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ABSTRACT

The potential vorticity equation describing topographic waves is approximately solved using the channel
method of Stocker and Hutter. The domain of integration is a semi-infinite channel and models an estuary,
the bathymetry of which is varied through a transverse and a longitudinal topography parameter. It is shown
that in this domain the spectrum of topographic waves consists of a discrete and a continuous part. The former
exhibits wave modes trapped at the closed end of the channel; these waves correspond to the bay modes in a
rectangular basin. Resonances with a similar bay-trapped structure also occur in the continuous spectrum. Their
dependence on the bay geometry is studied. A consistent explanation of the three topographic wave types found
earlier in an enclosed basin is given in terms of topographic wave reflections.

1. Introduction

In the last decades it became clear that a remarkable
amount of kinetic energy of water motion in ocean
bays and lakes is embodied in long-periodic waves.
These are due to (i) the local component of Earth’s
rotation and (ii) variable water depth, and the wave
generating mechanism is the conservation of potential
vorticity. The most prominent example of these to-
pographic, or second class, waves is the rotational mo-
tion along the continental shelves (shelf waves), of
which the properties have extensively been studied,
Mysak (1980). Also, in channels and enclosed lake ba-
sins, these waves could be detected and observational
results have satisfactorily been interpreted by analytical
models. For an overview we refer to Stocker and Hutter
(1987b, henceforth SH).

Johnson (1987b) and SH (1987a) pointed out that
the interpretation of long-periodic signals in the north-
ern basin of the Swiss Lake Lugano in the range of 70
to 80 hours—the fundamental internal gravity mode
has T = 24 h—in terms of fundamental topographic
wave modes was unsatisfactory. Further, finite element
solutions (Trosch, 1984) revealed that basin wide
modes only exist for far longer periods (7 > 150 h)
whereas solutions in the time range of interest exhibit
characteristic patterns. They consist of wave motion
localised in the bays of the elongated lake and are rap-
idly evanescent away from the bays (see later however).
Such modes could also be found in rectangular model
lakes (SH, 1987a); yet their physical nature was not
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clear. This can be illuminated by considering topo-
graphic waves in semi-infinite channels.

Until now, only a precursory study of reflected to-
pographic waves in semi-infinite channels was pre-
sented by SH (1986). The reflection was induced by a
vertical end wall. It turned out that these configurations
were too simple and did not fully account for the char-
acteristics of topographic wave motion. Nevertheless,
a semi-infinite channel, with an appropriate depth
profile is a geometry of importance. With it, a gap in
the theoretical knowledge of second-class wave prop-
agation can be filled. A further step toward under-
standing the propagation of topographic waves in semi-
infinite channels was made by Johnson (1987b). The
study employs the invariance property of the linear
barotropic potential vorticity equation under confor-
mal mapping. A half-plane is mapped onto a semi-
infinite channel. As the solutions in the former config-
uration can be constructed for an exponential shelf
profile, results are also available for the latter. Physi-
cally, however, these solutions must be regarded as de-
scribing only a particular reflection process. The in-
coming wave is mathematically identical with the re-
flected wave. Presently no allowance is made for a more
general situation when evanescent modes occur or wave
energy is distributed onto other propagating modes in
the course of reflection. Thus, so far the conformal
mapping technique yields geometries that exhibit per-
fect transmission of incident wave energy.

It was recently shown (SH, 1987a) that topographic
waves in a rectangular basin may structurally be very
rich. Figure 1 depicts contour lines of the streamfunc-
tions of several eigenmodes in a 2:1 basin. Generally,
three types can be distinguished: Ball-modes (type 1),
well known from analytic models, channel-modes (type
3) which mathematically are related to the former and,
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FIG. 1. Selection through the spectrum of topographic wave modes in a second-order model. The eigenfrequencies increase towards the
top of the figure. The contour lines of ¢ are plotted for time ¢ = 0 (left) and ¢ = T/4 (right). Three types of solutions can be distinguished
and cuts of the vertical lines indicate further modes not shown here. The inset displays the dipersion relation for the straight infinite channel.
(From Stocker and Hutter, 1987a.)
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more interesting, bay-modes (type 2). The frequencies

