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Non-exponential return time distributions for vorticity extremes
explained by fractional Poisson processes

R. Blender,a* C. C. Raibleb and F. Lunkeita

aDept. of Geosciences, Meteorologisches Institut, Universität Hamburg, Germany
bClimate and Environmental Physics and the Oeschger Centre for Climate Change Research, University of Bern, Switzerland

*Correspondence to: R. Blender, University of Hamburg Meteorological Institute, Grindelberg 5, D-20144 Hamburg, Germany.
E-mail: richard.blender@uni-hamburg.de

Serial correlation of extreme midlatitude cyclones observed at the storm track exits is
explained by deviations from a Poisson process. To model these deviations, we apply
fractional Poisson processes (FPPs) to extreme midlatitude cyclones, which are defined
by the 850 hPa relative vorticity of the ERA interim reanalysis during boreal winter (DJF)
and summer (JJA) seasons. Extremes are defined by a 99% quantile threshold in the
grid-point time series. In general, FPPs are based on long-term memory and lead to
non-exponential return time distributions. The return times are described by a Weibull
distribution to approximate the Mittag–Leffler function in the FPPs. The Weibull shape
parameter yields a dispersion parameter that agrees with results found for midlatitude
cyclones. The memory of the FPP, which is determined by detrended fluctuation analysis,
provides an independent estimate for the shape parameter. Thus, the analysis exhibits a
concise framework of the deviation from Poisson statistics (by a dispersion parameter),
non-exponential return times and memory (correlation) on the basis of a single parameter.
The results have potential implications for the predictability of extreme cyclones.
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1. Introduction

Extremes such as midlatitude storms are a major source of
natural hazards, as demonstrated impressively over the last two
decades. Extreme storms tend to occur in families or trains, as
the traditional view of synoptic cyclones suggests (Bjerknes and
Solberg, 1922). A devastating example of such a family is storms
Lothar and Martin during winter 1999/2000, which caused the
highest level of damage of midlatitude cyclones up to now.

Apparently these events triggered strong scientific interest in
analyzing the clustering of midlatitude cyclones in the Northern
Hemisphere (Mailier et al., 2006). Their results indicated that the
return times of extreme midlatitude cyclones deviate from the
assumed Poisson process, as the variance to mean ratio differs
from one. At the beginning of the midlatitude storm tracks, a
slight underestimation is found, while in the cores of the storm
tracks and mainly in the lysis region the ratio is 50% higher than
the Poisson process would suggest (Mailier et al., 2006). Similarly,
Franzke (2013) showed a long-term dependence and serial
clustering of extreme wind speeds. Moreover, analyzing climate
model simulations, serial clustering of midlatitude cyclones may
change under future global warming (Pinto et al., 2013). Thus,
these studies concluded that the return time distribution deviates
from an exponential decay and the authors assumed that the
events are correlated, denoted as serial clustering. This assumption

and the fact that the occurrence of extreme midlatitude cyclones
cannot be modelled by a Poisson process point to a revisit of the
model underlying extreme event occurrences.

In general, return time distributions of extreme event
occurrences are assumed to be exponential. The stochastic model
underlying extreme events is the Poisson process, which describes
a rare event without correlation and a constant intensity. If
extreme events are determined in time series with correlations,
the return time distribution changes. However, the deviation
from the exponential distribution is not necessarily an indicator
of memory. Consider for example a distribution with two possible
return times, a short time with high probability and a much larger
time with small probability. Such a distribution yields clusters.
The main ingredient is that intermediate return times are rare.

The first analyses proposed a stretched exponential distribution
for long return times in time series with long-term memory
(Bunde et al., 2004). For short times, an independent power law
was suggested. Later on, Blender et al. (2008) found for time
series with long-term memory close to nonstationarity (1/f ) that
their return time distribution is accurately modelled by a Weibull
distribution (WD). The WD combines both the short- and long-
term limits. Furthermore, a model was provided by Santhanam
and Kantz (2008). The Weibull distribution is widely used, for
example as a limit of the extreme event distribution (GEV).
Although the WD is a versatile distribution, physical models are
still rare. A first success in this direction was provided by Jo et al.
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(2011), who found the WD as the asymptotic form for a cascade
process.

