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Abstract

Isotopic measurements of N2O contain valuable information about its production and consump-
tion pathways, whose rigorous understanding could shed light on currently poorly understood
processes, such as the recent acceleration of N2O build-up in the atmosphere and its connection
to anthropogenic activities. Contributions to isotopic mixtures can be quantified by solving
systems of mixing equations, although this introduces mathematical constraints and complicates
handling uncertainties. Bayesian hierarchical models combine the use of expert information
with measured data and a mathematical mixing model while considering and updating the uncer-
tainties involved. Models specialized to solve mixing problems are known as Bayesian mixing
models and have already been successful in generating insights from isotopic data in many dif-
ferent contexts. However, data analysis of N2O production and consumption pathways requires
managing time series data and simultaneous estimation of endmember fractionation, which has
not been combined in a modeling approach before.

In total, four different model classes are presented in this thesis: independent time step models,
Gaussian process priors on measurements, Dirichlet-Gaussian process priors, and generalized
linear models with spline bases. All four have been extensively tested in different variations and
for a multitude of scenarios. Dirichlet-Gaussian process prior models have been found to be
most reliable, allowing for simultaneous estimation of hyperparameters via Bayesian hierarchical
modeling. Generalized linear models with spline bases seem promising as well, especially for
fractionation estimation, although the robustness to real datasets is difficult to assess given their
high flexibility. Additional experiments concluded that model performance of all classes could
greatly be increased by reducing uncertainty in input data, whereas the addition of more isotopic
measurements yielded a comparatively small benefit.

The TimeFRAME package available in Rwas implemented to distribute these models using Stan
for parameter estimation in addition to supplementary functions re-implementing some of the
surveyed isotope analysis techniques.
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Chapter 1

Introduction

1.1. Background

Analysis of isotopic signatures is extensively used in geosciences and ecology as a way of
studying mixing processes that are difficult or impossible to measure directly. Notable examples
include the study of water contamination [1], animal diet composition [2] and most importantly
for this thesis the quantification of nitrogen pathways [3], [4].

Isotopic signature measurements of nitrous oxide (N2O) have been shown to be useful for the
understanding of its production and consumption pathways. Moreover, the analysis techniques
used are applicable to many different research questions involving isotopic data [5], [6]. Nitrous
oxide is a naturally occurring gas that is primarily produced by microbes in soil and water. It
appears as a side-product as well as an intermediary in the series of processes constituting the
nitrogen cycle. This cycle, and thus by proxy the production of N2O, is impacted by anthropogenic
activities such as fertilization [7]. However, the acceleration of its emission rate in the past few
decades cannot be explained by rising fertilizer use alone, but could follow from the greater
impact of climate change [8] or redistribution of nitrogen inputs [4]. This is critical since N2O
acts as a strong greenhouse gas and ozone depletant in the atmosphere [9], [10]. Quantification
of individual production and consumption pathways despite complex interactions of numerous
biotic and abiotic processes can be helpful to gain a better understanding of the causes and
preventative measures regarding this development.

1.1.1. Nitrogen Cycle

The nitrogen cycle is commonly split into two main pathways. Nitrification is the oxidation of
ammonium (NH4

+) to nitrite (NO2
−) and later nitrate (NO3

−) performed by bacteria and other
microorganisms [11]. It produces nitrous oxide (N2O) as a side-product and has generally a
low throughput compared to the rest of the nitrogen cycle. Denitrification is a process in the
opposing direction, namely the reduction of nitrate to elemental nitrogen (N2) having nitrous
oxide as the penultimate intermediate. A multitude of organisms can be identified to participate
in the denitrification process, since it can serve as a source of energy for them [12]. Both
pathways are amplified when fertilization increases the available nitrogen in soil.

The different main pathways and even different mechanisms facilitating each individual path-
way have distinct reaction properties which can be measured and compared using the isotopic
signature of the corresponding product. This allows one to distinguish among them and even
quantify individual contributions given sufficient measurement accuracy and advanced calcula-
tion methods.

1



1. Introduction

Figure 1.1.: Graphical illustration of the different stages in the nitrogen cycle. Importantly,
nitrous oxide is produced via two main pathways, namely nitrification (Ni) and
bacterial denitrification (bD). Both nitrous oxide and elemental nitrogen are typically
in exchange with the atmosphere making this a partially open system.

1.1.2. Isotopic Signatures

Chemical elements are determined by the proton count in the nucleus of the atom. Isotopes are
variations of the same element with a different number of neutrons, which are neutral particles
also found within the nucleus. Molecules that differ in the isotopic composition of their atoms
but are otherwise identical are known as isotopocules. They have almost identical chemical
properties but vary slightly in their mass, which can have an impact on the rate of reactions.

Nitrous oxide consists of nitrogen with its most abundant isotope having a total of 14 nucleons
14N and oxygen with the most common nucleon count being 16 thus denoting it 16O. Their second
most frequently occurring isotopes are 15N with a natural abundance of 0.36% and 18O with an
abundance of 0.2% [13]. Possible substitutions of the most abundant nitrous oxide isotopocule
14N−14N−16O are thus central nitrogen substitution 14N−15N−16O known as 𝛼-configuration,
terminal nitrogen substitution 15N−14N−16O known as 𝛽-configuration and oxygen substitution
14N−14N−18O. Multiple substitutions, known as clumped isotopes, are simultaneously possible,
but given the low abundance of either heavy isotope they are exceptionally rare.

Example measurements of the isotopic signature of nitrous oxide would be the presence of
nitrogen substitution 𝛿15N, the presence of oxygen substitution 𝛿18O and the difference between
the 𝛼 and 𝛽 position known as site preference 𝛿15NSP. Depending on the source and particular
reaction, a given substance such as nitrous oxide shows a characteristic isotopic signature and
hence acts as a natural tracer for the specific source and mechanism.
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1. Introduction

1.2. Previous Work

Isotopic measurements have been used for various studies of nitrogen pathways, whether it be the
main cycle of nitrification and denitrification or alternative processes that exist in conjunction with
them. Typically, the endmember isotopic signature is partitioned into the different sources and
pathways by constructing a linear system of equations and solving for the source contributions.
This technique is known as isotopic mapping [14], [15]. Analysis using statistical frameworks
provides an alternative that is much more open to different measurement designs and can put
produced estimates in context of the associated uncertainties [16].

Since it has been usual to measure only two types of isotopic measurements for nitrous oxide
in the past, linear isotope mapping has been straightforward to compute and simple enough to
extend with rudimentary ways of handling uncertainty. With the recent possibility of measuring
more than two isotopic properties of the nitrous oxide molecule, more sophisticated methods
could be developed and applied. The 3DIM model [17] uses all three above mentioned isotopic
measurements, 𝛿15N, 𝛿15NSP as well as 𝛿18O, and places them in a Bayesian framework to
account for mixing of multiple sources as well as the further reduction to elemental nitrogen
under uncertainty.

The recently published FRAME model [18] provides a Bayesian framework for a wide range
of isotopic measurements with different cases of production and consumption pathways and is
accompanied by a graphical interface implemented in Python [19]. It casts a wide net in terms
of the problems it can address by allowing arbitrary mixing equations augmented with auxiliary
variables to model the measurements of the endmember as the combination of many different
contributing processes.

1.3. Aim and Motivation

Although at the present time there exist models with implementations that deal with isotopic
measurements for the purpose of estimating source contributions [17], [18], [20]–[22], they
appear to be tailored toward isotopic problems that do not deal with fractionation or have no
straightforward way of benefiting from time series information.

The goal of this thesis is thus to provide a statistical framework as well as a corresponding
implementation that can be used to quantitatively analyze isotopic mixtures over time. In
particular, the objective is to improve and extend existing Bayesian models to deal with multiple
isotopic measurements in the presence of fractionation and to meaningfully incorporate time
series information. Models shall be compared in terms of accuracy of estimates as well as time
series properties such as the rate of change on simulated data sets.

3



Chapter 2

Theory

2.1. Stable Isotope Mixing

In order to study and quantify different sources and pathways of a particular chemical species,
stable isotope measurements can be used as indicators. Fundamental notation as well as some
calculations shall be established in the following section based on Hayes [23].

In the most general case the measurements yield concentrations for the isotope of interest
denoted by 𝐶 against the concentration of the most abundant, lighter reference isotope 𝐶0. For
instance in nitrogen pathway analysis the presence of the heavier 15N is measured in contrast to
the most abundant stable isotope 14N. Calculations are then based on the isotope ratio defined
by the ratio of concentrations.

𝑅 :=
𝐶

𝐶0
(2.1)

As is the case for the vast majority of isotopic analyses of light elements it can be assumed
that the most abundant isotope has a much higher concentration 𝐶0 ≫ 𝐶 and therefore the
isotope ratio is small. For the purpose of calibration to an international standard scale a different
notation is commonly used, where the isotope ratio is expressed relative to a standardized ratio
𝑅𝑠𝑡𝑑 designated and agreed upon on a case by case basis [24]. Nitrogen is standardized using
the isotopic ratio of elementary nitrogen in air (N2-AIR).

𝛿 :=
𝑅

𝑅𝑠𝑡𝑑
− 1 (2.2)

Additionally, the values are typically expressed in permill (‰) to make them more readable and
usable. In this delta notation the isotope of interest is appended to the symbol to uniquely identify
the measurement that is being made. In the case of nitrogen the bulk isotope measurement is
therefore denoted by 𝛿15𝑁 .

Isotopic mixing calculations are used when the measured species is known to be the mixture
of two or more sources with different isotopic compositions. The sources shall be enumerated
by 𝑘 = 1, . . . , 𝐾 with each having concentration 𝐶𝑘 and thus isotope ratio 𝑅𝑘 . Given that the
sources are mixed with molar proportions 𝑓1, . . . , 𝑓𝐾 having

∑𝐾
𝑘=1 𝑓𝑘 = 1, the mass balance

equation for the mixture can be derived in terms of the concentration values by normalizing with
the total sum of constituents.

𝐶

𝐶0 + 𝐶
=

𝐾∑︁
𝑘=1

𝑓𝑘𝐶𝑘

𝐶0,𝑘 + 𝐶𝑘
(2.3)

4



2. Theory

One can easily see that using the assumption of a very large light isotope concentration 𝐶0 ≫ 𝐶

the balance equation holds for the isotope ratios as well 𝑅 =
∑𝐾
𝑘=1 𝑓𝑘𝑅𝑘 and furthermore, using

the assumption that the ratios do not deviate much from the standard ratio 𝑅𝑠𝑡𝑑 , the equation
even holds approximately for delta values with 𝛿𝑘 = 𝑅𝑘

𝑅𝑠𝑡𝑑
− 1.

𝛿 ≈
𝐾∑︁
𝑘=1

𝑓𝑘𝛿𝑘 (2.4)

2.1.1. Fractionation Effects

One might want to take into account that a source in this case is not simply a collection of
pre-existing product, but a substrate that undergoes a chemical reaction to become said product.
Even if the original isotopic ratio of the source substrate corresponding to source 𝑘 is given by
�̃�𝑘 the immediate products of the reaction are not necessarily isotopically identical. For instance
the isotopic signature of nitrite in soil will be different from nitrous oxide purely produced from
denitrification. This is due to the fact that chemical reactions do not preserve the isotopic ratios,
but they generally favor certain isotopes and thereby introduce a so called fractionation effect. A
typical example is the fact that light isotopes tend to react faster and thus products get enriched in
light isotopes compared to their substrates. This effect is of course only relevant if the isotopes
can separate in the first place and the reaction is not fully complete, otherwise the exact same
isotopic ratios would necessarily be observed due to mass balance.

Fractionation effects are quantified by the relation of the isotopic ratios of substrates and
products. The so called fractionation factor is defined as the ratio of isotope-specific reaction
rate constants and consequently corresponds to the relationship of product and substrate isotopic
ratio 𝛼𝑘 = 𝑅𝑘

�̃�𝑘
[25]. Inheriting the notation convention from delta values, it is similarly expressed

in permill (‰).

𝜀𝑘 :=
𝑅𝑘

�̃�𝑘
− 1 (2.5)

This allows the expression of the mixture isotope ratio as a weighted sum of the original
substrate isotope ratios and fractionation effects, which by approximation on small deviations
relative to the standard isotope ratio also holds in delta notation, as already seen above.

𝑅 =

𝐾∑︁
𝑘=1

𝑓𝑘𝛼𝑘 �̃�𝑘 (2.6)

In addition to the sources producing the chemical species of interest, one might also consider
reactions that consume it and thus induce a fractionation effect of the opposite size. For instance
reactions that favor light isotopes will remove them and thus leave the mixture enriched in heavy
isotopes compared to what was produced by the different sources. This is typically the case for
the reduction of nitrous oxide to elemental nitrogen.

Under the assumption that the substrate has isotope ratio �̃� directly after mixing and is then
transformed into a product with isotope ratio 𝑅𝑝 = 𝛼𝑅 determined by the fractionation factor
𝜀 of the reaction, the resulting isotopic ratio can be derived. Using an approximation of small

5



2. Theory

values of 𝜀 this relationship is stated in delta notation as 𝛿𝑝 = 𝛿+𝜀. A common situation involves
open systems where reactants can be supplied infinitely and the transformed product is instantly
lost to the environment. If such systems are in steady state the mass balance equation can be
interpreted per unit time and adapted to delta notation in terms of the fraction of remaining
substrate 𝑟 ∈ [0, 1], also called fractionation weight or fractionation index.

𝛿 = 𝑟𝛿 + (1 − 𝑟)𝛿𝑝 = 𝑟𝛿 + (1 − 𝑟) (𝛿 + 𝜀) (2.7)

Now the terms can be reordered and the previous sources can be incorporated.

𝛿 = 𝛿 − 𝜀(1 − 𝑟) =
𝐾∑︁
𝑘=1

𝑓𝑘𝛿𝑘 − 𝜀(1 − 𝑟) (2.8)

A fully closed system has limited resources of reactants in addition to the accumulation of
product such that mass balance is always satisfied. This fractionation type results in reaction
kinetics described by the Rayleigh equations which were developed by John William Strutt and
is therefore oftentimes referred to as Rayleigh fractionation. The Rayleigh equation then states
the relationship of the original isotope ratio �̃� and the isotope ratio of the remaining substrate 𝑅
in terms of its molar proportion 𝑟.

𝑅

�̃�
= 𝑟 𝜀 (2.9)

Restating this equation in terms of the delta notation and using the approximation 𝛿 ≈ log(1 + 𝛿)
for small values the full mixing equation including sources and product fractionation can be
derived.

𝛿 = 𝛿 + 𝜀 log 𝑟 =
𝐾∑︁
𝑘=1

𝑓𝑘𝛿𝑘 + 𝜀 log 𝑟 (2.10)

Careful consideration needs to be taken for the approximations involved, since for large yields
𝑟 ≈ 0 they can lead to errors that are of the same order of magnitude as the effects to be studied.

A different closed system interaction can occur when the reaction in question is reversible.
The fractionation effects in both direction can then be used determine an isotopic signature at
equilibrium 𝛿𝑒𝑞. If the system is not fully equilibrated and thus not in steady state the isotopic
signature of the substrate can be expressed in terms of the equilibrated proportion 𝑟𝑒𝑞 ∈ [0, 1].

𝛿 = (1 − 𝑟𝑒𝑞)𝛿 + 𝑟𝑒𝑞𝛿𝑒𝑞 = (1 − 𝑟𝑒𝑞)
𝐾∑︁
𝑘=1

𝑓𝑘𝛿𝑘 + 𝑟𝑒𝑞𝛿𝑒𝑞 (2.11)

These three mixing and fractionation equations are approximations for open system in steady
state as well as closed systems with and without reversible reactions. They are useful for basic
analyses, but many additional cases exists with fractionation equations that are not covered here.
Some examples are the exact formulations of the above equations [26] as well as individual
source fractionation before mixing occurs [15]. Multiple fractionation terms in one equation are
also possible, in which case the fractionation proportions will be enumerated by 𝑟1, . . . , 𝑟𝐿 .

6



2. Theory

2.1.2. Inference of Source Contributions

One objective of studying isotopic signatures is to determine the source contributions 𝑓1, . . . , 𝑓𝐾
from measurements of the mixture. However, measuring one single type of isotope will only be
efficient in distinguishing between two sources. For additional sources or if consumption of the
mixture needs to be taken into account, multiple isotopic measurements are necessary. Analysis
of nitrous oxide sources and pathways for instance can include the bulk isotopic abundance of
heavy nitrogen 𝛿15N and heavy oxygen 𝛿18O in addition to nitrogen site preference 𝛿15NSP.

In general the vector of 𝑑 different isotopic measurements shall be denoted by 𝑋 ∈ R𝑑 .
Measurements of the isotopic signature of each individual source enumerated by 𝑘 = 1, . . . , 𝐾
are assumed to be known and denoted by 𝑆1, . . . , 𝑆𝑘 ∈ R𝑑 together with the fractionation factor
𝐴 ∈ R𝑑 . Using vector and matrix notation they can later be used to state the mixing equation in
vector form.

f := [ 𝑓1 · · · 𝑓𝐾 ]T ∈ R𝐾

S := [𝑆1 . . . 𝑆𝐾 ] ∈ R𝑑×𝐾

The case of Rayleigh fractionation shall serve as a representative example for this section since the
simple inference methods discussed here are tailored to this specific example. More sophisticated
methods are developed for the general case and the mixing equation 𝜇(f, 𝑟) can be expressed
in terms of f and 𝑟 as is deemed appropriate for the given situation. The example mixing and
fractionation equation using Rayleigh fractionation can be expressed in vectorized form as well.

𝑋 = 𝜇(f, 𝑟) :=
𝐾∑︁
𝑘=1

𝑓𝑘𝑆𝑘 + 𝐴 log 𝑟 = Sf + 𝐴 log 𝑟 (2.12)

Given that the number of measurements 𝑑 is chosen exactly such that the source contributions
f can be identified uniquely, a method of determining them is the isotope mapping approach
[15]. For the simplest example of only two sources and two measurements 𝐾 = 𝑑 = 2 the mixing
equation can be solved for the parameters of interest.[

𝑋1
𝑋2

]
=

[
𝑆11
𝑆12

]
𝑓1 +

[
𝑆21
𝑆22

]
𝑓2 +

[
𝐴1
𝐴2

]
log 𝑟 =

[
𝑆21
𝑆22

]
+

[
𝑆11 − 𝑆21
𝑆12 − 𝑆22

]
𝑓1 +

[
𝐴1
𝐴2

]
log 𝑟

This is a linear system of equations that can be addressed with the usual techniques giving explicit
solutions to compute the desired quantities.

𝑓1 = 1 − 𝑓2 =
𝐴1(𝑋2 − 𝑆22) − 𝐴2(𝑋1 − 𝑆21)
𝐴1(𝑆12 − 𝑆22) − 𝐴2(𝑆11 − 𝑆21)

log 𝑟 =
𝑆12(𝑋1 − 𝑆21) − 𝑆11(𝑋2 − 𝑆22) + 𝑋2𝑆21 − 𝑋1𝑆22

𝐴1(𝑆12 − 𝑆22) − 𝐴2(𝑆11 − 𝑆21)

(2.13)

No unique solution exists if the quantity in both denominators is equal to zero or equivalently if
𝐴1
𝐴2

=
𝑆11−𝑆21
𝑆12−𝑆22

. In this case the mixing line and the consumption line coincide and the effects of
both can no longer be separated as the problem essentially reduces to fulfilling a one dimensional
constraint with two unknowns.