of the fundamental bay-modes exceed the cutoff a¢

above which there is no free wave propagation in the
infinite channel. These modes show wave motion
which is trapped in the lake ends. The longer a lake is,
the weaker will be the interaction and coupling of the
two bay-modes. So we wondered whether these bay-
modes could also exist in semi-infinite domains. The
above classification into three mode types was intro-
duced on the basis of phenomenological arguments and
a correspondence to the dispersion relation of topo-
graphic waves in an infinite channel was shown. Here
we intend to demonstrate that it can be put on a phys-
ical foundation.

Likewise, the problem of a gravity wave modified
by the Earth’s rotation, a Kelvin wave, propagating in
a straight channel and hitting a reflecting wall was an-
alytically solved by Taylor (1920). The result was that
the incident Kelvin wave was transformed into a re-
flected Kelvin wave traveling backward and a series of
spatially evanescent or oscillating Poincaré modes.
Complete reflection prevails if the frequency is larger
than the cutoff for the Poincaré modes. This case was
studied by Brown (1973). It is shown here that an in-
cident topographic wave analogously evolves in a series
of different reflected modes.

In section 2 the governing equations, boundary and
asymptotic conditions are explained. Section 3 gives
reflection patterns and parameter dependencies are in-
vestigated. It is shown that the three types of topo-
graphic waves can be understood in terms of wave re-
flections.

2. Mathematical model

The motion of topographic waves is best described
by the principle of the conservation of potential vor-
ticity. With the assumption of a homogeneous water
body and by invoking the rigid-lid and the fplane ap-
proximations, the linearized, time-free potential vor-
ticity equation takes the form

[ieV-H'V+2z.-VH'XVly =0, inD (2.1)

where o = w/f is the dimensionless frequency, f the
Coriolis parameter, ¥ the barotropic mass transport
streamfunction, H the water depth, V the horizontal
gradient operator and z the vertical unit vector. The
vertically averaged velocity field is obtained from the
streamfunction by evaluating

u=H"\z X Vy). (2.2)

The domain of interest is an estuary the geometry
of which is shown in Fig. 2. The natural coordinate
system (s, n, z) has a straight n-axis and the curved s-
axis follows the surface projection of the thalweg. We
assume a width B(s), a local radius of curvature «~!(s)
and symmetric cross sections such that H(s, n) = H(s,
—n). More specifically, we choose
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FIG. 2. Estuary domain 2 with open boundary 42 in a natural
coordinate system (s, #, z). Cross sections are symmetric with respect
to n and have width B(s). The shore zone ® 0 < s < 5, joins at 5o a
straight, infinite channel ® with constant cross sections.

q'
B(s) )
with the sidewall parameter ¢ and the transverse to-
pography parameter g allowing for convex (g < 1) and
concave (g > 1) profiles. The shore- or bay-zone 0
< § < Sp joins a straight, infinite channel of constant
width and thalweg depth at sq.

The boundary value probiem (2.1) must be com-
pleted by boundary conditions. Transport Hu through
the boundary vanishes, thus implying

¢=0, on 4D. (2.3)

Since we study topographic waves in an open domain
with a boundary line which is not closed, we further
require asymptotic conditions. In the case of wave ex-
citation from infinity we state

H(s, n) = h(s)(l R,

¢ = finite, as s-> o0, (2.4)
and, alternatively, if there is no wave source at infinity,
¢y—=>0, as s> co. (2.5)

A method was recently presented which economically
solves (2.1) subject to (2.3) in a straight, infinite chan-
nel; this is described in SH (1986). The idea was to
make use of the narrow, elongated shape of the ba-
thymetry. The streamfunction was expanded in terms
of a complete function set {P,}, according to

