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ABSTRACT

There are at least three substantially different closures presently being used in two-dimensional ocean models.
The main purpose of this paper is to clarify the assumptions that are implicit in these closures. Two of these
formulations arise from zonally averaging the momentum equations: one has viscous damping represented by
Fickian diffusion and the other by Rayleigh damping. Here a single equation is derived that includes both of
these as special cases. The derivation shows that the Rayleigh damping term corresponds to horizontal diffusion
of momentum into the western boundary and that this term is dominant for realistic parameter values. The
vertical diffusion term can be neglected provided the Ekman transport is included in the surface layer, and the
meridional diffusion term can be neglected if length scales less than 500 km are not resolved. If shorter length
scales are considered, then the meridional diffusion term is required to avoid a numerical instability.

The third zonally averaged model formulation is based on vorticity dynamics. This approach has the advantage
that the large geostrophic terms are eliminated by cross-differentiation so that attention is focused on the important
ageostrophic effects. Previous work has shown that this formulation results in an improved fit to general cir-
culation model results, but this fit depends on the use of a boundary condition that is somewhat ad hoc. Here
the authors present a derivation that suggests a consistent dynamical interpretation of this boundary condition.

1. Introduction

Over the past several years, analyses of paleoclimate
data have strongly suggested connections between cli-
mate change and changes in the large-scale ocean cir-
culation. Furthermore, theoretical and numerical studies
support the contention that changes in the global-scale
oceanic overturning circulation may play an essential
role in climate change. Unfortunately, the combination
of long timescales, the need for multiple runs, and the
computational expense of running coupled ocean–at-
mosphere models make the examination of oceanic in-
fluences on the climate system a time- and resource-
consuming task. It is primarily for this reason that there
has been a growing interest in low-order climate models
that include credible representations of the oceans and
their interaction with the atmosphere. Such models can
also be coupled to bio–geochemical models that permit
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investigation of these processes over timescales previ-
ously inaccessible by three-dimensional models.

Low-order models of the ocean have been used to
study climate-related issues for some time now. Using
a simple box model, Stommel (1961) demonstrated the
possibility that more than one ocean equilibrium may
exist for identical forcing conditions and noted the po-
tential significance to studies of the climate system. An
important simplifying assumption in Stommel’s model
is that the zonally averaged flow moves down the me-
ridional pressure gradient. Stommel makes it clear that
his Rayleigh damped model is not expected to yield a
very realistic representation of the real ocean circula-
tion, but it has nevertheless resulted in important in-
sights into the dynamical nature of the global-scale
ocean circulation.

Marotzke et al. (1988, henceforth MWW) have used
an alternative two-dimensional representation of the
ocean circulation in which the meridional pressure gra-
dient is balanced against Fickian vertical diffusion act-
ing on the meridional overturning circulation. In the
spirit of Stommel (1961), MWW present their model as
an idealization of the real ocean, which is not dynam-
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ically accurate but nevertheless gives further insights
into the nature and stability of the global thermohaline
circulation.

Wright and Stocker (1991, henceforth WS) derive a
zonally averaged ocean model based on the assumption
that the zonally averaged zonal flow is similar to, but
slightly reduced in magnitude in comparison with, the
zonal average of the geostrophic component of the zonal
flow. They point out that the resulting model is math-
ematically equivalent to a Rayleigh damped model and
is hence consistent with the parameterization used by
Stommel (1961), Rooth (1982), and Welander (1986).
Stocker and Wright (1991) and Wright and Stocker
(1992) generalize the model to include multiple basins
and demonstrate somewhat surprisingly good agreement
between model results and observed zonally averaged
water mass properties, observational estimates of the
meridional overturning circulation, and the stability of
the overturning circulation found in more complete and
computationally expensive 3D general circulation mod-
els.

Sakai and Peltier (1995, henceforth SP) have devel-
oped a 2D ocean circulation model that is dynamically
similar to that used by MWW except that they include
meridional diffusion of momentum and nonhydrostatic
effects. Their results indicate that the nonhydrostatic
effects cause no qualitative changes and even the quan-
titative changes are relatively small in comparison to
those associated with changes in uncertain model pa-
rameters. Thus, the major difference from the MWW
model is the inclusion of the meridional diffusion of
momentum. The same approach was taken by Quon and
Ghil (1996) and Saravanan and McWilliams (1995).
Subsequently, SP follow the approach of Stocker and
Wright (1991) to develop a model of the global ocean
circulation by coupling 2D representations of the Pa-
cific, Atlantic, and Indian Oceans through a represen-
tation of the Southern Ocean and reexamine the results
of their previous study in this extended formulation.

A third zonally averaged model formulation for a
single basin was introduced by Wright et al. (1995,
henceforth WVH) and extended to a global geometry
by Stocker and Wright (1996). This model formulation
differs substantially from the earlier two in that it is the
only one based on a set of well-defined physical as-
sumptions about vorticity conservation and dissipation,

and it is carefully compared with an extensive set of
ocean general circulation model (OGCM) results.

Thus, there are now three substantially different zo-
nally averaged model formulations, each of which has
proven to provide useful insights into the role of the
oceans in the climate system. Unfortunately, the con-
nections between these different formulations have re-
mained rather obscure. The primary purpose of the pres-
ent paper is to clarify these connections. Based on con-
siderations of the momentum equations, we derive a new
closure scheme that includes each of the first two for-
mulations discussed above as special cases. This ap-
proach makes it much easier to discern the relative mer-
its of these approaches, and it more clearly reveals their
common weaknesses.

The alternative assumptions and the results of the
third approach are briefly reviewed. One weakness of
the latter approach is that results depend on a somewhat
uncertain specification of the boundary condition ap-
plied at the basin extremities. Additional support for
this boundary condition is provided through a new phys-
ical interpretation.