7



2. Theory

The more general case of mixing and Rayleigh fractionation can be solved for an arbitrary
number of sources as long as an equal number of isotopic measurements exist 𝐾 = 𝑑 ≥ 2. In
that case the linear system of equations can be written in matrix terms and augmented with the
sum constraint on f to ensure that the solution fulfills it exactly.

�̃� :=
[
𝑋

1

]
=

[
S −𝐴
1T 0

] [
f

− log 𝑟

]
=: S̃f̃ (2.14)

This 𝑑+1-dimensional linear system of equations can be addressed with decomposition techniques
and its solution can be expressed as f̃ = S̃−1 �̃� . A unique solution exists if S̃ is invertible or
equivalently if none of the mixing lines as well as the consumption line are collinear. Only
non-negative solutions f̃ ≥ 0 are feasible to ensure that the source contributions f correspond to
mixing weights and that 0 < 𝑟 ≤ 1.

2.1.3. Uncertainty Quantification

A flaw of the isotope mapping approach as presented above is that it does not take measurement
uncertainty into account. However, this can easily be added by formulating the measurements
𝑋 as random variables with expected value given by the mixing equation E [𝑋] = 𝜇(f, 𝑟).
Most commonly, measurements are modeled using the Gaussian distribution with independent
components and variance 𝜂2 ∈ R.

𝑋 ∼ N𝑑
(
𝜇(f, 𝑟), 𝜂21

)
= N𝑑

(
Sf + 𝐴 log 𝑟, 𝜂21

)
(2.15)

The likelihood equation can now be stated in terms of the multivariate Gaussian density with inde-
pendent components and the maximization problem can be solved for f and 𝑟 under consideration
of all relevant constraints.

𝑝(𝑋 |f, 𝑟) =
(
2𝜋𝜂2

)− 𝑑2 exp
(
− ∥𝑋 − 𝜇(f, 𝑟)∥

2

2𝜂2

)
Solving for the maximum likelihood solution thus leads to the identical solution derived from
solving Equation 2.14 if it exists and otherwise the closest feasible solution in terms of the
Euclidean distance by solving the optimization problem.

argmax
f∈S𝐾 ,𝑟∈[0,1]

𝑝(𝑋 |f, 𝑟) = argmin
f∈S𝐾 ,𝑟∈[0,1]

∥𝑋 − 𝜇(f, 𝑟)∥2 = argmin
f̃≥0

∥ �̃� − S̃f̃∥2 (2.16)

The least squares minimizer can be expressed using the Moore-Penrose pseudo-inverse S̃+ [27].
In the case where the columns are linearly independent, thus requiring that there are at least
as many isotopic measurements as there are sources, the pseudo-inverse can be computed as
S̃+ = (S̃TS̃)−1S̃T [28]. Therefore, when the inverse exists this computation reduces to S̃+ = S̃−1.
The distribution of the least squares solution can be expressed as a truncated normal distribution
constrained to the positive half-plane, whose variance is smaller than that of the unbounded
normal.

f̃ ∼ N𝑑+1
(
S̃+ �̃�, 𝜂2(S̃TS̃)−1

)
(2.17)
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Furthermore, given values for the isotopic signature of the sources 𝑆1, . . . , 𝑆𝐾 and fractionation
factor 𝐴 are subject to measurement uncertainty as well as epistemic uncertainty, since their
values can depend on unknown soil and environmental characteristics. It is thus natural to model
these uncertainties as normally distributed random variables as well and derive the estimation
uncertainty with their consideration.

𝑆𝑘 ∼ N𝑑 (𝑏𝑘 , 𝜉2
𝑘), ∀𝑘 = 1, . . . , 𝐾

𝐴 ∼ N𝑑 (𝑐, 𝜈2)

The distribution of the measurements 𝑋 is thus a convolution of weighted Gaussian distributions,
which itself is a Gaussian distribution again [29]. Inference and uncertainty quantification is
then analogous to above, while using the calculated mean and variance of the measurement
distribution.

𝑋 𝑗 ∼ N
(
𝐾∑︁
𝑘=1

𝑓𝑘𝑏𝑘 𝑗 + 𝑐 𝑗 log 𝑟,
𝐾∑︁
𝑘=1

𝑓 2
𝑘 𝜉

2
𝑘 𝑗 + 𝜈

2
𝑗 log2 𝑟 + 𝜂2

)
, ∀ 𝑗 = 1, . . . , 𝑑 (2.18)

Oftentimes, the epistemic uncertainty of source isotopic signatures is modeled as a uniform
distribution. It is worth to note that in the case of many similar sources a Gaussian approximation
is applicable and sufficient for most applications, but it is not universally adequate. In those cases
Bayesian statistics is useful to incorporate all assumptions and constraints into the model as well
as to employ numerical inference methods for source contribution estimation and uncertainty
estimation. This widens the framework to arbitrary mixing equations 𝜇(f, 𝑟) as well as arbitrary
prior distributions for the auxiliary parameters S and 𝐴.

2.2. Bayesian Hierarchical Models

Bayesian models assume that the measurements as well as the parameters are associated with
respective probability distributions. The concept of probability is to be understood as a measure
of certainty regarding the actual value of a variable rather than the frequentist perspective that
focuses on the likelihood of an outcome given repeated experiments. The Bayesian framework
combines parameter estimation with uncertainty quantification and makes use of estimation
methods that are applicable to a wide range of possible models.

A given model is parameterized by the vector of parameters 𝜃 ∈ Θ that are equipped with
a given prior probability distribution 𝜋(𝜃). In the case of isotopic source contribution and
fractionation quantification the parameter vector would be 𝜃 =

( f
𝑟

)
. The statistical model then

defines the likelihood of measuring a certain observation 𝑋 ∈ R𝑑 conditioned on the parameter
value denoted by 𝑝(𝑋 |𝜃). Now, Bayes’ Theorem can be used to derive the posterior distribution
of the parameters given the observation [30].

𝜋(𝜃 |𝑋) = 𝑝(𝑋 |𝜃)𝜋(𝜃)
𝑝(𝑋) (2.19)

9



2. Theory

This posterior probability distribution conveys much more information than a simple maximum
likelihood estimation of the parameter would. The core task of Bayesian parameter estimation
is then to evaluate the integral 𝑝(𝑋) =

∫
𝑝(𝑋 |𝜃)𝜋(𝜃)𝑑𝜃 or respectively to sample from this

posterior distribution directly without normalization.
Bayesian hierarchical modeling adds additional layers to the prior structure, thus allowing

for grouping of the measured variables 𝑋 in certain dimensions [31]. In general, the choice
of prior is arbitrary and numerous methods of selecting or estimating it are offered within the
literature [32]–[35]. Principally, the prior structure can be utilized to encode information about
the sampling populations that the measurements 𝑋 originate from. Assuming that there is a
set of populations warrants modeling them with potentially different prior distributions 𝜋(𝜃 |𝜙)
indexed by the hyperparameter 𝜙 ∈ Φ. In a fully Bayesian framework this index parameter is
equipped with its own probability distribution 𝜋(𝜙) which is known as a hyperprior.

In an empirical Bayesian framework the hyperparameter is estimated to maximize the evidence
𝑝(𝑋) beforehand, which is equivalent to the maximum a posteriori solution 𝜙 for a flat hyperprior
[36]. Alternatively, for very peaked posterior distributions, frequentist techniques such as maxi-
mum likelihood estimation can be used as well [37]. A posterior of the model parameters can then
be formulated by plugging in this estimator 𝜋(𝜃 |𝑋) ∝ 𝑝(𝑋 |𝜃)𝜋(𝜃 |𝜙). However, most Bayesian
estimation methods are reasonably efficient for a large number of parameters and thus a fully hi-
erarchical Bayesian framework which evaluates a joint posterior 𝜋(𝜃, 𝜙|𝑋) ∝ 𝑝(𝑋 |𝜃)𝜋(𝜃 |𝜙)𝜋(𝜃)
is frequently the framework of choice [38].

2.2.1. Bayesian Mixing Models

For scenarios involving only isotope mixing, a Bayesian framework can be established by as-
suming some prior distribution 𝜋(f) for the source contributions f ∈ S𝐾 . The likelihood 𝑝(𝑋 |f)
is then a normal distribution centered around the result of the pure mixing equation 𝜇(f) = Sf.
The matrix of source isotopic signatures S ∈ R𝑑×𝐾 is an auxiliary parameter with values taken
from specific analyses of each individual source found in the literature. When uncertainties are
involved, they are incorporated into a prior distribution 𝜋(S) as well.

Bayesian mixing models allow for general purpose inference of mixing weights. By combining
the priors for source contribution weights and source isotopic signatures, a posterior distribution
can be evaluated that gives pointwise estimates of the parameters as well as an estimation of
uncertainty.

𝜋(f, S|𝑋) ∝ 𝑝(𝑋 |f, S)𝜋(f)𝜋(S) (2.20)

The auxiliary parameters corresponding to source isotopic signatures S are latent variables
and the posterior estimates their values jointly with f. In order to get estimates of the relevant
mixing weight parameters f only, the posterior can be marginalized by solving the integral
𝜋(f |𝑋) =

∫
𝜋(f, S|𝑋)𝑑S. Latent variables can also be integrated over when formulating the

likelihood by computing 𝑝(𝑋 |f) =
∫
𝑝(𝑋 |f, S)𝜋(S)𝑑S. This results in a model with fewer

parameters and produces the exact same marginal posterior.

𝜋(f |𝑋) ∝ 𝑝(𝑋 |f)𝜋(f) =
∫

𝑝(𝑋 |f, S)𝜋(S)𝜋(f)𝑑S ∝
∫

𝜋(f, S|𝑋)𝑑S (2.21)
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Many isotopic problems require solving pure mixing equations exclusively, which is why many
different approaches for this setting exist. However, in the case of nitrous oxide measurements
and similar situations, the endmember isotopic signature is not only governed by the mixing of
different sources, but it is simultaneously removed by other processes that introduce fractionation
effects. For these situations Bayesian mixing models are extended with augmented mixing
equations as in Equation 2.12 using an additional parameter 𝑟 ∈ [0, 1] for the fractionation
weight and equipping it with a suitable prior as well 𝜋(𝑟). The joint posterior can then be
evaluated by modeling the fractionation factor as a random variable 𝐴 ∈ R𝑑 similar to the source
isotopic signatures.

𝜋(f, 𝑟, S, 𝐴|𝑋) ∝ 𝑝(𝑋 |f, 𝑟, S, 𝐴)𝜋(f)𝜋(𝑟)𝜋(S)𝜋(𝐴) (2.22)

2.2.2. Choosing Prior Distributions

Bayesian hierarchical models are based on a representation of the data generating process that
allows one to find posterior estimates of the parameters. These estimates are the consequence of a
combination of prior and likelihood distributions, that must be modeled somehow. It is oftentimes
clear how to construct suitable likelihood distributions since they stem from the physical modeling
of the situation and are part of frequentist statistics as well. In isotopic data analysis the likelihood
is given through the mixing and fractionation equation. Prior distributions on the other hand
are much more flexible and are desirably chosen to reflect already known information. If this is
not available so called uninformative priors are chosen that simply constrain the parameters to
certain regions without influencing the final estimate otherwise. Claims of any distribution being
uninformative are patently up to debate and ultimately the choice of the modeler. A common
practice when using Rayleigh fractionation is to assign a uniform prior to the fractionation
weight, although, considering its logarithmic dependence on the measurement outcomes, it is
not immediately clear why this is deemed a favorable choice.

Typically, the choice of priors is separated into uninformative [35], weakly informative [39] and
strongly informative priors [34]. In the presence of expert information or strong a priori results
the choice of strongly informative prior should be natural and the possibility to incorporate such
information is one of the major strengths of Bayesian modeling. Mixing problems for instance
have notions of concentration, where priors do not presuppose that any parameter is larger than
another but simply that one parameter dominates against the others [40]. In the absence of
prior information the use of uninformative priors is oftentimes discouraged. This is due to the
ambiguity of what it means to be uninformative and the unintended consequences and pitfalls
of such assumptions [39], [41]. In certain cases such as normal-normal hierarchical models
guidelines for choosing priors exist [42] and predictive checks can help in general to understand
the effect a certain prior has on the estimates [33].

The Jeffreys prior [43] offers a way of constructing an uninformative or objective prior
distribution based on the argument that it is invariant under change of coordinates and thus
does not favor any particular values over others. The Jeffreys prior for a parameter 𝜃 is chosen
proportionally to the square root of the Fisher information determinant.

𝜋(𝜃) ∝
√︁
|I(𝜃) | (2.23)
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The Fisher information is defined as the variance of the first derivative of the log-likelihood,
which under certain regularity conditions can be expressed by 𝐼 (𝜃) = −E

[
𝜕2

𝜕𝜃2 log 𝑝(𝑋 |𝜃)
���𝜃]

and therefore quantifies a notion of curvature or sensitivity of the likelihood around a parameter
value [44, ch. 5]. Consequently, it is modified under any transformation of the parameter 𝜑(𝜃) to
𝐼𝜑 (𝜑) = 𝐼𝜃 (𝜃)

(
𝑑𝜃
𝑑𝜑

)2
such that the Jeffreys prior assigns equal probability to the same volume

of probability space in either parametrization 𝜋(𝜑) = 𝜋(𝜃)
��� 𝑑𝜃𝑑𝜑 ��� [45]. This property is mostly

desired for parameters relating to scale [46].

2.3. Monte Carlo Methods

Bayesian estimation of source contribution and fractionation weights for instance works by
constructing a prior distribution 𝜋(𝜃) for the parameters 𝜃 ∈ Θ as well as a likelihood distribution
𝑝(𝑋 |𝜃) for the measurements 𝑋 ∈ R𝑑 and then carefully evaluating both, using Bayes’ Theorem to
compute a posterior distribution 𝜋(𝜃 |𝑋). Various methods exist to approximate this distribution
numerically of which Monte Carlo methods are most prominent. A Monte Carlo method is
defined as any computational algorithm that relies on random sampling to compute an output,
which therefore by construction is also random [47]. They are capable of both numerical
integration as well as sampling from difficult probability distributions.

Assuming that the distribution of a parameter has distribution 𝜃 ∼ PΘ with density 𝜋(𝜃),
Monte Carlo integration approximates the marginal likelihood integral with the random sampling
average over 𝑆 identically distributed variables 𝜃 (1) , . . . , 𝜃 (𝑆) ∼ PΘ.

𝑝(𝑋) =
∫
Θ

𝑝(𝑋 |𝜃)𝜋(𝜃)𝑑𝜃 ≈ 1
𝑆

𝑆∑︁
𝑠=1

𝑝

(
𝑋

���𝜃 (𝑠) ) (2.24)

The marginal likelihood has important statistical meaning since it can be used for model
comparison and to examine the posterior numerically, although this approximation presupposes
the ability to sample from PΘ instead. When this is not given, Monte Carlo methods can be used
to sample from the posterior directly. Rejection sampling [48], [49] and importance sampling
[50] both provide a way of adapting a sample from a suitable and simple proposal distribution
to the target posterior distribution, although with varying efficiency. However, due to its wide
applicability and adaptive nature, Markov Chain Monte Carlo sampling is the method of choice
in the vast majority of cases.

2.3.1. Markov Chain Monte Carlo

Given the objective of Monte Carlo sampling to generate statistically efficient random sample
from a challenging target distribution, it is intuitive to construct methods that use independent
samples from auxiliary distributions, such as the uniform or Gaussian distribution, which offer
simpler sampling procedures. Markov Chain Monte Carlo (MCMC) methods abandon the idea of
creating a statistically independent sample in order to create a more efficient proposal distribution
[51]. The result are algorithms that trade off the statistical efficiency of independent samples for
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the efficiency stemming from samples having high target probability and thus large contributions
to the integral in Equation 2.24, typically resulting in an overall better sample especially for
high-dimensional parameter spaces.

A Markov chain or Markov process is a statistical process comprising a series of random
variables 𝜃 (1) , 𝜃 (2) , . . . and is defined by the conditional probability P

[
𝜃 (𝑠) |𝜃 (1) , . . . , 𝜃 (𝑠−1) ]

of each subsequent member of the chain [51, ch. 4]. To be classified as Markov process, it
must satisfy the Markov property, that is to say that the probability of each observation is solely
dependent on the last member of the chain and independent of all others.

P
[
𝜃 (𝑠)

���𝜃 (1) , . . . , 𝜃 (𝑠−1)
]
= P

[
𝜃 (𝑠)

���𝜃 (𝑠−1)
]

In order to construct a Markov chain that samples a specific target density 𝜋(𝜃) known only
in unnormalized form 𝑞(𝜃) = 𝑍𝜋(𝜃) for 𝑍 > 0, one must choose the transition probabilities
P
[
𝜃 (𝑠)

��𝜃 (𝑠−1) ] accordingly. The Metropolis-Hastings algorithm precisely constructs a transition
probability satisfying detailed balance, which is a sufficient condition for the Markov chain to
converge to the target probability distribution [30, ch. 10.3].

The algorithm then works by iteratively sampling from a proposal distribution 𝑄(·|𝜃 (𝑠) ) and
then evaluating an acceptance probability 𝛼 that modifies the overall transition probability such
that the desired distribution is sampled.

Algorithm 1: Metropolis-Hastings algorithm
Data: Initial value 𝜃 (0) , sample size 𝑆

1 for s = 0, . . . , S do
2 Sample 𝜃′ ∼ 𝑄(·|𝜃 (𝑠) );
3 Sample 𝑢 ∼ Uni(0, 1);
4 Compute 𝛼 = min

{
1, 𝑞 (𝜃 ′ )𝑄 (𝜃 (𝑠) | 𝜃 ′ )

𝑞 (𝜃 (𝑠) )𝑄 (𝜃 ′ | 𝜃 (𝑠) )

}
;

5 if 𝑢 ≤ 𝛼 then
6 𝜃 (𝑠+1) ← 𝜃′;
7 else
8 𝜃 (𝑠+1) ← 𝜃 (𝑠) ;
9 end

10 end

Constructing proposal probabilities is not difficult in general, since it only must be ensured that
all regions of the variable space Θ can be reached [30, ch. 10]. However, it is not trivial to find
distributions that are also efficient, meaning they generate proposals with high acceptance rates
and thus frequent transitions. Straightforward proposal distributions are the uniform distribution
over the whole spaceΘ as well as the random-walk proposal using a Gaussian distribution centered
around the previous value. In the context of sampling from Bayesian posterior distributions it
also common to choose the independent prior distribution, if the posterior is expected to be
similar due to the data conveying only little information.
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Trivial proposal distributions can already be efficient enough depending on the problem at
hand. Situations where the variable space Θ has high-dimension or where the unnormalized
density 𝑞(𝜃) has a difficult shape are often mentioned as cases where these approaches are not
sufficient anymore [52]. It is thus useful to construct more sophisticated proposal distributions.
Gibbs sampling uses the fact the conditional distributions are perfect proposals in the sense
that they will always be accepted [53, ch. 11.3]. The conditional distribution of of one single
parameter 𝜃𝑖 in the parameter vector 𝜃 = [𝜃1, . . . , 𝜃𝑛]T ∈ Θ is the distribution conditioned on
the parameter vector including all other parameters.

