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PREFACE

Wave phenomena are among the distinctive features that can
be observed in the velocity and temperature records of in-
struments which are moored in the ocean or in lakes. The
majority of them manifests itself as barotropic or baro-
clinic gravity waves and, in enclosed basins, gives rise
to external or internal seiches. These waves possess short
subinertial periods. Long periodic processes can, in gen-
eral, be attributed to the vorticity nature of the motion.
Existence of these waves is due to the rotation of the
earth and the variation of the bathymetry. 1In the ocean,
these waves are known primarily as shelf waves, in closed
basins they form the topogranhic waves and enjoy a parti-

cularly rich structure.

The aim of this study is to analyse this structure of to-
pographic waves in channels, semi-infinite channels and in
closed basins having rectangular shore lines and trough-
like topography. It is shown that the topographic wave op-
erator npossesses a very rich and dense spectrum with es-
sentially three types of modal structures; global, basin-
wide modes, small scale modes which £ill the entire basin
and localized bay modes. The finding of this characteriza-
tion must be regarded as a significant step ahead in the
understanding of topographic waves. The observationalist,
or experimental physical limnologist will learn from it
how difficult it is to identify from measured data indi-

vidual modes that may be excited by the wind forces.

Kolumban Hutter
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ABSTRACT

Topographic waves owe their existence to the conserva-
tion of potential vorticity. Egquations and approxima-
tions describing these processes are derived. An over-
view of existing exact solutions illustrates the appli-
cability and limitation of these models. An economic
numerical method which accounts for the characteristic
properties of topographic waves and the geometry of the
domain is introduced in order to approxXximately solve
the wave equation. Results in straight infinite chan-
nels demonstrate the quality of this method and moti-
vate extension towards application in closed and curved
domains. The class of solutions is much richer than has
been assumed from the exact models. Three'types of ei-
genmodes can be found: large-scale, small-scale and bay-
trapped modes. The investigation of wave reflections at
a shore-zone gives a natural explanation of these dif-
ferent types. Bay-trapped modes are eigenmodes or res-
onances of the semi-open domain such as a bay or estu-
ary. This new result enables a more appropriate inter-
pretation of long-periodic signals in lakes, and direc-

tions of further investigations are outlined.



ZUSAMMENFASSUNG

Topographische Wellen existieren aufgrund der Erhaltung
der potentiellen Vorticity. Die Gleichungen und Nihe-
rungen, welche diese Bewegungen beschreiben, werden her-
geleitet. Ein Ueberblick iiber die bekannten exakten L&-
sungen zeigt die Anwendbarkeit und Grenzen dieser Mo-
delle auf. Eine Skonomische numerische Methode wird be-
schrieben: diese trdgt den charakteristischen Eigen-
schaften topographischer Wellen und der Geometrie des
Gebiets Rechnung. Damit wird die Wellengleichung nihe-
rungsweise gel&st. Resultate in geraden, unendlich lan-
gen Kandlen zeigen die..Qualitit dieser Methode und mo-
tivieren eine erweiterte Anwendung auf geschlossene und
gekriimmte Gebiete. Die Klasse der L®sungen ist bedeu-
tend vielf&ltiger als aus der bisherigen Kenntnis ange-
nommen werden k&nnte. Drei Typen von Eigenmoden konnten
gefunden werden: gross- und kleinskalige Moden und sol-
che, die auf eine Bucht beschrinkt sind. Die Untersu-
chung von Wellenreflektionen an einer Uferzone lieferte
eine zwanglose Erkl&drung dieser drei beschriebenen Ty-
pen. Dabel sind Moden, die auf eine Bucht beschrinkt
bleiben, Eigenschwingungen bzw. Resonanzen dieser halb-
offenen Gebiete. Dieses neue Resultat ermdglicht eine
zutreffendere Interpretation langperiodischer Signale
in Seen, wund die Richtung weiterer Forschungen ist an-
gedeutet.