To revisit the model underlying extreme events such as
cyclones, we investigate in this study the return time distribution
of extremes in the relative vorticity fields in the lower troposphere
at 850 hPa. The maxima (minima) of the relative vorticity are
a direct measure for the position of cyclones in the Northern
(Southern) Hemisphere and are used to define cyclones (Hodges,
1994). This is analogous to the standard method of detecting lows
by minima in the geopotential height or mean sea-level pressure
(e.g. Blender et al., 1997; Raible et al., 2008; Neu et al., 2013, and
the methods therein). Hence, we do not consider trajectories of
cyclones (from the Lagrangian perspective) but extremes at grid
points, representing the Eulerian point of view.

We apply fractional Poisson processes (FPPs: Laskin, 2003) as a
model for correlated extreme events. FPPs are based on a waiting
time distribution with long-term memory, the Mittag–Leffler
function (ML), which is characterized by an additional parameter
describing the deviation from an ordinary Poisson process. This
function can be approximated by a Weibull distribution (WD)
with a shape parameter corresponding to the parameter of the
ML function. For a unity shape parameter, the relation is exact. A
Weibull distribution (WD) is fitted to the return times of extremes
of the relative vorticity at all grid points. The FPP model allows
derivation of e.g. the variance to mean ratio used in Mailier et al.
(2006) as a measure for the deviation from the Poisson behaviour.
Hence, we are able to compare our analysis based on the Weibull
distribution directly with the clustering found in Mailier et al.
(2006). Furthermore, the deviation from a Poisson process can
be explained by the memory of the time series.

This study is organized as follows. In section 2, FFPs are
introduced and the main properties relevant for the present study
are summarized. The analysis of the ERA interim data and the
fit of the WD to extreme return times is presented in section 3.
Based on the WD shape parameter, the dispersion is determined in
section 4. An analysis of long-term memory yields an independent
estimate of the shape parameter presented in section 5. The results
are summarized and interpreted in section 6.

2. Fractional Poisson processes

A FPP is a stochastic process with long-term memory and a
non-exponential waiting time distribution (Laskin, 2003). In the
present application, the waiting times are identified as return
times of extreme events. This model was suggested to describe the
non-standard distributions found in a variety of complex systems.
Mathematically, the FPP can be considered as a master equation
with a waiting time distribution described by a fractional Poisson
distribution. For the physical reasoning and the mathematical
details, we refer the reader to Laskin (2003). The deviation from
the standard Poisson process is described by a parameter μ, which
is restricted to the range

0 < μ ≤ 1. (1)

For μ = 1, the FPP reduces to the Poisson process with an
exponential waiting time distribution.

The mean of the FPP with intensity ν in the notation of Laskin
(2003) is

nμ = νtμ

�(μ + 1)
, (2)

with the Gamma function �(n + 1) = n!.
The variance is

σ 2
μ = nμ + n2

μ

(
μ�(μ)�(1/2)

22μ−1�(μ + 1/2)
− 1

)
. (3)

The mean of events and their variance are determined by the
intensity ν in a time interval t.
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Figure 1. Weibull distribution for shape parameters k = 0.5, 0.8, 1 (scale λ = 1).
The exact ML function for μ = 1/2 (Eq. (6)) is included for comparison.

The waiting time distribution of the FPP is

ψμ(τ ) = ντμ−1Eμ,μ(−ντμ), (4)

where Eμ,μ is the ML function, which becomes

E1,1(x) = ex (5)

in the limit μ = 1 (for details see Laskin, 2003). For μ = 1/2, the
function is given by

E1/2,1/2(x) = ex2
[1 + erf(x)]. (6)

In general, the ML function is defined by an integral representation
or a corresponding series expansion.

