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256 Modeling Marine Systems

I. ABSTRACT

After presenting the governing equation for topographic waves and discussing its prop-
erties and some known solutions in bounded and unbounded domains we point out an
interesting and potentially useful connection between the spectrum of the topographic wave
operator in a semi-infinite channel and that of the Schrödinger equation of an electron subject
to the potential well. We then show that in closed basins there are three types of modal
structures: global, basin-wide; small scale, basin-filled; localized. Effects of the variation
of the topography on the dispersion relation are discussed and the influence of the curvature
of an elongated basin on the dispersion relation and on the modal structure is studied. To
further aid in the identification of the individual mode types in rectangular basins the current
ellipses and the Stokes drift vectors are computed. A preliminary analysis of a double trench
finally demonstrates how shelf waves may, through resonance, excite topographic waves in
fjords or estuarine channels.

II. INTRODUCTION

Wave phenomena are among the distinctive features that can be observed in the velocity
and temperature records of instruments which are moored in the ocean or in lakes. A large
amount of them manifest themselves as barotropic or baroclinic gravity waves and, in
enclosed basins, give rise to external or intemal seiches with usually periods of a few hours
and at most I to 2 d. Long periodic processes can, in general be attributed to the vorticity
nature of the motion. Existence of these second-class waves is due to the rotation of the
Earth and the variation of the bathymetry. In the ocean these so-called shelf waves have
widely been identified as vorticity-dominated motions that are essentially trapped along the
shores; in enclosed basins they form the topographic waves and enjoy a particularly rich
structure. Their occurrence has been observationally corroborated in only a few individual
cases (Lake Michigan, Lake Ontario, Lake of Lugano and Zurich, see Chapter 1 in Stocker
and Hutterr), but the interpretation is partly controversial because of the scantiness of the

data that were collected.
The aim of this study is to describe the structure of topographic waves in infinite and

semi-infinite channels and in closed basins which in plan view form a rectangular region or
a sector of an annulus and have a trough-like topography.

We first point out an interesting and potentially useful connection between the spectrum

of the topographic wave operator in a semi-infinite channel and that of the Schrödinger
equation subject to the potential well. It is then shown in detail that the topographic wave

operator possesses a rich and dense spectrum with essentially three types of modal structures:
global basin-wide modes, small-scale modes which fill the entire basin, and localized bay
modes. Each of these modes has its distinctive structure; however, the modes cannot be

ordered according to frequency, and often a mode with localized small-scale structure is

hardly separated from another that "fills the entire basin". This aggravates identification
of individual modes by observation. Dense nets of current meters and detailed analyses of
time series that include rotary spectra and drift-current estimates may be necessary to arrive
at reliable conclusions regarding mode identification. It is shown that drift currents of different
modes are significantly distinct and may aid substantially in the interpretation of complicated
data analyses. A preliminary analysis of a double trench finally demonstrates how shelf
waves may excite topographic waves near river mouths or fjords. It also naturally indicates
in which direction future research in topographic waves is likely to advance.

Consider the barotropic shallow-water equations subject to the rigidJid assumption. lrt
rf be the mass-transport stream function according to which
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Here fr is the time-dependent wave operator

H(x'y) > 0 is the water depth, and u,v are the vertically averaged velocity components in
the x- and y- directions, respectively. The evolution equation for $ evolves from the con-
servation law of potential vorticity and yields in general a fust order hyperbolic partial
differential equation that must be solved in the lake domain g, subject to the boundary
condition of no flow through the shore boundary d9. Thus, the following boundary value
problem emerges for $:

(x,y) c 9,
(x,y) € dO (2)

:9er{ - JlfH-,,.1 (3)

in which f is the Coriolis parameter, 2 is a unit vector pointing in the direction opposite to
the gravity vector, and V is the horizontal gradient {)perator. Equation 3, when subject to f
: constant, is called the topographic wave operator; it enjoys the following properties.t

' whenever J = 0, no waves can propagate. Any nonsteady solution is due to the
presence of the rotation of the Earth and the variation of the bathymetric profile.

. The boundary value problem (Equation 2) is scale invariant, i.e., changing x,y by the
scale [L] and the depth by the scale [H], leaves Equation 2 unchanged. This property
is due to the rigid-lid assumption. Scrutiny indicates that it holds as long as [L] is
small in comparison to the external Rossby radius
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Most significant, the topographic wave equation is invariant under conformal map-
pings. Indeed, in a general orthogonal curvilinear coordinate system € : €(x,y), "t: I(x,y) the operators E and J read

.:g_sookm

E':*(f+#) I a(.)\
H ArJ'

J[fH-"1

where J, and J, are the scale factors

.*(l
at)
d€

:11s-';9-9rr"
A€' d1 dq

ät|

0y
r': 

l#1,
J



258 Modeling Marine Systems

Since under conformal mappings J, : Jz, Equation 5 reveals the stated invariance
property. This property was pointed out and used by Johnson.2'3 It was implicitly used
also by Mysak.a

The invariance property of the topographic wave operator under conformal mappings is
a useful tool, as a wealth of solutions can,be generated from known solutions to special
geometries. Thus Stocker and Hutter' have indicated, how shelf wave solutions along a

hyperbolic shoreline can be obtained from Buchwald and Adams5 shelf wave analysis for
straight shorelines; and they show how straight-channel solutions can be used to construct
topographic wave modes in hyperbolic channels. More important, Johnson3 generates analytic
topographic wave solutions in a semi-infinite channel by conformally mapping the infinite
strip into a semi-infinite strip having a cut.

The conformal mapping property of the topographic wave operator has vastly enlarged
the set of configurations for which topographic wave solutions are known, but the conformal
mapping technique does not provide us with a tool to generate characteristically new so-
lutions. A mode with a basin-wide structure in one domain will be stretched and torted in
the transformed domain but it will still be basin wide. This is perhaps a limitation of its
usefulness, as is the fact that bathymetric contour lines are transformed with the mapping
so that topographies in the ffansformed domains may be very special and perhaps unrealistic.

