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Abstract. Climate variations can have profound impacts on
marine ecosystems and the socioeconomic systems that may
depend upon them. Temperature, pH, oxygen (O2) and net
primary production (NPP) are commonly considered to be
important marine ecosystem drivers, but the potential pre-
dictability of these drivers is largely unknown. Here, we use
a comprehensive Earth system model within a perfect mod-
eling framework to show that all four ecosystem drivers are
potentially predictable on global scales and at the surface up
to 3 years in advance. However, there are distinct regional
differences in the potential predictability of these drivers.
Maximum potential predictability (> 10 years) is found at
the surface for temperature and O2 in the Southern Ocean
and for temperature, O2 and pH in the North Atlantic. This is
tied to ocean overturning structures with “memory” or iner-
tia with enhanced predictability in winter. Additionally, these
four drivers are highly potentially predictable in the Arctic
Ocean at the surface. In contrast, minimum predictability is
simulated for NPP (< 1 years) in the Southern Ocean. Poten-
tial predictability for temperature, O2 and pH increases with
depth below the thermocline to more than 10 years, except in
the tropical Pacific and Indian oceans, where predictability
is also 3 to 5 years in the thermocline. This study indicat-
ing multi-year (at surface) and decadal (subsurface) potential
predictability for multiple ecosystem drivers is intended as a
foundation to foster broader community efforts in developing
new predictions of marine ecosystem drivers.

1 Introduction

Marine organisms and ecosystems are strongly influenced
by seasonal- to decadal-scale climate variations, challeng-
ing the sustainable management of living marine resources
(Drinkwater et al., 2010; Lehodey et al., 2006). Anomalies
in temperature, pH, O2 and nutrients are important drivers
of such climate-induced ecosystem variations (Gattuso et al.,
2015; Gruber, 2011). Therefore, skillful predictions of these
marine ecosystem drivers have considerable potential for use
in marine resource management (Gehlen et al., 2015; Hob-
day et al., 2016; Payne et al., 2017; Tommasi et al., 2017).

The primary tools for investigating how marine organisms
and ecosystems change on seasonal to decadal timescales are
Earth system models, where prognostic equations are imple-
mented for biogeochemical cycles. These models are capable
of representing both natural variability and transient changes
in the marine ecosystem drivers (Bopp et al., 2013; Frölicher
et al., 2016). Recently, Earth system models have been used
to explore and quantify the predictability of marine biogeo-
chemical tracers. Most of the studies focus on predicting the
ocean uptake of carbon (Li et al., 2016, 2019; Lovenduski et
al., 2019; Séférian et al., 2018).

To date, only a few studies have investigated the pre-
dictability of marine ecosystem drivers (Chikamoto et al.,
2015; Park et al., 2019; Séférian et al., 2014a). An intriguing
finding of these studies is that marine biogeochemical drivers
may be more predictable than their physical counterparts.
Séférian et al. (2014a), for example, showed that net primary
productivity (NPP) has greater predictability than sea surface
temperature (SST) in the eastern equatorial Pacific. They hy-
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pothesized that SST is strongly influenced by high-frequency
surface fluxes, whereas NPP is more directly impacted by
thermocline adjustment processes that determine the rate at
which nutrients are brought into the ocean’s euphotic layer.
Thus, biogeochemical predictions may hold great promise
and highlight the need for further investigation. Changes in
ecosystem drivers have impacts not only on the surface ocean
but also over upper ocean waters spanning the euphotic zone
and below, making it important to understand more broadly
how ecosystem drivers vary over a range of depths. To our
knowledge there is no comprehensive assessment of poten-
tial predictability of marine ecosystem drivers at the global
scale spanning multiple depth horizons and a comparison of
the relative predictability among them.

In this study, we assess the potential predictability of the
four marine ecosystem drivers using “perfect model” simu-
lations of a comprehensive Earth system model. We address
the following three questions:

– To what extent are marine ecosystem drivers predictable
at the global scale?

– What are the regional and depth-dependent characteris-
tics of potential predictability?

– Which underlying physical and biogeochemical pro-
cesses prescribe or limit the potential predictability of
marine ecosystem drivers?

This study is organized as follows. First, we introduce the
model and methods used to assess the potential predictability
in marine ecosystem drivers. Subsequently, the temporal se-
quencing of potential predictability over global scales for the
four marine ecosystem drivers are identified and evaluated
for regional differences in potential predictability horizons.
Both surface and subsurface manifestations are presented to
assess the origin of potential predictability. Finally, we also
identify the mechanistic controls on the limits to potential
predictability and conclude with a discussion and summary
section.

2 Methods

2.1 Earth system model: GFDL-ESM2M

For this study we conducted a new 240-member ensemble
suite of simulations of 10-year duration each with the Earth
system model ESM2M developed at the Geophysical Fluid
Dynamics Laboratory (GFDL) of the National Oceanic and
Atmospheric Administration (NOAA; Dunne et al., 2012,
2013). The GFDL-ESM2M is a fully coupled carbon cycle–
climate model. The physical core of the model is based on the
physical coupled model CM2.1 (Delworth et al., 2006). The
atmospheric model AM2 has a horizontal resolution of 2◦

latitude× 2.5◦ longitude with 24 vertical levels (Anderson et
al., 2004). The land model simulates land water, energy and

the carbon cycle, and it has the same horizontal resolution
as the atmospheric component. The ocean model MOM4p1
(Griffies, 2012) has 50 vertical levels of varying thickness
and a nominal horizontal resolution of 1◦ latitude× 1◦ lon-
gitude, increasing towards the Equator to up to 1/3◦. The sea
ice model includes full ice dynamics, three thermodynamic
layers and five ice thickness categories and is defined on the
same grid as the ocean model (Winton, 2000).

Ocean biogeochemistry and ecology is simulated by the
Tracers Of Phytoplankton with Allometric Zooplankton ver-
sion 2.0 (TOPAZ2; Dunne et al., 2013). TOPAZ2 repre-
sents 30 prognostic tracers to describe the cycles of car-
bon, phosphorus, silicon, nitrogen, iron, alkalinity, oxygen
and lithogenic material as well as surface sediment calcite.
TOPAZ2 includes three phytoplankton functional groups:
small (mostly prokaryotic pico- or nanoplankton), diazotroph
(fixing nitrogen from the atmosphere) and large phytoplank-
ton. TOPAZ2 only implicitly simulates zooplankton activity.
The growth of phytoplankton depends on the level of photo-
synthetically active irradiance, nutrients (e.g., nitrate, ammo-
nium, phosphate and iron) and temperature (see Sect. 2.3.2
and Appendix A).

Previous studies have shown that the GFDL-ESM2M
captures the observed large-scale biogeochemical patterns
(Dunne et al., 2012, 2013). The GFDL CM2.1 skillfully sim-
ulates primary modes of natural climate variability (Witten-
berg et al., 2006) and has been extensively applied to assess
seasonal and multiannual climate predictions (Meehl et al.,
2013; Park et al., 2019).