2. Basic model equations

For the time and length scales of interest here, the
ocean is effectively incompressible and the hydrostatic,
Boussinesq, and rigid-lid approximations apply. For a
non-eddy-resolving model, the inertial terms are also
negligible. With these simplifications, the equations ex-
pressing the conservation of zonal, meridional, and ver-
tical momentum; incompressibility; and conservation of
heat and salt reduce to

1 ]p ] ]u
2 f y 5 2 1 = · (A = u) 1 A (1)H H H V1 2r a cosf ]l ]z ]z*

1 ]p ] ]y
fu 5 2 1 = · (A = y) 1 A (2)H H H V1 2r a ]f ]z ]z*

]p
5 2r g(1 1 s) (3)*]z

1 ]u 1 ](cosfy) ]w
1 1 5 0 (4)

a cosf ]l a cosf ]f ]z

]T 1 ](uT ) 1 ](cosfyT ) ](wT ) ] ]T
conv1 1 1 5 = · (K = T ) 1 K 1 q (5)H H H V T1 2]t a cosf ]l a cosf ]f ]z ]z ]z

]S 1 ](uS) 1 ](cosfyS) ](wS) ] ]S
conv1 1 1 5 = · (K = S) 1 K 1 q , (6)H H H V S1 2]t a cosf ]l a cosf ]f ]z ]z ]z
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where =H( ) 5 ]( )/(a cosf]l) 1 ]( )/(a]f ), l, f , and
z are the longitude, latitude, and vertical coordinates,
respectively, and u, y , w are the corresponding velocity
components. Here z increases upward from the position
of the sea surface at rest, T and S are temperature and
salinity, p is pressure, r(T, S, p) is the density calculated
according to a simple, but fully nonlinear, equation of
state (Wright 1997), and s is the relative density dif-
ference (r 2 r*)/r*. Also, a is the earth’s radius, g is
the acceleration due to gravity, and f /2 5 V sinf is
the local vertical component of the earth’s rotation; AH

and AV are horizontal and vertical eddy viscosities, KH

and KV are horizontal and vertical eddy diffusivities,
and and represent the effects of convection onconv convq qT S

T and S. The basic geometry and assumed boundary
layers are illustrated in Fig. 1.

Sakai and Peltier state that nonhydrostatic effects
omitted from (3) have a ‘‘small but significant’’ influ-
ence in their zonally averaged model. Since the non-
hydrostatic effects considered by them are associated
with the viscous damping terms and since their eddy
viscosities are chosen to be extremely large (AH ; 108

m2 s21, AV ; 103 m2 s21), it is clear that these small
effects would be negligible if more realistic damping
terms were used. Of course, there is no guarantee that
other nonhydrostatic effects do not have important con-
sequences for the large-scale circulation in the real 3D
world. However, the credible results obtained in pre-
vious 2D and 3D modeling studies (nearly all of which
use vertical mixing schemes in conjunction with the
hydrostatic approximation), plus the conclusions of
Send and Marshall (1995) based on 3D numerical stud-

ies of convection, encourage us to proceed with the
mixing scheme described in Wright and Stocker (1992).
To avoid adding unwarranted complexity to our model,
we make the hydrostatic approximation throughout the
remainder of this discussion.

At solid boundaries, we require no normal flow, no
slip, and no normal gradients for temperature and sa-
linity. At the surface, the system is forced by fluxes of
momentum, heat, and water vapor (or by a virtual salt
flux under the rigid-lid approximation).

3. Zonal averaging of the momentum equations

In this section, our discussion will focus on the as-
sumptions and approximations used in zonally aver-
aging the horizontal momentum equations, since this is
the primary source of differences between the most
commonly used 2D model formulations.

It is convenient to introduce local variables x, y such
that dx 5 a cosf dl, dy 5 a df. In terms of these
variables, the zonally averaged equations are

1 Dp
2 f y 5 2 1 (A u ) 1 (A u ) 1 (A u ) , (7)H x x H y y V z zr L*

1 ]p
f u 5 2 1 (A y ) 1 (A y ) 1 (A y ) , (8)H x x H y y V z zr ]y*

]p
5 2r g(1 1 s), (9)*]z

1 ](cosfy ) ]w
1 5 0 (10)

cosf ]y ]z

]T 1 ](cosfy T ) ](w T ) ] ]T ] ]T
conv1 1 5 K 1 K 1 q (11)H V T1 2 1 2]t cosf ]y ]z ]y ]y ]z ]z

]S 1 ](cosfy S) ](w S) ] ]S ] ]S
conv1 1 5 K 1 K 1 q , (12)H V S1 2 1 2]t cosf ]y ]z ]y ]y ]z ]z

where L 5 a cosfDL is the width of the basin of angular
extent DL and ( ) 5 (1/L) ( ) dx denotes a zonalx 1L0∫x0

average.
Some simplifications have been made in (7)–(12). First,

in writing the diffusion terms, we have dropped terms that
appear in spherical coordinates due to variations of the
metrics on the planetary scale. Our horizontal diffusion
terms will be assumed negligible except in boundary layers
of width d, so dropping these terms effectively neglects
terms of order d/a or smaller. Also, the contributions to
the advection terms from the gyre circulation and zonal
overturning are not explicitly represented; that is, we have
used yT 5 yT, wT 5 wT, and similarly for salinity. In
using these simplified expressions, we have neglected the

stirring in the horizontal plane associated with the hori-
zontal gyres and the stirring in the vertical plane associated
with the zonal overturning circulation. Both KH and KV

are to be increased as partial compensation. It is important
to recognize that this approximation is either explicitly or
implicitly made in all zonally averaged models. Any heat
or salt fluxes associated with either horizontal gyre cir-
culations or zonal overturning cells are represented by
downgradient horizontal and vertical diffusion terms in
the conservation equations. It is far from clear that these
are good representations.

The above set of equations is the basic dynamical
system that we wish to solve, but it does not contain
enough information to determine either the zonally av-
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FIG. 1. The basic model geometry and boundary layer structures
assumed in the text.

eraged dissipation terms or Dp, the zonal pressure dif-
ference across the basin. We now consider the approx-
imations that are required in order to close this system
of equations.

To begin, consider the term (AHy x)x , which allows
for dissipation of momentum (and vorticity) in the west-
ern and/or eastern boundary layers. First, note that

x 1L0AH(A y ) 5 yH x x x)L x0

AHø 2 yx)L x0

g A1 H dø 2 y , (13)
dL

where an overbar alone indicates an average across the
basin and a superscript, d, indicates that the average is
to be taken over just the western boundary layer. In the
second line, consistent with observations, we have as-
sumed that K , and in the third line weA y | A y |H x x 1L H x x0 0

have approximated the horizontal shear at the inner edge
of the western boundary in terms of the mean current
across the boundary layer and the boundary layer width,
d. We will retain g1 as an undetermined factor, but the
results of WVH show that if we approximate d by the
Munk boundary layer width (AH/b)1/3 (Munk 1950) then
g1 ø 1.

The quantity must be represented in terms of somedy
combination of y and the zonal average of the density.
At least three different ways have been used to deal
with this term:

1) Use the vorticity equation for the interior region (out-
side the western boundary layer) to determine the
interior transport and then express the boundary lay-
er transport as the difference between the total and
the interior transport contributions (WVH)

2) Assume } Ly (WS)ddy

3) Simply omit the term (SP).

