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The trapping and scattering of topographic waves
by estuaries and headlands

By THOMAS F. STOCKERT .lno E. R. JOHNSON
Department of Mathematics, 

Ytirttrf"a;]lese 
London, Gower Street,

(Received 22 October 1988 and in revised form 3 December 1989)

This paper extends recent theoretical work on sub-inertial trapped modes in bays to
consider trapping of energy in the neighbourhood of estuary mouths on coastal
shelves. The qualitative form of the theoretical predictions accords well with recent
observations on the Scotian Shelf that show energy trapped near the Laurentian
Channel at a frequency higher than that of the propagating waYes on the shelf.

The trapping and soattoring of shelf waves is modelled for a shelf-estuary or
shelf-headland system by considering barotropic waves in a straight, infinite channel
with an attached rectangular estuary or interrupted by a rectangular headland.
Taking the depth to increase exponentially with distance from the coast and
expanding in cross-shelf modes reduces the problem to a system of real linear
algebraic equations.

Trapped modes with frequencies above the cutoff frequency of propagating waves
are found near the mouth of the estuary. Waves propagating towards the estuary are

strongly scattered and, for particular frequencies, incident energy can be either
perfectly transmitted or totally reflected. An incident wave can be in resonance with
the estuary causing energy to penetrate the estuary. Bounds on the frequencies of
trapped and resonant solutions are given and allow an easy modal interpretation.

If the frequency of an incident wave is sufficiently high, waves cannot propagate
past a headland. Energy at these frequencies can however tunnel through the region
and appear as an attenuated wave on the far side. X'or particular frequencies all
energy passes the headland and none is reflected. For headlands long compared with
the incident, wave, transmission coefficients for single-mode scattering follow from
spatially one-dimensional wave mechanics.

1. Introduction
Topographically trapped waves are the predominant low-frequency component of

ocean currents near many coasts. A review ofobservational evidence for such waYes

is given by Mysak (1980) who also summarizes theoretical results for waves that
propagate along continental shelves with unchanged offshore profile but decay away
from the coast. Recent theoretical work (Stocker & Hutter 1987; Stocker 1988;

Johnson 1989a; Stocker & Johnson 1989) points to the further possibility of
geographically localized regions of wave motion with modes decaying exponentially
both out to sea and along the shelf away from the wave region. These results are

supported by the recent observations on the Scotian Shelf near the Laurentian
Channel (figure 1o), reported by Schwing (1989). Schwing notes significant energy in

t On leave from Department of Meteorology, McGill University, Montreal, Canada.
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the neighbourhood of the estuary mouth at a frequency slightly higher than those
found on the shelf (figure 1b), finding further that energy at this frequency does not
propagate effectively. It is the purpose of the present paper to extend the earlier
theoretical results to a geometry more closely modelling a shelf interrupted by an
estuary to obtain qualitative results for comparison with these and other
observations. As the methods used yield results for the complementary geometry of
a shelf interrupted by a headland, these too are noted briefly.

The simplest discussion of coastally trapped waves is in the context of the non-
divergent barotropic conservation of potential vorticity. Buchwald & Adams (1968)
demonstrate that solutions model well current measurements off South-East
Australia. Middleton, X'oster & X'oldvik (1987) model similarly shelf waves in the
southern Weddell Sea and Schwing (1989) also models his waves as barotropic. Thus
the barotropic equation is introduced in $2 and solved for a coast interrupted by a
rectangular estuary or headland. The features are taken to be of size comparable with
the shelf width and hence scatter significant energy. Solutions for slow or small
variations in shelf width or depth are given by Grimshaw (1977) and for smoothly
varying shelves by Webster (1987). Scattering by abrupt changes in width has been
discussed by Wilkin & Chapman (1987) who however confine their attention to
widening shelves where no short warres are back-scattered, and thus preclude
trapped modes. It is shown in Johnson (1989ö, c, lgg0) in the low-frequency limit
that at a narrowing, energy is back-scattered in short waves and dissipated in narrow
layers on the incident side of obstacles if the flow is weakly dissipative or carried far
from the scattering region if the flow is inviscid.

n'oilowing Wilkin & Chapman (1987) and Middleton & Wright (1988), the
geometry of a shelf abutting a flat open ocean is modelled by a channel with a rigid
wall at the shelf ocean junction. Following Buchwald & Adams (1968) the depth is
taken to increase exponentially from the wall so the governing equation reduces to
a Helmholtz equation. The model is thus closely related to that for surface gravity
waves discussed in similar geometries by Buchwald & Williams (1975). In their
problem however trapped modes are precluded as the fundamental mode is
propagating at all frequencies and so carries energy away from any region. The
present problem is reduced to an algebraic eigenvalue problem by expanding in cross-
shelf modes. The convergence of this expansion and its numerical approximation is
considered in $3.1. In $3.2 bounds on the eigenfrequencies are obtained following
Johnson (1989o) and used to assign mode numbers to, and to interpret, the trapped
modes of an estuary. Modes scattered by an estuary or headland are discussed in
$$3.3 and 3.4. Conformally similar geometries to which the results can be applied are
noted in $3.5. A summary of the results is given in $4 together with a more detailed
comparison of the results to the observations of Schwing (1989) and a brief discussion
of the effects and importance of the free surface, dissipation and stratification.