Exact solutions to the boundary value problem (Equation 2) have been constructed in
simple bounded and in special infinite domains. A summary of the existing solutions is given
in Chapter 3 of Stocker and Hutter.t Lamb6 is the first to present the topographic wave
solution in a circular basin with parabolic bottom profile. Saylor, et a1.7 find exact formulas
for modes in circular basins whose bottom profile varies radially according to a power law.
Elliptical basins with parabolic bottom were treated by Ball,8 and elliptical basins whose
depth curves follow confocal ellipses are studied by Mysak,a Mysak et al.,e and Johnson.2
All these solutions enjoy the propedy of having quantized real frequencies and wave numbers.
Associated stream functions fill the entire basin and thus exhibit basin-wide structure. Figure
1 illustrates this for the three lowest modes in an elliptical lake with an exponential bottom
profile.

The literature on topographic waves in unbounded domains is far more extensive, and
it is impossible to do justice to all the relevant works. We thus limit our remarks to the
essential properties and direct the reader to the reviews by Mysakto and Stocker and Hutter. r,t2

The configurations are generally domains that are infinitely long in the x-direction with one
(shelf) or two (channel) shore boundaries parallel to it and with a topographic profile that
varies only with y, the direction perpendicular to the x-direction. The following are char-
acteristic properties of the solutions.re

The spectrum, i.e., the dispersion relation is continuous: to each real frequency there
is at least one real wave number. For a bounded slope parameter S : laWaylm tirere
is a countably infinite number of shelf modes and the dispersion relation is double
valued, as shown in Figure 2 for exponential shelf waves.s Accordingly, long shelf
waves are nondispersive, i.e., as k--+ 0, cs: öolök: c : o/k. Phase and group
velocities are the same. Moreover, for 0 < lkl < lt"l ttre group velocity is positive,
co ) 0, and energy and phase propagate in the same direction. For lkl > ko, however,
co ( 0 and the energy propagates against the phase. As lkl --+ oo tr -) 0, o(k) : oo
is called critical frequency or cut-off frequency.
When S is unbounded at a point, o(k) is in general monotone with o e o-o as k -->
@. The dispersion relation is now single valued.
In doubly connected domains (topographic waves around islands) the above statements
remain valid, but the spectrum is again quantized due to the 2n-periodicity of the x-
coordinate.
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FIGURE 1. Stream line contours of the three lowest modes in an elliptical lake with exponential bottom. (From
Johnson, E. R., Geophys. Astrophys. Fluid Dyn., 37, 2'19, 1987. With permission.)
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FIGURE 2. Dispersion relation o(k) for the first five modes of
the topographic wave equation on an exponential shelf with H (y)
: € exp (by), b : 5.4. (From Buchwald, V. T. and Adams,
l. T., Proc. R. Soc. London Ser. A, 305, 235, 1968. With per-
mission.)
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FIGURE 3. Three modes of long periodic waves in Lake of Lugano obtained
by finite element technique. (From Stocker, T. and Hutter, K., J. Fluid Mech.,
185, 107, 1987. With permission.)

To our knowledge no analytical solutions of the boundary value problem (Equation 2)
are known for domains and bathymetries H when non-separable equations emerge or equa-
tions cannot be transformed to special forms like in Ball's case of the ellipse with parabolic
bottom. Neither have cases been studied where wave numbers would be complex. Such
solutions are, however of significance as they would demonstrate existence of solutions of
Equation 2 which show substantial wave activity in a relatively nrurow region and die out
as one moves away from these regions. The situation is not unlike that of Taylor reflections
of Kelvin waves in a semi-infinite gulf.

Observations and, in particular, numerical computations for the Lake of Lugano indicate
that such spatially evanescent solutions of the topographic wave equation do exist (see Figure
3). Tröschl3 found by using finite element techniques, that among other basin-wide modes,
three independent bay modes, in the period range 69 to 91 h, existed with wave activity
only in the bays shown in Figure 3. Existence of such modes can only be demonstrated if
the real branch of the dispersion relation is extended to the complex branch, i.e., if complex
wave numbers are also admiued.

In our semianalytical channel modell'rl'r2 we have shown that dispersion relations/or
each mode are typically as shown in Figure 4. The real part of it (for o ( oo) is the typical
shelf-wave-dispersion relation already shown in Figure 2. Above the cutoff frequency follows
a complex domain, i.e., for oo ( o ( o, to each o there exist four complex wave numbers,
two of which are conjugate complex. Above o : or the wave number is purely imaginary.
A complete system consists of a countably infinite number of such mode units. If o is plotted
against the modulus of k (for simplicity), then the dispersion relation for three modes is as

shown in Figure 5. These special properties will be needed in the sequel.
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FIGURE 4. Schematic plot of the complex dispersion
relation oft) for an infinite channel. In regime I, k is
real; in regime 2, it is complex with the constant modulus
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permission.)
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Stocker, T. and Hutter, K., J. Fluid Mech., l7O, 435, 1986. With permission.)
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III. BOUND STATES AND FREE STATES IN A GEOPHYSICAL
SYSTEM

In this section a conspicuous correspondence is worked out between the structure of the
solution space of the topographic wave equation and an other well-known and important
problem in quantum physics. This correspondence helps to understand the problem of top-
ographic waves in a more general framework and provides further important questions which
remain to be answered in the future.

Topographic waves arise as periodic solutions of the linear, homogeneous boundary
value problem (Equation 2). The operator (Equation 3) acts on the complex mass-transport

stream function $, which must vanish on the boundary Ag of the two-dimensional domain.
Introduction of solutions proportional to e-i-t, yields

lI : -iov .H-lv - 2.vH-' x V (6)

where the nondimensional frequency o = to/f has been defined. Equation 6 can be written
AS

TI: _A + Y.V

in which the vector function V is given by

(7)

(8)

and contains the eigenvalue o. Equation 8 gives the decomposition of the vector field V
into an irotational and a solenoidal part.

An open domain I where the depth function H is smooth and satisfies the conditions

0 xo(x(co

>0, 0 (x(xn (e)

describes a semi-infinite channel in a (x,y)-coordinate system whose topography varies in
both directions within the shore zone 0 ( x ( xo and has a constant thalweg depth for x
) xo. By studying a semi-infinite channel that satisfies Equation 9, it was demonstrated in
Stocker,ra'l5 that the spectrum of II is composed of a continuous and a discrete part. The

two parts join at the critical frequency oo. Above this frequency, free topographic wave

propagation for x ) xo becomes impossible. However, for o ) oo the specffum is not empty;

it is discrete, i.e., solutions of Equation 2 canbe constructed provided the frequency takes

the special values o : oi (i : l, 2, . . . ). Alternatively, in the interval 0 < o { cro

solutions with any frequency can be found. Figure 6 displays two typical modes belonging

to the discrete and the continuous spectrum, respectively. Evidently, there is a distinct

difference between these two representations.