Only the first approach is dynamically consistent. Re-
sults based on vorticity dynamics are discussed in detail
by WVH and reviewed in the next section.

The second approach is implicitly used by Wright and
Stocker (1991) and will be explicitly used here. If we
consider a closed basin, then, based on the work of
Stommel and Arons (1960a,b), we might take 5ddy
2Ly . On the other hand, if we were to argue that the
western boundary layer carries most of the transport,
then we would use 5 Ly . The differences betweenddy
these two estimates reflect the uncertainty in using this
approximation. In practice, the value of the proportion-
ality factor has been chosen to give the best fit to OGCM
results and observations.

The third approach completely neglects dissipation in
the western boundary layer associated with horizontal
diffusion. This approach is used by Sakai and Peltier
(1995) [their Eq. (A6)]. The neglect of this term appears
to have been an oversight. Unfortunately, it invalidates
much of the discussion presented in their appendix A.

Diffentiating (13) and using the second of these ap-
proaches gives

G A1 H(A y ) 5 2 y , (14)H x xz z2d

where G1 may vary spatially but is of order unity. Note
that dissipation in the western boundary layer is effec-
tively represented by a Rayleigh damping term, 2my ,
with m 5 G1AH/d2.

The next term that must be dealt with is the damping
term associated with meridional gradients. Away from
zonal boundary layers, this term will be negligible in
comparison with the dissipation in the western boundary
layer. To avoid unwarranted complications, we assume
that AH is zonally uniform and that variations in the
basin width are negligible over the boundary layer scale
d. In this case, the averaging operator may be passed
through the derivatives to yield an expression in terms
of meridional gradients of y ; that is, if Ly/L K d21, then

(AHy y)y ø (AHy y)y. (15)

This approximation is consistent with the equations used
by Fichefet and Hovine (1993) and Sakai and Peltier
(1995).

Finally, we must deal with the appearance of u in the
zonally averaged equations. This is where the most
questionable compromises must be made in order to
make further progress based on the momentum equa-
tions. We follow Wright and Stocker (1991), with some
additional clarification. First we write

1 ]p
1 f u 5 2 f (u 2 u). (16)gr ]y*

Substituting (14), (15), and (16) into (8) shows that the
meridional overturning circulation [i.e., (y , w)] is close-
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ly associated with the small deviations from zonal geo-
strophy. Wright and Stocker (1991) assume that the
quantity in parentheses is linearly related to u g and then
use OGCM results to estimate the magnitude of the
constant of proportionality. It is of interest to estimate
the magnitude of this quantity more directly, and this
is done below.

First, we rewrite the difference between the zonal
averages of the geostrophic flow and the total flow:

I I d dl(u 2 u ) 1 d(u 2 u )g gu 2 u 5g L

d
5 G u , (17)2 gL

where

d d d du 2 u u 2 u dg gG 5 5 1 1 O . (18)2 I 1 1 22u u Lg g

l 5 L 2 d is the width of the interior region, and we
have used u I 5 .Iu g

The value of G2 is expected to be positive because u
5 ug at the offshore edge of the western boundary layer
and u is required to go to zero at the coastal boundary
while ug is not. WVH make the approximation ug|d 5
2 (as it would if ug increased linearly from zero atIu g

the eastern boundary to its value at the outer edge of
the western boundary layer). If we supplement this ap-
proximation with the assumptions that ug remains con-
stant across the boundary layer and u decreases linearly
from ug at the seaward edge of the boundary layer to
zero at the solid boundary, then the ratio of 2 u d todu g

is estimated to be 1. Sakai and Peltier also assumeIu g

that the flow outside of the western boundary layer is
in geostrophic balance. They then assume that u is iden-
tically zero in the western boundary layer and that ug

is uniform across the basin. These assumptions again
give G2 5 1. In reality, it is likely that the deviations
from geostrophy within the boundary layer are much
smaller than either of these estimates presuppose, so we
expect that G2 should actually be substantially less than
1. This will be quantified by fitting the model to OGCM
data in the final section of this paper.

The above discussion suggests that G2 is of order 1
or less, and it almost certainly varies substantially about
its mean value. In practice, both WS and SP assume
that G2 is a constant: the assumption that G1 and G2 can
be approximated by constants is probably the weakest
link in the chain of arguments used in deriving a closure
scheme for the zonally averaged equations directly from
the momentum equations.

Whether or not G1 and G2 are assumed constant, we
may now rewrite (8) as

G A*1 HA*y 1 A*y 2 y 5 2gs , (19)H zyy V zzz z y2d

where 5 (AHL)/(G2d), 5 (AVL)/(G2d). The threeA* A*H V

terms on the left side of this equation allow for dissi-
pation in zonal boundary layers, the surface and bottom
Ekman layers, and the western boundary layer, respec-
tively. While the assumption that G2 is a constant is a
weakness of the momentum approach, its consistent ap-
pearance as a divisor of either AH or AV raises the pos-
sibility that this approximation may not be much worse
than the use of constant coefficients in the diffusion
terms, an approximation that has been made in many
previous studies with both zonally averaged models and
3D OGCMs.

Equation (19) includes the WS, MWW, and SP clo-
sures as special cases. The WS closure is obtained by
neglecting meridional and vertical diffusion of momen-
tum and identifying G1 /d2 with V/e [compare (19)A*H
with (23) in Wright and Stocker (1991)]. The MWW
closure is obtained by neglecting the first and third terms
on the left side and identifying with their effectiveA*V
vertical viscosity. The SP closure is obtained by ne-
glecting the third term on the left side and identifying

and with their effective horizontal and verticalA* A*H V

viscosity coefficients. Correspondence with the SP mod-
el also requires that the zonal component of vorticity
(v 5 wy 2 y z) be approximated by 2y z, but this is
accurate to order Ro(H/L)2, where Ro is the Rossby
number U/ fL (e.g., LeBlond and Mysak 1978). The zo-
nally averaged models considered by Quon and Ghil
(1996) and Saravanan and McWilliams (1995) also ne-
glect the third term in (19) and are hence dynamically
similar to the SP model.

It is noteworthy that the factor of L/d appearing in
the definitions of and is consistent with the cor-A* A*H V

responding factor appearing on the right side of (A9)
in SP. In both our derivation and the derivation given
in the appendix of SP, this factor arises because the
pressure gradient outside of the western boundary layer
is assumed to be balanced by the Coriolis force, whereas
friction plays an important role within the boundary
layer. Although the Coriolis force does not explicitly
appear in (19), it actually balances the meridional pres-
sure gradient to order d/L. This fact is directly respon-
sible for the amplification of the effective viscosity co-
efficients, and , appearing in (19) and is an im-A* A*H V

portant feature of both the WS and SP model formu-
lations.

