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Abstract. Changes in marine net primary productivity and export of particulate organic carbon

are projected over the 21st century with three global coupled carbon cycle-climate models. These

include representations of marine ecosystems and the carbon cycle of different structure and com-

plexity. All three models show a decrease in global mean marine productivity and export production

between 7 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario.

Two different regimes for productivity changes are consistently identified in all three models. The

first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic:

reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced

mixed layer depth, and slowed circulation causes a decreasein macro-nutrient concentrations and

in productivity and export of particulate organic carbon. The second regime is projected for parts

of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in

primary and export production as productivity is fueled by asustained nutrient input. A region of

disagreement among the models is the Arctic, where two models project an increase in productivity

while one model projects a decrease. Projected changes in seasonal and interannual variability are

modest in most regions. Regional model skill metrics are proposed to generate multi-model mean

fields that show an improved skill in representing observations compared to a simple multi-model av-

erage. Model results are compared to recent productivity projections with three different algorithms,

usually applied to infer primary production from satelliteobservations.
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1 Introduction

Marine productivity and the marine biological cycle are important elements of the climate system.

Biological processes influence, among other Earth system properties, the atmospheric abundance of

radiative agents such as CO2 (e.g. Volk and Hoffert, 1985; Siegenthaler and Wenk, 1984),N2O (Sun-

tharalingam and Sarmiento, 2000; Goldstein et al., 2003; Schmittner and Galbraith, 2008), dimethyl-

sulphate (Bopp et al., 2003) and aerosols as well as the bio-optical properties of seawater and upper

ocean physics (Timmermann and Jin, 2002; Manizza et al., 2008). However, the representation of

ocean ecosystems (Six and Maier-Reimer, 1996; Moore et al.,2004; Le Qúeŕe et al., 2005; Maier-

Reimer et al., 2005; Aumont and Bopp, 2006; Vichi et al., 2007) and biogeochemical cycles in

comprehensive atmosphere-ocean general circulation models (AOGCMs; Bopp et al., 2001; Fung

et al., 2005; Wetzel et al., 2006; Crueger et al., 2008) is a relatively new field that requires further

development to provide matured and robust results.

The goal of this study is to provide a multi-model estimate oflong-term trends in net primary

productivity (PP) and export of organic material (EP) usingglobal warming simulations from three

fully coupled atmosphere-ocean general circulation models and to identify the mechanisms behind

these changes. These are the IPSL-CM4-LOOP model (IPSL), the COSMOS Earth System Model

of the Max-Planck Institute for Meteorology (MPIM), and theClimate System Model CSM1.4-

carbon of the National Center for Atmospheric Research (NCAR). The focus of the analysis is on

how decadal-to-century scale changes in physical factors and nutrient availability affect global and

regional productivity and export. The motivation is to provide an account on the performance of

current climate-ecosystem models under global warming andto derive a best estimate of changes in

productivity using regional model skill metrics. Our interest is further fueled by the contradicting

projections for global productivity from mechanistic models, as used here, and a recent statistical

model approach (Sarmiento et al., 2004).

A general finding across the hierarchy of mechanistic modelsis that marine global productiv-

ity and organic matter export decreases in 21st century global warming simulations (Klepper and

De Haan, 1995; Maier-Reimer et al., 1996; Joos et al., 1999; Matear and Hirst, 1999; Plattner et al.,

2001; Bopp et al., 2001; Fung et al., 2005; Frölicher et al., 2009). Increased stratification and a

slowed thermohaline circulation in response to surface warming and freshening cause a decrease in

the delivery of nutrients to the surface. As a consequence, global productivity and export is reduced.

In these models, the marine biological cycle is fully closedin the sense that nutrient uptake by phy-

toplankton, export of organic material into the thermocline, remineralization of organic material and

transport of inorganic nutrients by the circulation is represented. In the simpler models, productiv-

ity is tied to the availability of nutrients (such as phosphate or iron), light and temperature without

considering food web dynamics, whereas in the more complex models the growth of phyto- and

zooplankton, nitrogen fixation, and food web interactions and floristic shifts are explicitly taken into

account, albeit in a simplified way. Globally, the change in nutrient supply is the dominant mech-
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anism for productivity changes in 21st century global warming simulations, whereas other factors

such as changes in light availability and the growing seasonlength due to sea ice retreat, altered

oceanic mixing conditions, and cloud characteristics, or the direct impact of elevated temperature on

physiology considerably affect regional responses in productivity (Bopp et al., 2001). A decrease

in global primary and new production by 5 to 8% is also projected in an off-line simulation with

an ecosystem model (Moore et al., 2002) driven by the climateinduced changes in ocean physics

from an AOGCM simulation of the SRES A1 mid-range emission scenario (Boyd and Doney, 2002);

the decrease is primarily attributed to the prescribed reduction in subsurface nutrients. In contrast,

Sarmiento et al. (2004) projects an increase in global primary productivity by 0.7 to 8.1% using

an empirical model approach. We also note that a model that incorporates a pCO2-sensitive biotic

carbon-to-nitrogen relation yields an increase in productivity end export production in 21st century

CO2 scenarios (Schmittner et al., 2008; Oschlies et al., 2008).

Schneider et al. (2008) present results for the same suite ofthree Earth System models as used in

this study. They provide detailed information on the performance of the three models under current

climate conditions and compare modeled physical (temperature, salinity, mixed layer depth, merid-

ional overturning, ENSO variability) and biological (primary and export production, chlorophyll

concentration) results with observation-based data. Of particular interest is the model performance

with respect to seasonal and interannual variability as changes on these time scales may be linked

to the century scale changes examined here. The models capture the general distribution of higher

absolute primary productivity and higher seasonal variability in the intermediate to high latitudes,

though all models overestimate seasonal variability in intermediate southern latitudes. Interannual

variability is largely controlled by the permanently stratified low-latitude ocean in all three models

consistent with satellite data (Behrenfeld et al., 2006). However, the MPIM model strongly over-

estimates the amplitude and frequency of interannual productivity variations, while the variability

amplitude is slightly too low in the NCAR model. Only the IPSLmodel is able to capture the

correlation between observation-based productivity, seasurface temperature and stratification in the

low-latitude, stratified ocean. The MPIM model, and to a lesser degree, the NCAR model, suffer

from a too strong iron limitation compared to the real ocean.

A challenge for any multi-model analysis is how to extract and distill the information contained

in the individual models in a quantitative way. Ideally, thestrengths of each individual model would

be combined while weaknesses and failures would be removed to obtain an optimal multi-model

mean. Here, we use regional weights to compute multi-model mean fields in in productivity and

productivity changes.

In this paper we analyze centennial-scale changes in marineproductivity under anthropogenic

climate warming. Unlike earlier studies, we make use of three interactively coupled global carbon

cycle-climate models that include iron cycling and representations of the marine biogeochemistry of

different complexities. The use of a multi-model ensemble increases the robustness of the results.
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The models are forced with prescribed CO2 emissions from reconstructions (1860-2000 AD) and

a high emission scenario, SRES A2 (2000-2100 AD). In the nextsection, models and experimen-

tal setup are described. In the result section, we first present projections for marine productivity.

Then, we investigate underlying physical and biogeochemical mechanisms, quantify model sensi-

tivities, and also address changes in the seasonal cycle. Regional model skill metrics are used to

compute multi-model mean changes. In the discussion section, results of the mechanistic models

are compared with those of Sarmiento et al. (2004) and discussed in the light of earlier studies. In

the following, the variables PP and EP are used to represent net primary productivity and export of

particulate organic carbon (POC), respectively.