𝜋(𝜃𝑖 |𝜃−𝑖) = 𝜋(𝜃𝑖 |𝜃1, . . . , 𝜃𝑖−1, 𝜃𝑖+1, . . . , 𝜃𝑛)

Even though the joint distribution 𝜋(𝜃) is not known, thus prompting the use of a sampler in the
first place, the conditional distributions are oftentimes easy to derive analytically or to reasonably
approximate with Markov blankets.

Gibbs sampling follows the same procedure as the general Metropolis-Hastings algorithm with
each step corresponding to sampling only a single component 𝜃′

𝑖
of the parameter vector and

with its conditional distribution as the proposal 𝑄(𝜃′ |𝜃) = 𝜋(𝜃′
𝑖
|𝜃−𝑖). One can easily see that

the acceptance step in that case becomes trivial and can be omitted, thus eliminating any issues
stemming from low acceptance probabilities.

𝜋(𝜃′)𝑄(𝜃 (𝑠) |𝜃′)
𝜋(𝜃 (𝑠) )𝑄(𝜃′ |𝜃 (𝑠) )

=
𝜋(𝜃′

𝑖
, 𝜃
(𝑠)
−𝑖 )𝜋(𝜃

(𝑠)
𝑖
|𝜃 (𝑠)−𝑖 )

𝜋(𝜃 (𝑠)
𝑖
, 𝜃
(𝑠)
−𝑖 )𝜋(𝜃′𝑖 |𝜃

(𝑠)
−𝑖 )

=
𝜋(𝜃′

𝑖
|𝜃 (𝑠)−𝑖 )𝜋(𝜃

(𝑠)
−𝑖 )𝜋(𝜃

(𝑠)
𝑖
|𝜃 (𝑠)−𝑖 )

𝜋(𝜃 (𝑠)
𝑖
|𝜃 (𝑠)−𝑖 )𝜋(𝜃

(𝑠)
−𝑖 )𝜋(𝜃′𝑖 |𝜃

(𝑠)
−𝑖 )

= 1 (2.25)

Increasing statistical quality of an MCMC sample by reducing autocorrelation and increasing
computational efficiency by proposing better values with higher acceptance rates oftentimes
presents itself as a strict trade-off. However, if not only the unnormalized density 𝑞(𝜃) is known,
but also its derivative 𝑑

𝑑𝜃
𝑞(𝜃), this additional information can be used to generate high quality

proposals with minimal autocorrelation. This is accomplished by Hamiltonian Monte Carlo
(HMC) [54] which generates proposals by simulating a physical particle trajectory in a potential
corresponding to the target log-density surface.

The Hamiltonian is an operator used in physics that computes the total energy of a physical
system. In the case of non-interacting classical particles the energy is given by the sum of kinetic
and potential energy components. The position represents the sampled parameters 𝜃 ∈ R𝑑 , which
will be accompanied by an equally sized momentum vector 𝜉 ∈ R𝑑 . Jointly, they uniquely define
the state of a system and can be used together with a fixed mass matrix M ∈ R𝑑×𝑑 to compute
the Hamiltonian.

𝐻 (𝜃, 𝜉) = 1
2
𝜉TM−1𝜉 − log 𝑞(𝜃) (2.26)

Physical system dynamics are now described by Hamilton’s equations. New state vectors can be
generated and proposed for the sampling algorithm by following these parameter dynamics 𝜃 (𝑡)
and 𝜉 (𝑡) for a suitable amount of time.

𝑑𝜃

𝑑𝑡
=
𝜕𝐻

𝜕𝜉
,

𝑑𝜉

𝑑𝑡
= −𝜕𝐻

𝜕𝜃
(2.27)
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Hamilton’s equations can be solved numerically by discretizing in time and employing for
instance the leap-frog algorithm to integrate up until a final time 𝑇 [53, ch. 11.5]. The previous
sample will be set as the initial condition 𝜃 (0) = 𝜃 (𝑠) and the position at the end of the path
𝜃′ = 𝜃 (𝑇) is proposed as new sample and subjected to the acceptance step. Improvements to the
sampling strategy exist, such as the No U-Turn Sampler [55], [56], which selects the stopping
time 𝑇 adaptively. Since the path of a particle is restricted inside the potential by its initial
energy, the initial momentum is randomized and typically sampled from a Gaussian distribution
𝜉 (0) ∼ N𝑑 (0,M). Both the sampling position 𝜃 as well as the momentum 𝜉 are included in the
modified acceptance probability, thereby ensuring that the accepted parameters follow the target
distribution and the random particle states in each step follow a Boltzmann distribution [57].

𝛼 = min
{
1,

exp(−𝐻 (𝜃 (𝑇), 𝜉 (𝑇))
exp(−𝐻 (𝜃 (0), 𝜉 (0))

}
(2.28)

2.3.2. Evaluating Sample Quality

Markov chain Monte Carlo simulation is used to create a correlated sample 𝜃 (1) , . . . , 𝜃 (𝑆) which
is then used to estimate posterior distribution properties such as its mean for pointwise estimation
and quantiles for uncertainty estimation. However, statistical samplers have many failure modes
in which the produced sample does not represent the posterior well. Theoretical guarantees of
the Metropolis-Hastings procedure exist only for an unbounded number of samples [58]. For
this reason it is important to evaluate the sample quality after a Monte Carlo simulation is done.

For the estimation of distribution properties independent samples are typically preferred.
Markov chain Monte Carlo methods inherently produce subsequent samples on the basis of
previous values and thus create dependence. In the worst case 𝑆 posterior samples are produced
that are heavily correlated and thus do not give accurate estimates of its distribution properties.
The autocovariance of a statistical process such as a stationary Markov chain is defined as the
covariance between elements having lag 𝑘 between them.

𝛾𝑘 := Cov
[
𝜃 (𝑠) , 𝜃 (𝑠+𝑘 )

]
(2.29)

Distribution estimators derived from independent samples have estimation errors proportional
to 1√

𝑁
for 𝑁 observations [59]. This fact is a consequence of the linearity of variance which

holds for independent random variables but not for correlated ones. It can be shown that the
total variance of a correlated sample estimate is given by the sum of autocovariance coefficients∑∞
𝑘=−∞ 𝛾𝑘 which can be evaluated using autoregressive processes or Fourier transforms [60]. A

notion of effective sample size is then given by the actual number of observations 𝑆 scaled by the
ratio of the correlated sample variance with the empirical variance estimator �̂�2.

𝑁𝑒 𝑓 𝑓 = 𝑆
�̂�2∑∞

𝑘=−∞ 𝛾𝑘
(2.30)

The effective sample size 𝑁𝑒 𝑓 𝑓 now corresponds to the estimation error using the correlated
sample in the analogous way, having errors proportional to 1√

𝑁𝑒 𝑓 𝑓
[61].
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Since Markov chains can fail to sample the full posterior in the presence of stiffness or multi-
modality, it is recommended to run multiple chains and assess their similarity to determine if
the generated sample is well mixed and stationary. Let the sample be replicated in 𝑀 chains
with values 𝜃 (𝑚,1) , . . . , 𝜃 (𝑚,𝑆) for 𝑚 = 1, . . . , 𝑀 . Each chain can compute an individual mean
estimate �̂�𝑚 =

∑𝑆
𝑠=1 𝜃

(𝑚,𝑠) and variance estimate �̂�2
𝑚 = 1

𝑆−1
∑𝑆
𝑠=1(𝜃 (𝑚,𝑠) − �̂�𝑚)2. The within-

chain variance is then given by the average 𝑊 = 1
𝑀

∑𝑀
𝑚=1 �̂�

2
𝑚 and the between-chain variance

is given by 𝐵 = 𝑆
𝑀−1

∑𝑀
𝑚=1( �̂�𝑚 − �̄�)2 for �̄� = 1

𝑀

∑𝑀
𝑚=1 �̂�𝑚, which can be used to compute

the Gelman-Rubin statistic as the ratio between weighted combined variances to the average
within-chain variance [62].

𝑅 =

√︄
𝑆−1
𝑆
𝑊 + 1

𝑆
𝐵

𝑊
(2.31)

If the chains are slowly mixing, the overall variance of the combined sample will exceed
the average within-chain variance and a high 𝑅 indicates sampling issues. The Gelman-Rubin
statistic is considered acceptable and the chains are declared as stationary and converged if
𝑅 < 1.2 meaning that the variance increase over within-chain variances is smaller than 20%
[63]. Nevertheless, further failure modes can occur that this criterion cannot detect and several
variations for measuring mixing quality and stationarity exist [64], [65].

2.3.3. Statistical Sampling Software

Monte Carlo simulation is almost universally used to implement Bayesian models and thus
there are numerous libraries in various programming languages assisting with this task. The
implementation of statistical sampling, which is largely independent of the specific model being
evaluated, allows sampling libraries to interface with high-level model descriptions and produce
posterior samples using a general purpose strategy. Having robust software already in place,
that can deal with the complexities of implementing efficient Monte Carlo sampling, especially
for high-dimensional parameter spaces, is incredibly valuable for the purpose of developing and
implementing novel tools designed to analyze isotopic data.

Stan is a library implementing a high-performance Hamiltonian Monte Carlo sampler written
in C++ for Bayesian modeling [66]. It contains many utility functions for complex operations
and can be used for variational Bayesian inference and penalized maximum likelihood estimation
as well. Stan additionally has features helping with the assessment of sampler health and data
quality. Most notably it is used in packages implementing Bayesian linear regression techniques.

Just Another Gibbs Sampler (JAGS) is a Gibbs sampling implementation in C++ based on the
BUGS language [67]. It is fairly lightweight and does not possess data post-processing features
itself, but these are usually available in statistical programming languages used in conjunction.
Many high level Bayesian analysis packages use JAGS as a sampler in the background and it can
tackle a wider range of problems such as modeling integer parameters.

Interfaces to theR programming language exist for both samplers, making tool development and
distribution fairly straightforward and allowing users to directly integrate Monte Carlo samplers
in their data analysis workflow [68]–[70].
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2.4. Smoothing

The numerical and Bayesian techniques to estimate source contribution and fractionation weights
based on isotopic measurements rely on accuracy of the input data in order to derive the estimates.
However, it can be the case that the measurement error becomes overwhelming making precise
inference impossible. Time series data 𝑋 (𝜏) ∈ R can be preprocessed to eliminate some of this
error variation by assuming regularity and introducing the series of smooth values𝑊 (𝜏) ≈ 𝑋 (𝜏)
that balances regularity and accuracy in hopes of eliminating noise.

For sampling points 𝜏1, . . . , 𝜏𝑁 of the measurement time series 𝑋𝑖 := 𝑋 (𝜏𝑖) the smooth
approximation can rely on different points in time 𝜏1, . . . , 𝜏𝑀 to compute the estimation, which
can sometimes be advantageous for the construction of smooth estimates𝑊 𝑗 = 𝑊 (𝜏𝑗). Generally,
using less evaluation points 𝑀 < 𝑁 reduces variation, because more raw points are aggregated.

2.4.1. Linear Smoothing Operators

Linear smoothing operators assume that the estimated values 𝑊 𝑗 , 𝑗 = 1, . . . , 𝑀 are a linear
combination of the original measurements 𝑋𝑖 , 𝑖 = 1, . . . , 𝑁 . Thus, arranging both series in vector
form 𝑊 := [𝑊1 · · ·𝑊𝑀 ]T ∈ R𝑀 and 𝑋 := [𝑋1 · · · 𝑋𝑁 ]T ∈ R𝑁 , linear smoothing operators are
matrices G ∈ R𝑀×𝑁 such that the estimates can be computed as𝑊 = G𝑋 .

Using the idea of a local average, kernel smoothing operators can be derived. Stemming from
kernel density estimation the Nadaraya-Watson estimator is given by the weighted average of the
raw data points, where the weights are computed using a symmetric kernel function 𝜅(·) [71].

𝑊 (𝜏) =
∑𝑁
𝑖=1 𝜅(𝜏𝑖 − 𝜏)𝑋 (𝜏𝑖)∑𝑁

𝑖=1 𝜅(𝜏𝑖 − 𝜏)
(2.32)

In order to derive the matrix formulation, the linear operator can be constructed with the elements
𝐺𝑚𝑖 =

𝜅 (𝜏𝑖− �̃�𝑚 )∑𝑁
𝑗=1 𝜅 (𝜏 𝑗− �̃�𝑚 )

for a fixed set of evaluation points of the smoother 𝜏1, . . . , 𝜏𝑀 .

𝑊𝑚 =

𝑁∑︁
𝑖=1

𝜅(𝜏𝑖 − 𝜏𝑚)∑𝑁
𝑗=1 𝜅(𝜏𝑗 − 𝜏𝑚)

𝑋𝑖 =

𝑁∑︁
𝑖=1

𝐺𝑚𝑖𝑋𝑖 ∀𝑚 = 1, . . . , 𝑀 (2.33)

This kernel smoothing operator encompasses for instance moving averages in the case of
equally spaced time series. An extension to this construction are local linear and local polynomial
regression estimators such as LOESS [72]. They estimate derivatives alongside the smooth time
series and can take uncertainties into account.

A different approach to the problem of finding a smooth representation𝑊 (𝜏) of a time series
𝑋 (𝜏) can be taken by assuming that the function is differentiable up to a certain order and thus
it can be expressed as a spline polynomial [73, ch. 1.4]. Spanning the space of splines using
a suitable basis 𝑠1(·), . . . , 𝑠𝑀 (·) with restricted degrees of freedom 𝑀 , the smooth function is
given as a linear combination.

𝑊 (𝜏) =
𝑀∑︁
𝑗=1

𝑏 𝑗 𝑠 𝑗 (𝜏) (2.34)
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Evaluations of the basis functions at the measurement times 𝜏1, . . . , 𝜏𝑁 can be arranged in a
design matrix 𝐻𝑖 𝑗 := 𝑠 𝑗 (𝜏𝑖). The vector of basis function coefficients 𝑏 = [𝑏1 · · · 𝑏𝑀 ]T ∈ R𝑀
can now be chosen as the least squares estimate in order to minimize the approximation error of
the spline polynomial. This is exactly the least squares regression solution for the design matrix
H ∈ R𝑀×𝑁 [74, ch. 10.2].

�̂� = argmin
𝑏∈R𝑀

∥𝑋 −H𝑏∥2 = (HTH)−1HT𝑋 (2.35)

Now the smoothing operator can be expressed as the projection to the space of spline function
evaluations𝑊 = G𝑋 = H(HTH)−1HT𝑋 .

It is important to make the distinction between spline regression and smoothing splines, which
are arguably more widely used for this particular purpose. They use an equal number of basis
functions as there are measurement points 𝑀 = 𝑁 but enforce smoothness via a penalty on the
second derivatives, which translates to a generalized least squares estimate [75].

2.4.2. Gaussian Processes

Gaussian process regression is a smoothing technique using the assumption that the time series
𝑋 (𝜏) is jointly normally distributed for all discrete subsets of points in time, and thus inference
of the distribution means gives an estimate with reduced noise. In a Bayesian interpretation of
this setting, a Gaussian process prior distribution is applied on the smooth means𝑊 (𝜏).

The Gaussian process prior distribution is defined over a vector of function evaluations 𝑊 =

[𝑊1 · · ·𝑊𝑁 ]T = [𝑊 (𝜏1) · · ·𝑊 (𝜏𝑁 )]T ∈ R𝑁 . It is given by a constant mean 𝜇 ∈ R and a
covariance kernel G𝑖 𝑗 = 𝜎2𝜅𝜌 (𝜏𝑖 , 𝜏𝑗) with scale parameter 𝜎 ∈ R+ and a symmetric kernel
function 𝜅𝜌 (·, ·). Since it is usual to work with normalized data the prior is typically set to zero
mean 𝜇 = 0 and unit variance 𝜎2 = 1. Alternatively, the Gaussian process can be shifted and
scaled to the correct shape by plugging in the empirical mean �̂�𝑋 and variance �̂�2

𝑋
of the data to

be fitted for an equivalent result. Examples of kernel functions include the radial basis function
kernel, the exponential kernel and the Matérn kernel, which are all parameterized by a correlation
length 𝜌 ∈ R+ [76], [77].

𝜅𝜌 (𝜏𝑖 , 𝜏𝑗) = exp

(
−
(𝜏𝑖 − 𝜏𝑗)2

2𝜌2

)
(2.36)

𝜅𝜌 (𝜏𝑖 , 𝜏𝑗) = exp
(
−
|𝜏𝑖 − 𝜏𝑗 |

𝜌

)
(2.37)

𝜅𝜌 (𝜏𝑖 , 𝜏𝑗) =
21−𝜈

Γ(𝜈)

(√
2𝜈 |𝜏𝑖 − 𝜏𝑗 |

𝜌

)𝜈
𝐾𝜈

(√
2𝜈 |𝜏𝑖 − 𝜏𝑗 |

𝜌

)
(2.38)

Here, Γ(·) denotes the gamma function and 𝐾𝜈 (·) denotes the modified Bessel function of the
second kind. Different kernel functions can be used to codify assumptions about the smoothed
solution into the distribution. Furthermore, different kernels can be combined to express even
more sophisticated relationships.
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Figure 2.1.: Gaussian process prior for𝑊 (𝜏) sampled three times independently for radial basis
function kernel, exponential kernel and Matérn kernel of order 𝜈 = 2 all having
correlation length 𝜌 = 0.1.

The main parameter that governs the properties of the kernel covariance function is the
correlation length 𝜌. It can be set beforehand to a suitable value, reflecting the rate of change that
is expected from the smoothed time series, or it can be equipped with a hyperprior distribution and
estimated in conjunction with the smooth time series values𝑊 . An empirical Bayesian estimate
can then be used for efficiency or a fully hierarchical model can be formulated to estimate a joint
posterior. Different approaches exist in terms of defining suitable priors. A common choice is
the inverse Gamma distribution, since it has an appropriate tail and is zero avoiding.

The Bayesian model can now be formulated using the Gaussian process prior and independent
Gaussian distributions with variance 𝜂 ∈ R+ as likelihood. Because vectors with components
belonging to different points in time will later be reordered to row-vectors the Gaussian process
distribution shall be defined as a row-vector distribution and therefore must be transposed here.

𝑊 ∼ GPT(𝜇, 𝜎,G) = N𝑁 (𝜇, 𝜎2G)
𝑋 ∼ N𝑁 (𝑊, 𝜂21) = N𝑁 (𝜇, 𝜂21 + 𝜎2G)

(2.39)

For measurement series it is often the case that multiple values exist at the same time and thus a
single time step is represented by a 𝑑-dimensional measurement vector 𝑋𝑡 ∈ R𝑑 and consequently
smooth means 𝑊𝑡 ∈ R𝑑 . In this situation the values are arranged into a measurement matrix
X = [𝑋1 · · · 𝑋𝑁 ] ∈ R𝑑×𝑁 . Expressing the mean, scale and noise of the Gaussian process as
vectors 𝜇, 𝜎, 𝜂 ∈ R𝑑 , the row-vectors W 𝑗: have independent Gaussian process distributions.