In addition to the amplification of the effective vis-
cosity identified above, SP include another factor of L/
d [see their Eq. (A13)], which is included ‘‘in order that
the viscous model accord with the OGCM data.’’ It is
apparent from (19) that, if the third term is neglected,
then the coefficient of the first term must actually be
increased by order (L/d)2 in order to maintain a realistic
overturning circulation. The ad hoc increase in in-A*H
troduced by SP is required in order to compensate for
the unjustified neglect of dissipation associated with the
horizontal flux of momentum into the sidewalls [i.e.,
the third term in (19)].

Finally, it is of interest to compare the relative mag-
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nitudes of the vertical and horizontal dissipation terms.
The ratio of the second and third terms in (19) is

2A y A dV zz Vø , (20)
2my A HH y

where Hy is the vertical scale for variations in y . Outside
of Ekman layers, Hy is of order 500 m or greater and
d is of order 200 km or less. Appropriate values of AV

and AH for use in coarse-resolution models are very
uncertain. They are generally taken to be substantially
larger than the corresponding diffusivities KV and KH,
presumably to account for momentum transfers by un-
resolved pressure variations. Typical values used in
OGCMs are of order 1023 m2 s21 for AV, and 2.5 3 105

m2 s21 for AH (e.g., Hughes and Weaver 1994). Using
these values gives a ratio of 0.000 64. Clearly, the only
significant role of vertical viscosity in such models is
in the Ekman layers, which we assume to be embedded
within the surface cells of our model. Fortunately, the
net Ekman flux is independent of the vertical eddy vis-
cosity and may be specified as an additional flux carried
by the surface layer. Dropping the vertical viscosity
term, with the understanding that the Ekman flux is to
be added to the surface layer, gives

G A*1 HA*y 2 y 5 2gs . (21)H zyy z y2d

This simplification is important since the finite differ-
ence approximation to (21) gives rise to a tridiagonal
system of equations, which may be very accurately and
efficiently solved using routines such as TRIDAG from
Numerical Recipes (Press et al. 1986). The validity of
this approximation has been tested by integrating the
full equation (19) and comparing the results to calcu-
lations based on (21). Differences are found to be neg-
ligible.

Questions of resolution

Based on numerical experiments with horizontal res-
olution increased to resolve scales of order 100 km or
less, Sakai and Peltier (1995) note that

. . . with fixed boundary conditions the nature of the time
dependence of the circulation that is developed by the
[WS] model may be an extremely strong function of hor-
izontal resolution.

They also state that

. . . [their] model is free of the undesirable numerical
sensitivities that are unavoidable in WS91 type models.

Following Marotzke et al. (1988), Wright and Stocker
(1991) assumed that zonal boundary layers are embed-
ded within the northern, southern, and equatorial cells
of the model. As such, the model was never intended
to be used at the scales for which SP have found it to
be inapplicable. Nevertheless, this issue has been in-

vestigated by Mercer (1996) using (19) and it seems
worthwhile to summarize the results of that investiga-
tion.

Mercer (1996) did a series of numerical experiments
at meridional resolutions of 108, 58, and 28 with (19) in
the WS and SP limits. For the SP runs, 5 103 m2A*V
s21 and for the WS runs 5 0 m2 s21 were used,A*V
consistent with previous studies. Through consideration
of a broad range of , he comes to the following con-A*H
clusions.

R Both the WS model and the SP model suffer from
numerical sensitivity at high horizontal resolution if
the horizontal viscosity is reduced to zero. Both mod-
els suffer from large amplitude grid-scale ‘‘noise’’
when the resolution is reduced much below 500 km.

R The inclusion of the meridional viscous term with
values of horizontal viscosity similar to those used by
SP eliminates the sensitivity to grid resolution in both
models. In fact, reducing from the values of orderA*H
3 3 108 m2 s21 used by SP to 107 m2 s21 does not
result in an instability. Results obtained with the WS
formulation are not sensitive to variations in withinA*H
this range.

R The solutions obtained with lower resolution using
the WS formulation reasonably replicate those ob-
tained with finer resolution plus the values of merid-
ional viscosity mentioned above. (This result may well
be modified if small spatial scales are included in the
surface forcing. However, it is unlikely that zonally
averaged models are appropriate for the examination
of the effects of such small scales.)

To determine what ‘‘realistic’’ values of might be,A*H
we first note that for a Munk boundary layer width of
200 km, with b 5 2 3 10211 m21 s21, the eddy viscosity
AH must be of order 1.6 3 105 m2 s21. Thus, for a basin
5000 km wide the ‘‘effective’’ viscosity, , would beA*H
of order 25 3 1.6 3 105 m2 s21 5 4 3 106 m2 s21.
This estimate assumes that G2 ø 1. However, in section
5 we will find that the best fit to OGCM results is ob-
tained with G2 5 0.17, and using this information in-
creases our estimate of the effective value of horizontal
viscosity to 2.4 3 107 m2 s21. This value is still subject
to substantial uncertainty, but it represents a useful
benchmark against which to evaluate our results. Based
on this estimate, values of of order 107 m2 s21 seemA*H
reasonable. Values an order of magnitude larger, as used
in viscously damped model formulations (Sakai and Pel-
tier 1995; Saravanan and McWilliams 1995), are diffi-
cult to justify within the present framework.

Clearly, SP’s statement that ‘‘(their) model is free of
the undesirable numerical sensitivities that are unavoid-
able in WS91 type models’’ is inaccurate. Both models
suffer from numerical sensitivity for low values of eddy
viscosity and both models can avoid this sensitivity by
including horizontal viscosity similar to that used by
SP. For horizontal resolutions of 58 or greater (as seems
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appropriate for these models), horizontal viscosity is not
required in either model formulation.

Finally, Mercer (1996) also shows results of numer-
ical experiments that support our earlier conclusion that
the vertical damping term is consistently negligible
compared to the horizontal damping terms for the vis-
cosity coefficients typically used in these models.