Freunn 1. (a) The position oftide-gauge stations whose readings are reported in Schwing (1989).
(0) The autospectra (variance preserved) oflow-pass-filtered time series for coastal bottom pressure
and 95oÄ confidence intervals given in Schwing (1989). The strongest response at Port aux
Basques, in Cabot Strait, and at Louisbourg, on the shelf near the mouth of the Laurentian
Channel, occurs at a frequency above that of the strongest propagating wave at Whitehead
Harbour, Sambro and West Head on the shelf away from the channel mouth.
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2' solution procedure 
2.!. Gouerning equations

Non-divergent, barotropic shelf waves on the /-plane can be described by the non-

dimensionalized conservation equation of potential vorticity,
V'(H-rVYt)+f '(Vf A V.t1-1; : g, in 9, (2'l)

fr. (ZA VY) : g, on Ag, (2.2)

where F is the mass transport stream function, H the local fluid depth, ä a vertical
unit vector, fr an outward normal vector, and V the horizontal gradient operator, and

the scale for the non-dimensional time ü is /-1. Condition (2.2) states the vanishing

mass transport across the boundary ö9 of the domain 9.
Consider the geometry and Cartesian coordinates sketched in figure 2.The straight

shelfis interrupted by an estuary (figure 2a) or a headland (figure 2b) oflength / and

width w.Thefrequencies and structure of waves propagating along a rectilinear shelf

adjacent to an open ocean and in bays adjoining shelves are shown in Johnson
(1g89o) to be governed by a simple variational principle with their behaviour lying
between extremes obtained using two limiting forms for the boundary conditions at
the open boundary. In the present geometry these limiting conditions become the

requirement that either OY l0r or P vanishes on y : r' The former corresponds to the

long-wu,r.e limit and the latter to a rigid boundary and the short-wave limit. The

solutions are qualitatively similar and thus in the present work we choose the rigid
boundary condition throughout as this leads to- explicit forms of the dispersion

relation. This is also the condition used by Wilkin & Chapman (1987) and Middleton
& Wright (1988).

Let the depth profile be given bY

H(a) : ezb<a-r) '

Equation (2.1) then has solutions of the form
y:Re{e-i"tü),

provided {,,*,!ou-2bür-i2:tt::0. (2.3)

Note that if t!(r,y) satisfies (2.3) then so also does frx(-r,a), where ( )* denotes the
complex conjugate. Introduce

,!@,a) - eba+i(bta)rÖ(*,y), (2.4)
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so (2.3) gives the purely real system

Q,,+ Qro+bt(l I o' - r) Ö : o,

Q:0, on Ag'
This has solutions of the form

Iln

505

(2.5)

(2.6)

(2.e)

(2.10)

ö n : @osin rcn r I b ncos r, z) sin
nßa (n: 1,2,...),

b

r

where 6:
1rcz*+bz I (nn/r)21ä,

(2.7)

a dispersion relation for xo(o). It follows that the zth transverse mode propagates
provided

o<aY':@+F*' (28)

If o > ofl the nth mode decays exponentially with distance from the estuary or
headland on a scale lrol-1. For c < aY incident shelf waves can interact with the wave
field in the estuary or abreast the headland leading to strong scattering.

2.2. Trapped, mod,es in an estuary

At frequencies greater lhan cf all channel modes are evanescent and no energy is
carried away from the estuary. Modes can still propagate in the estuary, however,
and solutions are thereföre trapped.

For o ) oY, a solution of (2.5), odd in r and decaying as lzl -6p, ig

**:lu,(#_,)_(ry)'1,,

@

Ö(: > aosn@)sinzn (0(a(]tz)
n:l

o
ÖK: > cnUn(r)sinry @2!w),

(#)

n:I

for the domains E U E' and G, respectively; and for r < 0

s"(r) :
öo@,a): -öo(-r,a),

sinh (a, m)/sinh(Lrdnw) (a7 > O)

sin(&.nr)lsin(!&.*w) @'" > O)
where

*ru _ *nt

a2, : lnnl(r +1,)1'z -bz(l /o'- I),
Er(r) : e-^n@-+d,

Ar:y-rczr1i.
The function Q( is odd and satisfies the boundary condition at the estuary end

y : -l and the channel wall y : r; ö( vanishes along the channel walls y : 0, r. Note
ttrat Qo: 0 on r : 0 and /o therefore also represents a solutions in a channel with a
terminating estuary zone.

The geometry contains two singular points (r: *fu,y :0), where the velocity
field assumes infinite values. Sufficiently close to these points the topography is
locally flat and (2.5) reduces to Laplace's equation, with wave functions / behaving
as pä, where p is the distance from the singularity. The X'ourier coefficients a, and cn

thus can be expected to have the asymptotic behaviour (Lighthill 1958, pp. 43,72)

e,n,cn-n| (n)l). (2.r1)
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This is verified in the numerical solutions of $3.1, confirming that (2.9) converges
absolutely and is bounded everywhere.

An even solution can be similarly constructed by replacing S,(z) in (2.10) by C,(r)
with

c"1r7: cosh (a, r) f cosh (äa,w) (o', > O),

cos(&.nr)f cos(l&.,w) @'"> 0).

Both odd and even functions solve the problem individually.
The solutions of both subdomains match at r:**, i.r.

ön'(+r,A):ös(äw,a) (0(g(r), (2.12a)

ö'(+.,y) :0 (-l < y < 0). (2.t2b)
A further condition is provided by the continuity of the velocity field expressed in
terrns of V$. X'rom (2.11) it follows tha,t aoat,,cnAo-n-ä for n* I and hence
the derivatives of the expansions (2.9) do not necessarily converge at y:0. This
sjngular behaviour can be avoided by introducing the modified stream functions
ö@,A) = ö(*, a)"f(a). where /(9r) is an arbitrary, differentiable function with
limr-o lfta)la+l: 0. In order to preserve the orthogonality properties of Q6 we
choose 

$e : Qs sinnyf r, $v : Qs sinnylr

and demand Y:Y (o ( y ( r). (z.rzc)0r Ar

n'or 0 < y < r, condition (2.12c) on 6*is equivalent to requiring the continuity of
/, across r : lw. It is a weaker condition in that boundedness of / or Q, at lhe
singularities is not demanded. The modified functions lead to absolutely convergent,
Fourier series whose coefficients can be expected to have the asymptotic behaviour
d'n,ön- n-Efo, n* l. This is also verifiedln the numerical solutions of $3.1.