In the present article, an approximation for the ML function
in Eq. (4) is used. The function is simplified in such a way that in
the limit μ = 1 the standard Poisson process is recovered. We do
not use asymptotic small or large time-scale expansions (Bianco
et al., 2007). The most simple approximation of the ML function
is given by the limit μ = 1 using Eq. (5). In this case ψμ(τ )
corresponds to a Weibull distribution (WD) with scale parameter
λ and shape parameter k:

p(t, λ, k) = k

λ

( t

λ

)k−1

e−(t/λ)k
. (7)

In Figure 1, the Weibull distribution is shown for the values
k = 0.5, 0.8 and 1. The WD for k = 0.5 has to be compared
with the distribution given by the ML function for μ = 1/2. In
the analysis below, the shape parameters are in the range 0.5–1,
hence μ = 1/2 is a lower limit. The diagram shows that the WD
represents an acceptable approximation in this case. Compared
with the exponential distribution (k = 1), the WD is skewed for
k < 1, with higher frequencies for very small and very large times.

In the following, the FPP parameter μ is identified as the
Weibull shape parameter k. Since the FPP is valid only in the
range 0 < μ ≤ 1 (Eq. (1)), care has to be taken whether the same
applies to the Weibull shape parameter. In the WD there is no
restriction for k, for example k = 2 is known as the Rayleigh
distribution.

A few artificial snapshots for events with return time
distributions for different shape parameters k are presented in
Figure 2 (the scale parameter is unity in all examples). For the
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Figure 2. Events with return times following a Weibull distribution for different
shape parameters k (scale λ = 1).
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Figure 3. Ratio of stretched exponential and Weibull distribution for exponents
γ = 0.5, 0.8 in Eq. (9) and shape parameters k = 0.48, 0.7085 in Eq. (7), as
indicated (scales T = λ = 1).

values k = 0.5, 0.8 there is enhanced clustering compared with
k = 1, representing a standard Poisson process. The reason is
the skewness of the WD (see Figure 1). Note that there is no
correlation between succeeding return times. In the results below,
parameters in range k ≈ 0.5 up to k ≈ 0.9 are found. For the
higher shape parameter k = 3, which is included for comparison
only, a quasi-regular behaviour is seen.

An essential motivation for the use of the Weibull distribution
is its relevance for long-term correlated data, where the correlation
function decays according to a power law

C(t) ∼ t−γ , (8)

with the correlation exponent γ . Blender et al. (2008) and
Santhanam and Kantz (2008) found that for such data the return
time distribution is given by a WD (Eq. (7)). The WD combines
a power law and the stretched exponential

ps(t) ∼ e−(t/T)γ , (9)

which had been suggested earlier as a distribution for return times
in power-law correlated data (Bunde et al., 2003). The WD is, in
particular, preferable for time series with strong memory with γ
close to zero, i.e. 1/f noise (Blender et al., 2008).

The stretched exponential distribution can be well approxi-
mated by a WD with k ≈ γ for long time-scales. To demonstrate
this, Figure 3 shows the ratios of a stretched exponential distribu-
tion and a WD for γ = 0.5, k = 0.48 and γ = 0.8, k = 0.7985,
respectively. The absolute values are not considered here, since
the short-term behaviour is not included (necessary for normal-
ization).

Therefore, we identify the Weibull shape parameter k as the
correlation exponent γ in Eq. (8):

k ≈ γ. (10)

This relationship is a basis for the present analysis, since it allows
derivation of an independent measure for the deviation from
standard Poisson processes by a memory analysis.

The Weibull distribution can be considered as an extension
of a physical decay time-scale analysis. The additional shape
parameter describes a skewness of the exponential decay. Since
the WD is motivated by physical reasoning, we do not try to
apply significance tests to find whether another two-parameter
distribution is more apt than WD. An advantage of the WD is
that it is a versatile and well-known distribution. The parameters
and their uncertainty are estimated by a Maximum Likelihood
Estimation (MLE) fit using the statistical package ‘fitdistr’ of r (R
Core Team, 2012).