2.2 Perfect model framework

We estimated potential predictability within a perfect model
experiment. By perturbing the initial conditions of the
GFDL-ESM2M and quantifying the spread of initially close
model trajectories, the limit of initial condition predictability
was assessed. The underlying assumption is that we have a
perfect model (e.g., the model accurately represents all phys-
ical and biogeochemical processes relevant to assess marine
ecosystem drivers at adequate temporal and spatial resolu-
tion) and nearly perfect initial conditions and that we ex-
clude the role for external forcing in determining or limit-
ing predictability. Specifically, we first performed a 300-year
preindustrial control simulation (black line in Fig. 1), which
is branched off a preexisting quasi-steady-state 1000-year
preindustrial control simulation. Using this 300-year prein-
dustrial control simulation to provide initial conditions, six
40-member ensemble simulations of 10-year duration each
are performed. Each ensemble simulation starts at different
times in the control simulation: 1 January in years 22, 64,
106, 170, 232 and 295. The six distinct initialization dates
for the individual large ensemble simulations were randomly
selected from the 300-year preindustrial control simulation.
This was intended to average across biases that may result
from predictability being different across different phases of
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climate modes (e.g., different El Niño–Southern Oscillation
phase states) within the preindustrial simulation. Note that
the last ensemble exceeds the control simulation by 5 years.
Each of the six ensembles consists of 40 ensemble members
with micro-perturbations to oceanic initial states but with
the same atmospheric, land, ocean biogeochemical, sea ice
and iceberg initial conditions. Specifically, for each ensemble
member, i = 1, 2, ..., 40, an infinitesimal temperature pertur-
bation δ is added to a single grid cell in the Weddell Sea at
5 m depth, similar to the approach described in Wittenberg et
al. (2014) and Palter et al. (2018):

δi = 0.0001 ◦C×
{

i+1
2 : for odd i

−
i
2 : for even i

. (1)

Thus, the range of perturbations is evenly spread from
−0.002 to 0.002 ◦C with the unperturbed control case in the
center with zero perturbation. As stated above, our model
setup encompasses 240 ensemble members, each of 10-year
duration and thus 2400 years of model integration in ad-
dition to the 300-year-long control simulation. While our
perturbation method is in no way optimal in terms of, for
example, sampling the likely range of atmospheric–ocean–
biogeochemical errors, it is sufficient to generate ensemble
spread on the timescales of interest. After just 4 d of sim-
ulation time subsequent to the micro-perturbations for each
cluster of 40 starting points, the SSTs of all surface ocean
grid cells are numerically different from the SST of the con-
trol simulation, underscoring the rapidity with which diver-
gences due to nonlinearities in the model express themselves.
The method applied here mirrors that of Griffies and Bryan
(1997a), Msadek et al. (2010), and Wittenberg et al. (2014)
and emphasizes the amplitude (but not the phase) of pertur-
bations to identify potential predictability. Our perturbation
method produces ensemble experiments likely to give the up-
per limit of the model predictability, hence the term potential
predictability. Nevertheless, it warrants mentioning here that
studies have been published arguing that predictability in the
real world for some variables may even be larger than esti-
mated with the perfect modeling framework within an Earth
system model in cases where the ratio of the predictable
mode to model noise is underestimated (Eade et al., 2014;
Kumar et al., 2014).

2.3 Analysis methods

We calculate the potential predictability for the four ma-
rine ecosystem drivers: temperature, pH, O2 and NPP. In the
following, NPP is always integrated over the upper 100 m,
whereas temperature, pH and O2 are analyzed at different
depth levels. In addition to identifying the upper limits of pre-
dictability of these variables within the Earth system model,
an equally important objective is to identify the relative pre-
dictability of the four variables under consideration.

2.3.1 Assessment of potential predictability

The prognostic potential predictability (PPP) is the main
metric used in this study to assess predictability. The PPP is
the ratio between the variance among the ensemble members
at a given time t after the initialization and the temporal vari-
ance of an undisturbed control simulation. The PPP is calcu-
lated following Griffies and Bryan (1997b) and Pohlmann et
al. (2004):

PPP(t)= 1−

1
N(M−1)

N∑
j=1

M∑
I=1

(
Xij (t)−Xj (t)

)2
σ 2

c
, (2)

where Xij is the value of a given variable for the j th en-
semble and ith ensemble member, Xj is the mean of the j th
ensemble over all ensemble members, σ 2

c is the variance of
the control simulation, N is the total number of different en-
semble simulations (N = 6) and M the number of ensemble
members (M = 40). The variance of the control simulation
is calculated for each month of the year separately to exclude
the seasonality from the natural variability, i.e., only the nat-
ural variability at that month in the seasonal cycle is consid-
ered. PPP equal to unity constitutes perfect predictability. An
F test is applied to estimate a significant difference between
the ensemble variance and the variance of the control run.
With N = 6 and M = 40, predictability is achieved with a
95 % confidence level when PPP≥ 0.183.

The predictability time horizon is defined as the lead
time at which PPP falls below the predictability threshold
(Fig. 1b). To calculate global means, all metrics are first cal-
culated at each individual grid cell and then averaged with
area weighting over the global ocean.

2.3.2 Taylor deconvolution method to identify
mechanistic controls of predictability

To understand the processes behind the simulated pre-
dictability, we applied a first-order Taylor-series deconvolu-
tion method to decompose the normalized ensemble variance
of pH, O2 and NPP into contributions from their physical and
biogeochemical driver variables:

σ 2
f
∼=

n∑
i=1

(
∂f

∂xi

∣∣∣∣σxi)2

+ 2
∑
i<j

∂f

∂xi

∣∣∣∣ ∂f∂xj
∣∣∣∣Cov

(
xixj

)
, (3)

where σ denotes the standard deviation among the ensemble
members of the different variables. Specifically, the Taylor
deconvolution method is applied to decompose the normal-
ized ensemble variance for f of pH, O2 and NPP into the
contribution from their physical and biogeochemical drivers
by expressing the ensemble variance and the variance of the
control run from Eq. (2) in terms of Eq. (3). The partial
derivatives in Eq. (3) are calculated at the point p = x, where
x is the mean value of the corresponding driver variables over
the entire control simulation.
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Figure 1. Illustration of the model setup and the calculation of the predictability time horizon. (a) Simulated global mean SST of the 300-year
reference control simulation (black line) and of the six 10-year-long 40 ensemble simulations (red lines). (b) Global mean SST anomaly (i.e.,
deviation from the control simulation) for the ensemble simulation starting in the year 170. The thick red line indicates the period over which
SST is predictable (i.e., PPP≥ 0.183), and thin red lines indicate the period over which SST is unpredictable (i.e., PPP< 0.183). The dashed
horizontal lines indicate 1 standard deviation of the control simulation, and the vertical line indicates the predictability time horizon.

The changes in pH are attributed to changes in temper-
ature, salinity, total alkalinity (Alk) and total dissolved inor-
ganic carbon (DIC). Here, we assume that variations in phos-
phate and silicate are negligible.

Dissolved oxygen (O2) is decomposed into an oxygen sol-
ubility component Osol

2 and an apparent oxygen utilization
(AOU) component using (e.g., Frölicher et al., 2009)

O2 = O2
sol
−AOU. (4)

Osol
2 is the solubility of oxygen, which depends nonlinearly

on temperature and salinity (Garcia and Gordon, 1992).
The difference between diagnosed Osol

2 and simulated O2
is AOU. Variations in AOU reflect changes in oxygen con-
sumption and ocean ventilation. Earlier studies demonstrated
that changes in AOU are typically associated with changes
in ventilation, as simulated changes in the remineralization
rates of organic material and in associated O2 consumption
are relatively small (Gnanadesikan et al., 2012).