The modified expansions are

6(t*, al : f o,So(r)sin !! "inAUlJ).n:r r r*l
(2.13)

@

öK@,y): ) önflnlrlcos
(n-l)ny

,rn:l

and the modified coefficients önEn@) are related to cnUo@) by
o

önEn: ) Pn*c*E*,
k:r

Pok: L(}nn-ön,wz),
(n,lc : t,2,...), (2.14)

where ä,, is the Kronecker delta. Equations (2.12a, b) then imply

* . nn(yrt) J ; cnsinry (o(Y(r),
) o, sin---:---: : 1 ,7, " t' " (2.15)
n:r t tv I o (-/<y<o),

The functions sin lmn(y+l)/(r*l)l,m: 1,2,... vanish at A - -/ and U : r andform
an orthogonal, complete set on l-l,rf.Operating with

t_,
dy sinfmn(y +l)/(r+l)l (m : 1,2, . ..)
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on both sides of (2.15) yields
@

l@+l)a-,: E G*ncn,

where
n:l

507

(2.16)

G*n: f3ar;"uffrinu!:

n I mnl ln m \*Wmsin"1/ \;+*t)'

*,(_t)^*n (;:h)
ßrom (2.I2c)

i a,s',(!u;)singsin ""\o,Ih :3 u,E',(+*)"o*@-p. efi)
. n:r 

\z r r*l n-, r-ll

with O' : ö/0r.
Using now the complete set cosl(m-t)nr/rl, m:1,2,... and operating with

(r
I dycos[(m-I)nylr] (m : 1,2....)

Jo

on both sides of (2.17) gives

2,U-*s;(r*)an: +r(r +3ÄEk(h^0) ö*. (2.18)

The modified matrix G 
"un 

be obtained from G via

_o_Gn*: ErP*rGor, Q.lg)

where F**: P-o+!}ort-o. e.2O\

The tilded quantities in (2.18) &re now replaced using (2.14), (2.19) and (2.20) to
Yield @ @ @

Z E F*oGn*S'nan: är l, F**E;c*.
n:L h:l k:l

The matrix F hu* utt explicit inverse, and substitution of c in (2.16) results the linear
homogeneous system 

@

2 A-rün:O, (2.21)

with

Non-trivial solutions exist provided

deLA: O

This equation determines the eigenfrequencies of the odd modes trapped in the
estuary. In order to obtain the whole spectrum of eigenfrequencies, including the
fundamental mode, the even problem must also be solved. This follows by solving a
rt::"- similar ro Q.2l) where in A*o the Si are replaced by CL.

A*, : S'"2 G*rG,r/E'o-f,r(r 1-l) 3-n
k:1
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For a numerical solution the expansion (2.9) is truncated to order 1ü, reducing the
problem to finding the zeros of the determinant of a N x N real matrix. If the problem
were solved in the complex y'-representation without using the symmetry property
the system would be complex of dimension 81y'x 81/ in the worst case. IJsing
symmetry and the real /-representation allows a substantial saving and larger
truncation orders can be chosen when better spatial resolution is required.

2.3. Propagati,ng mod,es sca,ttered, by an estuary

At frequencies less than o( propagating modes in the channel carr oarry energy away
from the estuary. Consider the simplest case of the frequency range os, < a < o( so
the fundamental mode, with transverse order n: l, is the sole propagating mode in
the channel. The selection of a particular incident wave, say a long wa,ve propagating
from r: - oo towards the estuary, destroys the symmetry of the problem and both
even and odd solutions are required to give the correct energy flux.

The odd solution can be written
o nft(u + l)

ö((r. y) : 2 a,S,(r) srn----:--;i
n:r rll

(0 ( z <ir),
(2.22)

(* 2 ä*),

where c, and y are the as yet undetermined amplitude and phase of a standing
fundamental mode. The matching conditions for Qo and 0Q"l0u at r : lw yield

öY @, il : cr cos (x r(r - !w) + y) sinry + f 
,c, 

8,1*1 rinA!

i(r +l) a* : G-rcosycr+ | G-,cn,
n:2

@

> G*-S;(+w) &n: !r(L * 3-,) E;(+u) ö*,
n:l

(2.23)

where E;t+*l - - K1 sin y and E;G.), n 2 2 aregiven by (2.10). Combining (2.23) and
substituting for the tilded quantities as before gives

i ,*,cn: o, (2.24)
n:l

O

with C *, : cos y ) G k*GnS; +f,r(r + l) rcrsiny 3*r,
k:r

6

C*n : Z Go*Gr,S'o-f,r(r+l) E;ö-, (n >- 2),

where C depends on the l;;r"-. phase 7. Non-zero solutions require

det C(7) : Q.

The phase y appears in only the first column of C, i.e.

Cr,: gr.cos7*ltrsiny,
C*r: gncosy (m ) 2),

where g and ft are independent of 7. Expanding the determinant by the first column
gives a

det C : (grcos y * hrsin 7) Cll * cosT 2 gr Cor,
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where Ce1 is the cofactor of C rr. If CI : 0 then y : Ln, otherwise 7 is given explicitly
a's 

tanY : - Z n-Ckr /hL1rr '
lc:l

The even solution can be written as

ö(@,ü : Z3nc,lürinffi (o ( r ( ä,),

ÖY@, a) : dr cos (* r(r - fu)* ä) sin I9 a 3 
ro, 

u,1*1 ri1r!!U- (r 2 tw),

and the system corresponding to (2.23) as

3 o*,d,: o,
n:l

(2.25)

where D is obtained from C by replacing Si, and y by CL and ä. The phase ä of the

even standing wa\re mode is determined by

detD(ä) :0.
The even and odd standing modes can be linearly combined to give an incident

long wave from r: - oo. There is no incoming energy flux from r : ! oO and hence

creit +d,reiä: o. (2.26)

The amplitudes of the incident, reflected and transmitted modes are given by

At: -CretY+dretä. )
An: -cr"-tt+dr"-tu, l Q'27)
Ar : cre-iY + d're-i6' )

Reflection and transmission coefficients are conveniently defined as

R : lARfArl2, T : lAr/Arl2,

and from (2.26) and (2.27)

Ä : cos2 (y-ä), 7: sin2 (y-ä), (2.28)

satisfying the flux balance R+T: 1. Equation (2.28) demonstrates that in the case

of a single propagating mod.e the important quantities describing the scattering
process ut th" 

".tuuty 
are simply obtained by calculating the phases of the standing

modes, i.e. by again finding the zeros of the determinant of theNxNmatrices C and

D. The numerical procedures for the trapped mode frequencies and for the reflection

coefficients are thus similar. Reflection and transmission coefficients can be calculated

similarly when more propagating modes are present.