RESUME

Les ondes topographiques existent sur la base de la con-
servation -du vortex barotropique potentiel. Les é&qua-
tions et approximations qui décrivent ces mouvements
sont développées. Une vue d'ensemble des solutions ex-
actes connues montre les possibilités d' application
ainsi que les limites de ces mod&les. Une méthode numé-
rique écoﬁomique est décrite; elle correspond aux par-
ticularités caractéristiques des ondes topographiques
ainsi qu'd la géométrie de la ré&gion. C'est ainsi que
1'équation de 1l'onde est résolue de maniére approchée.
Les résultats obtenus pour des canaux rectilignes infi-
niment long montrent la gqualité de cette méthode et
nous encourage a l'appliquer sur des régions courbes et
fermées. La classe des solutions &tait nettement plus
diversifiée qu' admis jusqu'ad présent. Trois types de
modes propres ont pu &tre trouvé: des modes & grandes
et petites é&chelles ainsi que des modes restreints a
des baies. L'étude de la reflecion d'onde sur une rive
a donné une explication claire de ces trois types. Des
modes restreints & des baies sont des oscillations resp.
résonnances de ces régions semi-ouvertes. Ce nouveau
résultat rend possible 1' interprétation de signaux &
longues périodes dans des lacs. La direction pour des

nouvelles recherches est indiquée.

[Traduction par Dr. M. Funk]



1. Introduction

Waves in waters, such as the ocean, lakes, channels, etc., arise in a
variety of forms and types and have various physical reasons of their
existence. There are basically fwo qualities which govern wave motion in
open waters. Firstly, water exhibits certain physical properties, and thus
gtves rise to mechanical, chemical and electromagnetic response mecha-
nisms; secondly the water is confined to the geometry of the container
where it resides. Thus wave motions also reflect geometric properties. For
instance, acoustic waves are due to the physical property of compressi-
bility and are hardly influenced or modified by the geometric shape of
the basin.

Waves are generated by external forces. These forces are complex in their
spatial and temporal structure‘and thus impose a large spectrum of the

typical physical scales. The larger the "scale" of the driving mechanism
of the wave is, the lower will, in general, be its frequency. Whereas a

typical acoustic wave has a frequency of 102 571, external gravity waves
have about 1072 ¢”! and internal topographic waves'in a lake as small as
1073 s-1. This shows that waves in waters occupy a broad frequency spec-
trum which spans over many log cycles. Figute 1.] provides a first survey

of these various waves.

One proverty of waves in opmen waters is that to any such wave on a rot-
ating frame there exists a counterpart in an inertial frame. This pro-
perty characterizes a particular cfass of waves; those belonging to it
are called {4t class waves.

Quite differently, #rofational waves owe their being to the existence of
the rotation of the carrier medium; in the limit of zero rotation they
cease to exist. Waves having this property are called second class waves.
These are long-periodic wave phenomena with periods of the order of days
to weeks. Once excited they can persist a considerable amount of time
and influence the wave field of a water body. In the context of geophy-

sical fluid dynamics second class waves occur in various forms:

Planetary waves are due to the north-south variation of the Coriolis

parameter, a measure of the local angular velocity of the Earth's rota-
tion. A variable basin depth plays an analogous role, though on a smal-
ler scale, and gives rise to topographic waves (referred to as TW here-

after). Topographic waves are structurally more complex than planetary
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Figure 1.1

Variety of waves occurring in waters with their individual
time and length scales. The wave generating mechanisms are
listed below. "Seiche”" is the name of a global lake sur-
face oscillation due to gravity.

waves, because bathymetric variations can arise in all directions and

with greater variability.

This study concentrates on the investigation of the physics of topogra-
phic waves. Such long-periodic motions have first attracted interest at
the begining of this'ctentury. Poincaré (1910) pointed out the existence
of these waves in a rotating circular basin with parabolic depth pro-
file, and Lamb (1932) presented the solution for this configuration. It
was only recently, that Saylor et al. (1980) interpreted long-periodic
oscillations observed in Lake Michigan by TW's in a circular basin with
a power-law bottom profile (see section 3.2). The observations in Lake
Michigan disclose a distinct eigenperiod of about 100 hours. Fdigure 1.2
shows the bathymetry of the lake (a) and one example of the spectra of
kinetic energy density recorded at three stations (b). These so-called

rotary spectra distinguish between anti-clockwise and clockwise rotat-
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ing vector components. It can be recognized that at stations 10 and 11
the current vector predominantly rotates anti-clockwise during one pe-
riod; the opposite is true for station 9. This is characteristic of a

topographic wave mode.