NPP can be decomposed into the contributions from the
three phytoplankton groups simulated in the TOPAZ2 model:

NPP= NPPSm+NPPDi+NPPLg, (5)

where NPPSm, NPPDi and NPPLg are the contributions from
small, diazotroph and large phytoplankton, respectively. At
any time t the NPP for all phytoplankton groups “phyto”
is given by the phytoplankton stock Pphyto times the phyto-
plankton growth rate µphyto:

NPPphyto (t)= µphyto(t) ·Pphyto(t). (6)

The growth rate µSm of the small phytoplankton is param-
eterized using a maximum growth rate µmax, which is lim-
ited by nutrients Nlim, light Llim and temperature Tf (see Ap-
pendix A for further details):

µ= µmax ·Nlim ·Llim · Tf. (7)

Note that grazing, sinking and other loss processes impact
phytoplankton stock, but these processes in TOPAZ2 are
only a function of steady-state growth and biomass implicit
grazing formulation, and they exert no separate dynamic con-
trol. Therefore they do not require separate consideration.

3 Results

3.1 Potential predictability at the ocean surface

The change in globally averaged annual PPP over time is
very similar for all four marine ecosystem drivers at the sur-
face, i.e., the PPP decreases exponentially over lead time for
all four drivers (solid thick lines in Fig. 2). After 3 years, the
PPP falls below the predictability threshold (dashed line in
Fig. 2), indicating that the global predictability time horizon
is about 3 years for all four ecosystem drivers. The seasonal-
ity in PPP (solid thin lines in Fig. 2) as well as the differences
among the four drivers are very small at the global scale.

At the regional scale, the predictability time horizon shows
distinct structured patterns and also large differences be-
tween each of the four different marine ecosystem drivers
(Fig. 3). In general, SST (Fig. 3a), surface pH (Fig. 3b) and
surface O2 (Fig. 3c) share similar predictability time horizon
patterns with short predictability time horizons (1–2 years)
between 20 and 40◦ in both hemispheres, intermediate pre-
dictability time horizons (3–5 years) in the tropical oceans,
and long predictability time horizons (> 10 years) in the
North Atlantic between 40 and 70◦ N, in the Southern Ocean
between 40 and 65◦ S (except for surface pH) and in the Arc-
tic Ocean. Interestingly, the potential predictability time hori-
zon of surface pH is short relative to SST and surface O2
in the Southern Ocean but longer over both the Caribbean
and the eastern subtropical North Pacific relative to SST. The
Caribbean and the eastern North Pacific are both regions of
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Figure 2. Globally averaged prognostic potential predictability
(PPP) for all four marine ecosystem drivers at the surface, except
for NPP which is integrated over the top 100 m. Monthly mean (thin
lines) and annual mean (thick lines) values of PPP are shown. The
horizontal black dashed line represents the predictability threshold.
If PPP is above (below) the predictability threshold, the driver is po-
tentially predictable (unpredictable) as indicated with the arrows on
the right-hand side. The PPP has first been calculated at each grid
cell and then averaged globally.

importance for resource management, given the high density
of neighboring human populations.

The NPP predictability time horizon pattern (Fig. 3d) is
fundamentally different from the patterns of the other three
ecosystem drivers. NPP has long predictability time horizons
(6–10 years) in the midlatitudes, where the annual mean NPP
is generally small (indicated with contour lines in Fig. 3d),
but very short predictability time horizons of 0–1 years in
the Southern Ocean, the North Atlantic and the Pacific, as
well as short predictability time horizons of 1–3 years in the
tropical oceans, where annual mean NPP is high (Fig. 3d).
The spatial pattern of the predictability time horizon and the
sequencing of predictability among the ecosystem drivers is
very similar when using two other metrics for potential pre-
dictability, indicating that our results do not depend on the
predictability metric used (Appendix B).

We further average the local potential predictability across
17 biogeographical biomes (Fig. 4) to highlight the pro-
nounced seasonal cycle in predictability for some variables
in particular biomes. The biomes capture patterns of large-
scale biogeochemical function at the basin scale and are de-
fined by distinct SSTs, maximum mixed-layer depths, max-
imum ice fractions and summer chlorophyll concentrations
(Fay and McKinley, 2014). As shown in Fig. 4, potential
predictability exhibits strong seasonality for SST, surface O2
and surface pH in the North Atlantic (biomes 8, 9, 10 and
11), in the Southern Ocean (biomes 15 and 16) and in the
subtropical/subpolar gyre boundary region of the North Pa-
cific (biome 3). In all these biomes, predictability is higher
during the cold season (boreal and austral winter) and lower
during the warm season. The biomes with high seasonality
in PPP are also the regions which generally show larger pre-
dictability in the annual mean. The PPP values of SST and

surface O2 have almost identical seasonal amplitudes, while
the seasonal amplitude of the surface pH is generally smaller
compared to SST and surface O2 seasonal amplitude. Inter-
estingly, the PPP for NPP generally shows no large differ-
ences amongst the seasons, except in biome 8, which is in-
fluenced by seasonal sea ice retreat and growth. Figure 4 also
reveals other interesting characteristics of PPP. For exam-
ple, the changes in PPP over lead time are very small, but
they fluctuate around the predictability threshold for NPP in
biome 10 and for SST and O2 in biome 8, making the pre-
dictability horizon in some biomes for some variables very
sensitive to small changes in PPP. In addition, the PPP for
NPP in the eastern equatorial Pacific (biome 6) shows large
interannual variations with lead time, indicating that even
more ensemble members are needed to robustly assess the
predictability there. The PPP for SST in biome 17 (around
Antarctica) is even negative, indicating a higher variance
simulated in the ensemble simulations than simulated in the
300-year preindustrial control simulation.

3.2 The role of the subsurface ocean in the potential
predictability of marine ecosystem drivers

Next, we assess the predictability time horizon for tempera-
ture, O2 and pH in the top 1000 m (Figs. 5 and 6). In theory,
the subsurface ocean should be expected to be predictable
longer than the surface layer, as the subsurface is not di-
rectly coupled to the high-frequency and relatively unpre-
dictable variability of the atmosphere. Indeed, the potential
predictability for temperature, oxygen and pH rapidly in-
creases with depth at the global scale (Fig. 5a–c). Below
300 m, the predictability time horizon of all three ecosystem
drivers exceeds a decade; i.e., the PPP is still larger than the
predictability limit (depth levels with no hatching in Fig. 5a–
c). Interestingly, the PPP at depth changes more rapidly with
time for temperature than for O2 and pH. In fact, the PPP for
temperature is constant below 500 m for a given year; i.e.,
the PPP value does not change with depth. This is different
for O2 and pH, for which the PPP increases with all depth
levels. Clearly, the overall increasing potential predictabil-
ity with depth can be attributed to the increasing disconnec-
tion of the deeper ocean with the surface ocean (see also
Sect. 3.3). However, the biogeochemical processes lead to
enhanced predictability below 500 m for O2 and pH, relative
to temperature.