W 𝑗: ∼ GP(𝜇 𝑗 , 𝜎𝑗 ,G) ∀ 𝑗 = 1, . . . , 𝑑

X 𝑗𝑖 ∼ N(W 𝑗𝑖 , 𝜂
2
𝑗) ∀ 𝑗 = 1, . . . , 𝑑 ∀𝑖 = 1, . . . , 𝑁

(2.40)

The prior can then use the notation W ∼ GP𝑑 (𝜇, 𝜎,G) denoting the matrix distribution with
row-wise independent Gaussian processes.
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Figure 2.2.: Gaussian process prior for𝑊 (𝜏) sampled three times independently with radial basis
function kernel for different values of correlation length 𝜌.

2.4.3. Multiple Dimensions

It is conceivable that isotopic measurements are taken with more than just one continuous
covariate corresponding to time, for instance in the case of spatio-temporal measurements over
a given area or in different depths 𝑢1, . . . , 𝑢𝑀 . Natural extensions to Gaussian processes can
easily be constructed by applying kernel functions in multiple dimensions and bases for spline
regression can for instance be expanded to tensor product splines [78].

However, in order to take time series information into account it has to be implicitly assumed
that the system is non-stationary, even though the exact dynamics are usually not considered
and smooth estimators use notions of correlation length that are not necessarily physical in
nature. Considering concentration measurements 𝑋 (𝑢, 𝜏) over space 𝑢 and time 𝜏, their physical
dynamics is given by Fick’s second law for some diffusion constant 𝐷 ∈ R [79].

𝜕𝑋

𝜕𝜏
= 𝐷

𝜕2𝑋

𝜕𝑢2 (2.41)

Now accounting for source contributions f (𝜏) and fractionation 𝑟 (𝜏) as functions over time
the production rate in terms of concentrations is summarized in the mixing and fractionation
equation 𝜇

(
f (𝜏), 𝑟 (𝜏)

)
. It can be added as contribution to the change in the isotopic measurement

value thus yielding an inhomogeneous diffusion equation.

𝜕𝑋

𝜕𝜏
= 𝐷

𝜕2𝑋

𝜕𝑢2 + 𝜇
(
f (𝜏), 𝑟 (𝜏)

)
(2.42)

This partial differential equation can be solved for source contributions and fractionation if
suitable boundary conditions are provided, and even possible analytical solutions closely related
to kernel smoothers could be derived using Green’s functions [80]. Possible extensions include
the addition of stochastic terms to model uncertainty and extension of source contributions and
fractionation to functions over space and time f (𝑢, 𝜏) and 𝑟 (𝑢, 𝜏).
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Approaches using these assumptions are fundamentally different from the other models con-
sidered in this thesis since they rely on a differentiation between concentration and flux mea-
surements. It is unclear whether this approach can be efficiently paired with Bayesian statistics
for uncertainty quantification, but approaches using diffusion solvers have been presented for
instance by Decock, Lee, Barthel, et al. [81].

2.5. Compositional Modeling

Solutions of the 𝑑-dimensional pure mixing equation 𝑋 =
∑𝐾
𝑗=1 𝑓 𝑗𝑆 𝑗 ∈ R𝑑 are vectors of source

contributions f = [ 𝑓1 · · · 𝑓𝐾 ]T that additionally fulfill the sum condition
∑𝐾
𝑗=1 𝑓 𝑗 = 1. For this

reason, only 𝐾 − 1 degrees of freedom have to be determined and the system of equations is well
defined for 𝑑 = 𝐾 − 1 measurements. The domain of f is the 𝐾-simplex, which is defined as the
set of 𝐾-vectors satisfying the above sum constraint as well as a non-negativity constraint.

f ∈ S𝐾 :=
f ∈ R𝐾

������ 𝐾∑︁𝑗=1
𝑓 𝑗 = 1, 𝑓 𝑗 ≥ 0 ∀ 𝑗 = 1, . . . , 𝐾


Inference on variables on the simplex such as f ∈ S𝐾 can be done using compositional modeling

techniques. Instead of relying on methods that inherently incorporate the sum constraint into their
solution, a common technique is to find bĳective functions fromS𝐾 to the Euclidean vector space
R𝐾−1, which has the appropriate degrees of freedom and thus allows for consideration of the
problem in terms of unconstrained variables. In order to find mappings of the form S𝐾 → R𝐾−1,
appropriate operations must be defined on the simplex. This can be accomplished by equipping
it with the so called Aitchison geometry characterized by definitions of vector addition and scalar
multiplication in order to form a linear space [82].

f ⊕ f′ :=

[
𝑓1 𝑓
′
1∑𝐾

𝑗=1 𝑓 𝑗 𝑓
′
𝑗

· · ·
𝑓𝐾 𝑓

′
𝐾∑𝐾

𝑗=1 𝑓 𝑗 𝑓
′
𝑗

]T

∀f, f′ ∈ S𝐾

𝛼 ⊙ f :=

[
𝑓 𝛼1∑𝐾
𝑗=1 𝑓

𝛼
𝑗

· · ·
𝑓 𝛼
𝐾∑𝐾

𝑗=1 𝑓
𝛼
𝑗

]T

∀𝛼 ∈ R ∀f ∈ S𝐾

There are now multiple ways to define isomorphisms from the Aitchison simplex to the real
space R𝐾−1, one of which is the additive log ratio transform, that separates the last component
𝑓𝐾 to form ratios and thus a vector of the correct dimensionality [83].

alr(f) :=
[
log

𝑓1

𝑓𝐾
· · · log

𝑓𝐾−1

𝑓𝐾

]T
∀f ∈ S𝐾 (2.43)

However, the components of the vector f are not exchangeable, since 𝑓𝐾 is arbitrarily chosen
and serves a different function than the other components. This could lead to discrepancies in
estimation when component definitions are swapped, which is rarely desired. Furthermore, the
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transformation is not isometric and can distort distances of mapped vectors. In order to use all
components exchangeably instead of using one particular component as reference, the geometric
mean of the vector can be used to compute the ratios instead.

𝑔(f) :=

(
𝐾∏
𝑖=1

𝑓𝑖

) 1
𝐾

The transformation constructed this way is known as the centered log ratio [83]. Since now all
components of the simplex vector are used, the mapped vector has 𝐾 components as well and
does not represent the correct number of dimensions.

clr(f) :=
[
log

𝑓1

𝑔(f) · · · log
𝑓𝐾

𝑔(f)

]T
∀f ∈ S𝐾 (2.44)

Although this transformation is not bĳective since it maps onto the 𝐾-dimensional Euclidean
vector space, it provides a useful relation for the addition clr(f ⊕ f′) = clr(f) + clr(f′) and
multiplication clr(𝛼 ⊗ f) = 𝛼clr(f). Furthermore, the image of the centered log ratio transform
in R𝐾 is the linear subspace U𝐾 :=

{
u ∈ R𝐾 :

∑𝐾
𝑗=1 𝑢 𝑗 = 0

}
, on which it is bĳective and its

inverse generalized to the entire Euclidean space R𝐾 is known as the softmax function. It can
then be used to extend the standard inner product in the Euclidean space to the 𝐾-simplex and
define the Aitchison inner product.

⟨f, f′⟩𝑎 := ⟨clr(f), clr(f′)⟩ = 1
𝐾

𝐾∑︁
𝑖=1

log
𝑓𝑖

𝑔(f) log
𝑓 ′
𝑖

𝑔(f′)

The centered log ratio transform is in fact already an isometry with respect to the norm on the
simplex induced by the Aitchison inner product ∥f∥2 = ⟨f, f⟩, albeit between the simplex S𝐾 and
the linear subspaceU𝐾 . An isometric transformation toR𝐾−1 can be constructed by composition
with a mapping fromU𝐾 → R𝐾−1 using a basis expansion with respect to an orthonormal basis
u1, . . . , u𝐾−1 ∈ U𝐾 . It is not obvious how to choose a basis system, but simple standard bases
can be derived from Euclidean orthonormal bases [84] or they can be specifically adapted to
the data by principal balance methods [85], [86]. In fact, any orthonormal basis in the linear
subspace U𝐾 can expressed as the transformation from an orthonormal basis on the simplex
e1, . . . , e𝐾−1 ∈ S𝐾 by the centered log ratio clr(e𝑖) = u𝑖 . Now any vector f ∈ S𝐾 mapped to
the linear subspaceU𝐾 via the centered log ratio can be expanded with coefficients ⟨clr(f), u𝑖⟩.
By this construction it follows immediately that the composition of clr and the basis change with
the matrix U := [u1 · · · u𝐾−1]T ∈ R𝐾−1×𝐾 is characterized by coefficients ⟨clr(f), u𝑖⟩ = ⟨f, e𝑖⟩𝑎,
which defines the isometric log ratio transform [83].

ilr(f) := Uclr(f) = [⟨f, e1⟩𝑎 · · · ⟨f, e𝐾−1⟩𝑎] (2.45)

Thus given any Euclidean vector x ∈ R𝐾−1, the inverse isometric log ratio transform is given in
terms for the centered log ratio ilr−1(x) = clr−1(UTx).
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2.6. Related Research

2.6.1. General Stable Isotope Mixing Models

General stable isotope mixing models (SIMMs) were introduced by Parnell, Phillips, Bearhop,
et al. [21] for the purpose of generalizing animal diet partitioning to cases where isotopic
compositions are not observed directly. The model works with 𝑁 data points of 𝑑 isotopic
measurements 𝑋𝑖 ∈ R𝑑 for 𝑖 = 1, . . . , 𝑁 , where each data point is associated with 𝑀 auxiliary
measurements 𝑍1, . . . , 𝑍𝑁 ∈ R𝑑 that are then used to predict the source contributions. 𝐾

sources are modeled with auxiliary parameters S1, . . . , S𝑁 ∈ R𝑑×𝐾 and fractionation corrected
versions C1, . . . ,C𝑁 ∈ R𝑑×𝐾 that have different values for each data point and are given normal
distribution priors based on previously available information. Source contributions are then
estimated via generalized linear model using the ilr transform as link function with parameters
𝜷 ∈ R𝑀 . The implementation of this model is available in the R package simmr [87].

ST
𝑖 ∼ N𝐾 (𝜇𝑠, Σ𝑠)

CT
𝑖 ∼ N𝐾 (𝜇𝑐, Σ𝑐)

ilr(f𝑖) ∼ N𝐾−1(𝜷T𝑍𝑖 , 𝜿)

𝑋𝑖 ∼ N𝑑
(
(S𝑖 + C𝑖)f𝑖 , 𝜂2

) (2.46)

2.6.2. Stable Isotope Analysis in R

The stable isotope analysis in R (SIAR) framework provided the ability to do Bayesian data
analysis for different isotopic problems. MixSIAR is an extension introduced by Stock, Jackson,
Ward, et al. [20] that aims to unify modeling approaches by having flexible error structures
including fixed and random effects that cover typical study designs in ecology. A total of
𝑁 different measurements 𝑋𝑖 ∈ R𝑑 for 𝑖 = 1, . . . , 𝑁 are analyzed with regards to additional
information 𝑍1, . . . , 𝑍𝑁 ∈ R𝑀 and 𝑌1, . . . , 𝑌𝑁 ∈ R𝐿 corresponding to fixed effects parameters
𝜷 ∈ R𝑀 and random effects parameters u ∈ R𝐿 . Source contribution weights are thus estimated
with a generalized linear mixed-effects model using the ilr link function, Gaussian priors for
fixed effects and uniform priors for random effect standard deviation. The implementation as R
package is available as MixSIAR [88].

𝝈 ∼ Uni𝐾−1 [0, 𝑠]
u ∼ N𝐾−1(0,𝝈2)
𝜷 ∼ N𝐾−1(0, 𝝂2)

ilr(f𝑖) = 𝜷T𝑍𝑖 + uT𝑌𝑖

𝑋𝑖 ∼ N𝑑
(
Sf𝑖 , 𝜂2

) (2.47)
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2.6.3. Fractionation and Mixing Evaluation

The fractionation and mixing evaluation (FRAME) model [18] is a Bayesian framework for the
simultaneous evaluation of mixing contributions and fractionation progress. It uses a matrix of
source contributions S = [𝑆1 · · · 𝑆𝐾 ] ∈ R𝑑×𝐾 to analyze 𝑑 isotopic measurements 𝑋 ∈ R𝑑 while
taking fractionation factors A = [𝐴1 . . . 𝐴𝐿] ∈ R𝑑×𝐿 into account. Inference is done jointly on
mixing weights f and fractionation weights r. Notable is that the tool can work with arbitrary
mixing and fractionation equations 𝜇(f, r) to cover a wide range of scenarios even when effects
on measurements cannot be determined by generalized linear models. The implementation is
available as a user interface tool written in Python [19].

𝑆 𝑗 ∼ Uni(𝑏 𝑗 ,Δ 𝑗), 𝐴ℓ ∼ N𝑑 (𝑐ℓ , 𝜈2
ℓ)

f ∼ Dir(1), r ∼ Uni(0, 1)
𝑋 ∼ N𝑑

(
𝜇(f, r), 𝜂2) (2.48)
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Chapter 3

Methodology

3.1. Stationary Inference

Inference for the source contributions f ∈ S𝐾 and fractionation weight 𝑟 ∈ [0, 1] for one single
measurement independent of time can be accomplished by the original FRAME model [18].
It constructs a prior and likelihood structure where the isotopic measurements 𝑋 ∈ R𝑑 are
independently normally distributed with variance vector 𝜂2 ∈ R𝑑+ around a mean given by an
arbitrary mixing equation 𝜇(f, 𝑟). The source contributions f are then equipped with a flat
Dirichlet prior and the fractionation weight with a uniform prior.

f ∼ Dir(1), 𝑟 ∼ Uni(0, 1)
𝑋 |f, 𝑟 ∼ N𝑑

(
𝜇(f, 𝑟), 𝜂2) (3.1)

The auxiliary parameters for the mixing equation S and 𝐴 are understood to be random
variables as well with predetermined fixed priors that are omitted from the model description
above. Choosing those priors is ultimately up to the origin of the data and thus not subject
to the further engineering of inference models in the sections below. The likelihood of 𝑋 is
understood to be implicitly conditional on these auxiliary parameters. This means that a joint
posterior 𝜋(f, 𝑟, S, 𝐴|𝑋) is fit by the model and the reported posterior 𝜋(f, 𝑟 |𝑋) is simply its
marginalization.

𝜋(f, 𝑟 |𝑋) =
∫

𝜋(f, 𝑟, S, 𝐴|𝑋)𝑑S𝑑𝐴 ∝
∫

𝑝(𝑋 |f, 𝑟, S, 𝐴)𝜋(f, 𝑟)𝜋(S, 𝐴)𝑑S𝑑𝐴

Different likelihood formulations exist, where the auxiliary mixing parameters are already
integrated. This can be done by solving the integral 𝑝(𝑋 |f, 𝑟) =

∫
𝑝(𝑋 |f, 𝑟, S, 𝐴)𝜋(S, 𝐴)𝑑S𝑑𝐴

beforehand, which is analytically possible for instance if the auxiliary priors are Gaussian. Using
the proper marginal likelihood can be an improvement due to the reduction in parameters that
need to be fit by the sampler. However, the number of auxiliary parameters stays constant when
the model is extended to multiple points in time and thus this improvement becomes less relevant
for time series models. It is worth to note that the inferred posterior is theoretically the same with
the only difference being efficiency of computation and the potential interpretation of posterior
predictive distributions.

𝜋(f, 𝑟 |𝑋) ∝ 𝑝(𝑋 |f, 𝑟)𝜋(f, 𝑟) =
∫

𝑝(𝑋 |f, 𝑟, S, 𝐴)𝜋(f, 𝑟)𝜋(S, 𝐴)𝑑S𝑑𝐴
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3. Methodology

3.1.1. Priors for Stationary Parameters

The FRAME model can be extended by taking different choices of prior distributions for the
parameters of interest, namely the source contributions f and the fractionation weight 𝑟, into
account. The Jeffreys prior for source contributions is constructed by computing the Fisher
information matrix and choosing the probability distribution proportional to the square root of
its determinant. For the source contributions f =

(
1− 𝑓
𝑓

)
∈ S2 of two sources 𝑆1, 𝑆2 ∈ R the

computation can be done by omitting the influence of fractionation.

I𝑓 ( 𝑓 ) ∝ −E
[
𝑑2 𝑓

𝑑𝑓 2
(𝑋 − 𝑆1(1 − 𝑓 ) − 𝑆2 𝑓 )2

𝜂2

���� 𝑓 ] =
2(𝑆1 − 𝑆2)2

𝜂2 ∝ 1 (3.2)

Therefore the objective Jeffreys prior is uniform over the domain of f. By symmetry this extends
to multiple source contributions f ∈ S𝐾 , which is equivalent to the flat Dirichlet distribution
already used in the original FRAME model.

Taking now Rayleigh fractionation with weight 𝑟 ∈ [0, 1] independently of the mixing weights
f into account, the Jeffreys prior can be computed relative to the pure mixing solution 𝑀 =

𝑋 − 𝑆1(1 − 𝑓 ) − 𝑆2 𝑓 ∈ R with fractionation factor 𝐴 ∈ R.

I𝑟 (𝑟) ∝ −E
[
𝑑2𝑟

𝑑𝑟2
(𝑀 − 𝐴 log 𝑟)2

𝜂2

����𝑟] =
2𝐴2

𝜂2𝑟2 ∝
1
𝑟2 (3.3)

Therefore the objective prior for the Rayleigh fractionation weight is given by 𝜋(𝑟) ∝ 1
𝑟

for
𝑟 ∈ [0, 1], which is also known as the logarithmic prior and since it cannot be normalized it
is an improper prior. Additionally, even though this prior can be considered uninformative for
𝑟 individually according to the Jeffreys criterion, a joint prior could lead to different results,
although priors are typically chosen as independent distributions.

In the case of Rayleigh fractionation, however, it might be more reasonable to use a different
distribution that is somewhere in between the uniform and logarithmic prior and incorporates
the bounds to the interval [0, 1] as well, which is a similar idea to prior averaging [89]. The beta
distribution offers a functional form that is similar to the Jeffreys prior, but can be normalized.
Parameterizing the distribution with a restricted concentration parameter 𝛼 ∈ [0, 1], the form
Beta(𝛼, 1) is the uniform distribution for 𝛼 = 1 and converges to the Jeffreys prior for 𝛼 → 0,
thus expressing a generalized approach.

3.2. Time Series Inference

In order to incorporate time series information in the inference procedure the model can be
extended to work with multiple measurements at different points in time. The source contribution
and fractionation weights are assumed to be functions with respect to time f (𝜏) and 𝑟 (𝜏) and the
measurements correspond to samples in time 𝑋𝑡 = 𝑋 (𝜏𝑡 ) at discrete time points 𝜏1, . . . , 𝜏𝑁 .