2 Methods

2.1 Models

All models used in this study are fully coupled 3-D atmosphere-ocean climate models that con-

tributed to the IPCC Fourth Assessment Report (Solomon et al., 2007; Meehl et al., 2007). The

models include carbon cycle modules for the terrestrial andoceanic components (Friedlingstein

et al., 2006).

2.1.1 IPSL

The IPSL-CM4-LOOP (IPSL) model consists of the Laboratoirede Mét́eorologie Dynamique atmo-

spheric model (LMDZ-4) with a horizontal resolution of about 3◦×3◦ and 19 vertical levels (Hourdin

et al., 2006), coupled to the OPA- 8 ocean model with a horizontal resolution of 2◦×2◦ · cos φ and

31 vertical levels and the LIM sea ice model (Madec et al., 1998). The terrestrial biosphere is rep-

resented by the global vegetation model ORCHIDEE (Krinner et al., 2005) and the marine carbon

cycle is simulated by the PISCES model (Aumont et al., 2003).PISCES simulates the cycling of

carbon, oxygen, and the major nutrients determining phytoplankton growth (PO3−4 , NO−

3 , NH+
4 , Si,

Fe). Phytoplankton growth is limited by the availability ofnutrients, temperature, and light. The

model has two phytoplankton size classes (small and large),representing nanophytoplankton and

diatoms, as well as two zooplankton size classes (small and large), representing microzooplankton

and mesozooplankton. For all species the C:N:P ratios are assumed constant (122:16:1; Takahashi

et al., 1985), while the internal ratios of Fe:C, Chl:C, and Si:C of phytoplankton are predicted by

the model. Iron is supplied to the ocean by aeolian dust deposition and from a sediment iron source.

Iron is also added at the surface if the iron concentration falls below a lower limit of 0.01 nM. Iron

is taken up by the plankton cells and released during remineralization of organic matter. Scaveng-

ing of iron onto particles is the sink for iron to balance external input. There are three non-living

components of organic carbon in the model: semi-labile dissolved organic carbon (DOC), with a

lifetime of several weeks to years, as well as large and smalldetrital particles, which are fueled by
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mortality, aggregation, fecal pellet production and grazing. Small detrital particles sink through the

water column with a constant sinking speed of 3 m day−1, while for large particles the sinking speed

increases with depth from a value of 50 m day−1 at the depth of the mixed layer, increasing to a

maximum sinking speed of 425 m day−1 at 5000 m depth. For a more detailed description of the

PISCES model see Aumont and Bopp (2006) and Gehlen et al. (2006). Further details and results

from the fully coupled model simulation of the IPSL-CM4-LOOP model are given in Friedlingstein

et al. (2006).

2.1.2 MPIM

The Earth System Model employed at the Max-Planck- Institutfür Meteorologie (MPIM) consists

of the ECHAM5 (Roeckner et al., 2006) atmospheric model of 31vertical levels with the embedded

JSBACH terrestrial biosphere model and the MPIOM physical ocean model, which includes a sea ice

model (Marsland et al., 2003) and the HAMOCC5.1 marine biogeochemistry model (Maier-Reimer,

1993; Six and Maier-Reimer, 1996; Maier-Reimer et al., 2005). The coupling of the marine and

atmospheric model components, and in particular the carboncycles, is achieved by using the OASIS

coupler.

HAMOCC5.1 is implemented into the MPIOM physical ocean model configuration using a curvi-

linear coordinate system with a 1.5◦ nominal resolution where the North Pole is placed over Green-

land, thus providing relatively high horizontal resolution in the Nordic Seas. The vertical resolution

is 40 layers, with higher resolution in the upper part of the water column (10 m at the surface to 13 m

at 90 m). The marine biogeochemical model HAMOCC5.1 is designed to address large-scale, long-

term features of the marine carbon cycle, rather than to givea complete description of the marine

ecosystem. Consequently, HAMOCC5.1 is a NPZD model with onephytoplankton group (implic-

itly divided into coccolithophorids and diatoms) and one zooplankton species. Detritus is formed

from dead phytoplankton and zooplankton, and zooplankton fecal pellets. Furthermore, dissolved

organic matter is produced by phytoplankton exudation and zooplankton excretion. The carbonate

chemistry is identical to the one described in Maier-Reimer(1993). A more detailed description of

HAMOCC5.1 can be found in Maier-Reimer et al. (2005), while here only the main features relevant

for the described experiments will be outlined.

Phytoplankton growth depends on the availability of light (I) and nutrients. The local light supply

is calculated from the temporally and spatially varying solar radiation at the sea surface,I(0, t), as

provided by the OGCM. Below the surface, light intensity is reduced due to attenuation by sea water

(kw) and chlorophyll (kc) using a constant conversion factor for C:Chl,RC:Chl:

I(z, t) = I(0, t) e−(kw+kc PHY12 RC:P/RC:Chl)z (1)

Phytoplankton growth depends linearly on the availabilityof light, without saturation of growth

rates for stronger irradiance (I). The growth rateJ(I(z, t)), is calculated asJ(I) = αPHY I(z, t),
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whereαPHY is the slope of the P-vs-I-curve (production vs. light intensity). The light limited

phytoplankton growth rate is then multiplied by the nutrient limitation factor, which is calculated

from a simple Monod function, limited by the least availablenutrient (either phosphate, nitrate, or

iron).

Silicate concentrations are used to distinguish the growthof diatoms and coccolithophorides: if

silicate is abundant, diatoms grow first, thereby reducing the amount of nutrients available for coc-

colithophoride growth. Only the shells (opal and calcium carbonate) that are part of detritus (DET)

are considered for the partition into the fractionsPsil andPcar of production:

Psil = min





∆DET

∆t
RSi:P

SI(OH)4

K
SI(OH)4
PHY + SI(OH)4

, 0.5 SI(OH)4



 , (2)

where ∆DET
∆t is the export production,RSi:P = 25 denotes the Si:P ratio required by diatoms,

K
SI(OH)4
PHY = 1 mmol m−3 the half-saturation constant for silicate uptake. The remaining fraction

of photosynthesis is by coccolithophorids. Again, as for opal we only account for the sinking part of

calcite production:

Pcar =
∆DET

∆t
RCa:P

K
SI(OH)4
PHY

K
SI(OH)4
PHY + SI(OH)4

, (3)

with RCa:P = 35 being the CaCO3 to PO4 ratio.

The model also includes cyanobacteria that take up nitrogenfrom the atmosphere and trans-

form it directly into nitrate. In the model version used here, biological production is temperature-

independent, assuming that phytoplankton acclimate to local conditions. Global dust deposition

fields are used to define the source function of bioavailable iron. Removal of dissolved iron occurs

through biological uptake and export, and by scavenging which is described as a relaxation to the

deep-ocean iron concentration of 0.6 nM if the local concentration exceeds this value. In the ex-

periments used here, export of particulate matter is simulated using prescribed settling velocities for

opal (30 m day−1), calcite shells (30 m day−1) and organic carbon (10 m day−1). Remineralization

of organic matter depends on the availability of oxygen. In anoxic regions, remineralization occurs

via denitrification. HAMOCC5.1 also includes an interactive module to describe the sediment-water

flux at the sea floor. This component further simulates pore water chemistry, the solid sediment frac-

tion and interactions between the sediment and the oceanic bottom layer as well as between solid

sediment and pore water constituents.

2.1.3 NCAR

The physical core of the NCAR CSM1.4 carbon climate model (Doney et al., 2006; Fung et al.,

2005) is a modified version of the NCAR CSM1.4 coupled physical model, consisting of ocean,

atmosphere, land and sea ice components integrated via a fluxcoupler without flux adjustments

(Boville et al., 2001; Boville and Gent, 1998). The atmospheric model CCM3 is run with a horizontal
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resolution of 3.75◦ and 18 levels in the vertical (Kiehl et al., 1998). The ocean model is the NCAR

CSM Ocean Model (NCOM) with 25 levels in the vertical and a resolution of 3.6◦ in longitude and

0.8◦ to 1.8◦ in latitude (Gent et al., 1998). The sea ice component model runs at the same resolution

as the ocean model, and the land surface model runs at the sameresolution as the atmospheric model.