Modes which belong to the discrete spectrum are bound states of the system. This is

clear, because o ) oo implies evanescent wave activity in the zone x > xo (see Figure 6).

Although no wave energy is fed in from infinity, trapped wave energy can be found in the

shore zone at distinct frequencies. Likewise, due to the existence of a cutoff frequency,

energy cannot radiate away from the open shore zone. During one cycle vortices are formed

close to the upper shore line. Their phase propagates in a right-bounded fashion along the

v: VlogH - L 2 x VlogH
l(I

öH
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FIGURE 6. Solutions belonging to the discrete (o > oo) and the continuous (o ( oo)
spectrum. The discrete spectrum contains bound states: t}te stream function is spatially eva-
nescent as one moves away from the bay zone, and the vortices remain trapp€d. Free states
arise in the continuous spectrum: a wave incident from infinity is reflected in the bay. (From
Stocker, T. and Hutter, K., J. Fluid Mech., 185, 107, 1987. With permission.)
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FIGURE 7. Resonance within the continuous spectrum. An incident wave
excites a higher order bay rnode.

channel endwall, where they evanesce at the opposite shore line. The continuous spectrum,
on the other hand, shows fee states of the system. Wave energy which is incident from
infinity propagates along the upper boundary. The topo$aphy H which is acting like a
repellingforceintheshorezone0(x(xoduetolHlöx*0inducesareflectionofthis
energy flux and forces the vortices to follow the lines of constant f/H. It is this mechanism
which produces the reflected wave of equal wave length which propagates towards infinity
along the opposite channel shore. A characteristic quality of topographic waves is that to
each frequency there always exists a short and a long wave (see Figure 4). Thus, wave
energy could be distributed onto different modes. The study in Stockerla'ls has shown,
however, that for frequencies not close to oo most of the reflected energy lies in the mode
with the same wave number. Only close to oo is the reflected energy contained in the mode
with the second wave number. The continuous'spectrum also contains resonances. These
are bound states of higher transverse order. Since for the lowest order transverse mode
periodic wave motion with o ( oo is possible,' trapped modes of higher order can be excited.
A weak energy flux from infinity may then cause strong wave activity in the shore zone
(Figure 7).

The above theoretical results still await verification in nature via carefully designed
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mooring campaigns, or reinterpretation of measurements of long periociic signals which
exhibited so far partly ambiguous portions. Nevertheless, the findings are of interest to both
numerical and experimental oceanographers. They tell us that, in a numerical model of the
ocean, not only tidal oscillations and propagating vorticity waves are to be expected when
considering long periodic motion. Trapped vortex modes in large bays can also occur. We
also point out that a separation of the mofion due to gravity from that of vortex stretching
(topographic waves) as is done in Equation 1 can not be achieved a priori under all circum-
stances. For a large basin or semi-open domain bay trapped modes with o ) oo may well
interact with gravity waves. This coupling was left undetermined by us.

Irt us return to the conspicuous structure of the solution space of Equation 7 for a semi-
infinite channel. This is a geophysical system which may allow trapped, free, and resonant
solutions. For vorticity waves this fact was first demonstrated by Stocker and Hutter.l Other
geophysical configurations have shown similar compound spectra: e.g., irrotational flow in
a channel containing a cylindrical obstacle.l6 It must be emphasized, however, that our
results are based on a semianalytic method. In Stocker and JohnsonlT the spectrum of the
topographic wave operator is investigated for a simpler and more basic geometry of a semi-

infinite channel. It is demonstrated that the number of both bay modes and resonances is
governed by the bay topography. Further, estimates of the frequencies and the number of
bay modes are deduced.

The topographic wave problem and its special solution space in the geophysical system

of a semi-infinite channel enjoys a remarkable similarity with a well-known and thoroughly
studied problem in modern physics. This correspondence is discussed here in order to provide
a guide line for future theoretical and basic investigation concemed with the boundary value
problem (Equation 2). The related problem is the stationary motion of an electron in the

force field of a still proton. It can be understood by solving the Schrödinger Equation in
space representation

7(ö : p,Q,

7(,: A, + Y (10)

whereT( is the scaled Hamiltonian operator, V is a potential describing the attractive Coulomb
force field of the still proton, E is the energy of the electron and $ is a complex probability
function for the position of the electron. Ignoring the spherical geometry of the problem,
one can study solutions in one single dimension x with a simple potential well of the form

V(x) : 0,

-V,{
l*l > 

"0,
l^l < 

"o,
v>0 (1 1)

The structure of the solution, i.e., the probability of the particle position crucially depends

on the eigenvalue E, the particle energy. Considering the potential (Equation l1), two cases

must be distinguished.
For a particle with the energy E lower than the "well-energy" only bound states are

allowed. This means that the electron is trapped within the potential well. Moreover, bound

states are only possible for distinct energies U : 
",, 

(i : 1, 2, . . ). Consequently, for
E < 0 there is a discrete spectrum containing solutions that are localized in the well. It is
significant that both the values E, and the number of possible trapped or bound states depend

on the structure of the potential, i.e., on V and xo.

Particles with arbitrary energy E > 0 can propagate outside the potential well. The

cla.ssical theory predicts the complete transmission of a particle approaching the potential
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FIGURE 8. Model for an electron in the attractive force field (well potential) of a proton.
For discrete E < 0 bound states prevail and the particles form a stable hydrogen atom. For
E > 0 the elecüon is scattered by the proton; these are free states and occur for any E > 0.
Resonances arise in the continuous spectrum.

well. Quantum theory, on the other hand, demonsfrates that the particle is partly reflected
and patly transmitted. At distinct energies the probability density within the potential well
assumes a maximum. This is a resonant state where the residence time of the particle in the
well is enlarged. Figure 8 summarizes these three qualitatively different solutions.