4. Zonal averaging of the vorticity equation

The validity of the formulation developed in the pre-
vious section depends strongly on our ability to param-
eterize the quantity f u a [ f (u 2 u g) [Eq. (16)]. The
approach of WS was to assume that this quantity is
proportional to u g and the basis for this has been further
clarified above. Numerical experiments have shown that
the results obtained with this formulation are not very
sensitive to modest variations in the factor multiplying
this term [e.g., multiplication or division of the right
side of (21) by cosf has little effect on the model re-
sults]. Nevertheless, the dependence on u a is discon-
certing for two reasons. First, since the ageostrophic
component of velocity depends on a small difference
between two large quantities, there are obvious concerns
about accuracy. Second, the resulting formula for d y d

depends entirely on the local density field, a fact which,
for example, appears to conflict with the idea of a deep
western boundary current with its source at high lati-
tudes.

The approach of WVH avoids these difficulties by
deriving a closure scheme based on vorticity dynamics.
The first problem is avoided because the pressure gra-
dient (i.e., the geostrophic component of the flow) is
eliminated from the outset and the second problem never
arises because nonlocal effects are included. On the oth-
er hand, the WVH approach requires appropriate bound-
ary conditions at the basin extremities due to the non-
local nature of the equations, and this introduces its own
uncertainties.

In this section we give a brief outline of the approach
taken by WVH, which focuses on the basic dynamical
assumptions. We then give a physical interpretation for
the high-latitude boundary condition introduced by
WVH. The reader is referred to WVH for a detailed
derivation of the model equations.

The central equations used by WVH are the averages
across the western boundary layer and across the re-
mainder of the ocean basin of the vertical component
of the vorticity equation:

d 21( f dy ) 5 r [p| ] 2 A z | , (22)y d y H x x0*
I d21( f ly ) 5 2r [p| ] 1 (rLu 2 rdu ) , (23)y d y y*

where damping associated with meridional and vertical
gradients has been represented by a Rayleigh damping
term in the momentum equations [} r(u, y)], the no-
tation |d indicates evaluation at the outer edge of the

western boundary layer (i.e., at x 5 x0 1 d), and ( · ) d,
( · ) I indicate averages over the western boundary layer
and the interior region, respectively. Dissipation asso-
ciated with zonal variations has been assumed to dom-
inate within the western boundary layer and assumed
negligible outside of it.

We note that

]s
21 (n)r [p| ] 5 2 f u | , (24)d y d* ]y

where u (n) is the velocity component normal to the outer
edge of the western boundary layer and fu (n)ds is the
flux of planetary vorticity out of the western boundary
layer; so, Eq. (22) states that the flux of planetary vor-
ticity into the western boundary layer is either dissipated
by zonal diffusion into the boundary or balanced by a
divergence of the planetary vorticity flux within the
boundary layer. Similarly, Eq. (23) states that the flux
of planetary vorticity into the basin interior is either
dissipated by meridional diffusion associated with the
Rayleigh damping term or balanced by a divergence of
the planetary vorticity flux within the interior of the
basin.

The unknown pressure terms may be eliminated from
(22) and (23) by differentiating with respect to z, then
using the hydrostatic relation together with [s|d]y ø 2s y.
The latter approximation follows from assuming that
the meridional density gradient increases linearly from
zero at the eastern boundary to the eastern edge of the
western boundary layer. Finally, representing the dis-
sipation in the western boundary layer by

2A z | ø 2A y |H x x H xx x0 0

g A0 H dø y , (25)
2d

where g0 is of order unity, gives
d d( f dy ) 2 g bdy 5 22gs , (26)z y 1 z y

I( f ly ) 5 2gs 1 (rLu ) , (27)z y y z y

where g1 5 g0(AH /bd 3) (g1 [ g0 for a Munk layer).
Equations (26) and (27) can be rewritten in the forms

(1 2 g )b 2g1d d(dy ) 1 dy 5 2 s , (28)z y z yf f
I I 21by 2 f w 5 l (rLu ) , (29)z zz z y

where we have used the vertical derivative of the con-
tinuity equation for the interior region in the form

2g I I2 s 1 (ly ) 5 2lw (30)y z y zzf

to rewrite the second equation.
Equation (28) may be interpreted as a continuity equa-

tion for the western boundary layer in which the second
term represents upwelling within the boundary layer and
the right side represents exchange with the inviscid in-
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terior. The right side of (29) represents dissipation in
zonal boundary layers. Outside of these boundary lay-
ers, (29) expresses the classic Sverdrup balance for the
interior. WVH show that the best fit to coarse-resolution
OGCM results is obtained with g1 ø 1.1, but that setting
g1 5 1.0 has little effect on the zonally averaged model
results. They also show that setting r 5 0 has little effect.
Equations (28) and (29) show that, if these choices are
made (i.e., g1 5 1.0, r 5 0.0), then the WVH model
reduces to a western boundary layer that acts as a stack
of leaky pipes exchanging fluid horizontally with a Sver-
drup interior.

From the above interpretation, it is clear that the
boundary conditions used by WVH play an important
role in determining the overturning circulation. Below,
we review and interpret these boundary conditions.

For the interior transport, we follow WVH and as-
sume that all flow across the equator occurs within the
western boundary layer and hence the interior transport
vanishes at the equator. If (27) is then integrated from
the equator to arbitrary y, we obtain

2g rIly 5 (s 2 s ) 1 (Lu 2 Lu | ), (31)z eq z z eqf f

where the subscript ‘‘eq’’ indicates evaluation at the
equator.

For the western boundary layer transport, it is more
natural to specify conditions at the basin extremities.
WVH were motivated by the results of Stommel and
Arons (1960a) and Kawase (1987) to consider a bound-
ary condition that allows for either horizontal or vertical
recirculation at high latitudes. Hence, they used

5 g2 at y 5 yend,d Idy l yz z (32)

where yend is either the northern or southern extremity
of the basin. Note that is determined by (31), so Eq.Iy z

(32) completes the determination of the integrated trans-
port shear at y 5 yend. Below, we will derive results for
the northern extremity of the basin; results for a closed
southern boundary are directly analogous.

As discussed by WVH, (32) determines both the hor-
izontal recirculation and how much water downwells
within the unresolved boundary layers, which are em-
bedded in the northernmost and southernmost grid cells
of the model. Here g2 5 21 would imply that the flow
turns horizontally with no upwelling or downwelling
associated with unresolved boundary layers. However,
if g2 ± 21, then a nonzero value of implies eitherIl y z

upwelling or downwelling within these regions. WVH
give support for this boundary condition by showing
that it results in excellent agreement between the results
of an OGCM and the zonally averaged formulation with
g2 5 20.6.

The primary purpose of the remainder of this section
is to present an interpretation of the boundary condition
applied at high latitudes by WVH. The discussion is
heuristic, and the assumptions are probably too restric-
tive to yield generally applicable results. Nevertheless,

the argument leads to a boundary condition consistent
with that adopted by WVH and provides a physical
explanation for why this boundary condition might ap-
ply. An additional objective of this discussion is to em-
phasize the importance of vorticity constraints in the
determination of deep-water formation at high latitudes.

