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SUMMARY

Monthly mean temperature anomalies in the regions England, Germany and Scandinavia are predicted by lin-
ear regression. Two predictors are selected from monthly mean teleconnection indices, North Atlantic sea surface
temperatures (SSTs) projected on the � rst three empirical orthogonal functions (EOFs), and European climate
variables (temperature, sea level pressure, and precipitation) averaged in the three predictand regions. The predic-
tors are chosen separately for each month according to their correlation with the predictand. Observations from
1870–1999 and data from a 600-year integration with the coupled atmosphere–ocean general-circulation model
ECHAM/HOPE are used to assess and compare the forecast skill. The skill is measured by the anomaly correlation
coef� cient (ACC) and the explained variance (EV).

For a one-month lead time the ACC for observations is up to 0:6 (EV ¼ 35%) for February–March and
August–September in the three regions. The skill for the simulated data is lower (maximum values at ACC ¼ 0:5,
EV ¼ 25%) and its seasonal dependence differs from that of the observations. Main predictors are the preceding
temperatures in the predictand region. Using segments of the simulated data the spread of skill is estimated as 0.1
in ACC (10% in EV).

For lead times up to one year there is a small ACC (0.3–0.4) in the observations for England (spring and late
summer), and Scandinavia (August–September), but none in Germany. The observed two-month mean England
temperature in spring and late summer can be predicted with six months’ lead time for 1971–96 with 1870–1969
as a training set, selecting the � rst two North Atlantic SST EOF coef� cients as predictors. A leave-two-out cross-
validation in 1870–1999 shows a distinct reduction of skill. In simulated data, the skill beyond one month is
negligible compared with the observations.
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1. INTRODUCTION

Seasonal forecasting in Europe has received renewed interest in recent years
(Carson 1998; Goddard et al. 2001). Whereas the tropical Paci� c climate has useful
predictive skill at forecast lead times of up to one year (Latif et al. 1998) and the seasonal
rainfall in Africa can be successfully predicted using historical sea surface temperature
(SST) anomalies (Mutai et al. 1998), the skills in Europe are only moderate.

There are two basic approaches for long-range climate prediction: dynamical
comprehensive atmosphere–ocean general-circulation models (AOGCMs) for ensem-
ble prediction (Anderson et al. 1999), and empirical statistical models. Although it is
anticipated that dynamical models may become superior to empirical methods in future,
empirical forecasts are still able to compete. A major advantage is that they require
orders of magnitude less computations than coupled models. Moreover, these simple
models can help to identify causes and relations within the climate system, and reveal
de� ciencies of complex dynamical models. Furthermore, since combinations of inde-
pendent forecasts of numerical weather prediction and statistical models improve the
short-range predictions considerably (Fraedrich and Leslie 1987; Raible et al. 1999), it
is expected that this may also be applicable on longer time-scales (Fraedrich and Smith
1989; Sarda et al. 1996).
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Dynamical multi-model ensemble integrations forced by observed SSTs in 1979–93
have been analysed within PROVOST (PRediction Of climate Variations On Seasonal
to interannual Time-scales). The skill in the midlatitudes shows strong seasonality with
maximum values in late winter and early spring (Doblas-Reyes et al. 2000), and nearly
no annual cycle over the tropics (Pavan and Doblas-Reyes 2000). It has been suggested
that the European climate is dif� cult to predict due to the intense synoptic variability
over the North Atlantic (Palmer and Anderson 1994). Over northern Europe, at the exit
region of the Atlantic storm-track, several GCMs have still substantial systematic errors
(Pavan and Doblas-Reyes 2000).

Long-rangeforecasting with empirical techniques has a long history (Rossby 1941);
it is mostly based on linear regression (Barnett and Preisendorfer 1987; Barnston and
Smith 1996; Colman 1997; Johansson et al. 1998; Colman and Davey 1999) or on
analogue techniques (Bergen and Harnack 1982; Livezey et al. 1994; van den Dool
1994). Recently, neural network models (Hsieh and Tang 1998; Tang et al. 2000),
space–time principal components obtained from the multichannel singular-spectrum
analysis technique (Vautard et al. 1999), and principal prediction patterns (Dorn and
von Storch 1999) have been used for prediction.