3. Return time distribution

The data analyzed in this study are ERA interim reanalyses with a
resolution of 1.5◦ during boreal winter (DJF) and summer (JJA)
seasons. The return times of cyclonic events are determined in

relative vorticity on the 850 hPa pressure level, including all 6 h
time steps. The time period ranges from 1 January 1980 to 28
February 2013. The first winter consists of Jan–Feb data only. The
standard deviation of the vorticity is concentrated in the storm
tracks of the Northern and Southern Hemispheres during boreal
(DJF) and austral winter (JJA; Figure 4).

The extremes are determined as exceedances of the 99%
quantile, which is adjusted separately for each grid point. Thus, the
method is a peak-over-threshold (POT) and respects differences
between regions. In the Southern Hemisphere, minima of the
relative vorticity are considered. Return times are determined
for all grid points and a Weibull distribution (WD) is fitted to
determine the scale and shape parameters λ and k by an MLE
algorithm. There are marked differences in scale between the
polar regions, the midlatitudes and the Tropics (Figure 5). The
largest scales appear clearly in both midlatitudes, with higher
values in the SH. The uncertainty in the scales given by the MLE
fit is of the order of 25%.

A first noteworthy outcome is that all shape parameters
(Figure 6) detected are below one, hence the requirement that
Eq. (1) is also satisfied for the Weibull shape parameter. The
uncertainty in the shape parameters is ≈ 0.04 (by MLE). Thus
the data do not contradict the identification of k = μ. This result
allows the interpretation of the extreme events in the vorticity
as a fractional Poisson process. The high values k ≈ 0.7–0.9 in
the genesis regions of the midlatitude storm tracks are closest
to a Poisson process. If deviations from this are interpreted as
correlations, these areas have the weakest memory. Low values
appear in the Tropics, where k ≈ 0.5.

Using lower quantiles in estimating extreme 850 hPa relative
vorticity leads to changes in the shape parameter (not shown).
Low values (≈ 0.4) increase while high values (≈ 0.8) decrease;
hence the shape parameters tend to the mean.

4. Dispersion

To describe the deviation of cyclone occurrence from a standard
Poisson process, Mailier et al. (2006) use the dispersion

	 = σ 2
n

n̄
− 1. (11)

The dispersion was determined by the variances σ 2
n and the means

n̄ of cyclone passages on a monthly scale. In a Poisson process,
the parameter vanishes due to the equality of the mean and
the variance. For 	 ≈ 0, cyclones occur according to a Poisson
process (see Figure 2 for the shape parameter k = 1). Positive 	
are interpreted as serial clustering. For example, for cyclones in
the exit regions of the North Atlantic storm tracks, values of 0.5
are found (indicated by a percentage of 50 in Mailier et al., 2006).

With the mean and variance of FPPs in Eqs (2) and (3), the
dispersion parameter can be expanded for small deviations 1 − μ:

	 ≈ νt(1 − μ). (12)

The leading order of the dispersion is linear in the parameter
μ and vanishes for μ = 1, the exponential distribution. The
dispersion depends on the mean νt and hence on the time-scale
t, due to the squared mean in the FPP variance (Eq. (3)). The
mean of the extreme events is determined by the 99% quantile
threshold and the duration t; hence, for 1 month (as in Mailier
et al., 2006), νt ≈ 1.2. Due to the fixed quantile threshold, this
mean is constant in our analysis. Thus the shape parameter k = μ
can be used for a comparison of serial correlations of Lagrangian
cyclones in Mailier et al. (2006).

Here we present results for the factor 	/νt = 1 − k to estimate
the dispersion based on the shape parameter (Figure 7). In the
genesis regions, the lowest values, 1 − k ≈ 0.2–0.3, are found.
Mailier et al. (2006) present values close to zero. Cyclogenesis
behaves nearly like an uncorrelated Poisson process (rare events)
with an exponential return time distribution.
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252 R. Blender et al.

(a)

(b)

Figure 4. Standard deviation of the vorticity in (a) DJF and (b) JJA (10−5 s−1).

The dispersion increases at the exits of the storm tracks, with
	/νt = 1 − k ≈ 0.4 (for example close to Europe). This has to be
compared with 	 ≈ 0.5 in Mailier et al. (2006). In these regions,
non-exponential return time distributions and serial correlations
are identified.