2N
Y(s, n) = 25 Ps, n(s),

a=1

(2.6)

thereby incorporating all functional dependence on n
in the preselected 2N basis functions P, (N symmetric
and N skewed with respect to n = 0). These can be
chosen, for convenience, as trigonometric functions
fulfilling (2.3). Each basis function is weighted by a
residue function ¥,(s), which remains to be determined.
For a finite order of expansion N we anticipate that
(2.6) represents an approximation of the exact solution.
With (2.6) the two-dimensional problem (2.1), which



612

is amenable to an exact solution only for few cases,
can be approximated by a system of ordinary differ-
ential equations for the residue functions. The system
is obtained by a weighted integration of the two-di-
mensional equation (2.1) over the narrow coordinate
n and using the expansion (2.6). This procedure is ex-
plained in details in SH (1987b). The following para-
graphs give a summary.

In the region of the semi-infinite channel the
differential equation can be transformed to an algebraic
system looking for solutions proportional to exp(iks),
see SH. In this region wave propagation is governed
by the dispersion relation in the infinite channel, see
inset of Fig. 1. For frequencies below the cutoff fre-
quency oy the dispersion relation takes the well-known
form of topographic or shelf waves propagating in either
channel direction (along either shore line). These waves
are right-bounded on the Northern Hemisphere. For
o > gy wavenumbers are complex and the waves exhibit
exponentially growing or decreasing amplitudes in
space. Consequently, solutions in infinite domains can
not be constructed. In a semi-infinite or finite region,
however, these solutions may well represent physically
reasonable solutions.

In region ©, however, the system of ordinary dif-
ferential equations must be integrated numerically us-
ing a 4th-order Runge-Kutta scheme because its coef-
ficient matrices depend on the coordinate s. This is
due to a varying thalweg depth A(s) modeled by

) s
n+s1n”(z;)), O<s<sy, p=2
_ wn-p [ (S0 = 5)
h(s)=< 77+1 sin ( 2s0 >
O0<s<sg, DP<—2
| n+1, s> 5.
2.7

Profiles for different values of the longitudinal topog-
raphy parameter p are illustrated in Fig. 3. The exclu-
sion of |p| < 2 provides computational advantages as
very large values of the slope parameter S = h~'(dh/

s

"
o
©
"
w
°

FIG. 3. Thalweg depth profiles for different values of the
longitudinal topography parameter p.
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ds) in the neighborhood of s = 0 and s = 54 are avoided
this way. A considerable simplification is achieved with
B = constant; the estuary has then the shape of an
open rectangle.

The solution in the domain £ can be written as

0

v = {50 )

v,

where ¥° and {* are subject to the appropriate bound-

ary conditions (2.3)-(2.5). In the far field region Y

will be a superposition of the incident topographic wave

mode and a series of reflected modes of the same fre-
quency, viz.

0<s<sg
2.8)
s> Sg,

2N
Ve =y + 2 Dy,”~. 2.9)

y=1
We select the wavenumber &; of the incident mode
such that the group velocity vector ¢, points towards
the bay opposite to that of the reflected modes with
real wavenumbers &, . Modes with complex wavenum-
bers are allowed to contribute to the far field provided
that Imk, > 0 and they decay exponentially towards
infinity. These requirements select 2NV possible from
4N available wavenumbers. Here ¢;® and ¢.,* can be
readily calculated using the.methods developed for the
infinite channel, whereas ¥° and D, remain as un-
knowns.

At 5o, where ¥° and ¥ are patched together, both
¥ and d¢/ds must be continuous. These two conditions
for each spectral component ¢, eventually allow cal-
culation of ¢° and D,. For details of the numerical
procedure and the determination of the unknowns the
reader is referred to SH (1987b).