Comparing it with Figure 9, it is evident that the two solution spaces enjoy very similar
properties. Both problems equally lead to three physically different states of the particle or
of the topographic wave pattern. For large wave frequencies or negative particle energies
only bound states are possible. Both particle and baymodes are not able to escape the well
or the bay. In the opposite case when the frequencies do not exceed the critical cutoff, or
the particle energies are positive, free states occur. Just as the particle is able to override
the potential well and is not caught by it, the topographic wave impinging from infinity is
reflected at the shore zone. Moreover, this reflectior/transmission process depends on the
frequency or energy ofthe wave orparticle. For certain values the system exhibits a resonant
state. This consists for the particle in an enlarged probability density to find it in the well.
It amounts to a longer residence time of the free particle within the well. Equally, the water
body in the open shore zone can be brought into resonance when a topographic wave with
a certain frequency propagates towards the bay. Table 1 illustrates further formal corre-
spondences of these two physically different problems. The remarkable correspondence of
these two problems arises due to their similar mathematical description. This table therefore
strongly suggests that the methods of mathematical physics which have been successfully
applied to particle problems in quantum mechanics, could readily be employed for the
topographic wave problem. There exists a vast literature on general principles of equations
of the form Equation 10. These principles allow important estimates on the structure of the
spectrum (e.g., is there a discrete part, etc.), on the behavior of solutions, on bounds for
the eigenvalues, and many more. Further, criteria can be formulated which relate the structure
of the spectrum to the coupling functions V or V. We encourage the mathematical ocean-
ographer to tackle this challenging problem; the number of corresponding facts to a well-
known problem may be promising.

We add some further speculations: the tunnel effect is an important mechanism in
quantum physics. It predicts that a particle can "tunnel" through a potential barrier which
his classical "brother" could never vanquish; an effect which was to experience a vast
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technical and industrial application. Topographic wave energy likewise seems to exhibit the

ability of tunneling2o. For instance, imagine a continental shelf and an estuarine domain

which is connected to the former. It remains to be verified, both theoretically and practically,

that shelf wave energy could tunnel through an estuarine domain and excite at its end a

resonant bay mode. Consideration of bathymetries which communicate with the open ocean
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TABLE 1

Collection of Correspondences between a Well-Known Problem in Quantum
Mechanics and Topographic Waves in a Semi-Infinite Channel with

Equations 12 and 13

Exarnple in quantum mechanics Topographic waves

Physical process described Electron in an attractive Coulomb Topographic waves in an open domain of
force field produced by a still pro- varying water depth
ton

Schrödinger equation Potential vorticity equation
Probability density of particle loca- Mass-transport stream function, scalar rf
tion, scalar $

ff= -A+(V - E) II= -A+V(ü)V7(ö: o nü = o

Properties of equation Partial, linear, second order, homogeneous

Equation considered

Quantity

Differential operator
Differential equation

Coupling to physical configura-
tion

Eigenvalue

Domain of integration

Boundary conditions

Structure of sp€ctrum

Discrete spectrum

Continuous spectrum

Resonances

V, scalar potential of the Coulomb
conservative force field

E, particle energy

Rr:-o<r<@or
R3:0(r<@,0<g=2t;
-rrl2 10 < nlZ
$finiteor0forlrl+o

V, vector function of the gradient

of the logarithmic depth field; V is

not irrotational
0, wave frequency

R2:0< x <o; - Bl2<y<BlZ
Semi-infinite channel

rfr finite or 0 for x + - ü : 0 for
x=0,lyl:nrz

For o ) oo, countable set? Numb€r
of eigenvalues? Dependence on V?

rlr+0forx+o
Bound states, bay modes are trap-
ped in the shore zone

For0(o(oo
Free states, topographic wave is re-

flected in the shore zone

For0 ( oi ( ooi i = 1,2,...
Higher order bay mode is excited

by incident wave

(rz)

Spectrum consists of discrete and continuous part

For E ( 0, countable set, fmite or
infinite number of eigenvalues de-

pendent on V
Q--+0forlrl--
Bound states, electron, and proton
form a stable hydrogen atom

ForE>0,
free states, electron is scattered by
the proton

ForE, ( 0,i: 1,2,...,
Particle resides for a longer time
close to the proton

therefore must be viewed as being a pqrt of a more complex water system. Interaction with
oceanic vorticity wave motion should not be ignored a priori.

IY. GEOMETRY AND TOPOGRAPIIY EFFECTS

In this section the influence of variation in topography and geometry of the basin is
studied. It essentially is a summary of earlier work by Stocker and Hutterl'rr'r2 and Stocker.14'15

A. VARIATION OF TIIE TOPOGRAPITY
Consider a semi-infinite channel with the transverse profile

h(x,y) : t'"t'l(r * e - l?l)
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FIGURE 10. Effect of topography on the dispersion relation of the lust mode (solid) and the second mode (dashed-

dotted) in a channel. (a) N : 1, (b) N = 3. (From Stocker, T. and Hutter, K., J. Fluid Mech., 170,435, 1986.

With permission.)

where lro (x) is the thalweg depth, e a small sidewall parameter, B the channel width; q <
I describes locally convex, q ) 1 locally concave profiles. For x ) 0 we define

h(x) :
p>2,
p < -2, (13)

1 is again a small shore depth parameter, p measures the "steepness" of the along-axis
depth and xo determines the extent of the bay zone.

Numerical solutions of the topographic wave equation with the specifications of Equa-

tions 12 and 13 were constructed. Their frequencies depend quantitatively on the parameters

introduced above. The value of the cutoff frequency for free wave propagation in x > xo

depends only on the parameters q (and e) which govern the global topography variations.
They determine the exact form of the dispersion relation of which a parameter study of the

real branches is shown in Figure 10 (a and b). Hence, e (and e) determine the frequency
range where free wave propagation in the far field is possible (namely for o ( oo). The q

modifies also the transverse depth profile in the shore zone and therefore influences the

frequencies of the bay modes. Figure 11 shows that this dependence is comparatively weak

as values of o only vary less than lAVo.

The longitudinal depth variations can be modeled by the parameter p in Equation 13.

It is clear that mostly modes confined to the shore zone, where the effect of p is experienced,

will be affected by variation of p. Figure 12 gives the frequencies of the bay modes as

functions of p. Whereas for p < -2 changes are moderate, they are significant for p > 2.

B. VARIATION OF THE GEOMETRY
The semi analytic method introduced by Stocker and Hutter,r permits a straightforward

extension of the solution technique used for straight geometries to curved channels with
constant curvature. This section closely follows Stocker. ra Consider, therefore, basins whose

plan view are sectors of annuli. The thalweg line is defined by the middle radius (l/rc). The

assumption of constant rc and width B leads to a domain which has the shape of a ring.
Consequently, the continuous dispersion relation would have to be subject to a periodicity
condition. This quantization will not be imposed in the figures, simply because the full curve

will provide a clearer understanding of the qualitative effects of curvature.