The global mean picture of Fig. 5a–c obscures some in-
teresting seasonal features at the regional scale, which are
highlighted in Fig. 5d–f for the North Atlantic. Even though
the North Atlantic is among the regions with the largest po-
tential predictability at the ocean surface, the predictability
at 1000 m depth for pH and O2 is smaller in the North At-
lantic than the global average at the same depth (Fig. 5d–f),
especially in boreal winter. For example, the PPP in winter
of year 3 for pH is 0.6 at the global scale at 400 m depth
(Fig. 5b) but only 0.3 in the North Atlantic (Fig. 5e). The
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Figure 3. Predictability time horizon for (a) SST, (b) surface pH, (c) surface O2 and (d) NPP integrated over the top 100 m using PPP as
a predictability measure. The red contour lines in panel (d) indicate the annual mean total nitrogen production in moles of nitrogen per
kilogram per year averaged over the 300-year preindustrial control simulation to highlight regions with low and high NPP. In panel (d)
regions north of 69◦ N and south of 69◦ S have been excluded since NPP is zero during wintertime there.

strong connection in the Atlantic between the ocean surface
and the upper 1000 m in winter increases the predictability
but at the same time decreases the potential predictability
within the subsurface. Interestingly, this effect is also visi-
ble for temperature but confined to the upper few hundred
meters. The reason is that anomalies from the ocean surface
do not penetrate as deep for pH and O2 as they do for tem-
perature.

Figure 6 shows the spatial pattern of the predictability time
horizon for ocean temperature, O2 and pH at 300 m (pan-
els a–c) and 1000 m (panels d–f) depth, respectively. Al-
though the predictability time horizon is close to 10 years
below 300 m on global average, there are specific regions
with a reduced predictability time horizon. At 300 m, these
regions are the tropical Pacific, the Indian Ocean and parts
of the Southern Ocean (Fig. 6a–c). In the equatorial Pacific
and Indian Ocean averaged over 20◦ N and 20◦ S, the pre-
dictability is 4 years for temperature and 7 years for O2 and
pH. For temperature and O2, the predictability time horizon
drops to values lower than 5–6 years in the eastern equato-
rial Atlantic. At 1000 m depth (Fig. 6d), the spatial pattern
of temperature predictability time horizon is similar to the
one at 300 m. Large parts of the equatorial Pacific and the
Indian Ocean still show relatively short predictability time
horizons. This is not the case for O2 and pH, for which the
predictability time horizon largely increases at 1000 m depth
compared to 300 m depth in the eastern equatorial Pacific and

in the Indian Ocean as well as in the Southern Ocean, so that
the predictability time horizon of both O2 and pH is up to
10 years almost everywhere. Only the western equatorial Pa-
cific (for pH) and the central equatorial Pacific (for O2) are
characterized by reduced potential predictability at 1000 m
(predictability time horizons lower than 8 years).

3.3 Deconvolution into physical and biogeochemical
control processes

The predictability patterns and timescales presented in the
previous sections are investigated next for their underly-
ing dynamical and/or biogeochemical controls. For SST, we
compare our findings with previous studies that attributed
SST predictability to particular processes. In order to under-
stand the dynamical and biogeochemical control processes of
O2, pH and NPP and to quantify their contribution, we apply
a Taylor deconvolution method (see Sect. 2.3.2). It is impor-
tant to note that a large contribution of a particular driver to
the potential predictability of O2, pH and NPP does not imply
a long predictability time horizon of that driver. In addition,
the contribution of a process depends not only on its poten-
tial predictability (captured by the variance terms in Eq. 3)
but also on the potential interaction with the other drivers
(covariance terms in Eq. 3).
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Figure 4. PPP for all four ecosystem drivers averaged over 17 different biomes at the surface, except for NPP, which is integrated over the
top 100 m. Monthly means are shown as thin lines, and annual means are shown as thick lines. The horizontal dashed black lines in each
panel represent the predictability threshold. The lower right panel shows the boundaries and the geographical location of biomes 1 to 17.
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Figure 5. PPP depth profiles for the top 1000 m for ocean temperature, oxygen and pH at the (a–c) global scale and (d–f) in the North
Atlantic. The PPP is shown as monthly means. The light gray hatching indicates a PPP value below the predictability threshold. The North
Atlantic is defined as the ocean area between 40 and 60◦ N in the North Atlantic. Note that the variance over the control simulation for pH is
zero for approximately 0.4 % of grid cells at subsurface, which leads to an undefined PPP value there (see Eq. 2). Such grid cells have been
excluded here.

Figure 6. Spatial pattern of the predictability time horizon at (a–c) 300 m and (d–f) 1000 m depth for (a, d) ocean temperature, (b, e) pH and
(c, f) dissolved oxygen.

3.3.1 Sea surface temperature

The long predictability time horizon of SST in the North At-
lantic between 40 and 70◦ N (Fig. 3a) is consistent with pre-
vious findings (Boer, 2004; Collins et al., 2006; Griffies and
Bryan, 1997a; Pohlmann et al., 2004). The SST in the North
Atlantic experiences low-frequency variability that is linked
to the Atlantic Meridional Overturning Circulation (AMOC;

Buckley and Marshall, 2016). In GFDL-ESM2M, the AMOC
experiences strong low-frequency variability, consistent with
Msadek et al. (2010), and its predictability time horizon is
about 9 years (Fig. C1). Similarly, the Southern Ocean sur-
face waters are also strongly connected to the deep ocean
(Morrison et al., 2015), and slow subsurface ocean processes
there give rise to decadal predictability in SST (Marchi et al.,
2019; Zhang et al., 2017). In CM2.1, the peak in the power
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spectrum of deep convection in the Weddell Sea is simu-
lated to lie between 70 and 120 years (Zhang et al., 2017).
In the North Atlantic and the Southern Ocean, the potential
predictability is enhanced during the winter period (Fig. 4),
as the surface waters are especially well connected with the
deep ocean during the cold season. The long SST predictabil-
ity time horizon in the Arctic Ocean is due to the overall low-
frequency variability in SST there, because these waters are
permanently covered by sea ice in the preindustrial ESM2M
control simulation and cannot exchange heat (and carbon)
with the atmosphere. This is not the case around the Antarctic
continent, where sea ice almost vanishes during austral sum-
mer in ESM2M, allowing the surface ocean to exchange heat
and carbon with the atmosphere. Therefore, the influence of
high-frequency atmospheric variability is large, which leads
to diminished predictability time horizons around Antarctica.
Moderate predictability time horizons in SST of about 3 to
5 years are simulated in the tropical oceans associated with
the coupled atmosphere–ocean system (Boer, 2004).

3.3.2 Dissolved oxygen

To understand the processes that give rise to the O2 pre-
dictability pattern, we use a Taylor deconvolution method
(see Sect. 2.3.2) to further split the O2 predictability into re-
spective Osol

2 and AOU contributions. Figures 7 and 8 show
the predictability time horizon of O2 (identical to patterns
shown in Figs. 3c and 6c), Osol

2 , AOU and their covariance
(panels a, b, c and d) as well as their percentage contribution
to the normalized ensemble variance (panels e, f and g) for
the surface (Fig. 7) and 300 m depth (Fig. 8). The percentage
contribution is defined as the value of a given variance term
(first term on the right-hand side of the equal sign in Eq. 3)
or covariance term (second term on the right-hand side in
Eq. 3), divided by the sum of all absolute variance and co-
variance values. By combining the information from panels
e, f and g (i.e., percentage contribution to total predictabil-
ity) with the information from panels a, b, c and d (i.e.,
predictability time horizon), we can attribute the local pre-
dictability of O2 to Osol

2 , AOU or the covariance. For exam-
ple, if both the percentage contribution and the predictability
time horizon of a particular variable are high, then the O2
predictability is high. If the percentage contribution is gen-
erally low for a particular variable, then this variable does
not contribute to the overall short or long predictability time
horizon of O2.