2.4. Propagating modes scattereil by a head,land'

A similar analysis to that in $2.3 can be performed to investigate the scattering of
shelf waves incident on a headland (figure 2b). Since the channel is narrower abreast
the headland the cutofffrequency of propagating shelf waves is smaller than that in
the channer' namelv 

,{ : u ll* *(-y-r)'ft - "',.
and so trapped modes cannot occur. The changing wave properties cause strong

scattering, however.
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When incident shelf waves are evanescent, abreast the headland, energy can still
pass through and a,ppear as a transmitted wave on the far side: energy tunnels
through. It is the interaction of both exponentially decaying and growing headland
modes that results in the tunnelled energy flux.

Consider the odd solution

ö{(r,y): i a,S{(*yrinU! ,! (o ( r <!*),

where /f;is unchanged and *a"r O, ,r. *) ^^:;i(r) follows f"o- s,1ry b; replacing
q'" by (o{ )' : bz(l / c2 - l) - (nn / (r - l))'? in (2.t0). The matching conditions &re

ö*(äto,y) : öYG,y) (/ ( y ( r),

ö*(fu,u):o (o(y(/),
aö* o6' (/(y(r),ör 0r

with /: /sin ln(y-l)/(r-l)1, implying the linear system
@

Z H*ne,: ?(8*rcos7* l-8*r)c*,
n:I

L? -l) (l + S^r) S#' (rt )) d,* : 2 fr *ng',(t ) c*,
(2.2e)

n:l

where (1 + ä-1) d*S#' : }F*oarS{',

fr*n: Z F-*Hnr,

lt:l

o

k:r
n I ,inu! (h*t),

H* d.urin*n! sinnn(y .l) _" r r-l
n(r-t)c-)'-e)'

*: f,
ä(, -l) (- I)**"

E'r(i*) - - Kr sinytr ,

and F^o is given by (2.20). As in $2.3, system (2.2g) reduces to

i ,#^c,:0,
n:l

with C#., : - rc r sin ytr 2 H -* H ro / S{' - lr(r - l) cos y* I *r,
k:t

a/(" m,n, H*kHnk/ Sf' -fu(r-l) E*n (n 2 2)

nrn
r-l r

(2.30)

o: E;>
It:l

Non-trivial solutions exist provided det C(y* ): 0, determining the phase yt.
Notice t'hat Ctr and C have similar structure and again the phase ytr appears only
in the first column of C*, i.e.

C(: g{ sinytr *hrcos!tr,
C#^: gffsiny# (m ) 2),
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and C* is singular if

cotytr : - Ero{ {C* )ot /h( (C* )",

where (C* )r'is the cofactor of C{r. Replacing S{' by C{' in (2.30) yields the system
for the even solution and allows calculation of the phase är. X'ollowing (2.26) and
(2.27) the reflection and transmission coefficients for waves scattered by a headland
are given by (2.28) with y and ä replaced by ytr and 8#.

3. Results

S.L Conuergence

Numerical solutions of the linear systems (2.2t), (2.24), (2.25) and (2.30) are obtained
by truncating the expansions (2.9) and (2.13) to order -lü. Any error in matching the
stream function and velocity fields across r:+w is then orthogonal to all transverse
modes n ( N. Numerical convergence of the eigenfrequencies and the solutions with
increa,sing -ly' is demonstrated below.

As the derivation in $2.1 of the linear system rested on the assumption that the
infinite series (2.9) and (2.13) converge absolutely, the Fourier coefficients of the
solution must decay sufficiently rapidly. It was noted in $2.1 that the coefficients are
dominated by the singular behaviour of the solution at r:Xi*,A:0. This led to
the estimates that for large n, the coefficients decay LS nl-f , where p : fr for o,o and co
and p: $ for dr. Figure 3 shows that the calculated coefficients decay approximately
according to n-f where P : L.65 for an and cn and f : 2.75 for ö,, in good agreement
with the predicted values. A. f > 1 in all cases, expansions (2.9) and (2.13) converge
absolutely.

Now consider convergence with respect to -0[, i.e. convergence of the truncated
solutions to the true solution. Table 1 gives converging eigenfrequencies of the first
four trapped modes in the estuary. It is remarkable that the low-order approximation
with tr/ : 2 yields the first three eigenfrequencies with an error of less than 1 o/o. Table
2 displays converging reflection and transmission coefficients for increasing
truncation orderly'. The three cases -rB x T, R ( 7 and R > r, for the estuary and the
maximum transmission coefficient of tunnelled energy for two headlands are
considered. All cases show convergence. For propagating modes, however, higher
truncation orders must be selected to accurately predict the solutions.

3.2. Tra,Ttped, mod,es in an estuary

rt follows from (2.8) that the cutoff frequency of the estuary region E l) E' (figwe 2a)
is larger than the cutoff in the channel €, i.e.

) cgn:

5lt

bb
c'o"

1..(#) b2 (ry+

Within a certain frequency interval waves propagate in the estuary but their energy
remains trapped because they'are evanescent in the channel. In Johnson (1989o)
bounds on the eigenfrequencies are given that allow identification of the modal
structure of an eigensolution when the geometric parameters of the problem are
known. These again prove useful in this study where the geometry is more
complicated.
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Frcuno 3. The modulus of the normalized coefficients of expansions (2.9) and (2.13) where the

symbols [, x and I denote ao, cn and do, respectively. The coefficients represent the fundamenta]
tiapped mode a' forly': 24,b: l, r: I, w:3,1: 1.3 and drr : 0'5081. The dependence ofthe
coefficients on ?2 follows closely the behaviour indicated by the straight lines.