The CSM1.4-carbon model includes a modified version of the terrestrial biogeochemistry model

CASA (Carnegie- Ames-Stanford Approach; Randerson et al.,1997), and a derivate of the OCMIP-2

(Ocean Carbon-Cycle Model Intercomparison Project Phase 2) ocean biogeochemistry model (Na-

jjar et al., 2007). In the ocean model, the biological source-sink term has been changed from a

nutrient restoring formulation to a prognostic formulation, and thus biological productivity is mod-

ulated by temperature (T ), surface solar irradiance (I), mixed layer depth (MLD), and macro- and

micro-nutrients (PO3−4 , and iron):

PP =
T + 2◦C

T + 10◦C
min

(

[PO4]

[PO4] + κPO4

,
[Fe]

[Fe] + κFe

)

I

I + κI

·min

(

[PO4],
[Fe]

rFe:P

)

max

(

1,
zMLD

zc

)

1

τ
, (4)

whereκPO4
= 0.05µmol/l, κFe = 0.03 nmol/l, κI = 20W/m2, rFe:P = 5.85·10−4, τ = 15days,

andzc = 75m.

Following the OCMIP-2 protocols (Najjar et al., 2007) totalbiological productivity is partitioned

1/3 into sinking POC flux, here taken to be equivalent to export productivity (EP), and 2/3 into the

formation of dissolved or suspended organic matter, where much of the latter is remineralized within

the model euphotic zone. Total productivity thus contains both new and regenerated production,

though the regenerated contribution is probably lower thanin the real ocean, as only the turnover of

semi-labile dissolved organic matter (DOM) is considered.NCAR primary productivity (PP) thus

represents, rather, the carbon flux associated with net nutrient uptake and is not strictly equivalent

to primary production as measured by14C methods. It is a reasonable proxy for the time and space

variability of PP if somewhat underestimating the absolutemagnitude. For reasons of simplicity, net

nutrient uptake times the C:P ratio of 117 (Anderson and Sarmiento, 1994) is considered here as PP,

even though it is not exactly the same. The ocean biogeochemical model includes the main processes

of the organic and inorganic carbon cycle within the ocean and air-sea CO2 flux. A parametrization

of the marine iron cycle (Doney et al., 2006) includes atmospheric dust deposition/iron dissolu-

tion, biological uptake, vertical particle transport and scavenging. The CSM1.4-carbon source code

is available electronically (see http://www.ccsm.ucar.edu/workinggroups/Biogeo/csm1bgc/) and is

described in detail in Doney et al. (2006).

2.2 Experiments

The models are forced by anthropogenic CO2 emissions due to fossil fuel burning and land-use

changes as reconstructed for the industrial period and following the SRES A2 emission scenario after

2000 AD. The NCAR and MPIM models also include CH4 and CFCs. N2O, volcanic emissions, and
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changes in solar radiation are additionally taken into account by the NCAR model as described by

Frölicher et al. (2009). All models were integrated for more than one thousand years for spin up as

described by Schneider et al. (2008). For analysis, all variables have been interpolated onto a 1◦×1◦

grid using a Gaussian interpolation. Control simulations in which CO2 emissions are set to zero and

other forcings are set to constant preindustrial levels areused to detrend model results. Slight trends

in temperature, salinity, and nutrient concentrations have been removed from the IPSL and NCAR

results. For the IPSL model the variables PP and EP have been detrended additionally.

3 Results

3.1 Projected annual mean primary productivity and export production under SRES A2

We briefly discuss the magnitude and spatio-temporal patterns of net primary production (PP) in

comparison with satellite-based estimates (see Schneideret al. (2008) for a more comprehensive

analysis) before addressing long-term changes in PP. Global annual PP ranges between 24 GtC

yr−1 (MPIM) and 31 GtC yr−1 (IPSL) for modern conditions. This is considerably lower than the

satellite-based range of 35 to 70 GtC yr−1 (Behrenfeld et al., 2006; Carr et al., 2006). The very low

PP in the MPIM model is likely linked to an overall too strong limitation of PP by iron (Schneider

et al., 2008). NCAR PP represents carbon uptake associated with net nutrient uptake, rather than

overall primary productivity, and is thus underestimatingreal primary production by design. There

are also deficiencies in the regional representation of PP (Fig. 1). High productivity along coastal

margins is not adequately represented in coarse resolutionmodels. The MPIM model underestimates

productivity outside the equatorial regions, and the NCAR model has too low productivity in the

equatorial Pacific. These deficiencies are related to the iron cycle of the two models. IPSL appears

to underestimate productivity in high northern latitudes.The skill of individual models to represent

the satellite-based productivity field is rather low with correlations between modeled and satellite-

based fields of less than 0.6 (Fig. 1b). The errors in the simulated PP fields reflect both deficiencies

in the simulated physical fields and in the representation ofecosystem processes in the coupled

AOGCM. Results from ocean only models with prescribed surface forcing compare typically better

with observations. We note that the satellite derived estimates also have uncertainties. For example,

Carr et al. (2006) report that global PP estimates from twenty-four ocean-color-based models range

over a factor of two, but correlations among the resulting fields are typically high.

Despite the deficiencies of individual models, the models asa class represent the pertinent fea-

tures of the satellite-based observations such as a low productivity in the oligotrophic gyres and the

southern high latitudes (all models), high productivity features in the North Atlantic (NCAR, IPSL),

in the North Pacific (IPSL), around 30◦S to 50◦S (NCAR, IPSL), and in the equatorial and eastern

boundary upwelling systems, high seasonal variability in the North Atlantic and in southern inter-

mediate latitudes (all), as well as low seasonal variability around the equator (NCAR) and in mid
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latitudes (all), and the correlation of temperature and stratification with productivity on the interan-

nual time scales for the low-latitude, permanently stratified ocean (IPSL) or the Nino3 region (IPSL,

NCAR). This comparison with satellite data allows us to continue with some confidence as well as

with caution to the discussion of 21st century projections.

All three models show a reduction in the globally integratedannual mean primary production

and POC export in the simulations from 1860 AD to 2100 AD underSRES A2 (Fig. 2, Table

1). The IPSL model, which also yields the highest preindustrial and present PP, shows the biggest

changes. In that model PP declines by 4.6 GtC/yr by the end of this century, which is a reduction

of the simulated preindustrial production by 13%. The othertwo models show reductions of 10%

(2.3 GtC/yr; MPIM) and 7% (1.9 GtC/yr; NCAR). In the MPIM and NCAR models, the relative

reduction in POC export follows closely the reduction in PP,while in the IPSL model the decline in

POC export is more pronounced and amounts to a reduction of 20% with respect to the preindustrial

value by 2100. The main reason for this decoupling of productivity and export in the IPSL model is

a shift from diatoms and macrozooplankton to the smaller nanophytoplankton and microzooplankon

(Bopp et al., 2005).

The projected PP decrease by the end of the century depends onthe magnitude of the projected

climate change and thus on the climate sensitivity of the models. A linear regression between global

PP and global mean surface air temperature is used to normalize PP changes with respect to climate

change (Fig. 2c). This yields a slope, i.e., the global PP decrease per◦C warming, of 1.4 GtC yr−1

◦C−1 for the IPSL model, but only 0.6 GtC yr−1 ◦C−1 for the MPIM and NCAR models.