The largest contribution to the normalized variance in O2
at the surface stems from Osol

2 (Fig. 7) with a globally av-
eraged contribution of 58 %, followed by AOU with 23 %
and the covariance between Osol

2 and AOU contributing 19 %.
Thus, the Osol

2 predictability time horizon pattern (Fig. 7b) is
almost identical to the O2 predictability time horizon pattern
(Fig. 7a or Fig. 3c), i.e., long predictability time horizons in
the North Atlantic, Southern Ocean and Arctic and short pre-
dictability time horizons in the midlatitudes. As Osol

2 at the

ocean surface is mainly controlled by temperature (Garcia
and Gordon, 1992), it is not surprising that the time hori-
zon pattern of surface O2 predictability (Figs. 7a and 3c) is
also almost identical to the time horizon pattern of SST pre-
dictability (Fig. 3a). In the Arctic Ocean and around Antarc-
tica, however, AOU (Fig. 7f) is almost solely responsible for
the normalized variance of O2. As a result, the predictabil-
ity time horizon of O2 (Fig. 7a) is similar to the AOU pre-
dictability time horizon (Fig. 7c) in these two regions. The
covariance between Osol

2 and AOU overall plays a minor role
(Fig. 7g).

The picture is quite different at 300 m depth (Fig. 8), where
the largest contribution percentage-wise to the normalized
variance of O2 stems from AOU (64 % on global average),
with minor contributions from Osol

2 (13 %) and the covari-
ance between Osol

2 and AOU (23 %). Therefore, the pattern
of the AOU predictability time horizon (Fig. 8c) is similar
to the pattern of the O2 predictability time horizon (Fig. 8a).
Exceptions are found in the eastern equatorial Pacific, where
the covariance dominates (Fig. 8g), and the northern North
Atlantic, where Osol

2 dominates (Fig. 8e). The dominance of
AOU in explaining subsurface O2 predictability is also the
reason why O2 predictability generally increases with depth
(Fig. 5c), which is not the case for temperature (Fig. 5a).

3.3.3 pH

The predictability characteristics of pH are decomposed into
its primary drivers in the marine carbonate system, namely
temperature, salinity, DIC and Alk (Fig. 9). Even though the
total normalized ensemble variances from the Taylor decon-
volution are only approximations of the total real ensemble
variances due to nonlinearities in carbonate chemistry, the
values of the Taylor deconvolution are always within ±2 %
of the real values, giving us confidence in the appropriateness
of the Taylor deconvolution method for pH.

At the surface, the largest contribution percentage-wise
stems from the covariance between Alk and DIC (Fig. 9j;
with 26 % globally averaged), followed by DIC (Fig. 9i;
22 %), Alk (Fig. 9h; 15 %), the covariance between SST and
DIC (Fig. 9k; 14 %), and SST (Fig. 9g; 9 %). All other pos-
sible contributors such as sea surface salinity and its covari-
ances (including the covariance between SST and Alk) are
not discussed further, as their contributions are below 5 %.
The pH predictability time horizon at the surface is mainly
determined by Alk and DIC and to a lesser extent SST. The
long predictability time horizon of pH in the North Atlantic,
the Arctic Ocean and the eastern North Pacific and the short
predictability time horizon in the tropical regions (Figs. 9a
and 3c) are mainly determined by DIC and Alk and the co-
variance between DIC and ALK. SST plays a role for parts of
the North Atlantic. The predictability of pH in the Southern
Ocean is mainly determined by DIC, SST and their covari-
ance. Even though SST exhibits enhanced predictability in
the Southern Ocean in relation to pH, the short predictability
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Figure 7. Spatial pattern of the (a–d) predictability time horizons and (e–g) contribution of different terms to the predictability of oxygen
at the surface. (a–d) Predictability time horizon for (a) O2, (b) Osol

2 , (c) AOU and (d) covariance between Osol
2 and AOU. (e–g) Percentage

contributions of (e) Osol
2 , (f) AOU and (g) covariance between Osol

2 and AOU relative to the sum of all terms. Red shading in panels (e)–(g)
represents positive absolute values of the variance and covariance terms. The percentage contributions are shown as averages over the entire
10 years of the simulations. The percentage contributions do not change substantially over the 10 years (always within ±5 % of the 10-year
averages).

time horizon of DIC and the covariance of DIC and SST lead
to the overall diminished predictability time horizon for pH
relative to SST there.

The pH predictability time horizon at 300 m depth
(Fig. 10a) is mainly determined by DIC (accounts for 44 %
on a global scale; Fig. 10j) and to a lesser extent by the co-
variance between DIC and SST (19 %; Fig. 10k) and the co-
variance between Alk and DIC (15 %; Fig. 10j). Interestingly,
the relatively short pH predictability time horizon of about
5 years in the western equatorial Pacific and the northern In-
dian Ocean is also mainly determined by DIC (Fig. 10d, i)
and the covariance between DIC and SST (Fig. 10f, k). The
short predictability time horizon of pH in the South Pacific
is caused by the covariance between SST and DIC. Again,
salinity plays a negligible role (not shown).

3.3.4 Net primary production

To understand the drivers that may set the upper limits of
NPP predictability, we first split the NPP into the contribu-
tions from small-phytoplankton production (NPPSm), large-

phytoplankton production (NPPLg) and production by di-
azotrophs (NPPDi; see Sect. 2.3.2 and Appendix A). The
largest contribution (i.e., the most important driver of NPP
potential predictability) stems from NPPSm (65 % averaged
globally; Fig. 11). The second most important contributor is
the covariance between NPPSm and NPPLg (19 %) followed
by NPPLg (9 %). Diazotrophs and all other covariances have
only a small impact on the predictability of NPP (less than
5 %; not shown in Fig. 11). The large dominance of NPPSm is
not unexpected as the small-phytoplankton production over-
all dominates the total phytoplankton production in ESM2M
(Dunne et al., 2013; Laufkötter et al., 2015). NPPSm accounts
for 84 % of the total NPP at global scales, whereas NPPLg
and NPPDi only account for 14 % and 2 %, respectively.

On regional scales, NPPSm determines the predictability
of NPP almost everywhere (Fig. 11f). Exceptions are the
eastern equatorial Pacific and the higher northern latitudes,
where NPPLg (Fig. 11e) and the covariance between NPPLg
and NPPSm (Fig. 11g) also play a substantial role. Interest-
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Figure 8. Same as Fig. 7, but at 300 m depth.

ingly, the NPPLg (Fig. 11b) has overall a longer predictability
time horizon than NPP (Fig. 11a) and NPPSm (Fig. 11c).

To understand the drivers of small-phytoplankton pre-
dictability, we further deconvolve NPPSm into growth rate
and small-phytoplankton stock (Fig. 12; Eq. 6 in Sect. 2.3.2).
The deconvolution suggests that the largest contribution to
the potential predictability on a global scale stems from the
small-phytoplankton stock (51 %) followed by the growth
rate (31 %) and the covariance between stock and growth rate
(18 %). Between 40◦ S and 40◦ N, the NPPSm predictabil-
ity is almost solely determined by the small-phytoplankton
stock, with the exception of the eastern equatorial Pacific,
where the growth rate is more important. Also, the short
NPPSm predictability time horizon in the North Atlantic
mainly originates from the variance of the stock, indicated
by the short predictability time horizons of the stock com-
pared to the growth rate there. As we stated previously, NPP
has a relatively short potential predictability time horizon
over the Southern Ocean compared to the other ecosystem
drivers (Fig. 3d). Our analysis shows that small phytoplank-
ton (Fig. 11) and especially the growth rate of the small phy-
toplankton (Fig. 12) are important for setting this local mini-
mum.