1/ cu czr 6tz czz

2 0.527 931 0.392257 0.351693 0.312373
4 0.527 189 0.390150 0.349858 0.308105
8 0.526868 0.389473 0.349594 0.307595

12 0.526823 0.389373 0.349552 0.307 502
16 0.526780 0.389283 0.349519 0.307 437
20 0.52676t 0.389246 0.349507 0.307 4t5
24 0.526751 0.385223 0.349499 0.307 399

TÄsLn 1. Convergence ofthe eigenfrequencies ofthe first four modes trapped in the estuary
The parameters are b: L, r: l, w:3 and l: 1.5'

(a) Estuarv (b) Headland

// Ä(o : 0.280) R(o :0.2aQ Ä(o : 0.208) T^u(o :0.275) ?1""-(o : 0.188)

2 0.154259 0.005352 0.046115 0.609378 0.153985
4 0.564242 0.022 839 0.981 784 0.577 138 0.t34540
8 0.591242 0.033515 0.997 377 0.554871 0.t28432

t2 0.597065 0.036101 0.997430 0.554314 0.125878
16 0.600671 0.037 869 0.997 323 0.553435 0.125255
20 0.601659 0.038448 0.997383 0.552606 0.124777
24 0.602553 0.038901 0.997347 0.552796 0.124674

T-s.sr,n 2. (o) Convergence of the reflection coefficient for three frequencies of an incident
fundamental wave scattered by an estuary of length l: 1.5. (ö) Convergence of the maximum
transmission coefficient of an incident fundamental wave tunnelling through a headland region of
length I : 0.1 (left) and I : 0.4 (right). The other parameters arc b : I, r : I and w : L.
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tr'rcunn 4. The fundamental eigenfrequency and bounds as a function of the estuary width. The
frequencies o{E' and c! arc the cutoffs for a channel of width l+r and r, respectively. The values
ctf; and 6E'" an:e upper bounds for the subdomains E and 6' and o!('' is the lower bound in the
closed basin E U E'. The (1, 1)-mode thus lies in the shaded area. The parameters are b : l, r : I
and I : 1.5.

LeL on* be the eigenvalue of the (n,m)-mode, where n is the mode number in the
r-direction (across estuary) and m the mode number in the y-direction (along
estuary). The qualitative behaviour of the eigenvalaes oo* with respecl Lo w, the
width of the channel, can be found by considering various bounds ortcnm. A lower
bound follows by taking the closed-basin limit of region E U E', i.e.

a"(;t : b

0.6

lw*(rt)'.(ffi)
The boundary conditions tfr :0 on y : -1, tr: +w+ and tfrr: 0 on A : O, give an
upper bound orr 6nm in the subdomain d as

b
ür,k

1".(T)'.(ry)
An upper bound in E' is obtained by taking IL:0 onA : r, t,:0 on r : -|iw and

{o: o oL y :0, thus

nr'u - 
bvm - 

{"*ft' -+r"r'tt

The largest eigenvalue a' thus satisfies

max(o(f'1,aY) 4 or, ( max (o{i,of'"). (3.1)

ort
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w

u tl

q

o"i"
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(b) (c)(a)

(_: tlIt

X'reunn 5. Streamlines of the trapped shelf wave mode orr. With increasing estuary width rz
wave motion gradually enters fhe estuary. The parameters are 1/:16, b:L, r:1, l:1.5:
(a) o":0.306, ra:0.5, (b) trr:0.335, w:1, and(c) orr:0.457, w:2.

The upper bound holds because dlr cannot exceed both upper bounds in the
subdomains E andE'.The lower bound follows since the (1, 1)-mode has no nodal line
g : constant. Inequality (3.1) defines the shaded area in flgure 4. Note that on is
bounded by our'" rather tlnan af[ for smaller widths w of the estuary and approacles
o(. rneqaality (3.1) also indicates that the trapped (1,l)-mode is present for any
values of w, b or I since orr2 o(.

Most of the wave activity is concentrated in the subdomain E and the activity in
d decreases with decreasing rz. A narrow estuary c&n cause a trapped, shelf wave
concentrated on the shelf around the mouth of the estuary, with frequency slightly
higher than the cutoff of the shelf. The trapped mode decays exponentially in both
directions. This is shown in figure 5 for three estuary widths.

Similar arguments lead to a description of the behaviour of higher-order modes.
Consider the (2,1)-mode which is bounded by

max (o{{'t, oY) 4 orr. ( drr.

The upper bound holds as o' is the largest eigenvalue by definition and the lower
bound follows since the (2, 1)-mode has no nodal line g : constant and its frequency
exceeds.the closed-basin limit in region E l) E' . This area is shaded in figure 6 (o) and
the calculated value of ozr is also given. Comparing figures 4and6(a) suggests that
in the limit m + 0 there is an infinite sequence of modes (n,I) trapped on the shelf.
The exponential decay of the stream function away from the estuary mouth increases
with increasing z.

A further point of interest is illustrated by the (1,2)-mode. This mode has one node
in the gr-direction and no node in the r-direction. Bounds are given by

max(o{f't,aY) 4 ar, ( min (o{t',orr).