We identify a number of regions with large reductions (more than 50 mg-C m−2 day−1) in PP

(Fig. 1). These correspond to high productivity areas. A large reduction in PP is found in the North

Atlantic in the IPSL and NCAR model, around 35◦S in IPSL and less pronounced in the NCAR,

in the upwelling regions off Africa in all models and in the equatorial Pacific in the MPIM and

IPSL model. These reductions are qualitatively consistentacross the models with the obvious caveat

that no major reductions can be expected in regions where an individual model fails to simulate

a significant preindustrial productivity (e.g. MPIM outside the equator, NCAR in the equatorial

Pacific). Consistent moderate increases in productivity are simulated in the high latitude Southern

Ocean (all models) and around Svalbard, indicating that thehigh productivity zone in the North

Atlantic is moving northward with climate warming and sea ice retreat. An increase in productivity

is simulated in the North Pacific in the IPSL and NCAR models; we note that sea ice extent is

unrealistically high in this area in the NCAR model (Steinacher et al., 2009; Weatherly et al., 1998).

In summary, the model results suggest that PP will be reducedin most equatorial and mid-latitude

regions and in the North Atlantic, and moderately enhanced in polar regions.
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3.2 Mechanisms of long term shifts in PP under climate change

3.2.1 Attribution of productivity changes to individual drivers in the NCAR model

In order to identify links between long term shifts in PP and climate change, we first focus on

the NCAR CSM1.4-carbon results. This model features the simplest formulations for biological

production among the three models. PP is determined by the productPP ∝ FN · FI · FT · B

(Eq. 4), where the first three factors represent nutrient, light, and temperature limitation andB is

a biomass proxy derived from phosphate and iron concentrations. The relative changes in these

factors (Fig. 3a-d) directly yield the relative changes in PP (Fig. 3e). Light availability is tied to the

mixed layer depth and sea ice fraction in the NCAR model. It increases when the mixed layer depth

(MLD) exceeds 75 m. This unrealistic feature affects light limitation in the South Pacific (increased

MLD/light availability) around 45◦S and in a number of grid cells in the North Atlantic. We recall

that the biomass proxy corresponds to the phosphate or (scaled) iron concentration (which ever is

smaller) and thus directly represents nutrient concentrations.

The biomass proxy decreases in most areas of the world ocean (Fig. 3d). This can be attributed to a

more efficient utilization of nutrients under global warming as found in previous work (e.g. Plattner

et al., 2001). Reduced nutrient concentrations in combination with reduced export are indicative

of reduced nutrient input from the thermocline into the mixed layer. Such conditions prevail in the

Atlantic between 20◦S and 65◦N, in the western part of the Indian Ocean, and around 30◦N and 35◦S

in the Pacific between 160◦E and 140◦W. PP shows little or no response to climate change in the

tropical and subtropical Pacific, where PP is low due to an unrealistically strong iron limitation. On

the other hand, reduced nutrient concentrations in combination with increased export are indicative

of a sustained nutrient input into the euphotic zone. Sea iceretreat and warming in the Arctic

alleviate the strong limitations by light and temperature and enhance Arctic productivity. Similarly,

a reduction in temperature limitation boosts productivityaround Antarctica in the model.

In the North Atlantic, where the largest PP changes occur, the PP decrease is dominated by a

decrease in the biomass proxy. The reduction in nutrient concentration is linked to a reduction in

the North Atlantic thermohaline circulation (Frölicher et al., 2009). Nutrients are used up more ef-

ficiently, and productivity decreases likely in response toless surface-to-deep exchange. The model

also simulates an increase in light limitation, caused by changes in cloudiness and changes in mixed

layer depth, and a somewhat stronger limitation by iron in the east and by phosphate in the west. The

slight increase in PP in some areas in the Indian Ocean, around Australia, and in the South Atlantic

around 25◦S can mainly be attributed to an increased nutrient supply due to stronger upwelling.

In conclusion, PP changes in the NCAR model are tightly linked to changes in nutrient input

into the euphotic zone in combination with an alleviation oflight and temperature limitations in high

latitudes. A reduced nutrient input into the surface is expected in climate change scenarios as surface

stratification tends to increase in response to warming and freshening. Next, we will investigate
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changes in physical factors such as stratification and upwelling and in nutrient availability and their

link to productivity for all three models.

3.2.2 Basin-scale changes in productivity, physical properties, and nutrient concentrations

There is a surprisingly good overall consistency in projected trends among the models on the basin-

scale and for a range of variables. Figure 4 shows projected changes in selected large regions for PP,

EP, related physical properties, and nutrient concentrations for all three models. This comparison

between changes in PP and in potential drivers is indicativeof underlying mechanisms, albeit it does

not allow for a stringent attribution as done in the previoussection for the NCAR model. Overall,

the results are qualitatively consistent across models andregions. PP, EP, MLD, and surface nutrient

concentrations are projected to decrease in all models and in almost all regions, while sea surface

temperature (SST) and stratification increase. This suggests that the mechanisms identified for the

NCAR model are also key for the productivity changes in the IPSL and MPIM model. Namely,

a reduced nutrient input related to enhanced stratification, reduced MLD, and a slowed circulation

tends to decrease productivity and export of organic material under transient global warming.

All models exhibit pronounced changes in MLD and stratification in the North Atlantic, which

transform to strong reductions in surface macro-nutrient concentrations. Consequently, PP and EP

decrease in the IPSL and NCAR models by about 40% and 30%, respectively. In the MPIM model,

preindustrial PP in the North Atlantic is unrealistically small due to too strong iron limitation and

the 21st century reduction in PP is thus small as well.

All models show an increase in stratification and a decrease in MLD and macro-nutrients in the

stratified ocean (SST> 15◦C). We again link this tentatively to a reduced nutrient input into the

euphotic zone under global warming. Productivity and export decrease accordingly in all models.

In the Southern Ocean (<45◦S), relative PP trends are smaller than in other regions and vary in

sign between different regions within the Southern Ocean. Changes that favor production, such as

increased SST and light, and changes that tend to reduce production, such as reduced nutrient input,

balance to some extent on the regional average. In the IPSL and NCAR simulations, PP increases

on average, while MPIM shows a decrease of about 5%.

There are also some qualitative inconsistencies in projected trends between models. Most notable

are the following two. IPSL simulates a decrease in PP and EP in the Arctic Ocean, in contrast

to MPIM and NCAR that project an increase (Fig. 4). Surface iron concentration is projected to

increase in IPSL in all regions, but to decrease in MPIM and NCAR in most regions (Fig. 4h).

In the Arctic Ocean, light availability in the surface oceanis strongly enhanced in all models due

to sea ice retreat. The annual mean sea ice cover in the Arcticis reduced by 32% (IPSL), 25%

(MPIM), and 23% (NCAR) with respect to preindustrial conditions. This leads, together with an

increase in SST and MLD, to a strong increase in PP and EP in theMPIM (+130%) and NCAR

(+215%) simulations, despite the strong (NCAR, +90%) and moderate (MPIM, +20%) increase in
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stratification and reduced surface nutrient concentrations. Although insolation and SST increase also

strongly in IPSL, this model shows an opposite response in PPand EP. This can be explained with a

strong increase in stratification of about 90% and the reduction in MLD and surface macro-nutrients

of 50-70%.