Similar studies were performed in Lake Ontario (Csanady, 1976), in the
Baltic Sea (Simons, 1978) and the Gulf of Bothnia (Kielman & Simons,
1984) . For a detailed review the reader is referred to Stocker & Hutter
(1987b) . Long-periodic signals were also reported in smaller, intermon-
tane lakes in Switzerland. Mysak et al. (1985) discuss wave motions with
a period of about 74 hours. Most of the mooring sites in the Swiss Lake
of Lugano record time series with a distinct spectral peak in the re-
gion of 60 to 95 h, see Figwie 1.3. Equally, Lake of Zurich exhibited
long periodic wave motion of about 110 h, see Hutter & Vischer (1986)
and Horn et al. (1986).

Mysak (1985), Mysak et al. (1985) and a revised form by Johnson (1987 a)
present analytic solutions of TW's in an elliptic basin which can, to
some extent, explain the observed periods that arouse in Lake of Lugano.
Both models, however, suffer from substantial weaknesses. To obatinvthe

fundamental period of 74 h, the model of Mysak predicts a basin with a

period/h
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Figure 1.3

Variance spectra of the mean temperature displacement func-
tions at different mooring sites in Lake of Lugano.
[From Mysak et al., 1985]
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width to length ratio of 2:3 instead of 1:10. Johnson, on the other
hand, shows that a 74h -eigenmode in a elliptic basin with realistic
bathymetry can not be fundamental but rather consists of many small-
scale vortices within the entire basin. This mode has a large azimuthal
wavenumber (about 20 nodes along the basin axis) and it is questionable
whether such a complicated mode represents what was observed in Lake of
Lugano.

A third, disturbing controversy was brought by numerical solutions of
the TW-equation. This equation was numerically solved for Lake of Lugano
using a finite element code. The findings of Tr&sch (1984) were comple-
tely unexpected and not compatible with what is known of topographic
waves from analytic studies. In the period range of 65 h to 100 h a
large number of FE solutions is found. They lack the resemblance of any
fundamental character: Some modes consist of many small-scale vortices

which are distributed over the whole domain akin to those of Johnson.

T,=8lh T,=91h T,=69n

®
@) © o t=0
0
4
®
- t=%—T

p PORLEZZA

MELIDE

Figure 1.4

Three bay-trapped modes of longperiodic
waves in Lake of Lugano obtained by the
finite element technique.

[From Trésch (1984) with alterations]
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More interesting and puzzling is the occurrence of modes which are in-
dependently trapped to one of the bays. This is illustrated in Figure 1.4.
Such modes are new and were not known from all the existing exact mo-

dels. Moreover, their physical origin is not at all clear and obvious.

The solution of the TW-problem apparently is subtle and the answer to
the above fundamental questions can not be expected from a mere applica-
tion of an elaborate and sophisticated numerical apparatus. These con-
troversies call for a solution procedure which is more direct and expli-
citly accounts for (i) the physics of topographic waves and (ii) the
particular bathymetry of the iake basins. With it, we hope to explain
and lift the aforementioned seeming controversies and to provide an

extension of the knowledge of TW-motion in enclosed and open domains.

the various approximations. Equations of a two-layer model accounting

for baroclinic effects are also given.

Chapter 3 reviews existing exact models which can solve the TW-problem

in domains with different bathymetries. Characteristic physical proper-

ties of TW's are discussed.

I chapter 4 a numerical procedure, the Method of Weighted Residuals, is in-
troduced. It is an approximate solution technique used in a form which
preserves the physical properties of TW-motion and maintains their trans-

parency.