During summer, the dispersion indicates serial correlation
throughout the storm tracks of the Northern Hemisphere (Figure
7(a)). Note that the extremes occur on shorter time-scales, as
indicated by λ (Figure 5(a)).

The results suggest a tentative identification of cyclogenetic
regions on the basis of an analysis of the return time distribution.
If genesis regions of storms are identified by low values of
dispersion (as in the Northern Hemispheric winter: Mailier et al.,
2006), sources of cyclones can be identified in the boreal summer
(Figure 7(a)). Examples with maxima are the Northern American
continent (the Great Plains) and tropical East and West Africa.
Noteworthy is a maximum in the western (Spain) but not in the
eastern Mediterranean.

The Southern Hemisphere during austral winter (JJA) reveals
a distinct non homogenous pattern of dispersion (Figure 7). An
outstanding cyclogenetic region can be identified at 30◦E–150◦E,
40◦S–50◦S, as in Simmonds and Keay (2000).

5. Memory

Fractional Poisson processes are associated with long-term
memory. Long-term memory is a theoretical concept, which
is limited in observations to finite time intervals. Here a lower
limit is given by the upper time-scale of synoptic eddies, for which
5 days is chosen. An upper limit is chosen as 30 days, to remain
below the seasonal time-scale.

Short-term memory has a finite time-scale and is described
by an exponential decay. In the present data, such a decay is
found roughly up to 5 days. The events for k = 0.5 in Figure
2 can be used to visualize both time-scales: the duration of a

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 249–257 (2015)
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(a)

(b)

Figure 5. Weibull scale parameter in (a) DJF and (b) JJA (days).

cluster corresponds to the lower limit of 5 days, while the cluster
separation is given by the upper limit of 30 days.

Long-term memory has no time-scale and the correlation
function is not integrable (Fraedrich and Blender, 2003).
Mathematically this is formulated by a power-law decay of the
correlation function with a correlation exponent γ (Eq. (8)).
The decay of the correlation function is related to the scaling
of the power spectrum, S(f ) ∼ f −β with frequencies f , by the
relationship β = 1 − γ for the spectral exponent β .

A method to retrieve long-term memory in stationary time
series is given by the detrended fluctuation analysis (DFA: Peng et
al., 1994; Fraedrich and Blender, 2003). This method determines
the fluctuation function, F(t) ∼ tα , with the fluctuation exponent
α; the three exponents are related by β = 2α − 1 = 1 − γ .

In the present analysis, the fluctuation function shows a power
law beyond the short term memory, hence beyond several days.
A power law has also been observed by Tsonis et al. (1999) for the
500 hPa geopotential height variability. An upper limit cannot be
determined, since the seasonal scale provides a break. Therefore,

the scaling exponent α is fitted in the time interval 5–30 days.
Values of the exponent β are in the range 0–0.5 (not shown).
Small exponents are found in the midlatitudes, while β ≈ 0.5
dominates the Tropics.

Based on the identification of Eq. (10), it is possible to
estimate the shape parameter k of the WD by a memory analysis,
kLTM = γ = 2 − 2α (Figure 8). The shape parameter kLTM shows
low values below 0.4 in a few areas, an intermediate range 0.4–0.8
in the largest part of the Tropics and a high range 0.8–1 in the
midlatitudes. The highest values are found close to the genesis
regions of the cyclone tracks in the Northern Hemisphere during
DJF and in the Southern Hemispheric storm track during JJA.
A large area with high kLTM on the North American continent
during winter is outstanding. The physical reason is low memory
in the time series (β ≈ 0, or white noise). The exit regions
of the midlatitude storm tracks in the Northern Hemisphere are
dominated by low and intermediate values of the shape parameter
kLTM, highlighting the existence of long-term memory and thus
the potential of increased predictability in these regions.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 249–257 (2015)
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(a)

(b)

Figure 6. Weibull shape parameter k in (a) DJF and (b) JJA.