The increase in surface iron concentration simulated by theIPSL model (20% in the global mean)

is a consequence of the parametrization of the elemental ratio in phytoplankton. The ratio between

carbon and nitrogen or phosphor is kept constant. In contrast, the iron-to-carbon ratio of phyto-

plankton is assumed to decrease with increasing nutrient (and light) limitation. Consequently, lower

macro-nutrient concentrations in the euphotic zone lead toa relatively lower uptake of iron com-

pared to other nutrients by plankton and to a lower iron-to-carbon ratio in organic material. In turn,

less iron is exported out of the euphotic zone and iron concentrations increase, while macro-nutrient

concentrations decrease. In the IPSL model, surface iron concentrations are restored to a minimum

value of 0.01 nM. This influences the interannual variability in PP (Schneider et al., 2008). However,

this potential artificial iron source does not contribute significantly to the long-term trend in surface

iron because, first, the number of grid cells and months whereiron is restored is reduced during the

simulation, and second, these regions do not correspond to the regions where large changes in surface

iron are simulated. In the NCAR and MPIM model, the iron-to-carbon and other elemental ratios

are constant and iron concentration tends to decrease in parallel with macro-nutrient concentrations

in the surface ocean.

3.2.3 Local correlations between changes in productivity and potential drivers

In this section, we address to which extent the features identified on the basin-scale are also evident

on the local scale. We correlate simulated changes in annualmean PP with annual mean changes

in SST, stratification, MLD, and shortwave radiation, as well as with phosphate and iron for each

single grid cell (Fig. 5) and compare projected changes along two transects through the Atlantic

(and Arctic), and the Pacific (Figs. 6 and 7). The transects, indicated in Figure 1, are selected to

cover major productivity features in the two basins. The results tend to confirm the findings from

the two previous sections, although the links between stratification, mixed layer depth and macro-

nutrient concentrations are often somewhat obscured on thegrid cell scale as evidenced by the small

regression coefficient (R2) found for many cells.

In the IPSL simulation, the PP decrease in the Pacific, North Atlantic and Indian Ocean correlates

with enhanced stratification and decreased surface phosphate concentrations (Fig. 5). Changes in

MLD correlate only weakly with PP trends; only in the North Atlantic and south-eastern Pacific are

some relevant correlations found. Surface iron concentrations correlate positively with PP because

surface iron increases almost everywhere in the IPSL simulation. Correlations for EP are similar

(not shown).

The MPIM model shows generally weak correlations, which canbe explained with the strong
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iron limitation in that model. Under present climate conditions, PP is iron-limited in all regions

except the tropical Atlantic (Schneider et al., 2008). Because surface iron concentrations decrease

only slightly in most regions, no significant correlations are found. Exceptions are the low and mid

latitudes of the Pacific, where surface iron concentrationsdecrease by about 20% and correlations of

PP changes are found with surface iron (mainly in the subtropical gyres). Also, the PP decrease in

the western tropical Pacific correlates with increased stratification and reduced MLD.

In the NCAR simulation, increased stratification correlates to some extent with reduced PP and

EP in the tropical and southern Pacific, as well as in the NorthAtlantic. This model shows a stronger

correlation between PP and MLD than the other two. The lattermay be an artifact of the model light

limitation. Significant positive correlations are found inthe North Atlantic, North Pacific, and in

the Southern Ocean. Reduced surface nutrient concentrations mainly correlate where the respective

nutrient is limiting; PO4 in the low- and mid-latitude Atlantic and in the northern Indian Ocean, iron

in the Pacific and southern Indian.

In conclusion the multi-model analysis confirms important conclusions obtained by attributing

changes in PP and EP to individual drivers in the NCAR model. We identify two different regimes

for productivity changes in all models. First, a decrease inthe concentrations of the limiting nutri-

ent in combination with a decrease in productivity is indicative of reduced nutrient input from the

thermocline into the mixed layer. This first regime is dominant in the low- and mid-latitude ocean

and in the North Atlantic in all three models and in the Arcticfor the IPSL model. This regime is

for example indicated by the positive slope between productivity (PP and EP) and limiting nutrient

(yellow and red color in the panels for PO4 and Fe in Fig. 5) and the negative slope between pro-

ductivity and stratification (blue color in the STRAT panel of Fig. 5) in areas where productivity

is decreasing. For the second regime, an alleviation of light and temperature limitation leads to an

increase in productivity, while productivity is fueled by asustained or even increased nutrient input

into the euphotic zone. This second regime is found in the Arctic in the NCAR and MPIM model and

in parts of the Southern Ocean in all three models. Globally,the first regime is most important and

global productivity and export production decreases in our21st century global warming simulations.

3.3 A weighted multi-model mean of projected productivity changes

In the previous sections, it is shown that the models as a class represent most of the pertinent fea-

tures of the satellite-based productivity estimates and that the underlying mechanisms for changes in

productivity are broadly consistent across the range of models. However, individual models clearly

fail to represent certain regional features.

The challenge is to combine the information from several models into a quantitative projection.

In the assessments of the Intergovernmental Panel on Climate Change this has been achieved by

averaging the results from individual models (Meehl et al.,2007). In this way, each model, whether

skillful or not, is given equal weight. Obviously, such an approach is less than ideal as unrealistic
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features of a particular model influence the multi-model mean. For example, if one of the models

simulates rainfall in a desert region, the multi-model meanwill also show rainfall in the desert. An

alternative would be to rely on the model with the best skill score with respect to suitable obser-

vations. However, this seems also less than ideal as each model has certain weaknesses and useful

information from the other models is lost. Here, we suggest the use of regional skill scores as weights

to compute a ’best’ or ’optimal’ estimate of projected changes. The goal is to take advantage of the

skill of individual models in simulating regional featuresand to exclude or minimize the influence

of regional results where a model is in conflict with observational evidence.

Technically, the multi-model mean is computed following the skill score metric developed by

Taylor (2001). For each modelm and grid cell at coordinates (i, j) a skill score

Sm,i,j =
2(1 + Ri,j)

(σi,j + 1/σi,j)2
, (5)

is calculated (Taylor, 2001), whereRi,j is the distance-weighted correlation coefficient between the

satellite-based estimates (PPobs) and the simulated productivity (PPm; average 1998-2005) andσi,j

is the corresponding standard deviation normalized by the standard deviation of the observations.

This metric penalizes models that have normalized standarddeviations either greater than or less

than one by reducing the skill score. The weights are calculated using a two-dimensional Gaussian

function

w(x, y)i,j = exp

{

−

(

(x − xi,j)
2

2ρ2
+

(y − yi,j)
2

2ρ2

)}

A(x, y)
∑

x,y A(x, y)
, (6)

wherexi,j andyi,j are the longitude and latitude of the grid cell (i, j), A(x, y) is the area of the

grid cell at coordinates (x, y), andρ = 10◦ characterizes the width of the distribution (the distance

at which the weight has decreased from one to1/
√

e). The multi-model mean then is calculated in

proportion to these regional skill scores (Fig. 8 a-c):

PPS
i,j =

∑

m

Sm,i,j
∑

m Sm,i,j
PPm,i,j (7)

Where no observation-based data is available to calculate a skill score (e.g. in the Arctic) the model

results are averaged using equal weights.

The above skill score metric emphasizes pattern similarities, but does not penalize offsets between

the mean of the fields. Therefore, we also investigate an alternative metric,E, based on mean square

errors:

Em,i,j =
∑

x,y

w(x, y)i,j(PPobs(x, y) − PPm(x, y))2 (8)

The weightsw(x, y)i,j used here are the same as given above. The multi-model mean with this

second metric is calculated as

PPE
i,j =

∑

m

E−1
m,i,j

∑

m E−1
m,i,j

PPm,i,j . (9)
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In addition, we have computed the arithmetic mean from all models (PPave) as well as the mean

obtained by weighting individual models with their global (ρ = ∞) skill score (PPSglob).