The method is appolied and tested for straight, infinite channels in

Chapter 7 deals with solutions of the TW-problem in rectangular and cur-

ved basins. Three distinct mode types are uncovered, and various proner-

ties of these are examined.

In g@gg{gh§ the reflection of TW's induced by a shore zone are studied,

and it is demonstrated that this approach nrovides a physically consi-

stent explanation of the different mode types.

The study concludes with a summary and an outline of further possible

work.
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2, Governing equations

In this chapter we introduce the equations and approximations from which
the TW-equation and associated boundary conditions are derived. No com-
pleteness is intended.

2.1 Equations of adiabatic fluid flow

Fundamental to the description of the motion of water are the balance
laws of mass, momentum and energy that can be applied to a fluid body.

These three fundamental laws and the equation of state lead to the equa-
ttons, quoting Pedlosky (1982),

du
3;_:—+ (ugrad) u+ ZQ.xg = g-gx(gxg)-%gradp,
ap ' =
5% ¥ div(pu) = 0, (2.1
%—%+ (ugrad)p = 0,
p=p(pT),

in which the chemical and viscous aspects of the problem have been ig-
nored. The system (2.1) describes adiabatic fluid*) motion in a system
subject to steady rotation; in other words, (2.1) contains all aspects
of geophysical fluid dynamics. Mathematically, (2.1) constitute five non-
linear partial differential equations and one algeﬁraic equation, the
equation of state. Complemented by appropriate boundary conditions these

six equations determine the six unknown fields

u(x, t) velocity field,
plx, t) density field,
plx, t) pressure field,
Tix. &) temperature field,

which are all functions of space and time. The given fields are

) angular velocity**)
) gravity field.

10

(x
%

*) A process is called adiabatic, if mass and heat diffusion are ignored. Thus, if also
radiative and shear heating are neglected, the balance of internal energy implies
de/dt = 0, which can be expressed as dp/dt = 0.

**) On the f-, or B-plane (a plane tangential to the globe) with the x-axis pointing

towards East, y-axis pointing towards North and the z-axis pointing in the radial
direction ) has the components {{ = (0,f/2, £/2) where

£=2|Q sine, F=2[g| cos .

¢ is the latitude angle and f the Coriolis parameter. We assume here mid latitude
positions on the Northern hemisphere for which case ¢ > 0 and f = 10~4 s-1, we
shall also assume f to be constant (R = 3f/dy = 0, no B-effect).
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Equations (2.1) are completed by boundary and initial conditions. The

boundary conditions are:

(i) at the lake bottom Fp = H(x) +z = 0, a tangency condition of the
flow and the prescription of the heat flow through the bottom
(usually assumed to be zero):

u.grad Fg = 0, ~
~ ! at Fp(x) = 0, (2.2)
gradT r grad Fg = 0, ~

(ii) at the free surface Fg = c(g,t)- z =0, a kinematic condition, the
prescription of the atmospheric stresses ggtm and the prescription

of the surface temperature:

dFg
T O

grnlx,t) = 8 (x,t), }at Fglxt) = 0. (2.3)
T ()_Srt) = TS()_SIt)I

In (2.2) and (2.3) n is the unit normal vector, ¢ is the stress tensor
in the fluid and ggtm, Tg are known functions of position. The boundary
conditions represent constraints on the motion, in that they select for
instance edigenfrequencies of seiches and "quantize" the otherwise free
waves in closed basins. Moreover, equations (2.1)-(2.3) pertain to a
broad spectrum of wave motion (external and internal waves): gravity
waves or seiches, Kelvin waves, Poincaré waves, shelf waves, topographic
waves, etc. Not only water motion on the Earth but equally atmospheric
motion can be explained. Among‘these are buoyancy waves, Fdhn waves,

frontal motions, Rossby waves, etc.