The global behaviour follows the Weibull shape parameter
k (Figure 6). Clearly, the agreement is limited, since several
approximations enter this analysis, for example the use of
a threshold and the fit of the fluctuation function in a
finite time interval (while an ideal fractional Poisson process
assumes long-term memory on all time-scales). Furthermore, the
approximation of the stretched exponential parameter with the
Weibull shape parameter is coarse, with an uncertainty of ≈ 0.1.
Nevertheless, there is sufficient correspondence supporting the
hypothesis that the memory in fractional Poisson processes is
relevant for the Weibull shape parameter and the dispersion in
the recurrence of extreme vorticity events.

6. Summary and conclusions

The aim of the present study is to assess serial correlations in
midlatitude storms. The high relevance of such correlations is
given by the damage caused if the natural environment or social

institutions do not have time to recover. Serial correlations have
been found previously for midlatitude cyclones in the Northen
Hemispheric winter. The findings are characterized in terms
of a dispersion parameter, which is defined as the deviation
from the equality of variance and means characterizing Poisson
processes. In the presence of serial correlations, the assumption
of exponentially distributed return times is not valid.

In the present study, extremes of vorticity are analyzed in
an Eulerian framework. We use return times of extremes in
vorticity in ERA interim reanalysis data at 1.5◦ resolution
from 1980–2013. The analysis encompasses winter and summer
seasons and considers the Northern and Southern Hemispheres.
An advantage is that the amount of available data for analysis is
substantially larger than for cyclone trajectories. The results show
that the Eulerian analysis is also relevant for midlatitude cyclones.

The new step is to consider extreme events as fractional Poisson
processes. These processes are based on long-term memory and
yield a non-exponential return time distribution given by the
ML function. The deviation from standard Poisson processes is

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 249–257 (2015)
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(a)

(b)

Figure 7. Dispersion 	/νt = 1 − k based on the Weibull shape parameter k in (a) DJF and (b) JJA.

described by a single parameter μ, which becomes μ = 1 for the
exponential distribution.

The ML function is approximated by the Weibull distribution
(WD). The reason for this is twofold: firstly, the WD is a versatile
distribution with a wide range of applications. The fit is easily
performed in available software routines (here r) using the
standard MLE approach. A second and equally important reason
is that the WD describes the return time statistics in time series
with long-term memory.

The shape parameters are below one, which is a condition
for interpretation as the FPP parameter. The scale and
the shape parameters distinguish between the Tropics and
midlatitudes, but also the entrance and exit regions of midlatitude
storms.

In the cyclogenetic regions of midlatitude storm tracks, the
shape parameter is highest (≈ 0.8), indicating uncorrelated
cyclone development. In the exit regions of the storm tracks,
the shape parameter reduces to about 0.5, indicating that the
extremes are serially correlated. The absence of correlation in the

cyclogenetic regions suggests an identification of these regions by
a pure statistical analysis.

The shape parameter determines the dispersion index, which
has been used to identify the deviations from standard exponential
return times and an underlying Poisson process. The results
confirm results for the dispersion determined by cyclones almost
quantitatively. Thus, the results reconcile the Eulerian and
Lagrangian approaches.

A main finding is that the memory in the vorticity time series
determines the shape parameter of the WD. A unified view of
correlated extremes based on different concepts emerges:

• return time distribution;
• dispersion; and
• memory.

All three aspects use the Weibull shape parameter as a single
identifier. The three measures are equivalent characterizations of
fractional Poisson processes.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 249–257 (2015)
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(a)

(b)

Figure 8. Shape parameter predicted by long-term memory analysis, kLTM = 1 − β , where β is the spectral exponent for (a) DJF and (b) JJA.

The serial correlation in the vorticity time series is transferred
to the correlation of extremes and allows predictability. For
power-law correlated data (Eq. (8)), Bunde et al. (2004) found
correlations of successive return times with a similar power
law. Blender et al. (2008) observed that the correlation of the
return times is distinctly lower than the original time series
in data with strong memory, corresponding to k = 0 (close to
nonstationarity).
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