The main potential predictors for the European temperature are given by the large-
scale circulation patterns (Rossby 1941; Hurrell 1995), the advection of North Atlantic
SST anomalies (Sutton and Allen 1997) and the memory of the European climate itself.
The circulation anomalies can be characterized by teleconnection indices (Wallace and
Gutzler 1981). The North Atlantic Oscillation (NAO, Defant 1924), de� ned as the
pressure difference between the Icelandic low and the Azores high, is the most relevant
index for Europe. The North Paci� c pattern (NP, Trenberth and Hurrell 1994) describes
the intensity of the Aleutian trough. Finally, the Southern Oscillation Index (SOI)
impacts the extratropical circulation (Fraedrich 1994; Sickmöller et al. 2000; Raible
et al. 2001). These teleconnection indices (or the occurrence of planetary interannual
oscillations) are often linked to anomalous values of SST and land surface properties
(Pavan and Doblas-Reyes 2000).

The predictability of the seasonal temperature in northern Europe during 1955–93
has been analysed by Johansson et al. (1998). In the regression based on canonical
correlation analysis, the 700 hPa geopotential height north of 20BN, the quasi-global
surface temperature, and the predictand itself lead to skill mainly in winter and a
weaker maximum in summer. The geopotential height with an NAO-like pattern is the
most important predictor in winter, superior to global and local SST and surface air
temperature. The area-averaged cross-validated anomaly correlation coef� cient (ACC)
between observations and forecasts has maximum values above 0.45 in an eastward
oriented belt stretching from south-east Sweden towards Moscow. Predictability of the
central England temperature in summer has been found by Colman (1997) and Colman
and Davey (1999). The forecasts during 1946–95 and 1971–95 use the North Atlantic
SST as predictor with a lead time of six months.

The aim of this paper is to study the predictability for observed (1870–1999) and
simulated (600 years) monthly mean European temperature anomalies for lead times
up to one year. A major advantage of the simulation is the length of the time series
which allows one to compare different sampling approaches, and, furthermore, yields an
estimate for the spread of the skill. The forecast within the simulated data is completely
independent from the observed data. The method is a multivariate linear regression with
an adaptive choice of predictors. The available set of predictors are the monthly mean
teleconnection indices, North Atlantic SST anomalies, and European climate variables.
Out of this predictor set, the two time series showing the highest correlations with
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the predictand are selected. Although mainly local temperatures are selected for the
one-month lead time, this changes for longer lead times. Long lead-time forecasts are
performed to detect the limits of the predictability and to compare the model simulation
with the observations.

The paper is organized as follows. The observational data, the simulations and the
data processing are described in section 2. The forecast method and the veri� cation
measures are presented in section 3. The results for the predictability of observed and
simulated data with different lead times and for different validation approaches are
presented in section 4. Finally, in section 5, the results are summarized and discussed.

2. DATA

The empirical prediction scheme is applied to observed as well as simulated
climatological data. To permit a comparison of both datasets, the simulated time series
are de� ned in similar geographical regions as the observations. In the sections below, the
predictands and the predictors, the data sources and the data processing are described.

(a) Predictands and predictors
About 130 years of monthly mean observed and 600 years of simulated data

are available for model building and veri� cation of the empirical prediction scheme.
Predictands and predictors are monthly mean anomalies which are linearly detrended
and standardized separately for each month.

The predictands are the monthly temperature anomalies (deviations from the long-
term monthly mean) averaged in the regions England, Germany, and Scandinavia.
The predictor data consist of three groups: teleconnection indices, North Atlantic
SST anomalies, and European climate variables. The teleconnection indices provide
information about the global circulation. These comprise the NAO, the NP index,
and the SOI, determined either at stations or as averages of four model grid points.
The North Atlantic SST anomalies are included as projections (principal components)
of the anomalies on the � rst three empirical orthogonal functions (EOFs) in the North
Atlantic region (20–65BN). The European climate variables are monthly surface data for
temperature, sea level pressure (SLP) and precipitation, averaged in the three predictand
regions.