Now the measurements can be grouped into a measurement matrix X := [𝑋1 · · · 𝑋𝑁 ] ∈ R𝑑×𝑁
where the time dimension is along the matrix rows. Inference of the parameters can be done
at the identical time points f𝑡 = f (𝜏𝑡 ) and 𝑟𝑡 = 𝑟 (𝜏𝑡 ) such that they can be grouped into similar
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3. Methodology

matrices as well F := [f1 · · · f𝑁 ] ∈ R𝐾×𝑁 and r = [𝑟1 · · · 𝑟𝑁 ] ∈ R1×𝑁 . This grouping has the
advantage that the mixing equation can be expressed in vectorized form over all time points
without changing its general layout.

E [X|F, r] = 𝜇(F, r) = SF + 𝐴 log r (3.4)

Again, Rayleigh fractionation is used as representative example, but the mixing equation can
be vectorized for other forms of fractionation as well. If multiple consumption pathways exist
the corresponding parameters can be expanded to a matrix with 𝐿 rows R ∈ R𝐿×𝑁 and inference
can be done on all 𝐾 + 𝐿 parameters per point in time simultaneously.

3.2.1. Independent Time Steps

A simple way to extend the stationary model is to assume complete independence between all
points in time. This reduces the time series problem to a set of 𝑁 independent stationary problems
with one single measurement point each and thus the same stationary FRAME model can be
used for each point. The vector of measurement errors 𝜂 ∈ R𝑑 is now also allowed to vary in
time 𝜂1, . . . , 𝜂𝑁 .

f𝑡 ∼ Dir(1), 𝑟𝑡 ∼ Uni(0, 1) ∀𝑡
𝑋𝑡 |f𝑡 , 𝑟𝑡 ∼ N𝑑

(
𝜇(f𝑡 , 𝑟𝑡 ), 𝜂2

𝑡

)
∀𝑡

(3.5)

The prior on the series of source contributions f𝑡 and fractionation weight 𝑟𝑡 is now fully
independent in time and the information contained in the fact that some measurements are closer
in time than others is ignored.

Prior information can be encoded into the prior distribution for f𝑡 by introducing a concentration
parameter 𝝈 ∈ R𝐾+ as well as a parameter 𝛼 ∈ (0, 1) that interpolates between the uniform prior
for 𝑟𝑡 and the Jeffreys prior using the beta distribution as described in subsection 3.1.1. This
allows for the inclusion of information that is universally true for all time points simultaneously.
If no information is available the model can be extended by adding an additional hierarchical
layer for these parameters with weakly informative hyperpriors being the gamma distribution
Γ(2, 2) on the positive real axis for concentrations 𝝈 and the uniform Uni(0, 1) for 𝛼.

𝝈 ∼ Γ(2, 2), 𝛼 ∼ Uni(0, 1)
f𝑡 ∼ Dir(𝝈), 𝑟𝑡 ∼ B(𝛼, 1) ∀𝑡
𝑋𝑡 |f𝑡 , 𝑟𝑡 ∼ N𝑑

(
𝜇(f𝑡 , 𝑟𝑡 ), 𝜂2

𝑡

)
∀𝑡

(3.6)

3.2.2. Gaussian Process Priors

Time series information can be incorporated by various methods in the case of unconstrained
random variables. Since this setting is applicable to the time series of isotopic measurements 𝑋𝑡 it
is natural to apply the FRAME model with independent time steps on preprocessed measurement
series. This preprocessing does not necessarily need to be part of the model itself, but can be
done beforehand without consideration for the Bayesian mixing model. Candidate preprocessing
algorithms are kernel smoothing, spline smoothing as well as local polynomial regression.
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3. Methodology

While the latter can offer uncertainty estimates of the smoothed time series, a holistic treatment
of estimation with uncertainty can be offered by Gaussian process regression.

Despite the possibility of running the simple time-independent model on preprocessed mea-
surement time series, it can be beneficial to combine both steps into an advanced model. This is
due to that fact that for instance the problem specific geometry can influence the feasibility of a
region in measurement space. A combined model will include a Gaussian process prior on the
measurements 𝑋𝑡 such that posterior means𝑊𝑡 can be estimated and used to plug into the above
constructed FRAME model with independent time steps. The Gaussian process is shifted and
scaled to align with the empirical mean �̂�𝑋 and standard deviation �̂�𝑋 of the measurements 𝑋𝑡
and controlled by a kernel function G.

f𝑡 ∼ Dir(1), 𝑟𝑡 ∼ Uni(0, 1) ∀𝑡

𝑊𝑡 |f𝑡 , 𝑟𝑡 ∼ N𝑑
(
𝜇(f𝑡 , 𝑟𝑡 ),

𝜂2
𝑡

2
)
∀𝑡

W ∼ GP𝑑 ( �̂�𝑋, �̂�𝑋,G)

𝑋𝑡 |𝑊𝑡 , f𝑡 , 𝑟𝑡 ∼ N𝑑
(
𝑊𝑡 ,

𝜂2
𝑡

2
)
∀𝑡

(3.7)

The distribution on the latent estimates 𝑊𝑡 is the product of the Gaussian process prior as
well as the independent normal distribution around the mixing estimate. Ideally, this model does
not need to include sampling of f𝑡 and 𝑟𝑡 because if the mixing equation can be expressed as a
linear system of equations (Equation 2.14) then the smooth measurement series𝑊𝑡 is sufficient to
solve for the source contribution and fractionation parameters directly. In practice, this approach
reduces to applying isotopic mapping techniques to the time series that is preprocessed using
Gaussian process smoothing.

If the mixing equation is not explicitly inverted but evaluated by sampling the parameters f𝑡
and 𝑟𝑡 , then the latent variables W can be marginalized over and eliminated from the model.
The product density of W can also be expressed using known identities [90, ch. 8.1.8] for each
separate isotopic measurement dimension 𝑗 = 1, . . . , 𝑑 in terms of its empirical mean �̂�𝑋, 𝑗 ,
empirical standard deviation �̂�𝑋, 𝑗 and noise variance 𝜂2

𝑗
.

Σ̃ 𝑗 :=

(
2
𝜂2
𝑗

1 + 1
�̂�2
𝑋, 𝑗

G−1

)−1

∈ R𝑁×𝑁 , �̃� 𝑗 := Σ̃ 𝑗

(
2
𝜂2
𝑗

𝜇T
𝑗 (F, r) +

�̂�𝑋, 𝑗

�̂�2
𝑋, 𝑗

G−11

)
∈ R𝑁

Using the Cholesky decomposition these distribution parameters can efficiently be computed
and used for sampling. Thus the latent parameters W can be eliminated from the model and the
likelihood of each row X 𝑗: can be directly computed.

F ∼ Dir(1), r ∼ Uni(0, 1)
𝜇(F, r) ∼ GP𝑑 ( �̂�𝑋, �̂�𝑋,G)

XT
𝑗: |F, r ∼ N𝑁

(
�̃� 𝑗 , Σ̃ 𝑗 +

𝜂2
𝑡

2
1
)
∀ 𝑗 = 1, . . . , 𝑑

(3.8)
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Gaussian process priors on measurements use only one single hyperparameter which is the
correlation length 𝜌 used to compute the kernel matrix G𝑖 𝑗 = 𝜅𝜌 (𝜏𝑖 , 𝜏𝑗). The scale of the Gaussian
process is always set to the empirical standard deviation of the data and is thus considered fixed. In
order to compile a fully hierarchical Bayesian model an inverse gamma distribution 1

𝜌
∼ Γ(2, 2)

can be used as hyperprior for the correlation length assuming that the time scales are properly
normalized.

3.2.3. Generalized Gaussian Process Priors

To make use of time series information in the source contribution and fractionation weights
direct priors are desired. Such priors can be constructed by sampling auxiliary variables from
multiple independent Gaussian processes Z ∼ GP𝐾 (G) and at each point in time inverting the
log ratio transformations on the simplex introduced in section 2.5 in order to create a time series
of simplex-valued variables f𝑡 . The fractionation amount 𝑟𝑡 is constrained to the interval [0, 1]
and can thus be linked for instance by applying the logit transform logit(𝑟) = log 𝑟

1−𝑟 at each point
in time, which maps it to the entire real axis. Hyperparameters for correlation length 𝜌 ∈ R+
and concentration 𝜎 ∈ R+ are used to compute the kernel matrix G𝑖 𝑗 = 𝜎2𝜅𝜌 (𝜏𝑖 , 𝜏𝑗) for the
Gaussian process. The general shape of these priors is visualized in Figure 3.1 and Figure 3.2.
Working with the matrix of source contributions F = [f1 . . . f𝑁 ] ∈ R𝐾×𝑁 and fractionation
weight r = [𝑟1 · · · 𝑟𝑁 ] ∈ R1×𝑁 the model can be stated in vectorized form, where the link
functions are understood to be column-wise.

clr(F) ∼ GP𝐾 (G)
logit(r) ∼ GP(G)

𝑋𝑡 |f𝑡 , 𝑟𝑡 ∼ N𝑑
(
𝜇(f𝑡 , 𝑟𝑡 ), 𝜂2

𝑡

)
∀𝑡

(3.9)

Figure 3.1.: Gaussian process prior with radial basis function kernel and with different correlation
lengths 𝜌 for three source contributions mapped to the simplex using the centered
log ratio transform.
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Both link functions used can easily be inverted once random variables Z ∼ GP𝐾 (G) and
Y ∼ GP(G) are sampled from Gaussian processes over time 𝑡 = 1, . . . , 𝑁 . The inverse of the
clr transform is given by the softmax function and the inverse of the logit link is given by the
sigmoid function.

F𝑘𝑡 = clr−1
𝑘 (𝑍1𝑡 , . . . , 𝑍𝐾𝑡 ) =

𝑒𝑍𝑘𝑡∑𝐾
𝑗=1 𝑒

𝑍 𝑗𝑡
, 𝑟𝑡 = logit−1(𝑌𝑡 ) =

1
1 + 𝑒−𝑌𝑡

The prior on the source contribution parameters F is known as a generalized Gaussian process
prior and techniques such as Taylor expansion can be used to derive analytic approximations [91].
Its marginal is a softmax transformed multivariate Gaussian, which is also known as a logistic-
normal distribution and serves as an approximation to the Dirichlet distribution [92]. This is
due to the fact that a Dirichlet distribution can be constructed as the ratio of gamma distributed
variables [93, ch. 4.1] and the softmax function produces a ratio of log-normal variables 𝑒𝑍𝑘𝑡 that
are very similar in distribution. The mapping using centered log ratio transforms thus creates a
time series of random variables with approximate Dirichlet marginals, which is referred to as a
Dirichlet-Gaussian process (DGP) [94].

The marginals are controlled by the parameter 𝜎 of the Gaussian process that now acts as the
concentration parameter of the Dirichlet distribution. Since the covariance kernel G is scaled
to generate Gaussian random variables with unit variance if 𝜎 = 1, the marginal distribution in
that case is approximately the uniform Dir(1). This fact can be seen by sampling from these
generalized Gaussian process priors and estimating the marginals as in Figure 3.2.

Using the isometric log ratio transform ilr instead of clr reduces the number of Gaussian
processes that need to be sampled to 𝐾 − 1 for the source contributions. Inverting this link
function is as simple as applying an orthonormal base transform U (section 2.5) to the random
variables and then applying the softmax function. Since interpretability of the sampled Gaussian
process variables is not required, any orthonormal basis is suitable and a simple construction
using Gram-Schmidt orthogonalization is chosen [84].

ilr(F) ∼ GP𝐾−1(G)
logit(r) ∼ GP(G)

𝑋𝑡 |f𝑡 , 𝑟𝑡 ∼ N𝑑
(
𝜇(f𝑡 , 𝑟𝑡 ), 𝜂2

𝑡

)
∀𝑡

(3.10)

Shorthand notation GP(G) = GP(0, 1,G) is used with correlation length 𝜌 and scale 𝜎
included in the kernel computation G𝑖 𝑗 = 𝜎

2𝜅𝜌 (𝜏𝑖 , 𝜏𝑗). Both kernel parameters 𝜌 and 𝜎 can be
set in advance or given weak hyperpriors. The inverse gamma distribution 1

𝜌
∼ Γ(2, 2) and the

regular gamma distribution 𝜎 ∼ Γ(2, 2) are chosen under the assumption that the time variables
𝜏1, . . . , 𝜏𝑁 are scaled appropriately. This hierarchical model benefits especially from the reduced
number of Gaussian processes sampled when using the ilr transform since the kernel covariance
matrix must be reconstructed in every sampling step. The number of hyperparameters can be
increased by using separate concentrations and correlation lengths for the source contributions
F and the fractionation weights r.
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Figure 3.2.: Estimated marginal densities of transformed Gaussian process priors for different
concentration parameters 𝜎 on the left together with one prior observation for three
source contributions on the right.

3.2.4. Spline-Based Priors

An alternative to Gaussian process priors are spline basis functions, which can be used to
construct a linear fitting operation that is then mapped to simplex space. This allows for the
addition of exogenous variables as predictors of source contributions or fractionation as well.
A cubic spline basis of 𝑀 basis functions is evaluated at the measurement points 𝜏1, . . . , 𝜏𝑁
to form the evaluation matrix H ∈ R𝑁×𝑀 with H𝑖 𝑗 = 𝑠 𝑗 (𝜏𝑖) for polynomial basis functions
𝑠1(·), . . . , 𝑠𝑀 (·). The time series of source contributions in simplex space is reconstructed
with the basis coefficients b𝑘 ∈ R𝑀 for each source 𝑘 = 1, . . . , 𝐾 arranged to the matrix
[b1 · · · b𝐾 ]T = B ∈ R𝐾×𝑀 and coefficients for fractionation c ∈ R1×𝑀 . This type of model is
therefore part of the generalized linear model class [95] and allows for easy extension with fixed
effects relating to measurement dimensions as well as random effects for experiment replication.
It will thus further be referred to as generalized linear model with spline basis (spline GLM).

B, c ∼ N(0, 1)
clr(F) = BHT

logit(r) = cHT

𝑋𝑡 |f𝑡 , 𝑟𝑡 ∼ N𝑑
(
𝜇(f𝑡 , 𝑟𝑡 ), 𝜂2

𝑡

)
∀𝑡

(3.11)

In consequence, the distribution of the basis coefficient vector b𝑘 = BT
𝑘: ∈ R

𝑀 before trans-
formation has distribution b𝑘 ∼ N𝑀 (0,1) for source 𝑘 = 1, . . . , 𝐾 . After application of the
spline basis transform it is thus still Gaussian Hb𝑘 ∼ N𝑁 (0,HHT) although with a modified
covariance matrix HHT ∈ R𝑁×𝑁 . Since the inverse centered log ratio transform maps Gaussian
random variables with unit variance approximately to a uniform Dirichlet distribution, it makes
sense to scale the basis transform such that 1

𝑁
Tr(HHT) = 1 as the spline basis vectors are not

semi-orthogonal in general.
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The linear estimator described above with Gaussian priors on its coefficients is firmly linked
to a ridge regression estimator in frequentist statistics, since both the posterior mean and the
maximum a posteriori solution coincide with the ridge estimator [96, ch. 6.2.1]. This estimator
is used to introduce shrinkage into the parameter values, thereby regularizing the effect of an
excessively large number of degrees of freedom. Furthermore, it can vaguely be connected to
smoothing splines by restricting the basis to natural cubic splines and using a generalized version
of ridge regression with weighted data points [75], [97], [98].

Similarly to Dirichlet-Gaussian process prior models, using the isometric log ratio transform
reduces the number of spline basis coefficient vectors needed for the source contributions to𝐾−1.
However, in this case the benefit is smaller since the coefficient vectors have only size 𝑀 < 𝑁 .
Further alterations can be made by using a different number of degrees of freedom between
source contributions and fractionation. The basis coefficient priors are also a way of customizing
the model by scaling them to standard deviation 𝜎 ∈ R+ and thus introducing a concentration
parameter or by setting the prior shape to a Laplacian distribution, which has heavier tails and is
linked to the frequentist LASSO regression estimator, albeit only for the maximum a posteriori
solution [49], [96].

Figure 3.3.: Spline prior for three source contributions transformed to the simplex with the clr
transformation using different degrees of freedom 𝑀 that can be used to control the
covariance of source contributions at separate points in time.

3.3. Model Comparison

3.3.1. Data Simulation

Models can be compared by simulating the data generating process multiple times and then
comparing the resulting posterior sample with fixed truth values. The time series of source con-
tribution and fractionation weights used to simulate the data are denoted by F∗ = [f∗1 · · · f

∗
𝑁
] and

r∗ = [𝑟∗1 · · · 𝑟
∗
𝑁
] and the mixing equation using Rayleigh fractionation is chosen. Measurement
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generation is then repeated 𝑄 times by sampling the source isotopic signature S(𝑞) ∈ R𝑑×𝐾
and fractionation factors 𝐴(𝑞) ∈ R𝑑 from their respective priors and then adding independent
Gaussian measurement errors 𝐸 (𝑞)𝑡 ∼ N𝑑 (0, 𝜂2) with noise variance 𝜂2 ∈ R𝑑 for 𝑞 = 1, . . . , 𝑄.

𝑋
(𝑞)
𝑡 = S(𝑞) f∗𝑡 + 𝐴(𝑞) log 𝑟∗𝑡 + 𝐸

(𝑞)
𝑡 (3.12)

Auxiliary data for source isotopic signature and fractionation factor used to generate them are
taken from Yu, Harris, Lewicka-Szczebak, et al. [99]. They correspond to nitrification (𝑆1) and
bacterial denitrification (𝑆2). Priors are uniform for the sources 𝑆 𝑗 ∼ Uni(𝑏 𝑗 ,Δ 𝑗), 𝑗 = 1, 2 and

Gaussian for the fractionation factor with variance matched to the reported bounds 𝐴 ∼ N(𝑐, Δ
2
𝐴

12 ).

𝑏1 ± Δ1 𝑏2 ± Δ2 𝑐 ± Δ𝐴
𝛿15N −55.5 ± 17.0 −25.25 ± 55.1 −6.4 ± 9.2
𝛿15NSP 35.35 ± 6.7 −1.9 ± 11.2 −5.55 ± 5.3

Table 3.1.: Prior distribution parameters for two source isotopic signatures and one fractionation
factor taken from Yu, Harris, Lewicka-Szczebak, et al. [99] that are used to simulate
data sets for model testing.

The comparisons are done on fixed parameter values that intend to be illustrative for a given
edge case that might occur in reality. The true parameter time series f∗𝑡 and 𝑟∗𝑡 are shown in
Figure 3.4 and are sampled at 𝑁 = 32 equally spaced time steps. One additional general example
(GenE) is used for simulation with properties being less extreme than for the other ones and
hopefully representative of average datasets that might be encountered in practice. It is used for
subsection 4.3.3 and subsection 4.3.4 and studied extensively in section 4.4.