1*
1*
1*

sinP(zrxl2xo),

1 - sin-P(n(xo -- x)/2xo),
I,

0(x(xo,
0(x(xo,
xlXo

2.0 :05 q'5.0

q =0.5
b

q=1.0

N=3
€ = 0.05

q=5.0

q= 2.0

q=10
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FIGURE 11. Frequencies of the resonances or bay

modes in or { o ( oo and a bay mode with G > oo as

functions of the transverse topography parameter q;

N : 2, e = 0.05, p : 2, rl : 0.01. The cutoff
frequencies of the two mode units are indicated.ls

Figure 13 shows the dispersion relation o (k) of a thfud order model for the frst two
mode units. For rc : 0 the symmetry with respect to the vertical is visible, whereas for n
> 0 it is broken. For a given frequency all wave numbers are shifted to the right, which
implies that curvature shortens waves for k > 0, whereas they become longer for k < 0.

Recalling that the solutions are freely propagating waves (i.e., proportional to €(k--)),
which are right bounded, it follows that the wayes traveling along the inner (outer) shore

line are longer (shorter) than in the case x : 0. Further, the critical point (ko* , o;r ) in the

domain k > 0 is translated to lower frequencies and larger wave numbers, and the opposite

is true for (lq-, cr;) in the domain k < 0. Consequently, there exists a frequency range

oo+ ( o ( o;, where only waves with k ( 0 can propagate. These are trapped along the

inner shore line. If there existed eigenfrequencies in this range for a closed basin, their
modal structure would exhibit a particular pattern with wave motion primarily at the inner

shore line. This is discussed later. Table 2 lists the boundaries of these frequency ranges.

For increasing curvature the values of o; and of lie farther and farther apart; this effect is

weak for steep topographies. Note that from an observational point of view the difference

is very small, e.g., T; - 57 h and To+ : 63 h for q : 2 and rc : 0.2,a difference that

is unlikely to be detectable by field observations.
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On the other hand, for increasing K and q the difference of the wave numbers increases.
These properties are also displayed in Figure 14. Two mode units of the dispersion relation
are given for different values ofthe topography and curvature parameters. The results support
the findings listed in Tables 2 and 3.

So far we abstained from giving a physical explanation of the curvature effect and only
listed and discussed the various alterations that arose in the dispersion relation because of
the presence of curvature. In order to understand the physical mechanism which produces
the asymmetry of o(k) we now work out the characteristic difference between the equations
formulated in the natural coordinate system and,in the Cartesian system. Topographic waves
are described by the conservation of potential vorticity. This quantity contains three con-
tributions: the curl of the velocity field representing the relative vorticity, the Earth's rotation
as an additional vorticity, and the bottom topography. It is the relative vorticity which is
primarily influenced by curvature. We give a rough analysis.

The potential vorticity Equation(2) in cylindrical coordinates (r, 9) describes topographic
waves in a domain of constant curvature. Using Equation 5 and J, : l, Jz : r for cylindrical
coordinates implies

1d
rdg

I+-
r

ö rl
NL; * (;#) 1

r
+

drl,

dr

a /1dü\
-l-____Ltöq \rH a,p/

aü d /1\
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TABLE 2
Frequencies cf, for k I 0 where

0ol0k = 0 for Different Values of
Curvature K and Topography q

q rc=0 r=2.0 rc=0.5

0.2745

0.2745

0
0.2081

0.2081

0

0.2799

o.2708

0.0091
0.zttt
0.2059

0.0052

0.2947

o.2669

0.0278
0.2r88

o.2033

0.0155

Note: The parameters are N : 3, e : 0.05, frst
mode unit.
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FIGURE 14. Curvature and topography effect on the dispersion relation.la
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TABLE 3
Wave Numbers kt Corresponding to

Table 2

r=0 r=0.2 x=0.5q

- 7.83

21.9

t4.t

- 9.83

25.1

15.3

In order to invcstigatc the main effects of curvature on the wave properties it suffices to
assume that the channel is only weakly curved. Such a domain has a radius of curvature
l/rc, which is large compared with the channel width B. The arc length s is approximately
given by

2.O

5.0

k;
kü

kä-l k;
k;
kä

kü -l k;

- 14.9

t4.9
0

- t7.'1

17.'l

0

- t2.t
17.8

5.7

- t4.6
20.7

6.1

Consider periodic solutions proportional to e-i- and domains where the depth profiles are
azimuthally constant. Equation 14 then reduces to

[*. * n1,r,.. - (*)t,.. i*.] .;(*) ]u.:0 (1s)

Is: -g
K

d la
ö9 räs

(16)

whereby the varying position r was replaced by the constant radius of curvature l/rc. The
same approximation is introduced in Equation 15 yielding

(17)

Equation 17 is the potential vorticity equation in Cartesian coordinates with the extra term
rcrf. incorporating to first order the effects of constant curvature.

The simple geometry of a weakly curved exponential trench with l/r ( r < l/r * w
allows the analytical solution of Equation 17 . Let the water depth be given by

H(r) : g-zu'

and look for solutions

[* * *" - (*)*. * *ü.] + ] (])+" : o

-0.)' '"(' -:)
'sm_--ü: e*".e

Inserting Equation 18 into 17 requires

(18)

(1e)o::
k2+

2bk

('. ) + (ä)
)
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FIGURE 15. Two trench profiles (a) and (b) can model the effect of curvature in the natural
coordinate system of a curved channel with parabolic bottom profile (c) by a "first order
perturbation' ' of the TW-equation . The effects on the dispersion relations are indicated (dashed

for r : 0, solid for r # 0) below.ra

This is the dispersion relation of topographic waves in a bend. Figure 15 illustrates how
the two curved trenches with b < 0, (Figure 15a) and with b > 0 (Figure 15b) can model
the curved parabolic channel displayed in Figure 15c. On the northern hemisphere the phase
of these waves propagates with the shallow water to its right. Hence, for b ( 0 we must
selectk { 0sinceo } 0, andthewavetravels alongtheinnercurvedshorelineatr: 1/r.
In this situation, r ) 0 generally increases frequencies, as can be inferred from Equation
19. A wave is trapped along the opposite outer shoreline if b > 0, i.e., the water is shallow
towards r : l/rc * B and k > 0. Curvature rc ) 0 then decreases frequencies.