(b) Observations
The observed monthly mean data are available for 1870–1999 with a few missing

values for NP, NAO, SOI, and precipitation. The climate indices are available from the
Climate and Global Dynamical Division¤. The NAO index is based on the difference
of normalized pressure between Lisbon/Portugal and Stykkisholmur/Iceland (Hurrell
1995). The NP index is the area-weighted SLP over the region 30–65BN, 160BE–140BW
(Trenberth and Hurrell 1994). The SOI is derived from the normalized SLP in Tahiti and
Darwin (Trenberth 1984).

The North Atlantic SST, European temperature, SLP, and precipitation are available
from the Climate Research Unit† on regular grids. The monthly SST anomalies (Parker
et al. 1995) are projected on the � rst three EOFs in the North Atlantic region (20–65BN).
The temperature (Jones et al. 1997), the SLP (Jones 1987) and the precipitation (Hulme
1992) are averaged over the three regions England, Germany, and Scandinavia.

¤ http://www.cgd.ucar.edu
† http://www.cru.uea.ac.uk/cru/data/

http://www.cgd.ucar.eduhttp
http://www.cgd.ucar.eduhttp
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(c) Simulation
The simulated data are from a 600-year present-day climate integration (Legutke

and Voss 1999; Raible et al. 2001) with an AOGCM. The atmosphere is simulated
by the European Centre model of Hamburg (ECHAM-4) using triangular truncation
at wave number 30 (T30), corresponding to 3:75B £ 3:75B resolution, and 19 hybrid
sigma-pressure levels. The ocean is simulated by the Hamburg Ocean model in Primitive
Equations (HOPE) simpli� ed by the Boussinesq approximation and formulated on a
Gaussian T42 Arakawa-E grid. The horizontal resolution is approximately 2:8B £ 2:8B

which is meridionally increased in the tropics up to 0:5B . In the vertical the model
consists of 20 irregularly distributed levels with 10 levels in the � rst 300 m.

The atmospheric component with a T30 truncation captures the observed storm-
track variability (Stendel and Roeckner 1998). The dominant modes of the northern
hemisphere, the NAO and the Paci� c North America pattern, are simulated adequately
and represent the observed variability (Raible et al. 2001).

The teleconnection indices for the model simulation are derived using the normal-
ized 1000 hPa geopotential height averaged over four model grid points near the loca-
tions of the station data (see subsection (b)). The SST anomalies are projected on the � rst
three EOFs in the North Atlantic region (20–65BN). The EOFs are determined separately
for observations and simulations but the patterns are quite similar. The temperature, the
SLP and the precipitation are grid-point averages in the regions England, Germany, and
Scandinavia.

3. FORECAST AND EVALUATION

For the empirical prediction scheme a linear regression method is employed.
This technique assumes linear relationships and stationarity of the time series. Nonlinear
relationships, which are observed for the El Niño Southern Oscillation, require other,
less parsimonious methods (note that the SOI time series is included as a possible linear
predictor). Nonstationary time series with different phases and different interrelations
would require much longer time series than the available observations to inhibit a lack
of signi� cance. A short description of the forecast technique as well as the measures for
model veri� cation are presented below.

(a) Forecasting by linear regression
The linear regression is the basis of the forecast scheme. For each calendar month

and predictand, the prediction is performed separately. The predictors are denoted
as Xi¯ , with the annual time step i D 1; : : : ; N , where N denotes the number of years,
and the variable ¯ D 1; : : : ; M ; M being the number of predictors. The forecast of a
single predictand is Fi , and the signal Si is the given time series to be predicted, either
given by observations or model data. The forecasts are linear combinations obtained by

Fi D
MX

¯D1

Xi¯A¯ ; i D 1; : : : ; N (1)

with coef� cients A¯ ; in matrix notation this is F D XA. The differences between
the signals and the forecasts are the errors E D S ¡ XA. A minimum of the squared
error E>E (where > is transpose) is obtained for the coef� cients A D ¡1X>S with