Bayesian parameter estimation is then tested on each generated data set X(𝑞) = [𝑋 (𝑞)1 · · · 𝑋 (𝑞)
𝑁
] ∈

R𝑑×𝑁 for 𝑞 = 1, . . . , 𝑄 individually and a total of 𝑆 posterior samples of all parameters is pro-
duced each time. The posterior samples shall be denoted by F(𝑞,𝑠) = [f (𝑞,𝑠)1 · · · f (𝑞,𝑠)

𝑁
] and

r(𝑞,𝑠) = [𝑟 (𝑞,𝑠)1 · · · 𝑟 (𝑞,𝑠)
𝑁
] respectively for 𝑠 = 1, . . . , 𝑆.

All experiments are run on an Intel Core i9-10900K CPU. The reported runtimes in section 4.2
are of a single sampling chain and in section 4.3 the reported times are the maximum of 4
simultaneously run chains.

3.3.2. Measuring Quality of Inference

Sampling from the posterior distribution does not give unique point estimates for the parameters
involved and multiple ways of computing them exist. Most commonly the posterior mean is
used as point estimate, although using the median for example could also be a useful strategy for
posterior distributions that are highly dissimilar to a Gaussian distribution.

F̂(𝑞) = Ê
[
F
���X(𝑞) ] = 1

𝑆

𝑆∑︁
𝑠=1

F(𝑞,𝑠) , r̂(𝑞) = Ê
[
r
���X(𝑞) ] = 1

𝑆

𝑆∑︁
𝑠=1

r(𝑞,𝑠) (3.13)
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Figure 3.4.: True parameter series used to simulate datasets that illustrate fast changing source
contributions (FastS), slow changing source contributions (SlowS), extremal source
contributions (ExtrS), high fractionation (HighF), average and fast changing frac-
tionation (AvgF) and low fractionation (LowF).

Now the accuracy of the estimation can be assessed by computing the distance between these
pointwise estimates and the true value such as root mean squared error (RMSE) and mean
average error (MAE). Although it is possible to compute the metrics at each point in time they
are averaged for simpler model comparison. Computations for r(𝑞,𝑠) are analogous.

RMSE(𝑞)
𝑘

:=

√√√
1
𝑁

𝑁∑︁
𝑡=1

(
F̂(𝑞)
𝑘𝑡
− F∗

𝑘𝑡

)2
, MAE(𝑞)

𝑘
:=

1
𝑁

𝑁∑︁
𝑡=1

���F̂(𝑞)
𝑘𝑡
− F∗𝑘𝑡

��� (3.14)

Since the parameters to be estimated are interpreted as a time series, it makes sense to also
compare specific time series information across the model estimates. The rate of change can
significantly be confounded in the measurement time series, since the measurement errors follow
a white noise distribution that introduces high frequency changes. The ability of models to filter
this noise can be measured by comparing the rate of change which is approximated using first
differences ΔF∗

𝑡 𝑗
= F∗

𝑡+1, 𝑗 − F∗
𝑡 𝑗

and Δ𝑟∗𝑡 = 𝑟∗
𝑡+1 − 𝑟

∗
𝑡 for 𝑡 = 1, . . . , 𝑁 − 1. The magnitude of

changes is not necessarily relevant, since misestimation of them would also lead to bad pointwise
estimates. Therefore the ratio of variances of first differences shall serve as comparison metric,
which can be understood as comparing a notion of curvature or acceleration.

VarFD(𝑞)
𝑘

=

∑𝑁−1
𝑡=1

(
ΔF(𝑞)

𝑘𝑡
− 1
𝑁

∑𝑁−1
𝑗=1 ΔF(𝑞)

𝑘 𝑗

)2

∑𝑁−1
𝑡=1

(
ΔF∗

𝑘𝑡
− 1
𝑁

∑𝑁−1
𝑗=1 ΔF∗

𝑘 𝑗

)2 (3.15)
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3.3.3. Metrics for Bayesian Posteriors

Bayesian models are mainly used to derive pointwise estimates, but their advantage is the creation
of a sample from the posterior distribution. It is thus also important to take distribution properties
into account. A simple way of doing so is evaluating the estimated posterior density at the true
parameter value, that is known from the data simulation. High posterior density values provide
evidence that maximum a posteriori estimates could be appropriate.

Equally-tailed credible intervals can be constructed using the estimated posterior quantiles
𝑞(𝛾 |X), although different notions of the credible interval such as highest density intervals exist
[100]. The credible interval with level 𝛾 ∈ [0, 1] is then the set excluding the tails with a
proportion of 𝛾2 of the most extreme observations on either side.

𝐼 (𝛾) =
[
𝑞

(
1 − 𝛾

2

����X)
, 𝑞

(
1 + 𝛾

2

����X)]
Posterior interval coverage is a useful metric for simulated data of the full Bayesian model,
meaning in particular that F∗ and r∗ are sampled from their priors as well. Since the data
simulation for model comparison used here has fixed parameter values, interpreting interval
coverage becomes less meaningful. It is still practical to use the size of the credible interval
as measure of uncertainty and thus the interval span 𝑞

(
1+𝛾

2

���X)
− 𝑞

(
1−𝛾

2

���X)
can be compared,

which is desired to be as small as possible given otherwise accurate estimates.
Further metrics for the quality of the entire posterior distributions can be taken into consid-

eration. Posterior predictive checks are typically used in cases where no true values for the
parameter estimates are available in order to assess the models capability of representing the
input data well [101]. The posterior predictive distribution is the likelihood of hypothetical future
measurements calculated using the posterior distribution over parameter values in presence of
the actually available data.

𝑝(X̃|X) =
∫

𝑝(X̃|F, r)𝜋(F, r|X)𝑑F𝑑r (3.16)

This posterior predictive distribution is not unique since given that there are auxiliary parame-
ters S and 𝐴 as well it is unclear whether it should be proportional to the marginalized likelihood
𝑝(X̃|F, r) or rather the likelihood conditioned on the auxiliary parameters 𝑝(X̃|F, r, S, 𝐴). This
discrepancy renders comparison of predictive density values across dataset simulations X(𝑞)
ineffective, since the models fit a joint posterior and thus assume that future data must be sam-
pled using identical auxiliary parameter values, whereas the simulation resamples their values
S(𝑞) , 𝐴(𝑞) every time.

The log pointwise predictive density is a metric for the quality of the posterior predictive
density and thus by proxy of the Bayesian model. It is computed by evaluating the predictive
density at the original data points and can be approximated using the posterior samples [102].

LPPD(𝑞) = log
∫

𝑝(X|F, r)𝜋(F, r|X)𝑑F𝑑r ≈ 1
𝑆

𝑆∑︁
𝑠=1

𝑝(X|F(𝑠) ) (3.17)
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Using the model fitted on the same data as it is evaluated tends to overestimate the pointwise
predictive density and new data is assumed to have lower values in reality. Ideally, the expectation
over the true distribution of the data is desired for comparison, which is not feasible in general
since the marginal 𝑝(X) is not known. Approximations to out-of-sample predictive densities
exist with prominent approaches being the Watanabe-Akaike information criterion or leave-one-
out cross-validation [103]. However, they assume that multiple independent draws are available
and used to fit the model, which is not the case for the data used to compare models. Even though
datasets encountered in practice reflect this choice, it is not inconceivable that real datasets can be
obtained where multiple time series are at hand, that can be treated as independent observations
and thus allow for the computation of these approximations to the expected log predictive density.
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Chapter 4

Results & Discussion

4.1. Rayleigh Fractionation Priors

Sampling the posterior distribution of the fractionation weight 𝑟 for closed system fractionation
is hard, because it is connected through the non-linear logarithm to the effect on measurements.
Although a uniform prior usually does not inform the posterior about anything else than the
boundaries, the logarithm makes its effect on the posterior much more unclear. Different choices
for prior distributions are thus tested for their effect on the generated posterior sample.

The simulated dataset uses 17 different values for the fractionation index 𝑟 ranging from 0.05
up to 0.95. Source contributions are fixed to 𝑓 ∗1 = 0.7 and 𝑓 ∗2 = 0.3. Each value of 𝑟 is used
to generate 𝑄 = 64 data points 𝑋 (1) , . . . , 𝑋 (𝑄) with measurement error 𝜂 = 4 for a total of
1088 data points. The stationary inference model given in Equation 3.1 is fitted to each point
individually, which makes this setting analogous to the inference procedure used in the original
FRAME model [18].

Figure 4.1.: Dual isotope plot for the two sources used with simulated data points colored by the
fractionation index 𝑟 .

Using a uniform prior for the fractionation index 𝜋(𝑟) ∝ 1 is the natural choice used as standard
by all models. It is compared to the Jeffreys prior, which was derived in subsection 3.1.1 to be
𝜋(𝑟) ∝ 1

𝑟
and thus is an improper prior. A middle ground between these two choices is given
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4. Results & Discussion

by the beta prior 𝑟 ∼ 𝐵( 12 , 1), which has 𝜋(𝑟) ∼ 1√
𝑟
. The first argument of the beta distribution

can also be used as a free parameter 𝛼 ∈ (0, 1] alongside a uniform hyperprior to construct the
hierarchical model 𝑟 ∼ 𝐵(𝛼, 1), 𝛼 ∼ Uni(0, 1).

Each data point is supplied to the model individually and 𝑆 = 5000 posterior samples are
generated using Stan. The samples are combined for each value of 𝑟 to marginalize over the
distributions of the auxiliary parameters. Posterior density estimations for 𝑟 = 0.05, 𝑟 = 0.5 and
𝑟 = 0.95 are shown in Figure 4.2.

Figure 4.2.: Posterior densities of the fractionation weight 𝑟 averaged across simulations for
different prior distributions.

The source 𝑆2 (bD) has a wide prior distribution which confounds with the effect of fraction-
ation and introduces high uncertainty. Since this uncertainty is proportional to the logarithm of
𝑟 , the effect on the posterior distribution is much more pronounced when 𝑟 is high. The Jeffreys
prior introduces a shift towards lower values compared to the uniform prior with the beta prior
being in between the two. The hierarchical prior estimates a parameter value of 𝛼 ≈ 1

2 closely.
This can be understood as a maximum evidence estimator since the prior on 𝛼 was uniform, and
consequently the beta prior represents a distribution derived from empirical Bayesian analysis.

Inference performance is compared by taking the posterior means f̂ (𝑞) = 1
𝑆

∑𝑆
𝑠=1 f (𝑞,𝑠) and

𝑟 (𝑞) = 1
𝑆

∑𝑆
𝑠=1 𝑟

(𝑞,𝑠) and comparing them against the true values f̂∗ and 𝑟∗. Figure 4.3 shows the
mean absolute error of the posterior mean with vertical lines indicating the standard deviation
over the 𝑄 = 64 repetitions. Clearly, the Jeffreys prior performs worst for source contributions
with the uniform prior being best and closely followed from the beta and hierarchical prior. In
terms of fractionation index the Jeffreys priors is best for low values of 𝑟 with the uniform being
worst, but this relationship switches at about 𝑟 = 0.4 to the contrary. Therefore, choosing any
prior can still be justified if one expects the fractionation index to be in a certain range and the
effect of prior choice is overwhelmed by the variation introduced through the distribution of the
sources regardless.
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4. Results & Discussion

Figure 4.3.: Mean absolute error of Bayesian models using different fractionation prior distribu-
tions over different true fractionation values. The performance on source contribu-
tions is identical for both sources, since they are perfectly correlated, so only one
panel is shown for both.

4.2. Sampling Software

Bayesian models can be implemented using different sampling strategies. The most commonly
used sampling libraries are JAGS using Gibbs sampling and Stan using Hamiltonian Monte
Carlo sampling. These two implementations are compared in three different settings. Firstly,
the original stationary FRAME estimator for one single time step given in Equation 3.1, then
the time series model using independent time steps described in Equation 3.5 and the hierar-
chical Dirichlet-Gaussian process model described in Equation 3.9, with joint estimation of the
correlation length for source contributions and fractionation.

The general example GenE discussed in section 4.4 serves as fixed truth value for f∗𝑡 and 𝑟∗𝑡 for
simulating data and applying the models in the above mentioned three settings. The time series
are sampled with 𝑁 = 64 points and for the stationary case the average over time is chosen as
fixed value. Each implementation is run for 𝑆 = 10000 sampling steps and the resulting effective
sample size, total runtime in seconds and resulting effective samples per second are noted in
Table 4.1. The effective sample sizes are computed using the calculation described by Kruschke
[104, ch. 7.5.2.] and the reported number are averages over all parameters.

JAGS seems to outperform Stan for the stationary and independent case by having more
effective samples in the shorter amount of time. The hierarchical model could only be efficiently
sampled by Stan although it took a comparatively long time.

These findings are consistent with results on linear models using different numbers of param-
eters reported by Beraha, Falco, and Guglielmi [105]. It seems like Stan is a good option for
time series models that inherently have a lot of parameters and the cases where JAGS is faster
have sufficiently short sampling times for both libraries.
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𝑁𝑒 𝑓 𝑓 time 𝑁𝑒 𝑓 𝑓 /𝑠

stationary Stan 4482 10 454
JAGS 5131 0.5 9162

independent Stan 6350 66 97
JAGS 6559 22 292

hierarchical Stan 11538 1477 8
JAGS 10 1527 -

Table 4.1.: Effective sample size, runtime in seconds and effective samples per second for the
Stan and JAGS sampler over 𝑆 = 10000 sampling steps.

4.3. Time Series Models

Time series models are compared for a wide range of scenarios representative of edge cases that
might occur in reality. For the experiment, fixed parameter values for source contributions F∗
and fractionation r∗ and datasets are sampled according to the procedure described in section 3.3.
The models to be compared are the following:

• Independent time step model described in Equation 3.5

• Hierarchical independent time step model with gamma hyperprior for concentration 𝜎
described in Equation 3.6

• Gaussian process prior on measurements with 𝜌 = 1 described in Equation 3.8

• Gaussian process prior on measurements with 𝜌 = 1 using latent variable formulation
described in Equation 3.7

• Gaussian process prior on measurements with inverse gamma hyperprior on 𝜌

• Gaussian process prior on measurements with with inverse gamma hyperprior on 𝜌 using
latent variable formulation

• DGP prior using clr transform and 𝜌 = 1, 𝜎 = 1 described in Equation 3.9

• DGP prior using ilr transform and 𝜌 = 1, 𝜎 = 1 described in Equation 3.10

• DGP prior using clr transform and 𝜎 = 1 with inverse gamma hyperprior on 𝜌

• DGP prior using ilr transform and 𝜎 = 1 with inverse gamma hyperprior on 𝜌

• B-spline GLM using clr link function having 𝑀 = 8 for source contributions and 𝑀 = 4
for fractionation described in Equation 3.11

• B-spline GLM using ilr link function and 𝑀 = 8 for source contributions and 𝑀 = 4 for
fractionation

• B-spline GLM using ilr link function and 𝑀 = 8 for source contributions and 𝑀 = 4 for
fractionation with Laplace prior on coefficients
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4.3.1. Illustrative Examples

The examples described in subsection 3.3.1 are sampled for 𝑄 = 64 repetitions. Measurements
are simulated with Gaussian measurement error of magnitude 𝜂 = 5. The posteriors are sampled
for a total of 𝑆 = 10000 steps using 4 parallel chains. Goodness of estimation is quantified with
estimates computed as the posterior means f̂ (𝑞)𝑡 = 1

𝑆

∑𝑆
𝑠=1 f (𝑞,𝑠)𝑡 and 𝑟 (𝑞)𝑡 = 1

𝑆

∑𝑆
𝑠=1 𝑟

(𝑞,𝑠)
𝑡 and

taking the mean absolute error to the ground truth. Both the root mean squared error and mean
absolute error have been found to be similar and posterior medians lead to the same conclusions
as well. Mean absolute error results are shown in Figure 4.4 and details for all metrics are
available in Appendix B. The results for the two source contributions were identical since they
are perfectly correlated, so the plots only show one result for f in addition to the fractionation
weight 𝑟 if applicable.

Figure 4.4.: Mean absolute errors for all examples averaged over𝑄 = 64 dataset simulations with
standard deviations shown as vertical lines.

All models using fixed hyperparameters use default values that are not specifically tuned for the
examples at hand. Therefore the reported performance is not indicative of best case performance
and only shows the quality of the chosen values. Hierarchical models do not have this problem
since they can estimate the hyperparameters for each example specifically.

Overall performance seems to be best for hierarchical DGP models or spline GLMs. Estimation
of fractionation is not ideal in most cases with spline models performing best for extremal
fractionation amounts, which are all examples except AvgF. The default number of degrees of
freedom that spline models use seems surprisingly robust in all examples whereas the default
correlation length of Gaussian processes does is not. Gaussian process priors on measurements
appear to be slightly worse than DGP priors and spline-based priors especially for examples
SlowS and ExtrS. Independent time step models have worse performance than the rest for all
examples and the hierarchical extension to it only has good performance in example SlowS and
ExtrS, which represent cases where concentration to sources is either very low or very high. In
other cases using flat priors as default values seems to work best.

41



4. Results & Discussion

Spline GLMs have very small errors on fractionation whenever the value is slowly changing
and close to 0 or 1. This could suggest that the chosen hyperparameters are suitable for all
examples. Another plausible explanation is the fact that the spline bases used have an intercept
term, which allows it to freely move the center of estimation, whereas DGP models do not. For
the source contributions this likely does not matter, but allowing the Gaussian process to have
non-zero mean could be beneficial for fractionation. An additional spline model was added with
Laplace priors on the coefficients. This seems to be beneficial in cases where parameters are
close to their boundaries since the prior allows for values farther from zero.

The model using Gaussian process priors on measurements was implemented using both
formulations with latent variables in Equation 3.7 and with analytically computed likelihood in
Equation 3.8. Performance is identical in all cases hence strongly indicating that the formulations
are equivalent for parameter estimation. Additionally, using clr or ilr transformations for DGP
models and Spline GLMs does not make a difference in estimation accuracy, as is to be expected
from their derivations.

Time series models are not only expected to give accurate estimates of the source contributions
and fractionation, but the resulting time series should have similar properties to the truth as well.
The variance ratio of first differences described in Equation 3.15 measures accuracy of the
estimated curvature. Results for source contributions are shown in Figure 4.5.

Figure 4.5.: Log variance ratio of first differences of the estimated time series against the true
values for source contributions. The time series for fractionation are linear or constant
in most examples and are thus not suitable to be used for model comparison.

Clearly, the hierarchical Gaussian process and DGP models estimate the correlation length
well, resulting in a time series with similar rates of change than the true values. Spline GLMs
perform well, especially for the examples FastS, SlowS and ExtrS. Independent time step models
result in high variation which is due to the fact the the measurement noise is not adequately filtered
and the fixed correlation length Gaussian processes seem to have misspecified hyperparameters,
since they also overestimate the rates of change in the time series.
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Fitting times ranged from 20 seconds to 72 seconds on average for the 𝑆 = 10000 posterior
samples generated by each model, split into 2500 over 4 chains. The longest time out of these
4 concurrent chains is shown in Figure 4.6. Hierarchical models tend to be slowest due to the
additional parameters and repeated matrix decompositions that need to be computed, whereas
fixed parameter models, especially independent time steps and spline GLMs, sample fastest.
Spline models using the Laplace prior have long fitting times which could indicate that the high
parameter values, that are allowed due to weaker regularization of of parameter ranges far from
zero, are not sufficiently identifiable resulting in slow sample generation.