Next, global skill scores (Sglob) and global root mean square errors (RMSE) are computed for

the individual model results and for the multi-model fields obtained by the four different averaging

methods (Table 1). The global skill score for the first field (PPS) is considerably higher than for

the others. All averaging methods result in a lower global skill score than that of the best model

(IPSL). However, the RMSE is lower for thePPS field than for each individual model and for the

other multi-model fields. In the following, we discuss results from this metric only. We note that

differences in the results obtained by the first two metrics (PPS andPPE) are generally small.

This skill score method accounts for the different skills ofthe models at reproducing regional

features of the satellite based estimates, while not degrading the overall skill in representing the

satellite-based field compared to the best individual model. For example, the NCAR model repro-

duces the high productivity tongue around 40◦N in the North Atlantic. The IPSL model captures

most of the high productivity features along the coasts of South America and Africa. The MPIM

model has a high skill in the central Pacific and the most realistic latitudinal extension of the equato-

rial productivity belt. Therefore these models dominate the mean in those regions (Fig. 8d), and all

these features are present in the multi-model mean (Fig. 9a). There remain weaknesses. All models

underestimate productivity in the Arabian Sea and off the west coast of Central and North America.

Consequently, the multi-model mean also misses these features. Overall, this method improves the

multi-model mean significantly compared to simpler averaging methods (Table 1).

Regional skill scores are applied to calculate the multi-model mean of preindustrial PP and of the

projected changes by the end of the 21st century (Fig. 9) and as a function of the global mean surface

air temperature (SATglob, Fig. 10d). The globally integrated annual mean PP decreases from 32.2

GtC yr−1 (preindustrial) to 28.7 GtC yr−1 by 2100 AD (-3.5 GtC yr−1; -11%) for the multi-model

mean (Fig. 2, Table 1). Large decreases in PP are projected for the North Atlantic, off the coast of

Africa in the South Atlantic, in the equatorial Pacific, and in the South Pacific around 40◦S; a slight

increase in PP is found in the Southern Ocean and in the Arctic(Fig. 9b). Calculating the mean

by 2100 has the disadvantage that PP changes are merged that correspond to different temperature

changes as the models have different climate sensitivities. One way to avoid this is to calculate the

regression slope∆PP/∆SATglob for each grid cell (Fig. 10a-c) as done for the global PP in Fig. 2c.

The patterns of the resulting PP change per centigrade SAT increase are broadly consistent with the

patterns of the projected PP change by 2100.

3.4 Changes in the seasonal cycle

One aspect of the simulations to explore is how the seasonal cycle and interannual variability are

modified under global warming. Here, we compare the simulated maximum seasonal PP amplitudes

(annual maximum minus annual minimum) and their interannual variations for the decades 1860-
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1869 and 2090-2099 along the two sections in the Atlantic andthe Pacific shown in Fig. 1 and for

the global zonal mean (Fig. 11).

In the global zonal mean, the seasonal amplitude is projected to decrease everywhere in the IPSL

simulation. Largest reductions of about 200 mgC m−2 day−1 can be found at 40◦N-70◦N, where

the reduction is clearly distinguishable from preindustrial interannual variability. Further, a marked

reduction is found at low latitudes around 20◦-30◦ and in the Arctic Ocean north of 80◦N. The

reduction in the north is linked to a large reduction in productivity in the Atlantic between 30◦N and

60◦N from April to July and in the Pacific between 55◦N and 70◦N from April to September. Not

only the seasonal amplitude, but also the interannual variability in PP is projected to decrease for

most latitudes.

The zonally averaged seasonal PP amplitude in the MPIM simulation is also reduced between

70◦N and 60◦S. Largest reductions of about 200 mgC m−2 day−1 are located in the Southern Ocean

and around the equator. South of 60◦S and north of 70◦N the seasonal amplitude increases, consis-

tent with an increase in productivity in these areas. The MPIM model exhibits a larger interannual

variability than the other two models, and at most latitudesthe projected changes are within the range

of preindustrial interannual variability. Maximum changes in productivity occur from December to

February in the Southern Ocean and during July/August in theArctic Ocean.

In the NCAR model the zonally averaged seasonal PP amplitudeis reduced by up to 300 mgC

m−2 day−1 between 40◦N and 60◦N. An increase is found north of 60◦N, in the Southern Ocean

(40◦S-60◦S), and in the Arctic Ocean. Changes are small in other regions. The changes in the north

are dominated by the Atlantic where PP is strongly reduced between 40◦N and 60◦N (March-June)

and enhanced between 60◦N and 70◦N (April-June).

In summary, changes in seasonal cycle amplitude are relatively small, though there are exceptions.

The seasonal amplitude tends to become smaller when overallproductivity decreases. Interannual

variability in the seasonal amplitude is substantial and projected to decrease in many areas in all

three models.

4 Discussion and conclusions

The trends in ocean productivity in response to anthropogenic climate change have been analyzed

with three coupled carbon cycle-climate models that incorporate marine biogeochemical-ecosystem

models of different complexity. The decreasing trend in global primary production and particulate

organic carbon export is a robust result, but relative and absolute magnitudes differ among models

and regions.

The underlying mechanisms of change are qualitatively consistent across the models, except in

the Arctic. All three models show a consistent change in physical drivers, surface concentrations

of macro-nutrients, and productivity when considering regional averages (Fig. 4). Namely, the
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models project an increase in sea surface temperature and stratification in all regions and an increase

in available light in the Arctic in response to sea ice retreat. Macro-nutrient concentrations in the

euphotic zone are projected to decrease in all regions and for all models. Two different regimes

for change in productivity are identified, that were alreadydiscussed previously in the literature

(Bopp et al., 2001; Sarmiento et al., 1998). First, all models indicate a decrease in productivity in

the low- and mid-latitude ocean and in the North Atlantic in response to reduced nutrient delivery

to the surface ocean linked to enhanced stratification, reduced mixed-layer depth and slowed ocean

circulation. This is broadly consistent with earlier projections using box models, Earth System

Models of Intermediate Complexity or general circulation models (Klepper and De Haan, 1995;

Maier-Reimer et al., 1996; Joos et al., 1999; Matear and Hirst, 1999; Plattner et al., 2001; Bopp

et al., 2001; Fung et al., 2005; Frölicher et al., 2009). Second, light and temperature limitation is

reduced in the high-latitude ocean, whereas nutrient supply remains sufficient to support an increase

in productivity. This second regime is found in the Arctic inthe NCAR and MPIM model and in parts

of the Southern Ocean in all three models. A qualitative difference among models is found in the

Arctic, where IPSL projects a decrease in productivity related to a reduced supply of macro-nutrients,

whereas NCAR and MPIM project a productivity increase due toreduced light and temperature

limitation. In any case, absolute changes in productivity in the Arctic and the Southern Ocean

are small in all three models. The models project also a different evolution of iron. The MPIM and

NCAR models use constant elemental ratios in their production algorithms and consequently surface

iron concentration are decreasing in parallel with macro-nutrient concentrations. In the IPSL model,

the iron-to-carbon ratio of assimilated material is reduced under nutrient stress. As a consequence,

iron concentration increases in the euphotic zone as less iron is exported to depth in the form of

organic matter.

Quantitatively, the three models show large differences inregional responses. These are often

linked to differences in the simulation of the mean productivity fields. For example, iron limitation

is too strong in the MPIM in the low and mid-latitude ocean andin the NCAR model in the equatorial

Pacific. Consequently, productivity in these regions is very low for these models and the projected

decrease is also small by necessity. Other differences are related to the climate sensitivity of the

models. The NCAR model has the smallest climate sensitivityand shows a smaller surface warming

and smaller changes in low-latitude stratification than theIPSL and MPIM model. The comparison

between observation-based productivity estimates and simulated productivity (Fig. 1; Schneider

et al., 2008) suggests that it is not advisable to simply average the results from the three models as

obvious shortcomings of the models would unfavorably influence the multi-model mean projection.