We begin with the momentum equations for the zonal
boundary layers. Within these layers, we make the usual
linear, hydrostatic, and Boussinesq approximations. In
addition, we assume that the dominant source of dis-
sipation is associated with meridional gradients in the
zonal velocity. Note that this assumption pertains to the
zonal integral across the entire width of the basin. With
these assumptions, the momentum equations on a local
b plane reduce to

21 ]p ] u
2 f y 5 2 1 A (33)H 2r ]x ]y*

1 ]p
f u 5 2 . (34)

r ]y*

The Ekman flux is to be added separately to the surface
layer and balanced by a barotropic return flow.

Cross-differentiating (33) and (34), integrating across
the width of the basin, and assuming that variations in
L are negligible through the boundary layer, we obtain

( fLy )y 5 2(AHLu y)yy. (35)

Integrating (35) meridionally across the boundary layer
and neglecting gradients at the outer edge in comparison
with gradients at the solid boundary gives

5 ,fLy | (A Lu ) |y 2d H y y yend N end
(36)

where dN is the thickness of the northern boundary layer
(Fig. 1).

Following the same ‘‘finite difference’’ approach used
earlier to represent gradients in the western boundary
layer, we have

dNu
f Ly | 5 2A L , (37)y 2d Hend N 2dN

where the double overbar represents an areal average
over the entire northern boundary layer. Note that we
have not included an undetermined coefficient multi-
plying the right side of this equation as we did in the
representation of frictional dissipation in the western
boundary layer. This coefficient has been absorbed into
dN and the equivalence of the right sides of (36) and
(37) is effectively taken as the definition of dN.

We must now relate u to y d at the basin extremities.dN

To make this connection we assume that the average
value of u across the northern boundary layer at the
outer edge of the western boundary layer is linearly
related to the mean across both the basin width and the
boundary layer; that is,

d dN Nd u (38)5 2g d u)N .3 Nx5d
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If both y I and vertical exchange within the northern
boundary layer were zonally uniform, then u would in-
crease linearly away from the eastern boundary and g3

would equal 1. We include g3 to allow for the possibility
of zonal variations in y I and vertical exchange within
this boundary layer. If we also assume that vertical ex-
change within the northwestern corner (i.e., where the
northern and western boundary layers overlap, Fig. 1)
is either zero or linearly related to the inflow from the
interior, then

dd d NNdy 5 g d u 5 2g g d u (39)) .4 N 3 4 Nx5d

Substituting (39) into (37) gives

1 A LH dLy | 5 2 dy . (40)y 2dend N 22g g f d d3 4 N N

Finally, using

Ly 5 l y I 1 dy d, (41)

the relation (40) can be rewritten as

dy d 5 g2l y I, (42)

where
21

1 A LHg 5 2 1 1 . (43)2 3[ ]2g g f d3 4 N

Equation (42) is of the form used by WVH. Note that
2g2 is the fraction of water entering the northern bound-
ary layer from the inviscid interior, which turns hori-
zontally; the remainder turns vertically.

WVH use OGCM results to determine a ‘‘best esti-
mate’’ for g2 of 20.6. From (43) it is clear that this
estimate implies a value for the quantity (g3g4)1/3dN,
which we will refer to as the ‘‘effective’’ northern
boundary layer width. Rearranging (43) we find that for
g2 5 20.6, this width is given by 5 (0.75AHL/ f)1/3.effdN

The OGCM used AH 5 2.5 3 105 m2 s21, and the
Atlantic basin extended to 708N with a width of 608,
while the Pacific basin extended to 59.58N with a width
of 1208. Using these values gives effective northern
boundary layer widths of 146 and 216 km for the At-
lantic and Pacific basins, respectively. In order to de-
termine the actual boundary layer widths we would have
to know the values of g3g4. This quantity is expected
to be of order 1, but a precise value cannot be given.
On the other hand, the estimate of dN only varies as the
cube root of this quantity and hence is not very sensitive
to it. Even if g3g4 5 0.25 (a fairly extreme value), our
estimate of the actual boundary layer widths are only
60% greater than the effective boundary layer widths.
Thus, it is clear that these boundary layers are embedded
within a single cell of the coarse-resolution OGCM with
its latitudinal grid cell size of approximately 390 km.

Based on the relative sizes of the implied boundary
layer widths and the model grid size, it is clear that the
boundary layers are not well resolved, and it is likely
that the amount of high-latitude downwelling is affected

by the large grid size of the OGCM. This is a concern
for these models. Nevertheless, the general consistency
noted above encourages us to believe that this idealized
boundary condition represents the dynamics of the
coarse-resolution OGCM’s high-latitude boundary layer
in a reasonable manner. Of course, there is no guarantee
that this boundary condition would also fit the results
of a finer-resolution OGCM with realistic bottom to-
pography, but it appears to be a reasonable represen-
tation for use in low-order climate models.

For completeness, we now reproduce the formula for
the total overturning transport derived by WVH. Eval-
uating (31) at y 5 yend, substituting the result into (42),
and using r K f end gives

2g
ddy | 5 g (s 2 s ). (44)z y 2 end eqend fend

Integrating (26) and using (44) now gives

g12g f
ddy 5 g (s 2 s )z 2 end eq1 2[f fend

yend

g 2g1 11 | f | | f | s dj , (45)E j ]
y

and adding (45) and (31) gives the total overturning
transport:

g12g f
Ly 5 (s 2 s ) 1 g (s 2 s )z eq 2 end eq1 2[f fend

yend r
g 2g1 11 | f | | f | s dj 1 (Lu 2 Lu | ).E j z z eq] fy

(46)

Finally, we return to (35) to give a physical inter-
pretation for the high-latitude boundary condition.
Equation (35) can be rewritten as

fw z 5 by 1 L21(AHLu y)yy. (47)

The first term on the right side reflects that vertical
velocities are required to conserve potential vorticity
even in the inviscid interior. Vortex tube stretching
(compression) associated with any additional down-
welling will tend to generate cyclonic (anticyclonic) rel-
ative vorticity in the upper (lower) parts of the water
column. Under our assumption of a quasi steady state
for the momentum equations, this must be compensated
by vorticity dissipation within the boundary layer,
which, in our model, can only be supplied by a zonal
flow in the boundary layer rubbing against the zonal
boundary. Thus, as illustrated schematically in Fig. 2,
this boundary condition states that downwelling within
this boundary layer must be accompanied by zonal flow
such that viscous dissipation counteracts the tendency
to generate relative vorticity. This balance is consistent
with the split between horizontal and vertical turning of
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FIG. 2. Schematic illustration of the vorticity balance of the unresolved northern boundary layer of width dN. The
left panel illustrates the effect of planetary vortex tube stretching, the middle panel indicates the opposing effect of
frictional dissipation in zonal flows, and the right panel illustrates the combined effect of a balance between the
vorticity generation by vortex tube stretching and frictionally induced vorticity dissipation.

the flow that enters the northern boundary layer from
the inviscid interior of the OGCM.