We further deconvolute the drivers of the surface growth
rate predictability of small phytoplankton into their tem-
perature, nutrient and light limiting factors (see Eq. 7 in

Sect. 2.3.2; Fig. 13). As the limiting factors are not saved
routinely as three-dimensional fields, we focus here on the
growth rate and its limiting factors at the surface. Note that
the growth rate predictability time horizon at the surface
(Fig. 13a) may differ from the growth rate predictability time
horizon integrated over the top 100 m (Fig. 12c), especially
in the Southern Ocean and the North Atlantic. At the surface
and at the global scale, the largest contribution stems from
the nutrient limitation term (50 %) followed by the temper-
ature limitation term (25 %) and the covariance between the
temperature and nutrient limitations (13 %). At the regional
scale, the nutrient limitation term clearly dominates at mid-
latitudes (Fig. 13f). In GFDL-ESM2M, the subtropical gyres
are mainly iron limited (hatching in Fig. 13f), and there-
fore iron fundamentally constrains the predictability of the
growth rate of small phytoplankton there. Exceptions are the
boundary region between the subtropical and subpolar gyre
in the North Pacific (nitrate limited) as well as the tropical At-
lantic (phosphate and nitrate) and the northern Indian Ocean
(phosphate). GFDL-ESM2M’s overall strong iron limitation
is in contrast to the findings of Moore et al. (2013), who sug-
gest that nitrogen is the limiting nutrient in the subtropical
gyres. GFDL-ESM2M is a fully coupled Earth system model
and assesses iron limitation through the ability to synthesize
chlorophyll. In contrast, Moore et al. (2013) use observation-
driven parameterizations of phytoplankton growth and assess
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Figure 9. Spatial pattern of the (a–f) predictability horizons and (g–k) contribution of different terms to the predictability of pH at the
surface. (a–f) Predictability time horizon for (a) pH, (b) SST, (c) Alk, (d) DIC, and the covariance between (e) Alk and DIC and (f) DIC
and SST. (g–k) Percentage contributions of (g) SST, (h) Alk, (i) DIC, and covariance of (j) ALK and DIC and (k) DIC and SST relative to
the sum of all terms. Red shading in panels (g)–(k) represents positive absolute values of the variance and covariance terms. The percentage
contributions are shown as averages over the entire 10 years of the simulations. The percentage contributions do not change substantially
over the 10 years (always within ±5 % of the 10-year averages). Note that the terms that do not contribute to pH predictability such as sea
surface salinity and the covariances between sea surface salinity and all other terms as well as the covariance between SST and Alk are not
shown here.

iron limitation through nutrient uptake alone. The tempera-
ture limitation term is dominant in the higher latitudes and
the eastern equatorial Pacific (Fig. 13g). The light limita-
tion term only plays a substantial role (up to 20 %) around
Antarctica and close to the Arctic sea ice edge (Fig. 13h).
The simulated long predictability time horizon for NPP in

the midlatitudes can therefore be attributed to the long pre-
dictability time horizon of the nutrient limitation, especially
given that the growth rate predictability at the surface is sim-
ilar to the growth rate predictability integrated over the top
100 m in this region. At latitudes north of 40◦ N and south of
40◦ S, the temperature limitation is the most important con-
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Figure 10. Same as Fig. 9, but at 300 m depth.

tributor. Therefore, the predictability time horizon pattern of
the growth rate strongly resembles the one for SST in these
regions. In the Southern Ocean, however, the growth rate pre-
dictability time horizon at the surface is much longer than
the growth rate predictability integrated over the top 100 m,
indicating that a process other than temperature (e.g., light
limitation) may limit predictability there.

4 Discussion and conclusion

We set out three goals for this study: (a) assessing the global
characteristics of potential predictability for temperature,
pH, O2 and NPP, as a mean to identify an upper bound on our
ability to predict conditions for marine ecosystems; (b) as-
sessing regional and depth-dependent characteristics of po-
tential predictability; and (c) identifying the potential mech-
anisms that limit or increase predictability for the different
marine ecosystem drivers. This was pursued within a per-
fect modeling framework using a comprehensive Earth sys-
tem model.
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Figure 11. Spatial pattern of the (a–d) predictability horizons and (e–g) contribution of different terms to the predictability of NPP integrated
over the top 100 m. (a–d) Predictability time horizon for (a) NPP, (b) large-phytoplankton production NPPLg, (c) small-phytoplankton
production NPPSm, and (d) the covariance between NPPLg and NPPSm. (e–g) Percentage contributions of (e) NPPLg, (f) NPPSm, and
(g) covariance of NPPLg and NPPSm relative to the sum of all terms. Red shading in panels (e)–(g) represents positive absolute values of
the variance and covariance terms. The percentage contributions are shown as averages over the entire 10 years of the simulations. The
percentage contributions do not change substantially over the 10 years (always within ±5 % of the 10-year averages). Note that the terms
that do not substantially contribute to NPP predictability such diazotrophs (NPPDi) and the covariances between NPPDi and all other terms
are not shown here.

The analysis revealed that on global scales the predictabil-
ity time horizon of each variable is surprisingly similar, i.e., 3
years for all four marine ecosystem drivers (Fig. 2; first goal),
despite the fact that the regional processes operating are dif-
ferent over a range of scales (second and third goal). This is
unexpected, as the ocean processes that sustain the disparate
divers should not be expected to have identical memory as
pertains to predictability. For example the relatively long pre-
dictability time horizon identified for SST and surface O2
over the subpolar North Atlantic (the SST to be consistent
with Griffies and Bryan, 1997a, b; Boer, 2000; Collins et al.,
2006; Keenlyside et al., 2008) and the Southern Ocean (con-
sistent with Zhang et al., 2017 and Marchi et al., 2019) is not
reflected in NPP. Likewise, the long predictability time hori-
zon of NPP in the subtropical gyres is not simulated for other
ecosystem drivers, and the short predictability time horizon
of surface pH in the Southern Ocean is reflected in neither
SST nor surface O2.

Our results suggesting the same global predictability time
horizon for all four ecosystem drivers are not inconsistent
with time of emergence diagnostics for transient climate
warming scenarios where pH (early emergence) and NPP
(late emergence) behave oppositely (Frölicher et al., 2016;
Rodgers et al., 2015; Schlunegger et al., 2019). Time of
emergence is defined as the ratio (large for pH and small
for NPP) of the anthropogenic forced change to the back-
ground internal variability. Comparing our results with the
time of emergence analysis is therefore complicated by the
presence of the anthropogenic forced signal in scenario pro-
jections. In fact it is the presence of the large invasion flux for
CO2 that renders acidification the most rapidly emergent of
the drivers under anthropogenic perturbations, in particular
relative to NPP. The similarities between the analyses of pre-
dictability and emergence timescales lie in the noise, which
is expected to include not only modes of climate variabil-
ity such as El Niño–Southern Oscillation (ENSO) but also
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Figure 12. Spatial pattern of the (a–d) predictability horizons and (e–g) contribution of different terms to the predictability of small-
phytoplankton production (NPPSm) integrated over the top 100 m. (a–d) Predictability time horizon for (a) NPPSm, (b) small-phytoplankton
stock, (c) growth rate of small phytoplankton, and (d) the covariance between the stock and the growth rate of small phytoplankton. (e–
g) Percentage contributions of (e) stock, (f) growth rate, and (g) covariance of stock and growth rate relative to the sum of all terms. Red
shading in panels (e)–(g) represents positive absolute values of the variance and covariance terms. The percentage contributions are shown
as averages over the entire 10 years of the simulations. The percentage contributions do not change substantially over the 10 years (always
within ±5 % of the 10-year averages).

higher-frequency variability such as cloud cover that may im-
pact NPP for both cases.