The lower bound follows since there are fewer than two nodal lines 3t : constant and
the frequency must exceed the closed-basin limit of region E l) E' . The upper bound
holds by the definition of or1, and o{E' is the open-basin limit. A further constraint
is given by

on < rnax(o{i,oY), ß.2)
which again follows since there must be at least one nodal line y : constant. These
bounds give the shaded area in figure 6(b). The area crosses the cutoff o( of the
channel, showing that the trapped mode (1,2) starts to propagate on the shelf as rr
is decreased. It has been demonstrated in Stocker & Johnson (1989) that such a mode
transforms into a resona,nce or, in this context, a leaky estuary mode. rnequality (3.2)
further implies that the (1, 2)-mode is leaky for all values of n provide d t < !r. Again,
for narrow estuaries all the resonances cn2lrL:1,2,..., approach of with iave
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Freunn 7. Streamlines of trapped modes, (a) and (Ö), and a resonance, (c). The parameters are
1/: 16, b: t,r: l,l:1.5;and (a) on:0.389, ru:3, (ö) drz:0.350, w:3,and(c) a,":0.226,
'ra : 0.8.
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Trcunn 8. Eigenfrequencies of t'he four lowest modes as functions of the estuary width. Solutions
are trapped for o > of. Eor frequencies below the sheif cutoff the first transverse mode propagates
and the trapped modes become resonances (dashed). The frequencies co^ are bounded by
cn^) c€*.Parameters are given in figure 4.

summarizes these results for the four lowest modes. It is evident that the
identification of the different modes would have been more diffrcult had the bounds
not been used. The considerations in this section also allow the dependence of the
eigenfrequencies on the parameters /, r andb, respectively describing the geometry
and the topography, to be determined.

3.3. Scattering by cln estuclry

In this section attention is restricted to frequencies o( < o < o(, so only the mode
of lowest transverse order is propagating in the channel. A long shelf wave incident
from r : - oo produces a short reflected and a long transmitted wave. The scattering
depends on the geometry of the estuary and the frequency of the incident
disturbance.

X'igure 9 (a) shows the reflection coefficient to be a strong function of the incident
wave frequency. In general most incident energy is transmitted except near certain
discrete frequencies where it is totally reflected. For increasing width of the estuary
the frequency associated with a given perfect reflection increases. Also, the number
of frequencies at which the incident wave is perfectly reflected increases with the
width of the scattering region. Figure 9 (b) shows -B for three values of the length of
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Freunn 6. The eigenfrequency (o) o' and (Ö) o, and bounds as functions of w for b : I, r: 1 and
l: 1.5. For o12 < ol the mode starts to propagate on the shelf ; the trapped mode becomes a
resonance (dashed bold in (ö)). The shaded region gives the combination of the bounds.

activity mainly on the shelf. Stream functions of modes (2,1)and (1,2) arc displayed
in figure 7 : (a) and (b) show trapped modes and (c) displays the resonance obtained
by decreasing the estuary width of (b).

The regions of parameter space corresponding to particular eigenfrequencies have
been delineated by applying various bounds on the different eigenmodes. Figure 8
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0.18 0.20 0.22 0.24 0.26 0.28 0.30
C

Freunn 11. The time-averaged kinetic energy integrated over the esfuary rcgion El.) E' as a
function ofthe frequency ofthe incident wave. The two resonances can be attributed to eigenmodes
in the estuary N : 12, b : I, r : I, I : 1.5, w : 0.8.

1.0

R 0.5

l6 0. l8 0.20 0.22 0.24 0.26 0.28 0.30
czz

Frcunn 12. The reflection coefficient as a function of the frequency of the incident fundamental
wave for three values of the headland width. Waves are not propagating abreast, the headland for
6 > c{. The paramete s are I/: 8, ö : !, r : I, I : 0.22.

and hardly any enters the estuary. For particular frequencies, depending on the
geometry and the topography, perfect reflection occurs and the incident shelf wave
genera,tes a strong wave field in the estuary, figure 10 (b, c). This is demonstrated in
figure 11, showing the estuary energy as a function of the incident shelf wave
frequency. These resonances can be attributed to trapped modes in the estuary; their
stream function is displayed in figures 7(c) and 10(c), respectively.

3.4. Scatteri,ng by a head,la,nd,

Again frequencies a > og are considered, so only the first mode is propagating in the
channel. The scattering region is taken to be a headland of width w andlength I with
0 < l < lsoo( < 6( < aY.Af frequenciesdwhere oY < o < c( only thefundamental
propagates abreast the headland. At higher frequencies where o{ < o < of allwarres
abreast the headland are evanescent. Figure 12 shows the reflection coefficient for a
mode-l wave incident from r - - co onto the headland as a function of the
frequency. The headland cutoff o{ is indicated by a vertical line. For o > o{ part
of the wave energy tunnels through the headland region and appears as an
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(a)

i.0

A 0.5

0
0.16 0.18 0.20 0.22 0.26 0.28 0.30

(b)

1.0

R 0.5

0.18 0.20 0.24 0.26 0.28 0.30

n'reunn 9. The reflection coefficient as a function ofthe incident wave frequency in a shelf-estuary
system: (a) for three values of the estuary width with l:1.5; and (0) three values of the est'uary
length with w : l. Ttre parameters are N: 8, b : I, r : l.

(a) (c)
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Frouno 10. Streamlines for (o) perfect transmission and (Ö, c) perfect reflection or resonance of
incidentwave energy. Theparameters are-lf : ß,b:I,r: l,l: I.5;(a)w: I.4,a:0.262' (b)

w : L.5, a : O.204 and (c) u :0.8, a :0.191.

the estuary. Increasing estualy length similarly results in more and higher
frequencies of perfect reflection. Generally, decreasing the area of the scattering
region reduces the reflection coemcient. Most of the incident wave energy is
transmitted when the estuary is much narrower or shorter than the shelf width.
Figure 9(a,b), however, also indicates that for any geometry of the estuary there
exist frequency bands with almost complete transmission or almost complete
reflection.