D X>X, which is proportional to the predictor covariance matrix. For example, for
one-month lead time, the predictors Xi¯ are past signals shifted by one month to the
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forecast time i. Thus, the last predictor and the predictands are adjacent. The number N
of years depends on the dataset and the sampling. The predictors are selected according
to their correlations with the predictand in the training (learn) set. Due to correlations
between the predictor time series, the over-� tting problem occurs, and, after an increase
for small predictor numbers, the skill decreases for large numbers. The number M of
predictors with an optimal skill is about two for the observed data and two or three
for the simulated data. For simplicity, this number is � xed to M D 2 throughout this
investigation.

(b) Accuracy, skill and sampling
The relative accuracy of the forecasts is measured by two skill scores, the temporal

ACC, and the explained variance (EV, Wilks 1995).

ACC D hF Si.hF 2ihS2i/¡1=2; EV D 1 ¡ MSE=hS2i (2)

where S are the signals, F the forecasts, and h: : : i denotes the time mean of the
time series. MSE is the squared error of the forecast, MSE D h.F ¡ S/2i. The data are
centred, hSi D hF i D 0. EV vanishes if the method is equivalent to the climate forecast
(F D 0) and becomes unity for a perfect forecast. EV is positive if the regression model
is better than the climate reference model.

The skill is estimated using different sampling approaches. For small samples, the
so-called leave-one-out cross-validation (Michaelsen 1987) is appropriate and has been
applied in a large number of statistical forecast studies (Barnston 1994). The skill is
determined by forecasts for every year using all remaining years as the training set.
For the observations this method is used and extended to leave-two-out cross-validation
(training without the forecast and the preceding year), thus N D 127 in Eq. (1).

The skill for the simulated dataset (600 years) is evaluated using three different
samplings:

² For a direct comparison with the observations, the 600 years are partitioned in
six 100-year segments which are evaluated separately by leave-two-out cross-
validation.

² The total 600-year time interval is analysed with leave-two-out cross-validation.
² All six 100-year segments are used as training sets with the remaining � ve 100-

year segments as forecast (test) sets. This yields 30 individual results which are
used to determine the mean and the standard deviation of the skill.

In a case-study, the skill for the observed England two-month mean temperature forecast
for six months’ lead time is estimated by two different samplings, a leave-two-out cross-
validation and a two sub-sample validation by separation into learn (1870–1969) and test
set (1971–96).

4. RESULTS

The regression forecast is applied to observed and simulated temperature anomalies
in the three regions England, Germany, and Scandinavia. For every month, the � rst two
predictors with maximal correlation with the predictand are selected. The annual cycles
of accuracy and skill of the temperature-anomaly forecasts are presented using the ACC
and the EV. Since the number N of observations for a � xed month is rather small, the
forecast skill is determined by a leave-two-out cross-validation. The simulated data skill
is evaluated using three different samplings (details in section 3(b)).
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First, the regression model is applied to data with one-month lead time. Observa-
tions and simulations are compared and the distribution of the skill in the simulations
is determined. Second, forecasts with lead times up to one year are performed for ob-
servations and simulations. In a case-study, the skill for the two-month mean England
temperature with six months’ lead time is considered.

(a) Observations, one-month lead time
In the observed dataset the temperature predictability for one-month lead time is

determined in the regions England, Germany and Scandinavia. The skill shows a sea-
sonal cycle simultaneously in England, Germany, and Scandinavia (Figs. 1(a)–(c) re-
spectively) with maximum values in February–March and August–September (ACC ¼
0:5–0.6, and EV ¼ 30–35%). The decay during April–June and November is a well-
known property and has been observed in several studies (Carson 1998; Johansson et al.
1998); it can be interpreted as a reorganization of the atmospheric circulation in spring
and autumn. The � rst, dominant predictors for this forecast are the preceding temper-
atures in the corresponding regions. The second predictors are mostly other European
temperatures; however, in some cases replaced by the SST (England winter and sum-
mer), SLP (England autumn), and NAO (Scandinavia winter).