Our study complements earlier studies which suggested
that marine ecosystem drivers may be predictable on multi-
annual timescales. In contrast to earlier studies (Chikamoto
et al., 2015; Park et al., 2019; Séférian et al., 2014b), rather
than focusing on a single ecosystem driver, we compare and
contrast the potential predictability of four marine ecosys-
tem drivers and also evaluate the processes behind their re-
spective predictability limits. We find that in contrast to SST,
these ecosystem drivers depend on a complex interplay be-
tween physical and biogeochemical underlying processes.
For O2, the importance of subsurface AOU reveals a complex
interplay between nonlocal circulation and biological con-
sumption, whereas at the surface O2 is mainly determined
by the predictability of SST. For NPP, the growth rate of
the small phytoplankton in the Southern Ocean is important
for setting the local minimum in predictability time horizon
there. The predictability time horizon of surface pH is mainly
determined by a complex interplay between DIC and Alk

predictability in the low latitudes and DIC, Alk and temper-
ature predictability in high latitudes. Interestingly, we find
longer predictability time horizons for SST than for NPP
in the equatorial Pacific, which is in contrast to findings of
Séférian et al. (2014a). Importantly, this may be indicative
of a potential model dependency of the relationship between
ecosystem driver predictability. Séférian et al. (2014b) at-
tributed longer NPP predictability time horizons to the idea
that the nutrient supply processes that modulate NPP are
themselves regulated by thermocline wave adjustment pro-
cesses, without sizable modulation by surface fluxes. This
was framed as being in contrast to the case of SST, where air–
sea fluxes reflecting higher-frequency variations act to reduce
the predictability of SST. In ESM2M, the predictability time
horizon for SST in the eastern equatorial Pacific (biome 6 in
Fig. 4) is approximately 3.5 years, modestly longer than the
predictability time horizon for NPP of approximately 3 years.
In ESM2M, NPP is only weakly correlated with changes in
upwelling and nutrient supply in the eastern tropical Pacific
(as was shown in Fig. 2 of Kwiatkowski et al., 2017). This
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Figure 13. Spatial pattern of the (a–e) predictability horizons and (f–i) contribution of different terms to the predictability of the small-
phytoplankton growth at the surface. (a–e) Predictability time horizon for (a) growth rate of small phytoplankton, (b) nutrient limitation,
(c) temperature limitation, (d) light limitation, and (e) the covariance between the temperature and nutrient limitation. (f–i) Percentage
contributions of (f) nutrient limitation, (g) temperature limitation, (h) light limitation, and (i) covariance between temperature and nutrient
limitation relative to the sum of all terms. Red shading in panels (f)–(i) represents positive absolute values of the variance and covariance
terms. The percentage contributions are shown as averages over the entire 10 years of the simulations. The percentage contributions do not
change substantially over the 10 years (always within ±5 % of the 10-year averages). Note that the terms that do not substantially contribute
to NPP predictability covariances between temperature and light and nutrients are not shown here. The hatching in panel (f) indicates the
limiting nutrients as obtained from the 300-year-long preindustrial control simulation.

is confirmed by our analysis showing that nutrient limitation
is not the dominant term for explaining the predictability of
NPP there. This indicates that less predictable processes oc-
curring over shorter timescales, such as temperature and/or
light level variations, influence NPP predictability.

Even though we consider our conclusion to be robust, a
number of potential caveats warrant discussion. These in-
clude the (i) ensemble design of the perfect model simula-
tions (e.g., initialization and number of ensemble members)
and (ii) the impact of model formulation and biases. For the
first of these caveats, our simulations are all initialized with
SST perturbations applied to a single grid cell in the Weddell

Sea, and therefore a different spatial perturbation strategy
may give different results. However, as the signal at the ocean
surface spreads very rapidly (i.e., after 4 d all grid cells at the
ocean surface are perturbed) our results are insensitive to the
spatial initialization method, at least in the upper ocean. Sec-
ond, all ensemble simulations start on 1 January of the cor-
responding simulation year. It has been shown that the fore-
cast skill of seasonal predictions may depend strongly on the
way the models are initialized. ENSO forecasts, for example,
have a much lower predictability if they are initialized before
and through spring (Webster and Yang, 1992). However, as
our focus is on annual to decadal timescales, this effect is less
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important for our analysis. Third, we have employed only six
starting points for our 40-member ensemble simulation. Even
though all six ensemble simulations branched off at different
El Niño–Southern Oscillation states of the preindustrial con-
trol simulation, our choice of six macro-perturbations may
still introduce aliasing issues that could bias our results. Al-
though the computing resources at our disposal for this study
did not allow for expanding the number of starting points,
we recommend that future studies with CMIP-class models
should expand the number of initialization points to further
explore the sensitivity of the results to the starting point of
the ensembles.

The second caveat in our study is that we only used one
single Earth system model and that our results might de-
pend on the model formulation and resolution. Even though
the GFDL-ESM2M model achieves sufficient fidelity in its
preindustrial states (Bopp et al., 2013; Dunne et al., 2012,
2013; Laufkötter et al., 2015), it is well known that CMIP5-
generation models have imperfect representation of biogeo-
chemical and physical processes as well as variability over
a range of timescales, ranging from weather variability to
ENSO variability (Frölicher et al., 2016; Resplandy et al.,
2015) to decadal variability (England et al., 2014; McGregor
et al., 2014). Different physical and biogeochemical param-
eterizations within a given model may change the length of
the predictability time horizon. For example, TOPAZ2 rep-
resents a hypothetically optimal phytoplankton physiology;
namely the model assumes that the fastest growing phyto-
plankton group always wins in all environments via the up-
per limit in growth rates. In addition, TOPAZv2 represents a
steady-state ecosystem, such that there are no time lags be-
tween primary production and the grazing response. In the
subsurface, the remineralization of particles is set to repro-
duce the vertical scale of the nutricline on the timescale of
sinking particles, and the sinking particle velocity is fast.
All three factors may tend to decrease the memory asso-
ciated with the real-world surface ecosystem and minimize
predictability. For the case of weather prediction, it has been
argued that the inclusion of stochastic parameterizations in-
creases potential predictability (Palmer and Williams, 2008).
To our knowledge, this remains unexplored for marine bio-
geochemistry and ecosystem drivers. In any case, it would
be necessary to repeat our predictability experiments with
a set of different Earth system models including different
parameterizations of biogeochemical and/or physical ocean
processes to investigate the dependence of our result on the
model representation (Séférian et al., 2018), in parallel with
broader efforts to further evaluate noise characteristics of
these models. Additionally, the ocean model resolution of
GFDL-ESM2M is rather coarse and cannot represent the
critical scales of small-scale structures of circulation. Pre-
dictability studies using high-resolution ocean models with
improved process representations are therefore needed to ex-
plore potential predictability, especially at the local scale.
However, it is currently impossible in many cases to con-

strain the simulated variability in biogeochemical drivers, es-
pecially for the ocean subsurface, with observations due to
limited data availability (Frölicher et al., 2016; Laufkötter et
al., 2015).