3. Reflections of topographic waves

This section essentially follows SH (1987b), however,
a less restricted thalweg profile is studied and parameter
dependencies are given.

a. Reflection patterns in a model N = 2

We learn from (2.8) that 2NV + 1 modes are super-
posed which make up the solution y* far away from
the reflecting zone. It is of particular interest to deter-
mine the reflection coefficients R, corresponding to
the individual modes with wavenumber k,. Usually,
these are calculated with the help of an energy argu-
ment; R, then is proportional to the averaged total
energy flux contained in the mode «,. Indeed, from
the potential vorticity equation of which (2.1) repre-
sents the time-free form, a conservation equation for
the kinetic energy of the depth averaged (barotropic)
velocity field can be deduced. This equation contains
the divergence of the flux of topographic wave energy,
see Johnson (1988) for details.

Here, however, the strength of the contributing
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modes is estimated by scaling the maximum value of
the modulus of the streamfunction ¥,* over the width
with the maximum value of that of the incident mode
¥;*. More precisely, we define

max | D, |
n

R7=W|—. 3.1)
n

Figure 4 shows R, of the two possible reflected modes
as functions of the frequency. The reflected modes are
induced by the incident mode W which has ¢, 4 ¢pn
towards s = 0.

When solving for  two cases have to be considered.
If 6 > o, there exist no modes with Imk = 0 and we
cannot define an incident mode as in (2.9). Setting ¢;*
= ( renders the algebraic system, which determines y°
and D,, homogeneous. Nontrivial solutions can be
found, if ever, for distinct frequencies for which the
system would become singular. On the other hand, for
¢ < oy, the system is inhomogeneous and can be in-
verted.

Calculations have shown that there are indeed real
frequencies producing nontrivial solutions. Thus, there
exists a discrete spectrum for ¢ > oy and a continuous
spectrum for o < ay. The contour lines of the stream-
function ¢ for different frequencies are also plotted in
Fig. 4. Corresponding to the established terminology
used in quantum mechanics we may call the waves
which belong to the discrete bound states of topographic
waves in the semi-infinite channel whereas the waves
o < 0g are free states. The terminology is very appealing
and obviously applies here well, as inspection of the
streamfunctions in Fig. 4 reveals. The patterns also
show that for types 1 and 2, and type 3 with larger
frequencies, the use of a linear theory is justified.

The bound states must be identified with the type-
2 waves, bay-modes, reported in SH (1987a) and sum-
marized in the introduction. Indeed, the frequencies o
= 0.395 are the same and, when ignoring in the rect-
angle the streamfunction at the far end, the mode
structures are alike, see Figure 1. We therefore conclude
that the occurrence of the bay-mode in the rectangular
basins for ¢ > gy is due to two trapped bound states
of topographic waves in either lake bay. The stream-
function of this mode consists of 2N modes with Imk,
> 0 for s > sy and is spatially evanescent. The longer
a lake basin is, the weaker will be the coupling of the
bound modes in the respective bays.

Starting from ¢, and decreasing ¢ we observe that
the wave pattern undergoes considerable alterations
which correspond to changes in the relative strength
of the two reflected modes. Close to the critical fre-
quency oy, energy is distributed among several modes
whereas for other frequencies most of the reflected en-
ergy is contained in the @-mode. This is the mode with
the negative of the incident wavenumber. More pre-
cisely, as Ry decreases R increases. For ¢ < 0.25 Ry
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oscillates weakly while gradually decreasing and R,
> 0.98. This can be verified by considering the asso-
ciated streamfunctions. For 0.254 < ¢ < g the reflected
wave mainly consists of the O-mode. What evolves is
a beat pattern at the same channel side where the in-
cident mode propagates. The increase of Rq manifests
itself as a growing leakage of wave activity into the
opposite channel side, because the @®-mode has k
= —k;. For 0.120 < ¢ < 0.254 R, is dominant, and
this is clearly visible in the wave patterns. The disper-
sion relation has da/0k > 0 for this reflected mode and
consequently, increasing wavelengths accompany de-
creasing frequencies.