(b) Simulations, one-month lead time
For a comparison with the observations, the 600 years simulated data are � rst split in

six 100-year segments which are analysed separately by leave-two-out cross-validation.
This gives a � rst hint to the skill–variability. Then, the total 600-year time range is
subjected to a leave-two-out cross-validation to obtain the most signi� cant predictability
estimate. Finally, an intercomparison of all 100-year segments used as independent
training and test sets is performed to estimate the spread of the skill.

The skill, estimated by leave-two-out cross-validation in each segment, is shown in
Figs. 1(d)–(f) for the regions England, Germany and Scandinavia respectively. Since the
cross-validation and the choice of predictors are performed independently for all six seg-
ments, the six curves build an ensemble which can be compared with the observational
skill in Figs. 1(a)–(c). The simulated ACC is 0.25–0.5, and EV is 5–25%. Since the
spread within the six curves is about 0:1 in the ACC (10% in EV) a clear annual cycle
can be attributed to the mean skill in all regions with maximum values in April–May
(Germany and Scandinavia) and August (England and Scandinavia). The � rst predictor
is always the regional temperature. The second predictor is the temperature in a different
European region, besides SLP (England) and NAO (Scandinavia in spring).

To use all available data in the prediction, a leave-two-out cross-validation is ap-
plied to the whole 600 years. Figures 2(a)–(c) show the ACC and the EV in this forecast
for the three regions England, Germany and Scandinavia respectively. This result is sim-
ilar to the mean of the six independent ensembles (100-year forecasts) in Figs. 1(d)–(f)).

To estimate the variability of the skill within the simulations, a sub-sample cross-
validation is performed which uses all six 100-year segments as training and all the
remaining � ve 100-year segments as independent forecast (test) sets. This leads to an
ensemble of 30 forecasts whose mean and standard deviation are shown in Figs. 2(d)–
(f) for the regions England, Germany and Scandinavia respectively. The total height
of the error bars, 4¾ , where ¾ is the standard deviation, includes approximately 95%
(a Gaussian distribution is roughly provided). The ensemble means show the same
behaviour as the 600-year cross-validation skills in the left panel and the 100-year sub-
sample cross-validation in Figs. 1(d)–(f). The error-bar widths exclude a constant skill
and indicate a distinct annual cycle.
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Figure 1. Forecast skill for observations and simulations using leave-two-out cross-validation in three regions.
Left panel ((a)–(c)): observations; right panel ((d)–(f)): simulations, six 100-year segments (six curves). Anomaly
correlation coef� cients (ACCs) and explained variances (EVs) are given for England ((a) and (d)), Germany

((b) and (e)), and Scandinavia ((c) and (f)).
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Figure 2. Forecast skill for the 600-year simulation with two sampling methods in three regions. Left panel
((a)–(c)): leave-two-out cross-validation for the total range. Right panel ((d)–(f)): subsample cross-validation
using all 100-year learn and all 100-year test periods leading to 30 combinations. The curves show means and
error bars with total height 4¾ (¾ D standard deviation) including 95%. Anomaly correlation coef� cients (ACCs)
and explained variances (EVs) are given for England ((a) and (d)), Germany ((b) and (e)), and Scandinavia

((c) and (f)).
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Figure 3. Temperature anomalies in England during August: (a) observation and forecast; and (b) simulation
and forecast, only the � rst 130 years are shown.

For a comparison of the skills for observed and simulated data it is assumed that
the observed and simulated spread is similar. The selected predictors are nearly the same
in observations and model simulations but the annual cycle of skill for the GCM data
(Figs. 2(d)–(f)) deviates from the observed one with its maximum in February–March
and August–September (Figs. 2(a)–(c)). Main differences are the low skill in late winter
and early spring in all three regions. Furthermore, the late summer skill maximum in
Germany is not reproduced in the model simulation.