Contours ofthe stream function are displayed in figure 10. In figure 10(o) there is

no scattering : all incident wa,ve energy is transmitted to the other side of the estuary
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(a) o :0.201, :r :0.119 (b) o :0.260, T:0.120 (") o : 0.201, T :0.690

519

Ii.),J---,
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tr :0.172, T^a.:0.413 c :0.247, I-a* : 0.307 a:0.189. I-^" :0.999

I
I t--::- -

i)
Freunn 13. Streamlines for an incident fundamental wave tunnelling past a headland region with
(a) w: O.2, l:0.45, and (b) w: l, l:0.2, and (c) propagating past a headland with w :2,
I : 0.3. The parameters are N: 16, b : l, r : l.
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Frcunn 14. Contours of the maximum transmission coefficient of an incident fundarr(ental wave
tunnelling through the region abreast a headland as a function of headland width rz and length l.
The parameters are lü: 16, b: l, r: I.

attenuated shelf wave on the far side. The amount of tunnelled energy increases as
the frequency approaches o( since the e-folding length of the lowest evanescent
modes increases. A wider headland reduces transmission. If waves can propagate in
the zone abreast the headland most of the energy can be transmitted. It is
remarkable that at particular frequencies the incident wave passes the scattering
region undisturbed and no energy is reflected. On the other hand, perfect reflection
of wave energy does not occur. The number of frequencies where T : I increases with
increasing headland width. The headland acts as a filter, passing waves with
particular frequencies according to the geometry and topogra,phy of the headland.

Tunnelling modes are shown in figure 13 for a n&rrow and long (a) and a wide and
short (b) headland. Solutions with weak tunnelling (T : 0.12,o > c() and maximum
tunnelling (o: a() are compared. X'igure 13(c) displays solutions propagating
abreast the headland with partial transmission (above) and perfect transmission
(below).
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Freunn 15. The maximum transmission coefficient ftu* of tunnelled wave energy as a function of
the headland width. ?L"* approaches the values obtained from one-dimensional wave mechanics for
large u (solid lines). The paramet'ers are 1/:8, b : l, r: l.

The transmission coefficient takes a maximum, i.e. T : T^u*, for o : a{ where
A{ : O and the e-folding length of the first headland mode goes to infinity. The
dependence of Tm * on the geometric pa,rameters w and / is shown in figure 14.

Increasing the area of the scattering region decreases transmission if waves cannot
propagate there.

The asymptotic behaviour of T^u* for large widths u is given by

T^u- x [1 + (]r, w)21-t (rctw * l). (3.3)

This result follows from one-dimensional wave mechanics (Landau & Lifshitz 1965)
for a particlef wave travelling on a straight line. The transmission coefficient of an
incident particle scattered by a constant potential barrier is calculated by solving the
Schrödinger equation. The length of the potential barrier is r.o, and its strength
exactly balances the kinetic energy of the incoming particle with wavenumber r, (a

classical particle would be completely reflected). Figure 15 gives 7],r, as a function
of w for two headland lengths, and r.1 is given by (2.7) with o replaced by o( . The
solid lines show the result from one-dimensional theory, which is a good
approximation for u;>2nf rcr:4.t for l:0.t wit]n o(:0.275, and w > 1.5 for
t : 0 .4 with a{ : 0. 188. The decay of T^n* with increasing headland width is slower
than exponential. Equation (3.3) provides a simple estimate of the maximum
amount of energy that can be tunnelled past a headland if the width exceeds the
wavelength of the incoming shelf wave.

3.5. Confarmally equiualent geometries

Equation (2.1) is invariant under conformal mappings (Davis 1983) and so the
present results have much wider applicability. In particular the estuary and
headland geometries can be mapped to channels of constant width containing
respectively a submerged ridge (figure l6a) or a submerged valley (figure 16b).
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(b)

52t
(a)

Freunn 16. Constant-width channels with bathymetry conformally equivalent to the geometries
studied above. (o) A submerged ridge corresponding to an estuarywith r: l,t:0.6,w: l. (b) A
submerged valley corresponding to a headland with r : l, I :0.5, w : l.

(")

Frcunr 17. Bathymetries allowing transmission of energy at all frequencies without, scattering.
(o) An estuary with r : l, I : l, w : l. (0) A headland with r : l, I : 0.5, u : l.

Although explicit formulae for the derivatives of the required transformation for this
figure and figure I7 can be obtained as a Schwartz-Christoffel mapping, the
transformations themselves have no simple closed forms. However, here and also in
more complicated geometries, isobaths of equivalent geometries follow easily by
solving finite-difference approximations to Laplace's equation. The solution given in
the preceding sections then shows that submerged ridges support trapped modes,
cause strong scattering and at certain frequencies can reflect or tra,nsmit all incoming
energy. Submerged valleys can transmit energy even when they support no
propagating modes.

As the topography has been constrained to be rectilinear in the analysis to date,
discussion of the results has been in terms of the width and length of the estuary or
headland. The shape of the bottom contours is equally important and, in particular,
for a given boundary shape there is always a bathymetry allowing waves at all
frequencies to pass without scattering. This can be constructed by conformally
mapping the bathymetry for a rectilinear channel to the required geometry (Johnson
1987). Figure 17 (a, b) gives bathymetries with a rectangular estuary or headland but
no scattering of shelf waves at any frequency. Scattering depends on the shape of
both the coastline and the isobaths. In general shelf waves are not scattered if
irrotational flow is geostrophic (Johnson 1989c).

4. Discussion
The trapping and scattering of topographic waves by large abrupt coastal

irregularities has been investigated by modelling an interrupted shelf by a channel
with a rectangular estuary or headland. Solutions of the non-divergent, linear
barotropic equations for the conservation of potential vorticity are obtained by
superposing modes of increasing transverse order. The relative amplitudes of the
modes follow from requiring the velocity to be continuous. This yields a system of

(b)
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linear algebraic equations. This system is considerably reduced by using a purely real
formulation incorporating the symmetry of the geometry. Converging numerical
solutions are obtained by truncating the system to finite order.