Parallel with the generality of the above equations goes the difficulty
to solve them. A general solution, which would embrace all aspects of
fluid motion in a given configuration (e.g. channel, lake basin, atmo-
sphere, etc.) is not yet found and is not worth searching for. The al-
ternative is to introduce more or less reasonable neglections and ap-
proximations which (i) simplify the system (2.1)-(2.3) (ii) filter out
all those effects which are not of concern but (iii) retain the charac-
teristics of the motion of interest. This approximation procedure has
cast light on various different domains of the spectrum. These often lie
apart and form distinct regimes with distinct behaviors. Connections to
overlapping mechanisms can sometimes be obtained by adopting perturba-

tion analyses.
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2.2 Vorticity, potential vorticity, topographic waves

In order to derive the governing equation of TW's consider the conserva-
tion of a quantity called potential vorticity. Let us demonstrate here by
means of a simple model that the equation of topographic waves emerges
essentially from the conservation of angufar momentum. In a second step,
by deriving the evolution equation of potential vorticity, this state-

ment will be put into a more rigorous setting.

As a preparation to the model we need the definition of the (relative)
vornticity w = curl u of the velocity field u. Recall that for a rigid
rotation with angular velocity QR this vorticity is ZQR. Hence, a rigid
rotation with angular velocity QR relative to the f-plane rotating with
2 has an absolute angular velocity QB = QR+Q and an absolute vorticity

which is twice this value.

Consider the simple model sketch-
ed in Figure 2.1, Isolate a water
column, which is assumed to be a

rigid cylinder rotating about its

vertical axis. The angular velo-

cities in the two respective po-
sitions are Q) and Q;. The angu-

lar velocity, which column 1 will

take upon transportation to posi-
tion 2 can be calculated when the Figure 2.1
censervation laws of mass and an- A mechanical analogy of the mecha-

nism of the topographic wave motion.
gular momentum are applied.

Balance of mass in the columns requires
R
m/(pm) = r] Hy = rj H, (2.4)
and conservation of angular momentum about the vertical yields

$mr?a =Lnrda, (2.5)

Equations (2.4) and (2.5) are satisfied provided the quantity Q/H fol-
lowing the fluid motion remains constant:

Q/H = constant. (2.6)
Because the vertical component of the absolute vorficity of a rigid body

motion is twice the total angular velocity, equation (2.6), on the ro-

tating Earth, is tantamount to the statement

(w,+f)/H = constant, (2.7)
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where w, is the vertical component of relative vorticity and f the Co-
riolis parameter. This quantity must therefore be conserved when one
follows the fluid motion, implying that (2.7) takes the form

qd ,wg+f
dt( m ) =0, (2.8)
which is the conservation law of barotropic potential vorticity. The opera-
tor d/dt is the convective derivative operator

d 3

E —-B—E + Egrad,

in which u is the fluid velocity.

To derive (2.8) more rigorously we form the curl of the momentum equa-
tton (2.1);. After fairly routine transformations (see e.g. Hutter, 1984a,
p. 25) this yields

d(ea _ grad p X gradp
dt p2

= gradU-ws - Wa div U + (2.9)

where
Wa = W+ 252 = curl ‘;H—ZQ. (2.10)

Accordingly, the material rate of change of the absolute vorticity w, is
made up of the three terms on the right hand side of (2.9). The last
term is the production of vorticity due to the fact that density gradi-~
ents and pressure gradients are not parallel; this is vorticity produc-
tion by baroclinicity. The first and second term on the right describe
the production of vorticity due to vortex tilting and vortex stretching
(see Pedlosky, 1982).

More useful than the concept of vorticity, in the present context, is
the concept of potential vorticity, which was introduced by Ertel (1942).
In the presentation below, we follow essentially Pedlosky (1982).