As an example, the forecast of the observed and simulated England temperature in
August with one-month lead time is presented (Figs. 3(a) and (b)). The observed time
series correspond to ACC ¼ 0:6 (see Fig. 1(a)). The forecast of the simulated data is
shown in Fig. 3(b) with ACC ¼ 0:5 (see Fig. 2(a)). The displayed range is restricted to
the � rst 130 years. Note that the GCM simulation uses an interactive ocean model and
is not forced by the observed SST; therefore, there is no year-to-year correspondence of
the observed and simulated anomalies.

(c) Lead time 1–12 months
In this section, the forecast for the monthly mean temperature is extended to lead

times up to one year. Figure 4 displays the ACC for the observations (Figs. 4(a)–(c)) and
simulations (Figs. 4(d)–(f)). The patterns for one-month lead time correspond to the left
panels of Figs. 1 and 2. The thresholds for a 99% signi� cance of correlation coef� cients
with N degrees of freedom are r D 0:2 (N D 130) and r D 0:1 (N D 600). Note that the
signi� cance test for correlations and the level for a useful prediction represent different
aspects, whereas r D 0:2 might be a signi� cant correlation, it is below a useful prediction
skill which is considered to be above 0:4.
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Figure 4. Anomaly correlation coef� cient (ACC) for the forecast of monthly temperatures for 1 to 12 months
lead time obtained by leave-two-out cross-validation. Left panel ((a)–(c)): observations, 1870–1999; right panel
((d)–(f)): simulations, 600-year; in England ((a) and (d)), Germany ((b) and (e)), and Scandinavia ((c) and (f)).

ACC levels are 0.2 ( ), 0.3 (©), and 0.4 (� ).

Observed England temperature shows small skill (ACC > 0:3) up to six months’
lead time in March–May and July–August where SST (second or third EOF) and
England or Scandinavian temperature are selected as predictors. Germany reveals very
weak ACC. Scandinavia hints to long lead-time predictability in late summer, as in
England, however, mainly forecasted with the local temperature and different secondary
predictors with weak contributions (for example the SOI and the SST EOFs). The ACC
for the April forecast is based on the local temperature; NAO contributes for 3–4 months
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Figure 5. Skill for the observed England two-monthly mean temperature forecast using two-monthly mean
predictors six months before. Anomaly correlation coef� cients (ACCs) and explained variances (EVs) are
obtained for (a) leave-two-out cross-validation in 1870–1999, and (b) forecast range 1971–96 (test) using the
training range 1870–1969 (learn). The two-monthly mean is shown at the 2nd month, e.g. 8 is the July–August

mean.

lead time. There is no winter skill in Scandinavia for longer lead times. The skill for the
forecasts of the two-monthly mean temperature follows a similar behaviour (not shown).

The maximum in July–August for the England temperature has been found by
Colman (1997) with higher ACC values; this is investigated further later. The skill
during March–May for lead times up to 9 months appears to be new.

For simulated data the forecast skill for longer lead times (Figs. 4(d)–(f)) is
considerably lower than in the observations (Figs. 4(a)–(c)). Furthermore, the seasonal
dependence of signi� cant skill (ACC > 0:2) in simulations does not coincide with the
observations. Obviously, the AOGCM is not able to simulate the observed intra-annual
memory of the climate system.

(d ) Two-monthly mean England temperature, six months’ lead time
The observed two-monthly mean England temperature is predicted with six months’

lead time. To validate the forecast skill two different samplings are applied. A leave-
two-out forecast during the whole observed dataset, 1870–1999, shows weak maxi-
mum values (ACC around 0.3) in spring and late summer (Fig. 5(a)). In a second
approach, the forecast for 1971–96 is trained in 1870–1969. The skill in Fig. 5(b)
shows two distinct maxima, a � rst during winter and spring (ACC ¼ 0:4), and a sec-
ond for August–September (ACC ¼ 0:5). It is noteworthy that throughout the year the
dominant predictor is the coef� cient of the � rst EOF of the SST anomaly. The second
predictor varies during the beginning of the year but remains � xed to the second EOF
coef� cient from June to December. A comparable prediction study by Colman (1997)
and Colman and Davey (1999) shows a high skill for the forecast of the England sum-
mer temperature (July–August mean) using the preceding winter North Atlantic SST
as predictor. The comparison of the two sub-sample validations with the leave-two-
out cross-validation demonstrates that the skill strongly depends on the forecast period.
Further inspection shows that the skill for the latter sampling is mainly obtained by fore-
casts during the period 1960–99. This prediction study is also applied to simulated data
for two-month mean England temperature and predictors with six months’ lead time.
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The leave-two-out cross-validation reveals no skill (ACC < 0:2) during the whole year
(not shown).