The dispersion curyes given below the two trenches explain the effect of curvature and
are qualitatively in agreement with the behavior observed in Figures 13 and 14. The cutoff
frequencies of waves traveling around convex bends are increased, whereas those of waves
around concave bends are decreased. These fundamental alterations due to the introduction
of curvature lead to an understanding of the modal structure of the eigenmodes in closed
curved basins.

Figure 16 shows corresponding eigenmodes for different values of the curvature ordered
according to frequency. Generally, curvature does not alter the eigenfrequency very much.
Deviations of the eigenfrequencies for a strongly curved basin (rc : 0.5) from the values
in the straight lake are throughout less than 5Vo. Eigenfrequencies decrease with increasing
curvature. There is little hope to detect experimentally any effect of curvature on the ei-
genfrequency. The stream-function patterns, on the other hand, show more pronounced
modifications.

The Ball-modes (basin wide, large scale) clearly demonstrate the influence of the shift
of the wave numbers along either shore line. Although the total number of vortices remains
constant when increasing r, the number of gyres along the inner shore decreases in favor
of that along the outer. Along with this, the inner vortices become larger.

As could be expected in advance, the stream function of the bay modes (o : 0.395
and o : 0.115) is hardly altered in the curved basin. This is rather obvious, because the
bay does not "see" much of the curved basin. Mainly modes which consist of wave motion
over the whole curved domain will be influenced by this change of geometry.

The channel modes (basin wide, small scale) demonstrate remarkable changes. By
increasing the curvature, wave motion is significantly attenuated in the region towards the
center of curvature. For rc : 0.5 (an extreme case) the eigenmode only consists of a trail
of waves trapped to the outer shore line.
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In the critical interval I = [oo*, o;] there are indeed eigenfrequencies which exhibit
the conjectured structure. Few large-scale vortices are trapped to the inner boundary of the
basin. Solutions for rc > 0 with o C I are structurally new. In the course of one cycle the
vortices do not propagate around the basin but rather remain trapped in a domain close to
the inner boundary. This mode, however is not a true bay mode since wave motion contains
a contribution from the real wave number k ( 0.

The above results suggest that with the exception of frequencies close to the cutoff,
curyature effects can safely be ignored, since frequency shifts are small and most likely
below the resolution of available instruments. On the other hand, Figure 16 indicates that
detection of subtleties in the model structure would require a very high number of moored
instruments in the transverse direction of the basin.

V. CURRENT FIELD

In this chapter the current structure in closed rectangular basins will be analyzed by
constructing current ellipses and co-range and co-tidal lines and by evaluating drift currents
for the three mode types. These quantities facilitate interpretation of the mode structures
that are associated with detected frequencies via field observations.

A. CURRENT ELLIPSES AND TIDAL LINES
Consider the evolution of the transport vector 2 x V{, and of the velocity field (2 x

V.lryH at fixed positions within the basin. An outstanding property of topographic waves is
the fact that the field vector rotates either cyclonically or anticyclonically at a fixed position.
Established statistical methods exist that permit calculation of the orientations of the rotation
and of associated eigenfrequencies from periodograms of time series of velocity or transport
field components. These rotary spectra are described in Gonella.le

In the present study all fields have harmonic time dependence, and, hence, the tip of a
field vector will describe an ellipse. This ellipse is called transport ellipse (for the transport
yector 2 x V.l,) or current ellipse (for the velocity vector [2 x V{)]/H).

The qualitative structure of the stream function does not strongly depend on the values
of the geometric and bathymetric parameters. It therefore suffices to examine one particular
case. Figures 17 to 19 display eigenmodes ofthree examples ofeach type and their transport
patterns. Some 63 positions within the rectangular basin are evaluated and the transport
ellipse is plotted as a dashed (solid) curve if the transport vector rotates in the (counter)
clockwise direction.

The frst Ball-modes are characterizedby a central area with counterclockwise rotation,
(Figure 17). Its size depends on the mode, and we note that only the linear Ball-mode has
a nonvanishing current vector in the center. This central area is surrounded by a region of
clockwise and weak rotation. However, only Ball-modes with no "radial" node are given
here; others emerge at much smaller frequencies, i.e., below the cutoff frequencies of the
next mode units and would consist of more interlocking areas with different senses of rotation.

Figure 18 shows a selection of three bay modes. At the lake ends, wave activity is
observed in the form of clockwise rotating currents. For higher bay modes these transpon
ellipses degenerate to nearly linear motion. It follows a zone of strong counterclockwise
rotation, roughly at the position where the slope of the thalweg has a maximum. Beyond
it, closer to the center, wave motion rapidly decreases and dies out.

The stream functions and transport ellipses of three channel modes are plotted in Figure
19. It is typical and could already be inferred from the stream-function plots, that there are
bands along the long side of the basin. Close to the shoreline clockwise rotation is observed,
being strongest in the middle of the elongated lake but weak at the long ends. Parallel to it
follows a band where the current vectors rotate counterclockwise. Along the whole basin
in the neighborhood of the thalweg line nearly no wave activity is experienced.
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FIGURE 17. Stream function and transport ellipses for three Ball-modes. The small frames
show contours ofthe stream function for t : 0 (bottom), t : T/8, t : ^Il4 (top). Transport
ellipses are dashed (solid) for (counter) clockwise rotating transport vectors. I indicate
mooring sites on the linear anays A and B, respectively.

The spatial and temporal interrelation between the fixed positions where individual
mooring measurements can be taken must also be discussed. This can be readily achieved
by calculating lines of constant phase and lines of constant amplitude of the transport stream
function and the velocity vector fields.

Figures 2O to 22 display co-tidal and co-range lines of all important fields, i.e., the
stream-function (scalar) and the transport field (in components). The linear Ball-mode (Figure
20) has the simplest structure. Co-range lines of the stream-function field are mainly circular,
giving rise to a positive amphidromic point in the center of the lake. The co-tidal lines join
at this point, The transport field (related to Vrf) has now two amphidromies located at
conjugate positions for both components; each exhibits a positive sense. Note that the
transport field is weak towards the lake ends.

Figure 2l gives the quantities for the next higher Ball-mode (quadratic). The co-tidal
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FIGURE 18. Same as Figure 17 for three bay modes.

lines repeat themselves once in the revolution, i.e., the co-tidal line pattern exhibits central
symmetry. This was already evident from the sheam-function pattem, as the phase does not
complete an entire revolution around the basin during one cycle. The transport field shows
now three amphidromic points for each component, all of which are positive.

