challenge of this approach is the selection 
of the adequate dates to be downscaled, as internal vari-
ability within this type of freely evolving ESM simulations 
precludes the selection of known historical events.

We propose a method to select target days to downscale 
from the ESM simulations that blends dynamical and sta-
tistical downscaling, and is similar in its aim to the method 
proposed by Meredith et al. (2018). First we set up an ANN 
that uses large-scale ESM variables as predictors, and 
local downscaled precipitation as predictand. This model 
is trained to mimic the ESM-RCM coupling over the tar-
get region in a computationally affordable period, in this 
case the Aare catchment during 1979–2005. After a careful 
training and crossvalidation, we use the obtained ANNs, one 
for each season, to produce precipitation series that span an 
arbitrary long period within the ESM run, and that is used to 
search for candidate extreme events. Unlike the approach by 
Meredith et al. (2018), our method relies on existing RCM 
simulations rather than observations.

The results of the ANNs are evaluated by comparing them 
to the dynamically downscaled precipitation over the refer-
ence period. These results show that the ANNs are able to 
effectively blend information from different variables, and 
result in a powerful predictor of local precipitation. The 
ability of the statistically downscaled series to select the 
most extreme precipitation events at local scales is worse 
when higher percentiles are considered, although this effect 
becomes noticeable only in the highest percentiles in all 
seasons but summer. In summer, the method provides con-
siderably lower skill in all percentiles, although still sig-
nificantly better than a pure random selection. This is to 
some extent expected, as extreme precipitation events in this 
season are less strongly driven by the large-scale circulation, 
but by convective processes (e.g., Panziera et al. 2018), and 
therefore the information that can be provided by the driv-
ing ESM has fewer potential to explain the variability of 
precipitation at such local scale.

Finally, we use an existing high-resolution climate change 
projection to evaluate the sensitivity of the method to the 
non-stationarity of actual climate. The ANNs trained dur-
ing the reference period have been tested under the RCP 
8.5 scenario, searching for events above the 99th percentile 
using the CESM-future simulation as input for the statisti-
cal model, and comparing the output with WRF-future. The 
events selected after the application of the ANNs are overall 
extreme, with the majority of events above the expected per-
centile. Still, the performance of the ANN method is lower 
than during the reference period, which can be attributed to 
the fact that the model exploits relationships between vari-
ables learnt for different climate conditions. A number of 
events are erroneously identified as severe, although this is 
expected and agrees with the Hit Rates obtained during the 
reference period, and demonstrates the ability of the ANNs 
to predict extreme events with remarkable performance even 
in climate conditions very different to the ones used to cali-
brate the model. The analysis of the response of the severity 
of these events to climate change evidences no trend. This 
could be erroneously interpreted as a lack of sensitivity of 
extreme precipitation under climate change in the simula-
tions, which would be in contradiction with other studies 
(e.g. Seneviratne et al. 2012; Rajczak et al. 2013). Indeed, 
the comparison of the transient simulations WRF-reference 
and WRF-future rules out this possibility, and instead hints 
to a limitation of the ANNs to capture the thermodynamic 
mechanisms responsible for this trend. As indicated by 
Hewitson et al. (2014), the predictor variables must rep-
resent the thermodynamic state of the atmosphere through 
which climate change is communicated. This condition is 
in principle satisfied by our approach, although we do not 
overweight in any way the relationships related to climate 
change. This suggests a possible way to improve the meth-
odology, but such modifications are not self-evident and are 
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prone to severely reduce the skill of the ANNs. Therefore, 
our results suggest that statistical methods which rely on 
the assumption of stationarity of the statistical relationships 
between predictand and predictors for reference and change 
climate states, may be unsuitable for correctly identifying 
trends.
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Appendix: Skill metrics

Correlation

We use Pearson correlation. This metric evaluates the co-
variability of two series disregarding possible systematic 
biases, therefore being especially suitable for the evaluation 
of the ANN to predict the right timing of extreme events. 
We repeated the calculation with Spearman correlation and 
the results are similar (not shown).