5. SUMMARY AND DISCUSSION

This study applies a linear regression to forecast monthly mean temperature in
the three regions England, Germany, and Scandinavia with lead times up to one year.
In a case-study, the England temperature is predicted with a lead time of six months.
The forecast uses observations in 1870–1999 and model data from a 600-year control
simulation of a coupled atmosphere–ocean GCM. Note that the AOGCM is solely used
to produce a long independent dataset and that the forecasts are performed by the empir-
ical linear regression, separately within both datasets. Predictors are teleconnection in-
dices (NAO, NP, SOI), North Atlantic SST anomalies projected on the � rst three EOFs,
and the climate variables (temperature, sea level pressure, and precipitation) in the three
predictand regions. The empirical method selects the two predictors with the largest
predictand correlation.

A new aspect of the present study is the use of data simulated by an AOGCM in an
empirical forecast. Due to the long interval of 600 years, a more reliable forecast and
evaluation of the regression model should be possible. The datasets in observations and
simulations are prepared to overlap geographically as much as possible and to contain
similar climatological information.

For one-month lead time, observations show skill maxima during spring and late
summer in all three regions with ACC ¼ 0:6; the most relevant predictor is the preceding
temperature in the respective region. Due to the restricted length of these data, the skill
is obtained by leave-two-out cross-validation. The skill within the simulated data is
estimated using three different sampling and validation procedures: (i) by leave-two-
out cross-validation in six 100-year segments, (ii) by leave-two-out cross-validation in
the total 600 years’ range, and (iii) by a partition in six 100-year training sets using
all remaining 100 years as forecast sets. The latter partitioning yields estimates for
the standard deviation of the skill. This result supports a distinct annual cycle which
differs from that found in the observations. The skill in the simulated data is up to
ACC ¼ 0:5 and in general lower than in the observations. In particular, the observed
skill for England during spring, the spring and late summer skill in Germany, and the
late winter skill in Scandinavia are not found in the simulation.

Regarding the predictor sets, there is little difference between observations and sim-
ulations, mainly in England where the SST is replaced by various other predictors (SLP,
NAO, and precipitation) in the simulated data. NP and SOI are of minor importance in
observations and simulation. Therefore, discrepancies between the skill in observations
and simulation do not originate in the different selection of predictor time series but may
be a hint on model de� ciencies.

For longer lead times there is small skill (ACC D 0:3–0.4) for the observed tempera-
ture in England and Scandinavia during spring and late summer, but no skill in Germany.
The forecast skill for longer lead times is general smaller in the simulation than in the
observation. The result precludes attempts to use simulated data as a training set for
the forecast of observational data. A forecast of the observed two-month mean England
temperature with six months’ lead time using two-month mean predictors yields skill
for the forecast in 1971–96 using the training set 1879–1969. A leave-two-out cross-
validation in the total observed timed interval demonstrates a clear decrease of skill.
This skill is mainly based on successful forecasts after 1960.
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A major shortcoming of the model simulation is the negligible skill for lead times
larger than one month. On the other hand, there is suf� cient skill for one-month lead
time in the simulation, for example during autumn in England and spring in Scandi-
navia (ACC ¼ 0:5), to exclude a general low predictability within the AOGCM data.
A possible reason is the unsatisfactory representation of the ocean and the land surface,
including the surface � uxes, since for long-term prediction the realistic simulation of
the slow components of the climate system is crucial. Improvements would not only
be necessary for the empirical approach used here, but also even more for the use of
AOGCMs in dynamical seasonal prediction, which is frequently performed using sim-
pli� ed versions of weather forecast models.
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