Figure 4.6.: Fitting time in seconds for 𝑆 = 10000 posterior samples split among 4 chains. The
reported result is the maximum fitting time among the chains.

4.3.2. Improved Data Quality

Estimation accuracy can be improved not only by choosing the right model but also by improving
the data quality. Several ways of adding more or higher quality data exist and the effect on model
performance is studied in order to find what would be most beneficial.

The examples above use two sources with two isotopic measurements making the system
well-determined. If additional isotopic measurements are available they can be added to make
the system overdetermined and thus eliminate some noise. For this the additional isotopic
measurement 𝛿18O is added with source locations and uncertainty reported by Yu, Harris,
Lewicka-Szczebak, et al. [99]. The same dataset generation procedure as in subsection 4.3.1 is
used with a total of 𝑄 = 64 datasets generated. Resulting improvement in estimation accuracy
for the same two sources is shown in Figure 4.7.

An improvement can clearly be seen especially for estimation of the fractionation weight 𝑟 in
the examples HighF and AvgF. It is worth to note that the additional measurement is not ideal in
quality having large uncertainty for the fractionation factor. Spline GLMs seem to have improved
the most, especially in their already good ability to estimate fractionation weights.
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𝑏1 ± Δ1 𝑏2 ± Δ2 𝑐 ± Δ𝐴
𝛿15N −55.5 ± 17.0 −25.25 ± 55.1 −6.4 ± 9.2
𝛿15NSP 35.35 ± 6.7 −1.9 ± 11.2 −5.55 ± 5.3
𝛿18O 23.5 ± 3.0 20.0 ± 6.6 −15.4 ± 20.0

Table 4.2.: Prior distribution parameters taken from Yu, Harris, Lewicka-Szczebak, et al. [99]
using an additional isotopic measurement in order to increase the estimation accuracy.

Figure 4.7.: Mean absolute error for all models on𝑄 = 64 generated datasets using one additional
isotopic measurement which can be found in Table 4.2. The original performance
of the models without this additional measurement is shown with gray dots.

Instead of adding additional measurements, more effort could be put into determining the
location of the sources and fractionation factor more clearly and thus reduce uncertainty in the
input data. To study this case an idealized set of sources and fractionation factor is selected to
have mixing and reduction line exactly perpendicular and only having an uncertainty of 10% in
each dimension respective to the mean. This renders the mixing and fractionation components
independent, since they cannot confound each other.

Measurements sampled in this setting follow exactly the same procedure as in subsection 4.3.1
but only use a Gaussian measurement error with magnitude 𝜂 = 0.1. For each example 𝑄 = 64
datasets were generated and the mean absolute error of estimation is shown in Figure 4.8.

𝑏1 ± Δ1 𝑏2 ± Δ2 𝑐 ± Δ𝐴
𝛿15N −1 ± 0.2 1 ± 0.2 1 ± 0.1
𝛿15NSP 1 ± 0.2 −1 ± 0.2 1 ± 0.1

Table 4.3.: Ideal sources and fractionation factor such that mixing and reduction lines are per-
pendicular with 10% uncertainty in their location.
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Figure 4.8.: Mean absolute error for all models on 𝑄 = 64 generated datasets using the idealized
sources and fractionation factor with 10% uncertainty in their location found in
Table 4.3. The original performance of the models with non-idealized sources is
shown with gray dots.

Improving all uncertainties involved to a minimum seems to have great impact on model
performance. Almost all mean absolute errors of estimation are below an error margin of 0.05
for source contributions and below 0.1 for fractionation. Furthermore, model choice seems to
be less relevant as even the independent time step models perform similarly to the other more
sophisticated ones. Interesting is also the fact that the DGP model with fixed hyperparameters as
well as the spline GLM with fixed spline basis underperform in source contribution estimation
for example HighF. This could be evidence that the default parameters become less robust when
noise is removed and they should be selected more carefully.

4.3.3. Influence of Fractionation

Models can have varying performance at different levels of fractionation. For this reason a time
series of source contribution values f∗𝑡 is taken and paired with different constant fractionation
values 𝑟∗𝑡 = 𝑟∗ to generate measurements and monitor performance. In total 17 equally spaced
fractionation values ranging from 𝑟∗ = 0.02 to 𝑟∗ = 0.98 were used and a total of𝑄 = 32 datasets
were generated per value. True values for source contributions are taken from the general example
GenE used in section 4.4 and a measurement error magnitude of 𝜂 = 5 was used.

This experiment is done only with representative models of the four main model classes in
order to reduce the number of comparisons that have to be made. The first one being the
independent time step model, then Gaussian process prior on measurements with hierarchical
estimation of correlation length, DGP prior with hierarchical estimation of correlation length
and lastly, B-spline GLM with fixed hyperparameters for degrees of freedom. Mean absolute
error of estimation averaged over the dataset simulations and with standard deviations indicated
as vertical lines are shown in Figure 4.9.
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Figure 4.9.: Mean absolute error of the four main model classes over different fractionation
weights 𝑟 . Each reported value is the average over 𝑄 = 32 dataset simulations with
vertical lines indicating standard deviations.

Overall performance shows a clear improvement in the center where 𝑟∗ ≈ 0.5. Estimation
also becomes more accurate with very low values of 𝑟∗, which could mostly be due to the fact
that small values have large impacts on measurements and thus estimation can become more
accurate. Spline models are expected to perform well here since the time series of fractionation
weights is constant which can be reflected by the low degrees of freedom used. The different
model classes seem to be equally affected by changes in fractionation otherwise, so presumably
the choice of hyperparameters to reflect the situation at hand is more important than selecting a
particular model.

Spans of 95% credible intervals can give additional insight into the pattern observed with the
estimation accuracy over different values of fractionation weight 𝑟∗. If parameter estimation is
good then a smaller credible interval span shows a narrow posterior around the correct mean.
The width of the 95% credible interval is reported in Figure 4.10.

Figure 4.10.: 95% credible interval spans of the four main model classes over different fractiona-
tion weights 𝑟. Each reported value is the average over 𝑄 = 32 dataset simulations
with vertical lines indicating standard deviations.
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DGP prior models have the smallest credible interval span for source contributions and frac-
tionation weights. However, all other models have an interval width of over 0.75 for large frac-
tionation weights and thus span over half of the possible domain. Clearly, due to the Rayleigh
fractionation equation being non-linear in 𝑟 , it is difficult to estimate larger fractionation weights
with high accuracy. This could also be an explanation for the dip in estimation error seen in
Figure 4.9. If the amount of remaining substrate is larger than 0.1 the data does not give enough
information and estimates could group around the prior mean, which is exactly 0.5 and thus gives
high estimation accuracy with large credible interval spans.

4.3.4. Influence of Measurement Noise

The main advantage that smooth models such as Gaussian processes and splines have over the
independent time step assumption is that they promise to filter measurement noise and thus
produce estimates that are more accurate and have a narrower posterior distribution. For this
reason an experiment is conducted using values of source contributions f∗𝑡 and fractionation 𝑟∗𝑡
from the general example GenE in section 4.4 to simulate datasets with different measurement
noise. Noise values range from 𝜂 = 0.5 to 𝜂 = 20 and for each separate value a total of 𝑄 = 32
data sets are generated. Resulting performance of the four main model classes measured as mean
absolute error are shown in Figure 4.11.

Figure 4.11.: Mean absolute error of estimation of the four main model classes over different
measurement noise magnitudes 𝜂. Each point represents the average over 𝑄 = 32
dataset simulations with vertical lines indicating standard deviations.

Performance of all models slowly decreases with increased measurement noise, as is expected.
However, it seems like small noise magnitudes do not lead to correspondingly accurate estimates.
Especially comparing the results to Figure 4.8 shows that probably most of the estimation error
comes from the source variation rather than the measurement noise.

The variance ratio of first differences can be used to assess the quality of the estimated time
series in the presence of high frequency changes due to measurement noise. It is shown in
Figure 4.12 for the source contribution estimates. Since the rate of change in the fractionation
weight is constant for the example chosen it is not suitable for comparison and thus only results
regarding the source contributions f are shown.
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Figure 4.12.: Log variance ratio of first differences of the estimated time series against the true
values for source contributions averaged over 𝑄 = 32 dataset simulations with
standard deviations shown as vertical bars.

Variance ratios of the independent time series model gradually increase with increasing mea-
surement noise magnitude. All other models seem to filter the noise well, having much lower
overestimations of the first difference variance. The hierarchical DGP model seems to be less
equipped to deal with very high noise, which could simply be due to the fact that the weakly
informative hyperprior on the correlation length is not suitable here. The spline GLM appears
to have constant low values for the ratio of first difference variance possibly due to the fact
that the fixed degrees of freedom predetermines the smoothness of the estimates independent of
measurement noise.

For each varying level of noise magnitude the sampling time in seconds is measured for the
total number of 𝑆 = 10000 samples generated split onto 4 concurrent chains. The reported time
in Figure 4.13 is averaged over the 𝑄 = 32 data simulations with values corresponding to the
time it took for the slowest chain to finish.

Figure 4.13.: Sampling time in seconds reported for 𝑆 = 10000 posterior samples generated. The
values are averaged over 𝑄 = 32 data simulations and represent the maximum time
among 4 concurrent chains.
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Fitting times are shifted according to the pattern that was already seen in subsection 4.3.1
with the hierarchical models taking more than double the time. Interesting is the decrease of
time needed when errors are large. This might be due to the fact that the model specification
takes an estimate of the measurement uncertainty as input and adapts the likelihood accordingly.
Likelihoods with larger uncertainty have wider distributions that lead to higher acceptance ratios
during Monte Carlo sampling and thus take less time.

4.4. Applications

The main purpose of the time series models is to provide estimates of source contribution and
fractionation weights with uncertainty. In the sections above, only the performance metrics
aggregated over many simulations have been shown. To illustrate the modeling capabilities
a representative general example (GenE) is simulated from fixed parameter values and the
inference results are shown in comparison to the true values. Real datasets are available as well,
but interpretation of results without having ground truths available is generally hard and thus not
particularly useful. Nevertheless, real data results are available in Appendix C.

Source isotopic signatures as well as fractionation factor priors are taken from Yu, Harris,
Lewicka-Szczebak, et al. [99] in Table 3.1, with one single value of S and 𝐴 sampled to generate
the dataset. The mixing equation using Rayleigh fractionation is used with the ground truth
parameters to compute measurement means and a Gaussian error with magnitude 𝜂 = 5 is used
to sample 𝑁 = 64 measurements 𝑋1, . . . , 𝑋𝑁 . The fixed parameter values and the simulated data
is shown in Figure 4.14.

Figure 4.14.: Fixed ground truth values of source contributions and fractionation used to simulate
measurements in the left panel and the measurement values simulated accordingly
together with LOESS estimates in the right panel.

Normally, the dataset would need to be preprocessed as indicated by the smoother in Fig-
ure 4.14. Tools such as dual isotope plots for visualization and smoothing methods such as local
linear regression are readily available. However, the generated dataset is known to have feasible
values for measurements, because it was generated that way and the measurement error of 𝜂 = 5
used for the simulation is small enough that no preprocessing is needed.
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In order to run the Bayesian models and estimate source contributions and fractionation over
time the auxiliary distributions of the source isotopic signatures S and the fractionation factor
𝐴 as well as the noise magnitude 𝜂 must be supplied in addition to the dataset. Three different
model classes are run to illustrate the computed output. The first one is the independent time
step model described in Equation 3.5, then the spline GLM described in Equation 3.11 and lastly
the hierarchical DGP prior model described in Equation 3.10.

From the output that the models produce either summary statistics of the posterior such as its
mean and its quantiles can be gathered or the full sample trace of all posterior time series sampled
can be extracted. The estimated means are shown in Figure 4.15 together with the shaded regions
representing the 95% equally-tailed credible interval.

Figure 4.15.: Posterior means of the three model types compared to the true parameter values.
Shaded areas indicate 95% credible intervals and the true parameter values used to
simulate the measurements are shown as black lines.

The independent time step model clearly shows that the measurement error has a large effect
on the estimated parameters. Nevertheless, the credible interval covers the true parameter values
well and is reasonably narrow. Fractionation weight estimaton seems to be biased toward higher
values which could be due to confounding with the variation in source isotopic signatures. The
B-spline basis for the GLM seems to have default values for degrees of freedom that are fairly
optimal in this case. The time series of parameter estimates is now similarly smooth to the actual
parameter series. Estimation using the hierarchical DGP prior model seems to give the best
results visually. The time series are adequately smooth and estimates are close to the true values
with narrow credible intervals.

The posterior distribution of the models can be fully extracted in which case it can be interpreted
as a distribution over time series functions. As such not only summary statistics can be plotted
but the whole distribution as well. Similarly to plotting a dataset consisting of individual points,
certain techniques exist to visualize the shape of the distribution. Using functional data analysis
the functions can be associated with band depth thus ordering them from the most central time
series to the most extremal ones. The distribution can then be plotted using functional boxplots
[106], [107], which display the median time series as a black line and a band of the inner most
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50% of the curves as shaded region shown in Figure 4.16. Additional lines act as boundaries
to conjectured outlier curves similar to whiskers in regular boxplots and curves contained in the
sample that are considered outliers are separately plotted using dotted lines.

Figure 4.16.: Functional boxplots of the three model types for variables 𝑓1, 𝑓2 and 𝑟 from top row
to bottom row. Visualizations are computed using the Functional Data Analysis
package in R [108].

The independent time step model covers a wide range of the domain with the sampled curves
which is mainly because it does not take time series information into account that would reduce
uncertainty. The B-spline GLM has much narrower functional boxes with small bumps indicating
the location of spline knots that were used to construct and evaluate the basis. The hierarchical
DGP model has the smallest functional box, which seems to be as smooth as the time series of
true parameter values as well, thus indicating that not only the summary statistics have favorable
properties, but also the individual samples generated.

4.4.1. Selecting Fractionation Equations

Posterior distribution samples can be used for many further applications going beyond simply
examining its summary statistics. The focus for the experiments above was on closed systems and
the Rayleigh fractionation equation having 𝜇closed(F, r) = SF+𝐴 log r to account for fractionation
in addition to mixing. However, in practice, it is oftentimes unclear if this is an adequate
representation of the system with an alternative for nitrous oxide reduction being open-system
fractionation 𝜇open(F, r) = SF − 𝐴(1 − r).

Resolving this question essentially requires the comparison of two likelihood formulations
𝑝closed(X|F, r) and 𝑝open(X|F, r), since the mixing and fractionation equation computes mea-
surement means of a Gaussian distribution that the measurements are subject to. Traditionally,
in frequentist statistics, likelihood-ratio tests have been used in conjunction with the maximum
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likelihood estimates of the parameters to select the best option. In Bayesian statistics an anal-
ogous device are Bayes factors, which compare model formulations in terms of their marginal
likelihood instead.

𝑝(X) =
∫

𝑝(X|F, r)𝜋(F)𝜋(r)𝑑F𝑑r (4.1)

Evaluating the marginal likelihood, also called evidence, is not trivial even if posterior samples
of the parameters exist. However, resampling techniques such as bridge sampling can be employed
to accomplish precisely this [109]. The Bayes factor of closed-system fractionation over open-
system fractionation is then the the ratio of marginal likelihoods.

BFclosed =
𝑝closed(X)
𝑝open(X)

=

∫
𝑝closed(X|F, r)𝜋(F)𝜋(r)𝑑F𝑑r∫
𝑝open(X|F, r)𝜋(F)𝜋(r)𝑑F𝑑r

(4.2)

Resulting values for the Bayes factor can be understood as evidence for or against a given
hypothesis and interpretations of values in certain ranges are tabulated [45]. For this simulated
example the dataset was generated using closed-system fractionation and consequently the com-
puted Bayes factor has BF > 105 which counts as decisive evidence for the description of the
data using closed-system fractionation.

Care must be taken when comparing likelihoods with Bayes factors since normalized prior
distributions are not needed for estimating the posterior and thus not all models satisfy this. If
the source isotopic signatures S use a mixture of uniform spread and Gaussian error then their
prior will be unnormalized and bridge sampling will no longer give correct estimates of the
marginal likelihood. Furthermore, the Jeffreys prior for the fractionation index is improper and
thus cannot be normalized and used for Bayes factor computation.

4.5. Limitations

Posterior predictive checks are a useful tool for Bayesian model comparison. They take full
posterior distributions into account and are applicable for real datasets where true parameter
values are not known beforehand. The models were constructed and compared with the setting
in mind that only one singe time series would be available when the models are used. This
makes the estimation of expected predictive densities impossible, since in essence the single
time series represents only one single data point. In practice, one must thus rely on pointwise
predictive densities evaluated at this single time series instead or resort to Bayes factors or other
comparison methods. Simulations of cases where multiple time series would be accessible were
not conducted and the model implementations do not account for it.

Spline GLMs outperform Gaussian process based models in the estimation of fractionation
weights close to 0 or 1. This could be due to the fact that the spline bases include intercept terms
which allows for extremal fractionation values more easily. Since for source contributions such
a term is not needed, it was omitted from Gaussian process models entirely and causes their
estimates for fractionation weights to be biased. Including it could serve as a means to improve
them even more.
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Extension of the presented models to multiple continuous dimensions for instance required
for spatio-temporal modeling would be natural for Gaussian processes as well as splines and in
subsection 2.4.3 an alternative approach is suggested. Future datasets could make great use for
such modeling capabilities, but no experiments or implementations could be provided due to
scope constraints.

The mixing and fractionation equations that are used such open-system fractionation equation
use the assumption of stationarity of fluxes for their derivation. Using these equations for time
series models that are implicitly non-stationary could have unintended consequences for their
validity. A good further step could therefore be to examine the derivation of fractionation
equations via differential equations closely, while taking non-stationarity into account.

Simulations used for model comparison tend to have only few repetitions which makes defini-
tive statements about model performance much more difficult. The behavior of most models
could still be assessed, but especially for spline GLMs it remains unclear whether the chosen
defaults are truly as reliable as they seem and can perform in a general context.
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Chapter 5

Conclusion

5.1. Summary

This thesis was conducted with the goal of studying Bayesian inference techniques for the
analysis of isotopic data and develop approaches that are suitable for cases where mixing and
fractionation is present as well as where time series information is available. To accomplish this,
a few related methods of estimating source contributions were surveyed, with the most common
one being isotopic mapping that can be reduced to solving linear systems of equations and hence
can estimate uncertainty only under restrictive assumptions. Most notable Bayesian techniques
include 3DIM [17] which extends previous formulations to more than two isotopic measurements,
FRAME [18] which implements Bayesian inference for stationary cases and Bayesian mixing
model implementations [20]–[22] typically used for animal diet partitioning.

A total of four time series model classes were presented in section 3.2 which are independent
time step models, Gaussian process priors on measurements, Dirichlet-Gaussian process priors
and generalized linear models with spline bases. All classes were implemented in different
variations using Stan and thoroughly compared in various scenarios. They were constructed for
the purpose of finding source contributions from isotopic measurements of nitrous oxide and are
able to incorporate fractionation equations, making them a direct extension to FRAME.