Currently, no global coupled physical–biogeochemical
seasonal to decadal forecast system is yet operational (Tom-
masi et al., 2017). However, our study suggests great promise
that physical–biogeochemical forecast systems may have the
potential to provide useful information to a wide group of
stakeholders, such as, for example, for the management of
fisheries (Dunn et al., 2016; Park et al., 2019). Our study
therefore underscores the need to further develop integrated
physical–biogeochemical forecast systems. Especially in re-
gions with long predictability time horizons, such as the
North Atlantic (for temperature, O2 and pH), the Southern
Ocean (for temperature and O2) and midlatitudes (for NPP),
installing and maintaining a spatially and temporally dense
physical and biogeochemical ocean observing system would
have the potential to significantly improve the effective pre-
dictability of marine ecosystem drivers.
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Appendix A

The NPP in TOPAZ2, defined as the phytoplankton nitro-
gen production, is individually described for all phytoplank-
ton groups i by the product of a phytoplankton growth rate
µi and the amount of nitrogen in the plankton group [N]i
(see Table A1 for numerical values of parameters used in
TOPAZ2):

NPPi = µi · [N]i . (A1)

The growth rate of the small-phytoplankton group is given by
a maximum growth rate times the limiting factors of nutrients
Nlim, light Llim and temperature Tf:

µSm =
µ′max
1+ ζ

·Nlim ·Llim · Tf. (A2)

The temperature limitation factor is

Tf = exp
(
kepp · T

)
. (A3)

The nutrient limitation factor is

Nlim =min
(
NFe,NPO4 ,NNO3 +NNH4

)
, (A4)

with iron limitation

NFe =
Q2

Fe:N

Q2
Fe:N+K

2
Fe:N

(A5)

with

QFe:N =min
(
QFe:Nmax ,

[Fe]Sm

[N]Sm

)
,

with phosphate limitation

NPO4 =
QP:N

QP:Nmax

(A6)

with

QP:N =min
(
QP:Nmax ,

[P]Sm

[N]Sm

)
,

with nitrate limitation

NNO3 =
[NO3]

[NO3]+KNO3

·
1+ [NH4]
KNH4

, (A7)

and with ammonium limitation

NNH4 =
[NH4]

[NH4]+KNH4

. (A8)

The light limitation factor is

Llim = 1− exp
(
−αθ [IRR]
NlimTfµmax

)
(A9)

with

θ =
θmax− θmin

1+ (θmax− θmin)α [IRRmem]/(2NlimTfµmax)

+ θmin (A10)

and

θmin =max
(

0,θnolim
min − θ

lim
min

)
·Nlim+ θ

lim
min, (A11)

where [IRR] describes the photosynthetically active radiation
and [IRRmem] is the irradiation memory over the last 24 h.

Appendix B

Potential predictability may depend on the choice of the
predictability metric (Hawkins et al., 2016). Therefore,
we calculate two additional metrics to assess the robust-
ness of our results: the normalized root-mean-square error
(NRMSE) and the intra-ensemble anomaly correlation coef-
ficient (ACCI). The NRMSE is similar to the PPP but uses
standard deviations instead of variances and compares every
ensemble member to every other member of that ensemble,
thereby increasing the effective sample size (Collins et al.,
2006):

NRMSE(t)= 1−

√√√√√〈(
Xij (t)−Xkj (t)

)2〉
i,j,k 6=i

2σ 2
c

. (B1)

〈·〉 means that we sum over the listed indices and divide by
the degrees of freedom. The intra-ensemble anomaly corre-
lation coefficient (ACCI) is a measure for the correlation be-
tween the anomaly of all ensemble members of an ensem-
ble averaged over all ensembles and is regularly used for as-
sessing operational predictions (Goddard et al., 2013). The
anomaly is defined as the deviation of a given value from the
climatological mean µj (i.e., the mean over the control run)
over the j th ensemble period.

ACCI (t)=

〈(
Xij (t)−µj

)(
Xkj (t)−µj

)〉
i,j,k 6=i〈(

Xij (t)−µj
)2〉

i,j

(B2)

While PPP and NRMSE estimate predictability by compar-
ing the spread of the ensembles to the natural variability from
the control simulation, the anomaly correlation coefficients
include the phase alignment of the ensembles and the control
simulation. We again use a F test for NRMSE and a t test for
ACCI to estimate the predictability threshold.

Figure B1 compares the two additional metrics applied
to SST with the PPP metric. We introduce an artificial pre-
dictability threshold for ACCI in such a way that the emerg-
ing pattern matches the predictability time horizon best. This
allows us to compare the relative differences in predictabil-
ity between the metrics best. The predictability pattern for
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Table A1. TOPAZ2 parameters for small phytoplankton.

Parameter Value Units Description

ζ 0.1 Photorespiration loss
kepp 0.063 ◦C−1 Temperature coefficient for growth
α 2.4× 10−5

· 2.77× 1018/ g C (g Chl)−1 m2 W−1 s−1 Light harvest coefficient
6.022× 1017

µ′max 1.5× 10−5 s−1 Maximum growth rate at 0 ◦C
θnolim

min 0.01 g Chl (g C)−1 Minimum Chl : C without nutrient limitation
θ lim

min 0.001 g Chl (g C)−1 Minimum Chl : C with complete nutrient limitation
θmax 0.04 g Chl (g C)−1 Maximum Chl : C
KNO3 2× 10−6 mol N kg−1 NO3 half-saturation coefficient
KNH4 2× 10−7 mol N kg−1 NH4 half-saturation coefficient
KFe:N 12× 10−6

· 106/16 mol Fe (mol N)−1 Half-saturation coefficient of iron deficiency
QFe:Nmax 46× 10−6

· 106/16 mol Fe (mol N)−1 Maximum Fe : N limit
QP:Nmax 0.1458 mol P (mol N)−1 Maximum P : N limit

Figure B1. SST predictability time horizon calculated with different metrics. Spatial pattern of the predictability horizon for sea surface
temperature using (a) PPP, (b) NRMSE and (c) ACCI. Note that we assume an arbitrary predictability threshold for ACCI so that the
emerging pattern matches the PPP predictability best. This allows us to compare the relative differences in predictability.

SST obtained from all three metrics is very similar. In partic-
ular the patterns obtained using PPP and NRMSE are nearly
identical. This can be expected since both the PPP and the
NRMSE estimate potential predictability by analyzing the
ensemble spread. The ACCI shows some small differences
from PPP and NRMSE, especially in the Southern Ocean and
the North Pacific.

www.biogeosciences.net/17/2061/2020/ Biogeosciences, 17, 2061–2083, 2020



2080 T. L. Frölicher et al.: Potential predictability of marine ecosystem drivers

Appendix C

Figure C1. (a) Simulated annual mean AMOC maximum of the 300-year-long preindustrial control simulation. The blue line indicates
the 10-year running mean. (b) Monthly mean (thin line) and annual mean (thick line) prognostic potential predictability for the AMOC
maximum. The horizontal black dashed line represents the predictability threshold.
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