At ¢ = 0.115 a remarkable resonance is discovered:
Two coinciding peaks give rise to a local minimum
and maximum for Re and R, respectively. Looking
at the wave pattern suggests that this again is a bay-
trapped mode. Contrary to the trapped modes with ¢
> g9, which are true bound states, this mode has also
a nonvanishing periodic contribution in 5§ > sy. The
pattern is, however, a bay-mode or type-2 wave because
the characteristic structure is due to the modes with
Imk, > 0 belonging to the second-mode unit which
still has a complex branch for ¢, < ¢ < gy (see inset).

The resonance ¢ = 0.115 coincides with an eigen-
frequency in the closed basin as indicated with A. The
structure agrees well with that shown in Fig. 1. Below
this resonance the component Re dominates R again
and large-scale topographic waves are observed. There
is a further resonance at ¢ = 0.088. For ¢ < ¢, all
modes have Imk, = 0 in this second-order model and
no further bay-modes can be expected. Instead of this,
contributions of the real branch belonging to the second
mode unit are possible. More quantitative statements,
however, can not be made and models with N = 3, 4,
5, - - - would have to be investigated.

b. Topographic waves in Lake Lugano

Interpretation of the long-periodic signals of the or-
der of 70 to 80 hours observed in Lake Lugano (north-
ern basin) was puzzling for a long time. Mysak et al.
(1985) propose that the wave motion is a fundamental
Ball-mode. Johnson (1987b), using the same elliptical
basin with a realistic aspect ratio, concludes, due to
the strongly U-shaped transverse depth profiles, that it
is rather a mode with a frequency close to the cutoff
and a large along-axis wavenumber. A third interpre-
tation arose when solving (2.1) by a finite element pro-
cedure, Trosch (1984). In the period range 65 to 100
h rather small scale and bay-trapped wave patterns
evolve. The nature and properties of the latter were
not understood, but a qualitative comparison of these
findings with the streamfunction patterns in the
straight, semi-infinite channel brings clarification, see
Fig. 5. For this comparison a highly idealized config-
uration is used. Effects of curvature are small (Stocker,
1987) and need not be considered. Bay-modes are seen
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LUGANO

MELIDE

FIG. 5. Qualitative comparison of finite element results of long
periodic wave motion in the northern basin of Lake Lugano with
results in the rectangular semi-infinite channel. Periods of the latter
are smaller because a longitudinal shore topography with a smaller
slope than in the finite element basin was chosen.

to be sustained independently in the three bays of Por-
lezza, Melide and Lugano. The basin is sufficiently
elongated such that the coupling of the individual
modes is negligible. At 7= 190 h a basin wide eigen-
mode occurs which can be related to a channel-mode
with ¢ < gy, see also Fig. 1.

This new result is of importance particularly for
elongated lakes with very steep transverse topography
implying a small cutoff frequency. Let us estimate the
frequency of the quadratic Ball-mode using the model
of Ball (1965). With an aspect ratio of 1.5/17 = 0.088
we obtain the estimate of 7= 350 h. Recall that the
transverse depth profiles are steeper than the parabolic
of Ball’s elliptic basin. Periods would have to be even
longer. Measurements, however, clearly point at
roughly 70 to 80 hours being close to, or rather above,
the cutoff frequency of this channel-shaped basin. It is
thus reasonable that the signal could be the trace of a
bay-trapped topographic wave of one of the bays. For
constant sg only the topography parameters p and g
determine the frequency of the bay-mode. Decreasing
p lowers o considerably. So a bay-mode with ¢ = 0.395,
T = 43 h can easily brought into the correct range. A
further argument supporting this interpretation is the
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fact that spectral peaks of temperature time series from
Porlezza and Melide do not exactly coincide. This dif-
ference is likely to be due to two independent bound
modes at the two lake ends. Giving a final answer would
require data which would uncover the spatial structure
much more clearly than can be done with the data at
hand. . .