The patterns of a bay mode are different, (Figure 22). Co-phase lines are mainly straight,
joining at one or two positive amphidromic points at the center of the basin. The v-component
of the transport has a nodal line across the basin near the lake end. In view of the smaller
spatial scale of the vortices the channel modes (not shown here) have much more complicated
patterns.

B. PARTICLEPATHS
A consistent linear wave theory predicts closed particle paths. Within this linear ap-

proximation, the path line represents the scaled trace of the tip of the Eulerian velocity
vector, the current ellipse. Figures 17 to 19 give an impression of the shape and orientation
of these particle paths. Note, however, that they apply for transport ellipses and therefore
depth-integrated path lines.
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FIGURE 19. Same as Figure 17 for three channel modes.

The linear theory can be extended to provide a first estimate of the particle path caused
by advection; this nonlinear effect, called Stokes drift, causes a net displacement during one
cycle due to the spatial variation of the velocity field. Observationally, the Stokes drift
manifests itself as a mean transport.

Figures 23 to 25 show the depth-integrated Stokes drift and correspond to Figures 17

to 19. It is a property of the Ball-modes (Figure 23) that the counterclockwise propagating
gyres produce a net drift in the clockwise direction. This induced circulation is closer to the
boundaries the higher the Ball-modes zue. For the quadratic and the higher Ball-mode a

weak cyclonic rotation in the lake center is observed. At the lake ends there is no drift.
The bay modes in Figure 24 exhibit significant transport at the lake ends, each in a

different fashion. The mode with o : 0.395 has a pronounced drift along the short sides
of the basin against the direction ofphase propagation. The lower left and top right corners
act as sources; the others are sinks of the drift current. The next bay mode shows a pair of
lateral gyres and the structure of the stream function of the mode with o : O.263 implies
a drift along the ends of the long sides. The role of the sources and sinks is now interchanged.
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U - TRAN SPORT

V.TRANSPORT

FIGURE 20. Lines of constant phase (solid; co-tidal lines) and lines of constant amplitude

(dashed; co-r:rnge lines) of the stream function, the u-component (along thalweg axis) of the

transport and the v-component for the linear Ball-mode. The numbers labeling lines ofconstant

phase correspond to multiples of an eighth of a period; those of constant amplitude indicate

the fraction of the maximum amplitude.ta

Figure 25, frnally, shows drift vectors for the channel modes. They hardly differ from

each other, and the pattem consists of two near-shore drifts in opposite direction to phase

propagation. The drift is experienced only close to the long sides of the basin and most of
the lake has no transport at all. Opposite corners again act as sources and sinks, respectively.

The Stokes drift has a particular sense of direction which is mainly clockwise around the

basin (on the northern hemisphere). Nevertheless, the three mode types have different

transport properties: Ball-type modes exhibit a circular pattem confined to the center of the

lake. Bay and channel-type modes show a straight drift current along the short and long

sides of the basin, respectively. This again undprlines that knowledge of the modal type is

of particular importance.

VI. THE DOUBLE TRENCH

In this section a crude model is presented which shall give an idea of the behavior of

shelf waves near river mouths, fjords, or estuarine domains. The simplicity of the model,
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U - TRANSPORT

V-TRANSPORT

FIGURE 21. Same as Figure 20 for the quadratic Ball-mode.

however, does not lead to resonant bay modes as it only provides a first impression of the
possible behavior of the composed geometry. Figure 26 illustrates the configuration in a

(x,y)-coordinate system. An infinite trench as an idealized model for a continental shelf of
width s communicates with a closed smaller trench of width r and length {; this appended
gulf accounts for the estuarine region. The presence of vertical walls at X : 0, y : 0 and

x : ( * s is a crucial drawback of this model, particularly because topographic waves are

studied. It was shown in Stocker and Hutterl that presence of discontinuities in the isobaths
affects the propagation mechanism of topographic waves considerably. The reason why the

trench is used is its analytical simplicity: the dispersion relation f(o,k) : 0 is a simple
quadratic equation in k and thus, real and complex wave numbers can easily be determined.
The latter are known to play a significant role but are cumbersome to calculate for less

restrictive geometries.

The trench profiles in the two domains are given by

h"(x,y): tbeol, 0<y<r (20a)

for the estuarine channel and

h"(x,y) : lb€'*, { < x< { + s (20b)
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FIGURE 22. Same as Figure 20 for a bay mode. The nodat line (dashed-dotted) is indicated'
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(22a)

(22b)

for the infinite trench modeling the continental shelf. As demonstrated in Stocker and Hutterl

the solutions in the respective domains read

üi : e-'*eo"'"ri.(ry)"xp(ikix) Qla)

üil : e-'*e'"'a'.-''r;n(mr(x-- 
f))exn{*-v) (2lb)

and the wave numbers !; and ki, of the nth and the mth transverse mode satisfy the dispersion

relations.

(K)'- 3* * [T. (T)'] : o

(t;l'- i* * [f . (T)'] : o
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FIGURE 23. Depth-integrated Stokes drift during one period for three Ball-modes

From these, cutoff frequencies for shelf and estuarine waves can easily be determined. It
can be verified that the solutions (Equation 21) satisfy the no flux condition rl4 : 0 on the
linesy:0, y: r, andüi,:Oonx: 4,x: { * s. Wefurtherrequirerfionx:0
because the estuary is assumed to be closed. In order to achieve no flux across x : 0 the
stream function {i must be a superposition of solutions with the two possible wave numbers
I( of the nth mode which satisfy Equation 22a. Equation 2la, therefore, is replaced by

üe - e-ideo/-tt(T)[exp(ikix) - exp(ik!,x)] (23)

describing a standing wave in 0 ( x ( (,.It can be seen that the semi-infinite trench cannot
sustain a bay mode which is evanescent away from the wall. We are therefore restricted in
this simple model to consider only periodic wave motion (superposed evanescent motion)
in the estuary. This implies that the frequency must not exceed the cutoff of the fundamental
mode in the estuary, i.e.,
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FIGURE 24. Same as Figure 23 for three bay modes.
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n1-"-\/g+an*

The solutions in the respective domains must now be patched together. The junction in the
neighborhood of x : (, has a peculiar structure in that there exists a vertical, roughly
triangularwallaty: r,{<x< ( +br/c.Irisitssurfaceprojectionandfristhesurface
projection of h' : h". Aware of the imposed idealizations, we require

ü": ü"

on I:IrUf, (24)
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FIGURE 25. Same as Figure 23 for three channel modes.