5. Discussion and conclusions

The primary aim of this paper has been to clarify the
assumptions that are implicitly made in the closures used
in zonally averaged models. This was largely motivated
by the fact that the assumptions implied by the two most
commonly used closures, based on averaging the mo-
mentum equations, have not previously been system-
atically presented. For the closure based on the vorticity
equation, a careful derivation of the zonally averaged
equations has been given by WVH, and we have sum-
marized the results briefly. However, we also provide a
physical interpretation of the high-latitude boundary
condition used by WVH, which was lacking from the
original model formulation.

The basic results for the closures based on the mo-
mentum equations are encapsulated in (19). This equa-
tion includes the closures used by Marotzke et al.
(1988), Sakai and Peltier (1995), and Wright and Stock-
er (1991) as special cases. The three closures differ in
which of the terms on the left side are included: Wright
and Stocker (1991) include only the third term, Mar-
otzke et al. (1988) include only the second term, and
Sakai and Peltier (1995) (also Quon and Ghil 1996 and
Saravanan and McWilliams 1995) include the first and
second terms.

Scale analysis of (19) indicates that the third term
dominates. However, numerical experimentation shows
that the first term is required to maintain stability if the
meridional resolution is reduced much below 500 km.
While consideration of such ‘‘fine’’ resolution was not
contemplated in early studies, there may be cases in
which the consideration of such scales is desirable. For-
tunately, the second term is negligible in comparison
with the third term except in the surface Ekman layer,
and the influence of the Ekman transport can be ac-
counted for by including this transport in the surface
layer. This leads us to the simplified equation (21),

which has the advantage that its finite difference rep-
resentation yields a tridiagonal system of linear equa-
tions. This system may be solved with little more com-
putational expense than required by the formulation of
Wright and Stocker (1991) and substantially less com-
putational expense than required by the formulation of
Sakai and Peltier (1995). Further, the dynamical foun-
dation of this equation is stronger than that used by
Sakai and Peltier (1995) and it does not suffer from the
resolution sensitivity found in either the Marotzke et al.
(1988) or the Wright and Stocker (1991) formulations.

The dependence of the momentum approach formu-
lation on the factor G2, which remains uncertain, appears
to be the major source of error for this case. The mag-
nitude of G2 is determined by the deviations from geo-
strophy in the western boundary layer. A primary ad-
vantage of the vorticity approach is that the pressure
gradient is eliminated by cross-differentiating so one
deals directly with the underlying vorticity balance rath-
er than with small deviations from the degenerate geo-
strophic balance.

The main results regarding the vorticity closure
scheme are encapsulated in (28), (29), and (43). The
first two of these are equivalent to equations derived by
WVH but rewritten in more readily interpreted forms.
The first shows that the vorticity equation for the west-
ern boundary layer may also be interpreted as an in-
tegrated continuity equation. The second shows that out-
side of western and zonal boundary layers, the model
dynamics reduces to a simple Sverdrup balance. Based
on these equations, a useful limit of the WVH formu-
lation (g1 5 1, r 5 0) is seen to be consistent with a
Sverdrup interior that exchanges fluid with the western
boundary layer, which serves as a pipeline to other lat-
itudes without any vertical exchange. The simplicity of
this interpretation makes it attractive, but the depen-
dence on the high-latitude boundary condition is some-
what disconcerting since the boundary condition used
by WVH did not have a strong physical motivation.

Equation (43), and the derivation leading to it, rep-
resents a physical interpretation for this equation.
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Downwelling in the northern boundary layer will cause
vortex tube stretching in the upper part and vortex tube
compression in the lower part of the water column,
which will cause a positive vorticity tendency in the
upper region and a negative tendency in the lower re-
gion. These tendencies must be balanced by viscous
dissipation of vorticity and this is accomplished by the
east–west flow within the boundary layer rubbing
against the northern boundary (Fig. 2). Thus, stronger
downwelling implies stronger westward (eastward) flow
in the upper (lower) part of the water column in order
to balance the vorticity tendencies. This balance gives
the boundary condition used by WVH. It should be
noted that we do not claim that this boundary condition
will apply to more realistic situations (e.g., with realistic
bottom topography or eddy-permitting resolution).
However, this physical interpretation does emphasize
the importance of vorticity constraints in determining
the production of deep water, and this basic point does
not depend on the simple model considered here. Further
investigation of the controls on deep-water formation
in more realistic situations is clearly warranted.

WVH show fits to OGCM results obtained with the
WS and the WVH formulations that support the con-
tention that the vorticity approach yields superior results
to the approach of Wright and Stocker (1991). Their
results are based on the zonally integrated meridional
velocity component and the zonally averaged density
from the eight NOWIND runs described by Hughes and
Weaver (1994). The geometry consists of two basins
representing the Pacific and Atlantic, connected by a
circumpolar ocean. The Pacific is 1208 wide and extends
to 59.58N, and the Atlantic is 608 wide and extends to
708N. Horizontal and vertical eddy diffusion coefficients
were ATH 5 2 3 103 m2 s21 and ATV 5 1.39 3 1024 1
0.78 3 1024 tan21[5 3 1023 (2z 2 1000)] m2 s21. The
corresponding momentum diffusion coefficients were
AMH 5 2.5 3 105 m2 s21 and AMV 5 1023 m2 s21. The
Bryan–Cox model was used for the integrations with a
coarse resolution of 3.758 longitudinally, 3.58 latitudi-
nally, and 19 levels in the vertical. The overturning
circulations varied dramatically between the different
runs: the maximum overturning in the Atlantic varied
between 5 and 34 3 106 m3 s21, while that in the Pacific
varied between 0 and 33 3 106 m3 s21.