We have applied regional model skill metrics as weights in the computation of multi-model means.

Here, we have used the satellite-based productivity estimates (average of annual mean PP for the pe-

riod 1998 to 2005) of Behrenfeld et al. (2006) as a target against which the performance of individual

models is assessed. A scale length is introduced for the regional skill score calculation that can be
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adjusted for the problem considered. Here, the scale lengthhas been selected to be representative

for the spatial scale of marine biogeographical provinces (≈10◦); the exact choice of the numer-

ical value is not crucial for our application. The multi-model mean PP changes are expressed as

PP change per a nominal increase in global mean surface air temperature of 1◦C to account for the

different climate sensitivities of the models. The use of regional metrics has advantages. It results in

an improved skill in representing the satellite-based productivity field compared to a conventional,

IPCC-type multi-model average where each model is given equal weight. Most weight is attached

to the model that represents an individual regional featurebest, whereas little weight is attached to

the models that fail to reproduce the regional feature. The regional metrics quantify the regional

performance of each model (Fig. 8). Features that all modelsfail to represent as evidenced by low

skills can be flagged in the multi-model average. Disadvantages are that suitable target fields have to

be defined and scale lengths to be determined. The choice of anannual mean climatological field as

a target is debatable. Additional targets including seasonal or interannual variability (Santer et al.,

submitted) may be applied. Most preferable would be observation-based data that include decadal

scale trends when evaluating projections of the 21st century. Further, our approach, as any weighting

scheme, is based on the assumption that the relative skill ofthe model remains about the same over

time. A more fundamental caveat is worth mentioning. Each individual model provides an internally

consistent representation of heat and mass fluxes, nutrientcycling, and ecosystem dynamics taking

fully into account first order principles such as mass and energy conservation. By using regional

weights, regional features from different models are combined to a new global mean field which

may lack internal consistency. We believe that our regionalweight approach is preferable compared

to the conventional ’one model, one vote’ approach to generate a multi-model mean projection of

PP. However, we caution that this might not be the case for other applications.

Our results are contradictory to the results of Sarmiento etal. (2004) on the global scale and in

most regions (Fig. 12). Sarmiento et al. (2004) project an increase in global primary productivity

by 0.7 to 8.1% and not a decrease. These authors rely on an empirical model approach in combina-

tion with output for physical variables from AOGCM global warming simulations. The cycling of

nutrients and nutrient concentrations are not explicitly considered. Seven physics-based diagnostics

(surface temperature, salinity and density, upwelling andvertical density gradient in the top layers,

mixed layer depth, and ice cover) are used to define 33 biogeographical provinces. An empirical

chlorophyll model, describing chlorophyll as an exponential function of temperature, salinity, mixed

layer depth and growing season length, is fitted to the SeaWiFS chlorophyll data for each province

and used to project 21st century changes in chlorophyll fromthe AOGCM output. Finally, primary

productivity is estimated from the chlorophyll concentration for three different productivity algo-

rithms (Behrenfeld and Falkowski, 1997a; Carr, 2002; Marraet al., 2003). This chain of models

yield an increase in productivity almost in the entire oceanfor the Marra et al. algorithm and, to a

lesser extent for the Carr algorithm, whereas the Behrenfeld and Falkowski algorithm yields a de-
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crease in productivity in low and mid latitudes and an increase in high-latitudes. Only the projected

decrease in low and mid latitudes with the Behrenfeld and Falkowski algorithm is consistent with

this and an earlier process-based model study (Bopp et al., 2001).

What are the reasons for the discrepancies between results from the empirical approach and those

from process-based climate-biogeochemical-ecosystem models? A fundamental conceptual differ-

ence is that the cycling of nutrients and nutrient availability is explicitly considered in the process-

based models, whereas nutrient limitation is only implicitly included in the empirical approach of

Sarmiento et al. (2004) and the satellite productivity algorithms. As nutrients are a key factor for

phytoplankton growth and productivity, it appears necessary to take the decadal-to-century scale

evolution of nutrient cycling into account as done in the process-based models. As discussed by

Sarmiento et al. (2004), projected changes in chlorophyll are small for their empirical approach, and

their changes in productivity depend critically on the applied satellite algorithm. Sarmiento et al.

(2004) highlight the importance of the assumed relationship between temperature and productivity

for a given chlorophyll concentration. This temperature sensitivity of productivity is very different

among the satellite algorithms. For example, productivityincreases with temperature by a factor

of about two between 18◦C and 30◦C for the Marra et al. algorithm, but decreases by a factor of

two over the same temperature range for the Behrenfeld and Falkowski algorithm. Consequently,

productivity is projected to decrease in low and mid latitudes with the Behrenfeld and Falkowski

algorithm and to increase with the Marra et al. algorithm in transient warming scenarios. These

discrepancies between algorithms may reflect the difficulties to separate light and nutrient effects

on productivity (Behrenfeld et al., 2008). We note that observation-based changes in global chloro-

phyll and inferred global productivity by Behrenfeld et al.(2006) evolve in parallel. An implicit

assumption in the empirical approach is that the spatial relationship between productivity and physi-

cal forcing found for the modern ocean can be applied to temporal changes into the future. However,

Schneider et al. (2008) find that the relationship between productivity and temperature in the low-

latitude ocean is different for interannual variations of the last decades and the century-scale trends

in transient warming simulations.

Process-based models are far from perfect (Schneider et al., 2008) and their results must be inter-

preted with some caution. However, it appears evident from our analysis that the cycling of nutrients

and changes in the supply to the surface and in the concentration of nutrients must be realistically rep-

resented to project changes in productivity with some realism. What is required for further progress

is to combine satellite, field, and laboratory observations, empirical approaches and process-based

models to further improve our quantitative understanding.Novel metrics such as (multivariate) re-

gional skill scores may prove useful to synthesize results from models and observational studies in a

quantitative and transparent way. As far as modeling is concerned, factorial experiments dedicated to

quantify the link between PP and individual parameters willbe helpful to improve the understanding

of model behavior and to compare model results with experimental data. Improved parametrizations
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of ecosystem processes that take into account emerging results from field and laboratory studies are

required to close gaps in understanding.
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Table 1. Simulated global annual primary production (PP) and POC export (EP)for the three models IPSL,

MPIM and NCAR under SRES A2. PP values are also given for weighted means of the three models derived

from regional skill scores (PPS), mean square errors (PPE), and global skill scores (PPSglob ), as well as for the

arithmetic average (PPave). Global skill scores (Sglob) and root mean square errors (RMSE) indicate the ability

of the individual models and the multi-model means to reproduce the satellite-based estimates of PP (average

1998-2005, see main text for details). Values are averaged over the periods 1860-1869 (1865), 1985-2004

(2000), and 2090-2099 (2095).∆PP and∆EP indicate changes between corresponding periods.