¢. Parameter dependence

We now investigate the influence of the geometry of
the bay on the reflection of topographic waves. The
bathymetry of the bay-zone is described by the longi-
tudinal and transverse topography parameters p and
g. Previous studies revealed the pronounced depen-
dence of the dispersion relation on g. Generally, an
increase of g, while holding the side wall parameter ¢
constant, causes a decrease of both cutoff frequencies
oo and oy, see Table 1. For the tested parameter do-
main, —5 < p < 5 and 0.5 < g < 5, the qualitative
structure depicted in Fig. 4 is preserved. It is the po-
sition of the resonances which changes with p and g.

Figure 6 displays o of the resonances or type-2 waves
as a function of ¢ when p is constant. Increasing g, i.e.
more concave depth profiles with steeper slopes, in-
creases these frequencies. Changes are, however, small.
Although the profiles alter their shape fromg=2t0 5
considerably the associated periods (7' = 16.9 h/¢) only
vary from 132 to 147 h. For g < 1.5 no resonances can
occur in this second order approximation because the
cutoff frequency is too large. The effect is reversed when
g < 1, i.e. for convex profiles.

In Figure 7 the influence of p, the longitudinal to-
pography parameter, is studied. The case p < —2 mod-
els troughlike thalweg profiles. For these, increasing
steepness causes bay-mode frequencies to slightly de-
crease. Shelflike profiles with p > 2 have strongly in-
creasing frequencies of the resonances as p is growing.
The top curve shows the bay-mode with ¢ > ¢, whereas
the lower two curves describe the resonances in g,
< o0 < 0g.

Comparing Figs. 6 and 7 demonstrates that for type-
2 waves p is the dominating parameter, i.e. primarily,
the thalweg profile governs the frequency of the reso-
nance. On the other hand, the structure of the disper-
sion relation and mainly the values of ¢, and o, are
dictated by g.

TABLE 1. Cutoff frequencies of the first (sp) and the second (s,)
mode unit for various values of the transverse topography parameter
q: N =2, ¢=005.

q
0.5 1 2 3 4 5
o 0.342 0.305 0.261 0.225 0.193 0.167
gy 0.182 0.138 0.069 0.035 0.018 0.010
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d. Wave reflection and modal types

So far, we have studied the reflections of topographic
waves, when the incident mode belongs to the first
mode unit and has ¢ 44 ¢, towards the reflecting zone.
We also investigated the situation for an incident mode
with ¢, 4¥ ¢cpn. For this case, the graph of Fig. 4 qual-
itatively looks the same except that the curves R, and
Rg are interchanged. The position of the two conspic-
uous resonances is unchanged.

Figure 8 summarizes the results of importance. The
incident mode with ¢, 4 ¢, in the right column of
Fig. 8 has its wave crests at the opposite side of the
channel. Energy is propagating towards s, whereas the
phase propagates away from it. These two cases distin-
guish two different types of reflection patterns, type 1
and type 3. Type 1 has a large scale structure with
increasing wave lengths for decreasing o. Conversely,
type 3 exhibits a small scale pattern which is intensified
for decreasing frequencies. The distinction of these
types and their individual properties agree with the
classification presented in SH (1987a). There, we only
were able to make the distinction plausible by phe-
nomenological arguments. We now have discovered a
physical explanation for the occurrence of bay-modes,
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Ball-modes and channel-modes in enclosed basins.
Comparing Fig. 8 with Fig. 1 makes it clear:

(1) The type-1 modes or Ball-modes originate from
a sequence of reflections at the lake ends which are
induced by an incident wave with ¢, 44 cpn. For an -
appropriately selected frequency, i.e. the eigenfre-
quency, the pattern is not evanescent in time and a
Ball-mode is sustained.

(it) The basin solutions classified as type 2 or bay-
modes are due to the conspicuous resonances observed
in Fig. 4. As Fig. 8 demonstrates the structure in the
bay is only weakly influenced by the incident mode.

(iii) Finally, the channel-modes or type-3 waves of
Fig. 1 can be explained as the result of a sequence of
reflections at the lake ends which are induced by a
mode with ¢ ¥ ¢pn. Contrary to the Ball-modes, the
spatial scale decreases with decreasing frequency.