Figure 3a illustrates the ability of (19), the generalized
formula based on averaging the momentum equations,
to represent the OGCM results. The quantity plotted
corresponds to an integral from a depth of 130 m down
to each of the cell boundaries of the OGCM. The model
was fit to the OGCM results by dividing each of the
terms in (19) by G1 /d2L, and then using linear re-A*H
gression to express the third term on the left side in
terms of a linear combination of the remaining terms,
in order to estimate the factors G1 and G2. Two problems
arise in attempting to determine the coefficients of the
diffusion terms based on the OGCM results. First, it is
found that the OGCM results do not adequately con-

strain the value of the coefficient multiplying the vertical
diffusion term (by taking different subsets of the OGCM
‘‘data,’’ the value can be anything between 220 and
120). This is as expected since the surface Ekman layer
is not resolved by the model output. Because of this,
the vertical diffusion term can be dropped entirely with-
out affecting our results. The fit shown in Fig. 3a ac-
tually corresponds to (21) rather than (19). The second
problem is that, when information within about 108 of
the equator is included in the fitting procedure, the es-
timate of the coefficient multiplying the horizontal dif-
fusion term becomes large and negative without sig-
nificantly improving the fit to the data. This is probably
a consequence of attempting to fit an inappropriate dy-
namical model to the equatorial region. For this reason,
only the OGCM data outside of 108 from the equator
are used in the fitting procedure. High-latitude data are
included since the boundary layer information is re-
quired to constrain the coefficient of the horizontal dif-
fusion term.

With the above restrictions, we find that the best fit
of (21) to the OGCM data implies G1 5 0.83 and G2 5
0.17. Dropping the horizontal diffusion term entirely
does not significantly affect the model fit, and the values
of both G1 and G2 are not sensitive to how the data are
subsampled, so the values of both coefficients appear
to be well determined. It is noteworthy that the value
of G2 is consistent with the zonal flow being primarily
geostrophically balanced, even within the western
boundary layer.

Figure 3b shows the corresponding results of fitting
Eq. (46), based on averaging the vorticity equation, to
the same OGCM results. The fitting procedure is es-
sentially the same as that used in WVH except that here
we have avoided the complications associated with the
nonlinear dependence on g1 by setting this parameter to
the optimal value of 1.1 determined by WVH (using 1.0
or 1.2 does not substantially change our results). Thus,
only the parameters g2 and r are determined here. Also,
since zonal boundary layers are crudely accounted for
through the Rayleigh coefficient, r, we have again in-
cluded all of the OGCM data outside of 108 from the
equator in the fitting procedure. This modification does
not affect the estimate of g2, but it does have a modest
affect on the estimate of r. Our optimal estimates of
these parameters are g2 5 20.6 and r 5 2.2 3 1026

s21, which are not very different from the estimates of
g2 5 20.6 and r 5 2.6 3 1026 s21 obtained by WVH.
We have also tried replacing the Rayleigh damping in
the vorticity formulation with a horizontal Fickian dif-
fusion term and found that this did not improve our
results.

The main results illustrated by Fig. 3 are immediately
obvious. First, the inclusion of Fickian diffusion terms
in the WS formulation does not significantly improve
our ability to represent OGCM results, which is con-
sistent with the fact that dissipation in the western
boundary layer dominates over dissipation in zonal or
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FIG. 3. (a) The 2D model fit to 3D OGCM data corresponding to (21). The quantity plotted is
the difference in basin width times velocity between each model depth and 130 m in units of m2

s21. Results within 108 of the equator are plotted as open circles and those within 108 of the
northern boundaries are plotted as dots. (b) The corresponding fits based on (46).
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vertical boundary layers. Second, the solution based on
the vorticity approach represents the OGCM results far
better than the solution based on the momentum ap-
proach.

In spite of the apparent superiority of the vorticity
approach, the momentum approach remains of interest
because it is easier to implement and does not suffer
from resolution sensitivity at ‘‘fine’’ resolution, provid-
ed the meridional viscous term is included. Further, that
the vertical momentum diffusion term can be neglected,
if the Ekman flux is included in the surface layer, should
not be interpreted to imply that the results of Marotzke
et al. (1988), Sakai and Peltier (1995), or Saravanan and
McWilliams (1995) are without value. In these models,
the magnitude of the vertical friction term has been
increased so as to crudely allow for the effect of hori-
zontal diffusion into the western boundary and yield a
reasonable overturning circulation. Our results suggest
that a Rayleigh damping term is better suited to rep-
resent this effect, but the representation by the Fickian
diffusion term should (and does) give a reasonable
‘‘broad brush’’ picture of the overturning circulation.

Finally, we note that the discussion presented here
has focused on the momentum and vorticity equations
and very little mention has been made of the approxi-
mations made in the tracer equations. In these equations,
any meridional (vertical) mixing associated with hori-
zontal gyres (zonal overturning) is assumed to be rep-
resented by an enhancement of the horizontal (vertical)
diffusion term. In addition, tracer transports associated
with smaller-scale eddies are also assumed to be rep-
resented by enhanced diffusion terms. These closures
and the lack zonal structure in the forcing terms are
probably the real limiting factors in models that use
either the momentum or vorticity closures discussed
here.

The role of the eddy-induced tracer transports has
been emphasized by Gent and McWilliams (1990) and
Gent et al. (1995). The addition of these effects leaves
the basic results obtained with coarse-resolution
OGCMs unchanged, so one might wonder if these
‘‘higher-order’’ effects are worth considering in the
‘‘lower-order’’ representations obtained with 2D mod-
els. Preliminary tests indicate that inclusion of these
terms in the WVH formulation does result in significant
improvements, primarily in the Southern Ocean.

Gent et al. (1995) point out that, when the momentum
equations are cast in terms of the tracer transport ve-
locity (including the mean velocity and the diapycnal
component of the eddy-induced transport velocity), the
closure proposed by Gent and McWilliams (1990) can
be expressed as a vertical transfer of momentum with
an effective vertical viscosity of order ( f /N)2k, where
k is of order 103 m2 s21. This observation has been used
by Saravanan and McWilliams (1995) as partial justi-
fication for the large value of vertical viscosity required
in their model. However, as they note, the vertical vis-
cosity that they use is ‘‘probably somewhat too large to

be realistic,’’ and even with this large damping term,
the overturning circulation remains too large. We be-
lieve that this is a consequence of neglecting the viscous
damping associated with the western boundary layer
[the third term in (19)].

In our discussion we have taken our velocities to
represent time mean values (excluding the eddy trans-
ports) with the understanding that all eddy effects must
be accounted for in the tracer equations. If the momen-
tum equations are recast in terms of the tracer transport
velocities, the vertical diffusion term in (19) must be
retained and the viscosity coefficient should be passed
through two of the vertical derivatives and allowed to
vary with both latitude and vertical stratification.
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