The depth change across the estuary region is greater than that across the
adjoining channel and so the cutoff frequency for propagating waves is higher in the
estuary. As shown in recent studies (Stocker 1988; Stocker & Johnson 1989) this
leads to modes propagating in the estuary and exponentially evanescent outside.
While trapped modes in semi-infinite channels only occur in a certain range of values
ofthe topography and geometry parameters (Stocker & Johnson 1989), this is not the
case in the present bathymetry: trapped modes can always be found in the
neighbourhood of the estuary. A general reason for this difference follows from
bounds presented for the various eigenfrequencies. If a region of a shelf has a higher
cutoff frequency than its neighbouring regions, then at least one trapped mode is
supported there. n'or estuaries of width of the order the shelf width, wave motion is
localized in the estuary and round the estuary mouth. When the estuary becomes
n&rrower, wave energy no longer enters the estuary but is concentrated on the shelf.
At the same time, the eigenfrequency approaches the cutoff frequency of freely
propagating shelf waves. In the extreme case of a very narrow estuary or inlet this
yields modes trapped on the shelf at the entrance of the inlet with a frequency
slightly higher than the cutoff. This leads to the prediction that mouths of bays or
estuaries should exhibit significant non-propagating horizontal kinetic energy at
periods just shorter than the cutoff of the shortest-period shelf wave.

The study has further shown that an incident propagating wave is scattered into
a reflected and a transmitted wave through a process strongly dependent on the
geometry of the scattering region and the frequency of the incident wave. X'or many
values of the relevant parameters most incident energy is transmitted: the incident
wave propagates past the estuary mouth with little interaction. At some frequencies
transmission is perfect and an incident wave does not interact with the estuary. At
some other frequencies all energy is reflected and none is transmitted to the shelf
beyond the estuary mouth. This coincides with a resonance when the wave field
influences appreciably the interior of the estuary.

Solutions for the complementary geometry of a channel interrupted by a
rectangular headland are also given. Here no trapped modes are possible as the cutoff
frequency of waves abreast the headland is lower than in the channel. Incident w&ves
offrequency o, where o( < o < o(, cannot propagate through the headland region;
however, part of their energy always tunnels through this zone and appears as a
weaker propagating wave on the far side of the headland. Wave energy observed
after a region of no propagation is thus not necessarily locally generated; it may
come from energy tunnelled through the zone of no propagation. The amount of
tunnelled energy decreases with increasing area of the headland. The maximum
value of the transmission coefficient ?]rru* in the case of tunnelling occurs at the
headland cutoff frequency o(. F.or large headland widths scattering is essentially
one-dimensional and {,u" is a simple rational function of the ratio of headland width
to incident wavelength. If waves propagate in the headland zone, little energy is
reflected by the obstacle. For any width ofthe scattering region there exist particular
frequencies at which transmission is perfect whereas total reflection never occurs.

Schwing (1989) reports observations of subtidal variations on the Scotian Shelf
where it is interrupted by the Laurentian Channel (figure 1a). As in the present work
he models his observations as barotropic, noting that the non-local response is
consistent with theoretical estimates of first- and second-mode shelf waves and
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represents direct evidence for shelf wave activity on the Scotian Shelf. Ilnlike the
results above, the theory presented by Schwing also requires the long-wave and low-
frequency approximations and so cannot discuss trapped modes. In describing the
observations, however, Schwing notes that significant energy is present in the
neighbourhood of the estuary mouth, both at Port aux Basques on the Newfoundland
side of Cabot Strait and at Louisbourg on the shelf, away from the strait but near the
channel-shelf junction. Schwing comments that energy at this frequency (0.569
cycles per day) cannot be propagating effectively as'it is absent from the spectral
distribution at whitehead Harbour, only 140 km west of Louisbourg. The
observations may thus be a manifestation of a mode trapped in the estuary and
evanescent on the shelf away from the estuary mouth. In further accord with the
results on trapped modes in $3.2, note that the frequency of the energy in the estuary
is higher than the dominant frequency (0.438 cycles per day) observed on the shelf
away from the estuary (Whitehead Harbour, Sambro and West Head).

The three strongest approximations involved in modelling coastal flows by the
vorticity equation (2.I) are the neglect of free-surface effects, dissipation and
stratification. Taking the fluid to be constrained by a rigid lid filters out the free-
surface Kelvin w&ve. This wave is present at all frequencies and so modes trapped
when the surface is rigid may leak energy and be transformed to resonances. Energy
can also be scattered between gravity and rotational modes. Such scattering will be

'considered elsewhere, although it follows from Buchwald & Adams (1g68) and
Middleton et al. (1987) that the disparity in scales between the Kelvin wave and shelf
waves on many shelves means that coupling will be weak.

The present work considers only free modes. However, particularly in the shallow
regions of estuaries, bottom friction will be important and incoming shelf wave
energy can be dissipated. The neglect of dissipation on the shelf itself seems less
serious. Schwing (1989) estimates an exponential decay at all frequencies of
approximately 900 km in the direction of propagation, a distance large compared to
estuary or headland widths. Dissipative effects can thus be expected to be negligible
for trapped modes which, as shown by figure 5, are concentrated over the shefai the
estuary mouth: although the estuary determines the location of the trapped mode
the dynamics are close to those of propagating shelf waves. The flows likely to be
most strongly affected by dissipation are resonances like those shown in figures 7 (c)
or 10(b, c). Energy penetrates to the shallow end ofthe estuary and can be strongly
dissipated there. The estuary continues to act as a complete barrier and no energy
is transmitted at this frequency but the reflected short-wave energy ^"y 6e
considerably reduced in amplitude.

Results are derived here for barotropic flows. They thus apply directly to the well-
mixed high-latitude shelves where Middleton et al. (1g87) and Schwing (19g9)
obtained their data. However, the results would be modified significantly on steep,
strongly stratified shelves. Wilkin & Chapman (1987) point out that for sufficiently
strong stratification there are no short waves carrying energy in the opposite direct
to the long waves, and long w&ves propagate at all sub-inertial frequencies. The
trapped modes and resonances obtained here would then be absent. Nevertheless,
provided the buoyancy is less lhan f times the average slope of the shelf, some sub-
inertial waves remain evanescent (Huthnance 1978) and trapped modes are possible
in a reduced band of frequencies.

one of the authors (T.F.s.) was supported by SERC grant GR/F11028 while
performing this study. We are indebted to the referee of a previous draft of this paper
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for his helpful comments, and to Dr D. G. Wright for drawing our attention to the
paper by Dr Schwing whose observations accorded so well with the predictions of the
previous draft.
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