Model comparison in section 4.3 showed that, while it seemed like there are use cases for all
classes, hierarchical Dirichlet-Gaussian process models tended to be best in terms of estimation
accuracy, narrowness of posterior and matching of time series properties such as curvature.
However, the joint estimation of correlation length parameters lead to high fitting times in the
range of 60 seconds for time series of 32 points. Generalized linear models with spline bases
were fast and similarly accurate, but do not explicitly tune hyperparameters. Nevertheless, the
defaults used seem to be reliable and outperform all other model classes in certain cases where
the effect of fractionation weight is extremal and slowly changes in time.

Experiments on improvements of the data concluded that the most effective strategy to refine
source contribution and fractionation estimates seems to be to reduce uncertainty in the input data
with noise magnitudes of less than 10% giving very accurate estimates. Rendering the system of
equations overdetermined by adding additional measurements could be fruitful as well, although
care has to be taken that they are sufficiently informative and do not introduce more noise.
Inference on consumption levels was underwhelming, especially if the amount of remaining
substrate was either very high or very low. Alternative priors for the fractionation weight showed
little difference between multiple choices, but they could confirm that the uniform prior, that was
already in use before, performs best on average for inference of source contributions. Finally,
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different levels of measurement error had rather similar performance, pointing to the fact that a
substantial amount of estimation error can potentially be linked to uncertainty of the input data,
namely source isotopic signatures and fractionation factors.

The presented models were implemented together with some of the original isotopic data
analysis techniques in the TimeFRAME package. The implementation is in R using Stan as
sampler and its description as well as the available functions are referenced in Appendix A.

5.2. Recommendations

Given the model comparisons made in section 4.3 it seems like most models perform well in most
cases. It is therefore fine to use independent time step assumptions in cases where only pointwise
estimates are needed. The hierarchical formulation of Dirichlet-Gaussian process models are a
high performing alternative that seems to be more accurate, have narrower posterior distributions
and incorporate time series information well. They look to be a good choice for a wide range
of applications if the longer fitting times are able to be managed. Generalized linear models
with spline bases have similar high performance, but much shorter fitting times. However,
their application requires the modeler to construct a spline basis where many different choices
are possible. Default values are provided and seem to be robust according to the experiments
conducted, but it is unclear whether this generalizes to real datasets.

When using Gaussian processes the choice of long correlation lengths can lead to long fitting
times due to the estimation of many highly correlated variables. If this is desired nonetheless, it is
useful to aggregate or subsample the data beforehand. It remains unclear what hyperparameters
such as correlation length or spline degrees of freedom work best in practice and so the chosen
default values are not necessarily suitable or even valid in different scenarios. Hierarchical
models can help with estimating hyperparameters from the data, so a sensible course of action
could be to use wide hyperpriors and use posterior mode estimates for data of similar character.

Applying Bayesian models to real data can be challenging if the measurement noise is over-
whelming and the measured values are out of proportion. In addition to giving estimates with
high uncertainty, the fitting time can become exceptionally long if the measurements are not
close to any solution that can be produced with mixing and fractionation. Much care should
therefore be taken to clean and preprocess input data properly and to set appropriate values for
the measurement noise parameter when fitting the models.

5.3. Future Work

The generalized linear model has a multitude of extension possibilities and variations that are
not sufficiently examined here. Similar to Stock, Jackson, Ward, et al. [20] mixed effects can
be included for measurement repetitions together with the possibility of adding other covariates
corresponding to exogenous variables. Furthermore, spline bases are highly flexible in the way
they are constructed and hence allow for alternative choices such as the type of spline, the degrees
of freedom and the placement of knots. These variations could be studied in-depth and optimized
for best performance and desired properties.
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The models presented in this thesis provide groundwork on how to deal with fractionation,
time series information and uncertainties simultaneously. Most datasets available at the current
time suffer from high uncertainty in the input data and thus conclusions are still vague. Future
developments in the direction of refining the estimates on source isotopic signatures and additional
measurement capabilities could lead to higher quality of analyses. Measurements of clumped
N2O isotopes are currently being studied and could open up the possibility of using up to
7-dimensional input data [110].

Interesting approaches where multiple smoothing dimensions are present are measurements
that are taken with respect to space and time. Simultaneous spatio-temporal estimation could be
approached by extending the Gaussian process priors and spline bases to multiple dimensions with
the latter extension being as simple as adding spline expansions in each dimension. Both additions
are essentially possible with the framework presented in this thesis, but still need extensive testing
and experimentation. Furthermore, formulating the problem as an inhomogeneous differential
equation could lead to entirely different estimation methods involving partial differential equation
solvers that are currently being developed [81].
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Appendix A

R Package

A.1. Description

TimeFRAME is a data analysis package that can be used for Bayesian estimation of source
contributions and fractionation of isotopic measurement time series. It uses Bayesian parameter
estimation with Stan to estimate uncertainty and produce posterior samples. Additionally, the
package provides utility functions to sample from prior distributions and simulate measurements.

A.2. Methods

frame_model Creates a model specification of class FrameModel for running statistical sam-
plers on a dataset of isotopic measurements.

sources Data matrix with 2𝑑 columns corresponding to 𝑑 isotopic measurements and 𝑑

spreads and 𝐾 rows representing sources.

frac Data matrix with 2𝑑 columns corresponding to 𝑑 isotopic measurements and 𝑑

spreads and 𝐿 rows representing fractionation factors (Default empty data.frame).

x Data matrix with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows
representing measurement repetitions (Default empty data.frame).

sd Data matrix with 𝑑 columns corresponding to standard deviations and 𝑁 rows repre-
senting repetitions (Default 0).

t Vector with 𝑁 elements corresponding to time points or alternative continuous or-
derings of measurements (Default NULL).

isotope_map Computes source contribution and fractionation weight by solving linear systems
of equations using the isotope mapping approach.

model Object of class FrameModel.

x Data matrix with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows
representing repetitions. Overrides parameters of model.

frac.eq Type of fractionation equation to use. Must be one of "open|closed" (Default
"closed").
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fit_stationary Fits a Stan model using original FRAME formulation treating measurements
as independent repetitions. Ignores time series information and fits one set of parameters.
model Object of class FrameModel.

x Data matrix with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows
representing repetitions. Overrides parameters of model.

eta Numeric, indicating additional measurement noise (Default 0).

fit_frame Fits a Stan model using original frame formulation treating measurements and
estimates as independent in time.
model Object of class FrameModel.

x Data matrix with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows
representing repetitions. Overrides data matrix of model.

sd Data matrix with 𝑑 columns corresponding to standard deviations and 𝑁 rows repre-
senting repetitions (Default 0).

eta Numeric, indicating additional measurement noise (Default 0).

fit_gp Fits a Stan model using a GP model (Gaussian Process Prior on Measurements).
model Object of class FrameModel.

x Data matrix with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows
representing repetitions. Overrides data matrix of model.

sd Data matrix with 𝑑 columns corresponding to standard deviations and 𝑁 rows repre-
senting repetitions (Default empty 0).

t Vector with 𝑁 elements corresponding to time points or alternative continuous or-
derings of measurements (Default NULL).

rho Numeric indicating scaled correlation length of measurements (Default 1).
estim.rho Logical indicating whether correlation length should be estimated by a hierarchical

model (Default FALSE).
eta Numeric, indicating additional measurement noise (Default 0).

fit_dgp Fits a Stan model using a DGP model (Dirichlet-Gaussian Process Prior).
model Object of class FrameModel.

x Data matrix with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows
representing repetitions. Overrides data matrix of model.

sd Data matrix with 𝑑 columns corresponding to standard deviations and 𝑁 rows repre-
senting repetitions (Default 0).

t Vector with 𝑁 elements corresponding to time points or alternative continuous or-
derings of measurements (Default NULL).
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sigma Numeric indicating concentration of the Dirichlet priors (Default 1).

rho Numeric indicating scaled correlation length of source contributions (Default 1).

rho.r Numeric indicating scaled correlation length of fractionation (Default 1).

estim.rho Logical indicating whether correlation lengths should be estimated by a hierarchical
model (Default FALSE).

eta Numeric, indicating additional measurement noise (Default 0).

fit_glm Fits a Stan model using a Spline GLM model (Generalized Linear Model with Spline
Basis).

model Object of class FrameModel.

x Data matrix with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows
representing repetitions. Overrides data matrix of model.

sd Data matrix with 𝑑 columns corresponding to standard deviations and 𝑁 rows repre-
senting repetitions (Default 0).

t Vector with 𝑁 elements corresponding to time points or alternative continuous or-
derings of measurements (Default NULL).

M Numeric indicating spline degrees of freedom for source contributions (Default 8).

M.r Numeric spline degrees of freedom for fractionation (Default 4).

eta Numeric, indicating additional measurement noise (Default 0).

sample_dgp Creates samples from the prior distribution of the DGP model. Used to check if
hyperparameters produce the expected output.

n Number of samples to be generated.

t Vector of 𝑁 time points where the sampled functions should be evaluated.

rho Numeric indicating scaled correlation length of the functions to be sampled.

sigma Numeric indicating concentration of the functions to be sampled.

sample_spline Creates samples from the prior distribution of the Spline GLM model. Used
to check if hyperparameters produce the expected output.

n Number of samples to be generated.

t Vector of 𝑁 time points where the sampled functions should be evaluated.

M Integer indicating number of degrees of freedom of the functions to be sampled.

sigma Numeric indicating concentration of the functions to be sampled.
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sample_means Creates samples for measurement means with given source contribution and
fractionation weights.

model Object of class FrameModel.

f Data frame with 𝐾 + 𝐿 columns corresponding to values of source contribution and
fractionation weights and 𝑁 rows corresponding to different time points.

sample_measurements Creates samples from the prior distributions that are used for time
series modeling. Use this to check if hyperparameters produce what you expect.

model Object of class FrameModel.

f Data frame with 𝐾 + 𝐿 columns corresponding to values of source contribution and
fractionation weights and 𝑁 rows corresponding to different time points.

eta Numeric, indicating measurement noise to be used or data frame of measurement
noises with 𝑑 columns corresponding to isotopic measurements and 𝑁 rows corre-
sponding to time points (Default 1).
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Appendix B

Experiments

All experiments were conducted by fixing true values of source contribution time series F∗ ∈
R𝐾×𝑁 and fractionation weights r∗ ∈ R1×𝑁 and simulating 𝑄 measurements X(1) , . . . ,X(𝑄) ∈
R𝑑×𝑁 from them by using the likelihood 𝑝(X|F∗, r∗) derived from the mixing equation and the
measurement distribution. Model fitting yielded 𝑆 posterior samples for source contributions
F(𝑞,1) , . . . ,F(𝑞,𝑆) and fractionation weights r(𝑞,1) , . . . , r(𝑞,𝑆) for runs 𝑞 = 1, . . . , 𝑄. From
these samples pointwise estimators corresponding to posterior means F̂(𝑞) = 1

𝑆

∑𝑆
𝑠=1 F(𝑞,𝑠) ,

r̂(𝑞) = 1
𝑆

∑𝑆
𝑠=1 r(𝑞,𝑠) and medians F̃(𝑞) = F(𝑞, [ 𝑆2 ] ) , r̃(𝑞) = r(𝑞, [ 𝑆2 ] ) as well as posterior quantiles

𝑞(𝛾 |X(𝑞) ) could be computed.
The following metrics were computed per run 𝑞 = 1, . . . , 𝑄 and aggregated to compare model

performance. Metrics for r are computed analogously:

• Root Mean Squared Error of Posterior Mean (RMSE)√√√
1
𝑁

𝑁∑︁
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• Mean Absolute Error of Posterior Mean (MAE)
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• Log Correlation Ratio of First Differences of Posterior Mean (RDCor)

log
∑𝑁−1
𝑡=1 𝜌(F(𝑞)
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• Root Mean Squared Error of Posterior Median (RMSE_med)

• Mean Absolute Error of Posterior Median (MAE_med)

• Log Mean Percentage Error of Posterior Median (LMAPE_med)

• Log Variance Ratio of First Differences of Posterior Median (RDVar_med)

• Log Correlation Ratio of First Differences of Posterior Median (RDCor_med)

• 50% Credible Interval Coverage (Cov50)
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• 95% Credible Interval Coverage (Cov95)
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• Posterior Standard Deviation (SD)
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• 95% Credible Interval Span (Span)
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• Posterior Tail Probability (PVal)
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• Posterior Mean of RMSE (rmse_mean)
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)2

• Posterior Standard Deviation of RMSE (rmse_sd)

• Posterior Mean of MAE (mae_mean)

1
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𝑘𝑡
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���
• Posterior Standard Deviation of MAE (mae_sd)

• Runtime in Seconds (Runtime)

• Log Pointwise Predictive Density (LPD)

log
1
𝑆

𝑆∑︁
𝑠=1

𝑝(X(𝑞) |F(𝑞,𝑠) )

• Expected Log Pointwise Predictive Density by WAIC (ELPD) [102], [111]
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Figure B.1.: (a) Illustrative Examples (subsection 4.3.1).
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Figure B.2.: (b) Illustrative Examples (subsection 4.3.1).
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Figure B.3.: (a) Influence of Fractionation (subsection 4.3.3).
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Figure B.4.: (b) Influence of Fractionation (subsection 4.3.3).
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Figure B.5.: (a) Influence of Measurement Noise (subsection 4.3.4).
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Figure B.6.: (b) Influence of Measurement Noise (subsection 4.3.4).
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Appendix C

Application to Datasets

C.1. Monolith Dataset

The monolith dataset contains 16 time series of 𝛿15N and 𝛿15NSP measurements split into five
classes of monoliths. It was collected by Harris, Diaz-Pines, Stoll, et al. [4] for the purpose of
measuring the dynamics of nitrification and denitrification after fertilization and in conjunction
with drought and different precipitation conditions.

The measurements are plotted per class with colors indicating each separate time series in
Figure C.1. Values tend to be large with correspondingly large uncertainties.

Figure C.1.: Monolith time series data of two isotopic measurements split into five categories of
monoliths. The individual measurement series are marked with separate colors.

Dual isotope plots in Figure C.2 show the wide spread of the measurements. Nitrification
and bacterial denitrification sources are shown as grey rectangles for reference. It seems like
the measurements show movement over time starting off with very low 𝛿15NSP values before
concentrating into a more reasonable range towards the end of the experiment days.
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Figure C.2.: Dual isotope plot of the isotopic measurements for the five monolith classes with
𝛿15N measurements on the x-axis and 𝛿15NSP measurements on the y-axis. Different
time points are separated with the marker color.

The plot of the logarithmic standard deviations involved in Figure C.3 shows that they differ
by at least one order of magnitude at each given point in time. Especially towards the end the
values are significantly lower.

Figure C.3.: Log measurement noise over normalized experiment time aggregated over all time
series simultaneously.

The raw measurements are very noisy but fortunately there are sufficiently many. This means
that they can be grouped together by aggregation and smoothing methods. In addition to
classical binning or moving average computations, kernel smoothing and spline smoothing could
be applied to estimate less noisy mean time series. However, incorporating known standard
deviations and estimating uncertainty of the smoothed time series is hard with all these methods.
Local linear regression offers a way of quantifying the uncertainty of the smoothing estimator as
well as weighting the raw measurements by inverse variance.
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Shown are the raw measurements with their inverse variance weight indicated by size in
Figure C.4. The blue dots are estimated smoothed values with standard errors shown as error
bars. Additionally, the values are estimated only at every third raw measurement point. This
reduces the number of points that have to be processed by following models and increases
certainty of estimation by grouping points together.

Now the time series models can be run on the smoothed time series. The independent time
step model, the generalized linear model with splines as well as the Dirichlet-Gaussian process
prior is examined. Degrees of freedom are 8 for the source contributions and 4 for fractionation.
Correlation lengths are set to 1% of the total experiment duration for the source contributions
and 10% of the total experiment duration for fractionation.

Estimated source contributions and fractionation are noisy as well as can be seen in Figure C.5
and Figure C.6. The Dirichlet-Gaussian process prior on source contributions seems to be only
marginally influential due to the short correlation length, but coupling fractionation improves
posterior variances. The effective sample size 𝑁𝑒 𝑓 𝑓 gives an indication of how accurate the
posterior means and variance can be expected to be and the Gelman-Rubin statistic �̂� gives an
indication of how close the sampled points are to a stationary sample.
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Figure C.4.: LOESS smoothed time series with uncertainty estimation shown as vertical bars.
The original time series is shown as gray dots with size corresponding to inverse
variance weights.
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Figure C.5.: (a) Results of independent time step model (left), generalized linear model with
spline basis (middle) and Dirichlet-Gaussian process prior (right).

74



C. Application to Datasets

Figure C.6.: (b) Results of independent time step model (left), generalized linear model with
spline basis (middle) and Dirichlet-Gaussian process prior (right).
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C. Application to Datasets

C.2. Climate Manipulation Dataset

This dataset consists of 12 time series of three isotopic measurements 𝛿15N, 𝛿15NSP and 𝛿18O
collected by Stoll, Diaz-Pines, Reinthaler, et al. [112]. The goal of the experiment is to study
managed grassland in a manipulated climate that simulates extreme droughts in terms of tem-
perature, atmospheric gasses and precipitation. Measurement values span a wide range and are
equipped with estimates for their standard deviation.

In order to get an estimate for the smoothed time series as well as quantify its uncertainty, local
linear regression with inverse variance weights on the raw data points is used. The smoothing
window is chosen to fit 10% of data points.

The source contributions are then estimated using the TimeFRAME models. The independent
time step model, the generalized linear model with B-spline basis and the Dirichlet-Gaussian
prior model are chosen for this case. Spline parameters are left to the default and correlation
lengths are chosen to be 20% for source contributions and 5% for fractionation. The model fit is
then examined for the posterior means of measurements shown in Figure C.9 and Figure C.10.
This corresponds to a smoothing operation that is aware of the sources and the mixing equation.
It seems like the 𝛿18O measurements are still out of proportion.

The estimates for source contributions and fractionation are plotted as mean lines with 95%
confidence intervals in Figure C.11 and Figure C.12. Effective sample sizes 𝑁𝑒 𝑓 𝑓 give an
indication of how reliable the posterior estimates are and the Gelman-Rubin statistic �̂� indicates
good chain mixing and convergence to the stationary distribution. Most areas of the time series
seem to be uninformative, although some areas have very strong estimates.
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Figure C.7.: Isotopic measurements of all time series included in the dataset.
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Figure C.8.: LOESS fits of all times series and isotopic measurements.
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Figure C.9.: (a) Posterior estimates of the isotopic measurement mean for all 12 time series and
all isotopic measurements for the independent time step model (left), spline-based
model (middle) and Dirichlet-Gaussian process model (right).
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Figure C.10.: (b) Posterior estimates of the isotopic measurement mean for all 12 time series and
all isotopic measurements for the independent time step model (left), spline-based
model (middle) and Dirichlet-Gaussian process model (right).
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Figure C.11.: (a) Estimates of source contributions and fractionation for the independent time
step model (left), spline-based model (middle) and Dirichlet-Gaussian process
model (right).
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Figure C.12.: (b) Estimates of source contributions and fractionation for the independent time
step model (left), spline-based model (middle) and Dirichlet-Gaussian process
model (right).
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