Primary production IPSL MPIM NCAR PPS PPE PPSglob PPave

PPglob 1865 [GtC yr−1] 34.9 23.9 27.5 32.2 31.6 30.2 28.5

PPglob 2000 [GtC yr−1] 33.8 23.7 26.6 31.2 30.8 29.3 27.8

PPglob 2095 [GtC yr−1] 30.3 21.6 25.6 28.7 28.1 26.9 25.6

∆PPglob 1865-2000 [GtC yr−1] -1.1 (-3%) -0.2 (-1%) -0.9 (-3%) -1.0 (-3%) -0.8 (-3%) -0.9 (-3%) -0.7 (-2%)

∆PPglob 2000-2095 [GtC yr−1] -3.5 (-10%) -2.1 (-9%) -1.0 (-4%) -2.5 (-8%) -2.7 (-9%) -2.4(-8%) -2.2 (-8%)

∆PPglob 1865-2095 [GtC yr−1] -4.6 (-13%) -2.3 (-10%) -1.9 (-7%) -3.5 (-11%) -3.5 (-11%) -3.3 (-11%) -2.9 (-10%)

Sglob 0.49 0.16 0.37 0.39 0.31 0.29 0.23

RMSE [mgC m−2 day−1] 284 353 334 275 282 286 298

POC export IPSL MPIM NCAR

EPglob 1865 [GtC yr−1] 9.1 5.0 9.1

EPglob 2000 [GtC yr−1] 8.7 5.0 8.8

EPglob 2095 [GtC yr−1] 7.3 4.5 8.4

∆EPglob 1865-2000 [GtC yr−1] -0.4 (-4%) 0.0 (0%) -0.3 (-3%)

∆EPglob 2000-2095 [GtC yr−1] -1.4 (-16%) -0.5 (-10%) -0.4 (-5%)

∆EPglob 1865-2095 [GtC yr−1] -1.8 (-20%) -0.5 (-10%) -0.7 (-8%)
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Fig. 1. Productivity (left) and projected changes by 2090-2099 (right). Vertically integrated annual mean

primary production (PP, mgC

m2 day
) derived from ocean color(a) (SeaWiFS; Behrenfeld et al., 2006; Behrenfeld

and Falkowski, 1997b) and simulated by IPSL(c), MPIM (e), and NCAR(g) under preindustrial conditions

(decadal mean 1860-1869). Dashed lines indicate the transects through the Atlantic and Pacific analyzed in

this study. The Taylor diagram(b) shows the correspondence between model results and the satellite-based

estimates (Taylor, 2001). In this diagram the polar coordinates represent the correlation coefficientR (polar

angle) and the normalized standard deviationσmodel/σobs (radius). Panelsd, f, andh show the projected

changes by the end of the 21st century under SRES A2 for the three models. The changes are shown on an

exponential scale and represent the difference between 2090-2099and 1860-1869 (decadal means).
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Fig. 2. (a) Global annual mean primary production (PP,GtC
yr

) and (b) sea surface temperature (SST,◦C)

simulated by the IPSL (black), MPIM (red), and the NCAR (green) models for the period 1860-2100 under

SRES A2. The blue curve indicates the weighted mean PP derived from theregional skill scores of the three

models.(c) ∆PP as a function of changes in global mean surface air temperature (SAT) for the same models

and time period.
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Fig. 3. Long-term changes in PP limitation by nutrients(a), light (b), and temperature(c) simulated by the

NCAR model. In the NCAR model, these factors, together with changes in thebiomass proxy(d), determine

the changes in PP(e). Panels (a-e) show relative changes in percent from preindustrial (average 1860-1869) to

projected future conditions under SRES A2 (average 2090-2099). Positive values indicate changes that enhance

PP, negative values indicate changes that tend to reduce PP. All values are averaged over the compensation depth

(75 m), where all of the production is restricted to occur. The light limitation factor (b) also accounts for changes

in mixed layer depth(f).
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Fig. 4. Long-term trends of PP, EP and related properties simulated by the IPSL,MPIM, and NCAR mod-

els under SRES A2. Each panel shows the projected changes of one property with respect to preindustrial

conditions (average 2090-2099 minus average 1860-1869) for the following regions: Global oceans (black),

Southern Ocean (green; south of 45◦S), permanently stratified, low-latitude oceans (blue; annual mean SST>

15◦C), low-latitude oceans (red; 30◦N-30◦S), low-latitude Pacific (black, 30◦N-30◦S), North Atlantic (gray;

30◦N-80◦N), and Arctic Ocean (yellow). The properties are vertically integrated PP, POC export (EP), surface

temperature (SST, averaged over top 75 m), stratification (STRAT), short wave heat flux (QSW) at the surface,

mixed layer depth (MLD), and surface nutrient concentrations (PO4, Fe, NO3; averaged over top 75 m). NO3

is not available for the NCAR model.
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Fig. 5. Linear correlation between vertically integrated annual mean PP and surface temperature (SST), strati-

fication index (STRAT), PO4, Fe, mixed layer depth (MLD), and light (QSW) for IPSL (left), MPIM (middle),

and NCAR (right). The regression has been calculated for simulated annual mean values in each grid cell from

1860 to 2100 (SRES A2). SST, PO4 and Fe are averaged over top 75 m depth. Normalized regression slopes

(∆PP [ mgC

m2 day
] per relative change of SST, STRAT, PO4, Fe, MLD, and QSW in percent) are shown where

R2 > 0.1. Areas where R2 < 0.5 are shaded.
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Fig. 6. Long-term trends of PP, EP and related properties simulated by the IPSL (black), MPIM (red), and

NCAR (green) models under SRES A2 for a transect through the Atlantic that covers major productivity features

(dashed lines in Fig. 1c,e,g). Changes in vertical velocity (∆W) are shown in addition to the parameters

displayed in Fig. 4. The large relative changes in NO3 projected by the IPSL model at low and mid latitudes

result from small absolute changes at locations where NO3 is almost depleted.
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Fig. 7. Same as Fig. 6 but for a transect through the Pacific (dashed lines in Fig.1c,e,g).
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Fig. 8. Regional skill scores showing the ability of the IPSL(a), MPIM (b), and NCAR(c) models to reproduce

the satellite-based estimates of PP. Panel(d) shows which model has the highest skill score at a specific point

and therefore dominates the skill-score weighted multi-model mean shownin Fig. 9. The dotted areas indicate

regions where the contribution of the model with the highest skill score to themulti-model mean is less than

50%.
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Fig. 9. (a) Multi-model mean of vertically integrated annual mean PP under preindustrial conditions (decadal

mean 1860-1869) and(b) projected changes by the end of the 21st century under SRES A2. The changes are

shown on an exponential scale and represent the difference between2090-2099 and 1860-1869 (decadal means).

The multi-model means have been computed by using the regional skill scores shown in Fig. 8 as weights. The

dotted areas indicate that none of the regional skill scores is higher than 0.5. Where no observation-based data

is available to calculate skill scores (e.g. in the Arctic) the arithmetic mean of the model results is shown.
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Fig. 10. Projected changes in vertically integrated annual mean primary production for a nominal increase in

global mean surface air temperature (SATglob) of 1◦C. The panels show the slope∆PP/∆SATglob at each grid

cell for the IPSL(a), MPIM (b), and NCAR(c) models. The multi-model mean(d) is the weighted mean

(based on regional skill scores) of the individual slopes. The changes are shown on an exponential scale and are

calculated from a linear regression of annual mean values over the period 1860-2099. Areas where R2 < 0.1

are shaded in panels a-c.
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Fig. 11. Seasonal PP amplitude (maximum - minimum) zonally averaged (top), andfor specific sections in

the Atlantic (middle) and Pacific (bottom) as simulated by the three models IPSL(left), MPIM (middle), and

NCAR (right) for preindustrial conditions (blue; decade 1860-1869) and projected by the end of the century

(red; decade 2090-2099). Lines indicate the decadal mean and shadings the interannual variability (±σ). Please

note that the scale of the vertical axis is different for the Atlantic section.
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Fig. 12. Changes in zonally integrated PP under global warming as found with an empirical approach (left;

cf. Fig. 11 in Sarmiento et al., 2004) and simulated with the mechanistic models IPSL, MPIM, and NCAR

(right). In the left panel the productivity is calculated with the three different primary production algorithms of

Behrenfeld and Falkowski (1997a, B&F), Carr (2002), and Marraet al. (2003). The multi-model mean shown

in the right panel (blue) has been calculated using regional skill scores.
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