These results provide a more precise and broader
understanding of topographic waves in channels and
lakes. It is now clear that demonstrated solutions of
the exact models do not exhibit the complete variability
of solutions. The existence of three distinctly different
wave types is a natural consequence of the typical
structure of the dispersion relation. The conspicuous
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topography parameter p; N = 2, g = 2, ¢ = 0.05, n = 0.01.



APRIL 1988 THOMAS STOCKER 617

TYPE 1 ] TYPE 2 TYPE 3

=0285
—— - e | e— . a—a GO — e ae v ]| e - a—
|
]
G = 0.260 G
doB 30 le
%\'T:OET:DGOC:OCLJC:(
g = 0.255% {
1o\ N
:;""\\IIO @"\")”@'\) \\l:\;
SOV
G = 0.25] ubuodo:;o:/ ,,<
| (AR e
@O i)
NN G = 0.207 505000000005020505050
(O @ JIBERISrE BRI EERREn

B INCIDENT

e} REFLECTED

FIG. 8. Reflection patterns induced by an incident wave with Cx M Cpn (type 1), and ¢z 4 ¢, (type 3), respectively. The modes at the
resonance ¢ = 0.115 and o = 0.395 are of type 2. The parameters are as in Fig. 4. (From Stocker and Hutter, 1987b, with modifications.)



618

eigenmodes in the rectangular basin can be understood
in terms of reflections of topographic waves at either
shore zone. Depending on the structure of the incident
wave the corresponding type is established. All param-
eter dependencies are explicable with the help of this
correspondence.

4. Conclusions

In this paper we studied the motion of topographic
waves in channels as they propagate towards a shore-
zone. The potential vorticity equation was approxi-
mately solved by assuming the transverse modal struc-
ture to be expressible in terms of a few basis functions.
The two-dimensional boundary value problem was
therefore reduced to a system of coupled one-dimen-
sional problems to which high accuracy integration
routines can be applied.

In the bay-zone the wave field consists of modes
with real and complex wavenumbers and streamfunc-
tions of the far field are periodic (for external harmonic
forcing) or evanescent in space (for no forcing). In the
process of reflection the incident energy is distributed
among possible reflected modes with different wave-
lengths. They form a reflection pattern which is char-
acteristic of the incident mode and the excitation fre-
quency. At distinct frequencies the estuary exhibits a
resonant behavior. A small excitation from infinity
causes pronounced wave activity in the shore zone.
This wave motion remains trapped in the channel end.

It came as a surprise that above the cutoff frequency
nontrivial solutions are possible, which decay expo-
nentially towards infinity. These are true bound states
of the system and coincide with the bay-modes of the
closed basin. The semi-infinite channel, therefore, dis-
closes a spectrum consisting of a continuous and a dis-
crete part which join at the cutoff frequency.

The existence of bay-trapped modes also has bearings
on the interpretation of observations. The finite ele-
ment solutions of Lake Lugano, which were thought
to contradict the existing exact solutions and related
interpretations turn out to be most likely the bay-modes
of this natural basin.

Further investigations are required. In many cases,
enclosed basins are connected with the open ocean by
an estuary. It is likely that the estuary can act as a
geometry that restores and transmits wave energy from
the ocean. At present, very little is known about this
interaction. A study addressing these questions is in
preparation (Stocker and Johnson, 1988a).
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Stocker and Johnson (1988b) calculate solutions of
(2.1) for a semi-infinite channel with a simple bottom
topography. It is shown that both bay-modes and res-
onances are reminiscent features of topographic waves
in an open domain. Another more general way to pro-
ceed would be to investigate the mathematical prop-
erties of the partial differential operator (2.1) by the
methods of linear functional analysis. Are there any
criteria such that this operator has a continuous and a
discrete spectrum? What is the structure of the spec-
trum?

Hence, interpretations of long periodic signals in en-
closed and semi-enclosed areas should take into ac-
count the existence of bay-trapped vortex modes.
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