These statements are reasonable except perhaps for the second one along f, where the

topography is not continuous. The depth of the estuary, however, is much smaller than the

shelf depth, i.e., eb' ( e"" and l, is a very short line. Equally, the jump in h at y : r can

be neglected. The continuity of r.! on I, implies that for rf a superposition similar to Equation
23 must be chosen because $" vanishes on fr. We select for the mth mode

üi, : e i-e<"'2)*sin(
) texn(iki*(r-r)) - exp(iki-(y-r))l

mtr(x - 4)

s

An exact satisfaction of Equation 24 amounts to the superposition of an infinite number of
modes. Let us restrict considerations to one pair (i.e., ki, and ki,) of shelf waves of the
flüst transverse mode (i.e., m= 1); trapped shelf modes must not be included. The wave
field in the estuary, on the other hand, shall consist of the fundamental pair (Equation 23)
with n : 1 and a series n : 2,3,... of evanescent solutions of the form Equation 2la.
These are needed to fulfil Equation 24 and are assumed to decay exponentially away from
l, towards x : 0, i.e., ImK ( 0, n : 2,3,... . These preliminaries lead to the solution

'i4.CI,{r(@t,

i;öm,,,.ib.

l0

t ai0 a
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FIGURE 26. Double trench as a crude model of an estuary in connection
with a continental shelf.

I

I'*+r'

which must satisfy Equation 24. The system Equation 25 contains the N * 1 unknown
complex coeffieients E,, (i : 1,..., N) and S,. These are usually determined by evaluating
Equation 24 atM points along the curve f. This procedure is called method of collocation
or point matching. From Equation 24 follows

ü"-rl":0, on r1

[e,rinq[exp(ik;,x) - exp(iki,.)f + j 
""r-(T)

exp(iki,x) (2s)

*" : Sre-i-e""rtn 
zr(x - {) 

[exp(iki,(y-r)) - exp(iki,(y-r))]

Aür" öü"__-:___-0.
oy öy

on rl

on l2

which at the M points €,, i = 1,..., M on I takes the matrix form (assume E" *, = S,)

A':4 : o

Therefore, N = 3M - I estuarine modes must be superposed and a nontrivial solution can
be constructed, provided that

detAu : 6 (27)

This equation selects the distinct frequencies o at which the shelf wave pattern resonates
with the wave motion in the estuary. It is of importance to study the influence of the number
of collocation points M (or the truncation order N) on these eigenfrequencies. Table 4 lists
a convergence test of the first four eigenfrequencies. Only as few as eight collocation points
on f yield already a satisfactory value of the eigenfrequency.

aÜ' dÜ"'- -0.äv ov

(26)
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M

TABLE 4
Convergence of Eigenfrequencies

Obtained by Equation 27

( = 4,r = 1. b = 1, s = 2, c = I

8 0.15284
10 0.15275
t2 0.1s268
14 0.15261
16 0.15254

0.14170
0.t4t43
0. 141 16

0.14095
0.14082

o.r2755
0.12711
0.12680
o.12644
o.12601

0.1 1338

o.tt284
0.t1243
0.1 1 197

0.11173

f = 0.153 (= o1L2

g = 0128

FIGURE 27. Distribution of nodal lines for the first four eigenfrequencies

of the double trench shown in Figure 26 having the parameters r : 1,

b:l,s:2,(:4,c:1.

It is instructive to investigate the influence of the five geometry parameters (, r,b,
(length, width, and slope of the estuary) and s, c (width and slope of the shelf). For the

following, the parameters are selected as follows: M : 8, (, : 4,r : 1, b : 1, s : 2,

c : 1 unless other values are stated explicitly. Figure 27 shows for the frst four lowest
eigenmodes how the nodal lines are distributed in the infinite and the finite estuarine trench.

In one case we also show the distribution of the stream function. Amplitudes are large

between nodal lines with the same signature (dashed-dashed) and small between those having
different signature (solid-dashed). With this rule qualitative pictures of the distribution of
the stream function can be constructed in the other cases.

Figure 28 shows how the eigenfrequencies of the fust nine modes of the double trench

vary with the length of the estuarine trench. For each mode o is monotonically increasing

with the length of the estuary and for large (, seems to approach the cutoff frequency. Figure

29 shows how the eigenfrequencies of the four first modes vary with the width of the estuary

trench (left) and with the strength of the topography, b (right). For all modes, the wider the

trench is, the larger the eigenfrequency will be; equivalently, the stronger the trench topog-
raphy is, the larger the eigenfrequency will become. This effect is particularly pronounced.

Finally, in Figure 30 we show the dependence of o on the width and the topographic strength

of the infinite trench. These dependencies are virtually absent or very weak. It follows that

the resonating conditions of the double trench are critically influenced by the topographic
features of the estuarine trench but only mildly by those of the shelf (which functions as

the generator ofthe resonating effects). This indicates that local resolution ofthe topography

0= 01r3

Y',--



Volume I 287

0.r6

0r5

0.14

0t3

0.t2

0.r I

0

Mode

0.26

0.2t"

0.22

0.r8

0.r6

0.14

0.12

0r0

---00t

L

9
l+

FIG{JRE 28. The first nine eigenfrequencies of the double trench shown
in Figure 26 withparameters r : I, b : I, s : 2, c : 1, and I < f,
( 8. Computations were done with M : 8 collocation points. For each

mode o + o6 as { + o, where oo is the cutoff frequency.
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FIGURE 29. The first four eigenfrequencies of the
double rench shown in Figr.t 26 with parameters b :
1 (left) andr : I (right); s : 2and!, : 4. Computations
were done with M = 8 collocation points.
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FIGURE 30. Dependence of the hrst four eigenfre-
quencies of the double trench shown in Figure 26 on
the width s and topography parameter c of the infinite
trench. Parameters are c : 1 (left) and s = 2 (right);
andr = 1, b : 1, 4 :4.The numberof collocation
pointswasM:8.

for topographic waves needs to be accurate, while far field conditions that generate the local
activity may well only roughly have to be known.

The recent study by Stocker and Johnson2o investigates the topographic wave problem
in geometries consisting of a shelf channel intemrpted by an estuary or a headland.
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