As we are especially interested in the performance 
towards the most extreme events, correlations are succes-
sively calculated after the daily series are filtered out to 
retain only the values of precipitation above a given quan-
tile q that corresponds to percentiles p between 1 and 99. 
In detail, all days in which precipitation in the dynamically 
downscaled series above q are selected, and the correlation 
coefficient between the latter and the series for the ANN 
within this subset of dates is calculated. This process of suc-
cessive recalculation of the statistics filtering out the data 
towards higher percentiles is repeated for all skill metrics 
described here. Note that as we move towards higher percen-
tiles, the length of the series becomes shorter, which leads to 
larger uncertainty in the estimation of the skill metrics. This 
uncertainty is estimated by jointly bootstraping the series 
with repetition (shadings in Fig. 6 represent the confidence 
interval at � = 0.1 , while solid lines represent the median). 
Further, the value that rejects the null hypothesis of no skill 
at � = 0.05 is obtained by independently bootstrapping both 
series with repetition (dashed curves in Fig. 6).

Hit rate F

In the evaluation of the skill of predicting rare events, it 
is common to use contingency tables (Skamarock 2000; 
Ferro and Stephenson 2011). Thereby, each event can fall 
in one out of four categories: either it is correctly predicted 

(hit), incorrectly predicted when it did not happen (false 
alarm), incorrectly non predicted with it actually happened 
(missed event) or it can be correctly rejected (most com-
mon situation). It is customary to name the number of the 
events within these disjoint sets as a, b, c and d, respec-
tively. Given this notation, the Hit Rate is defined as (e.g. 
Skamarock 2000):

which can be interpreted as the probability of predicting a 
situation (event f, where f stands for “predicted”) given that it 
actually happened (event o, where o stands for “observed”). 
In a similar fashion, we can define the false alarm rate F as:

representing the probability of incorrectly having predicted 
a situation that did not happen.

A detail to be determined is how to define whether an 
event happened or not in either the observations or the pre-
dicted dataset. For instance, if a given threshold of precipi-
tation is fixed for both datasets, it might be that the total 
number of events above such threshold differs between 
the two datasets, leading to a systematic bias, defined as:

Values of B other than 1 indicate a systematic bias between 
the observations and the predicted dataset. However, this 
bias is meaningless to us, as we are not interested in the 
given values of precipitation provided directly by the ANN, 
but in their ranking of most extreme values, which will 
be ultimately used to select the events to be downscaled 
dynamically. Therefore, we carry out a form of hedging to 
the data that consists of working with quantiles. This is, for 
a given a percentile p, we obtain the corresponding quan-
tiles separately for the statistical and dynamical downscaling 
series (as they are in general different if the ANN is biased). 
Then, we define that an event happened in one of the series 
when the precipitation in a given day is above its respective 
quantile. Summing the number of events, leads to the num-
bers a, b, c and d of the contingency table, which ultimately 
determines H for a given percentile p. As describe above, 
this calculation is repeated for p ranging between 1 and 99.

Symmetric Extremal Dependence Index

The Symmetric Extremal Dependence Index (SEDI) was 
proposed by Ferro and Stephenson (2011) as an alternative 
metric to evaluate the skill in predicting rare events that 
supersedes a number of drawbacks of more simple metrics, 

(1)H =
a

a + c
= p̂(f |o),

(2)F =
b

b + d
= p̂(f |ō),

(3)B =
a + b

a + c
.
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such as H. It is still based on the calculation of a contingency 
table, and as such it is defined as a function of a, b, c and d:

SEDI has the advantage of being base rate independent, non 
degenerate and asymptotically equitable (Ferro and Stephen-
son 2011). The calculation of SEDI for different percentiles 
p has been performed following the same procedure as for H.
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