To introduce the potential vorticity, replace in (2.9) divu by -p/p to
write it in the form
grad p X gradp

d , Wa 1
o oy . N i
Erad o) o gradU-wa 3

. (2.11)

Consider a scalar quantity A which satisfies the balance statement

A
&= (2.12)

where Yy may incorporate flux, supply and production terms. Let gradX
be the gradient field of A and form the inner product of (2.11) with
grad \. This yields

gradp X gradp

grad)\-—i( 3
P

) = (% graag-ga)'gradk+gradk-
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If one adds the identity

Wa d _ Ya di Wa
=i dt(gr:a\d A) = 5 - grad (dt) - grad A (grad u 5 )
and uses (2.12) these two equations combine to yield
d,Wa-grad A _ W, -grad Py gradp X gradp
7y 5 & 5 + grad A« -——————-—p3 & (2.13)
The guantity r’“ |
gt 28 A (2.14
™ 5 - grad . )
is called the potential vorticity. It follows that if
(1) A is conserved for each fluid particle i.e., Yy =0, or ¥, = constant,

and

(ii) the fluid is barotropic, gradp x gradp=0 or A can be considered a
function of p and/or p only [grad X = (3A/3p) gradp + (3X/3p) gradp],

then the potential vorticity for each particle remains constant. Compar-
ing (2.13), (2.14) with (2.8) it is now plausible that by appropriately

selecting A, equation (2.13) will generate the special case (2.8).

Consider the equations defining the top and bottom boundaries, Fg =
t(x,t) -z = const. and Fp = H(x)+z =const., relations which must be
valid for all times., Hence, Fg, Fg, Fg+Fg and all product combinations
of these are candidates for A, which make the potential vorticity a con-

served quantity. In particular

B on i . ZEH (2.15)
T Fg+Fg [ +H. )
is conserved along particle paths. Thus
w+2Q z+H
g = g -grad(m) (2.16)

is also conserved. In a barotropic process where p is constant (2.16) is
replaced by the barotropic potential vorticity

z+H

Tg = (Q-&Z{l)-grad(c_'_ﬁ

) (2.17)

In the shallow water approximation where the horizontal gradients of H
and ¢ are small quantities the dominant component of gradA in (2.17) is
the z-component. Thus

wy + £ wy + £
Ty = ;z+H , or mg = —Z—H—-, for %« 1,

satisfy the evolution equations
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d wz+f 6 qa wg+f
g aw! =0 or gy

) =0, for << 1. (2.18)

ml.n

The last equation agress with (2.8).

To derive the evolution equation for TW's from (2.18) consider the mass

balance equation® 3
T Ve(Hu) = 0, (2.19)

in which V is the two-dimensional, or horizontal gradient operator.
Henceforth this notation will be used throughout, i.e. grad, div, curl

are three- dlmen51onal whereas V, V. and Vx are used in two dimensions.

When the nigld-Lid assumption is made, the first term in (2.19) is ignored.
Thus, introducing the mass transport stream function ¢ according to

L

3y
5y = “Hu,  5p = Y, (2.20)

9x

the continuity equation (2.19) under the rigid lid assumption is satis-
fied.

In terms of § the vertical component of the relative vorticity reads

_ v du 1
Yz T 3% T Ay T Vg V.

In a two-dimensional barotropic model (2.18), then becomes

o Y% 13 3 £ 13 3 f
s B E Ay ax @ YH x oy B T (2.21)

Here, non-linear terms have been ignored and f and H have been assumed
to be time-independent. Equation (2.21) can be written in the compact
vector form

l‘”’_

where Z is a unit vector in the positive z-direction. Because of its

£
(v- ( ))+ (VY xV(x) =0, {2x22)
t ~ H '

importance we list once more the assumptions on which equation (2.22) is
based. They are:

(1) Processes must be adiabatlc and

(ii) barotropic,

(iii) the hydrostatic pressure assumption,
(iv) the shallow water assumption and

(v} the.rigid-1id assumption must hold.

*#) This equation can be obtained from the continuity equation div u=0 by integrating it
from z = ~H to z = § and assuming that u does not vary with z. This must strict-
ly be so when (i) the hydrostatic pZESsur; assumption is invoked and (ii) processes
are barotropic.
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Variants of (2.22), when some of these conditions are relaxed, will be
discussed below.

The boundary condition that must be imposed is the no-§lux condition
through the shore of the basin. This can be expressed as 3y/3s = 0, where
s is the arc length along the shore. Thus

— 1
Y = constant, along the shore (2.23)
O o
is the requested boundary condition.

In simply connected domains, or domains with one interior island, the
constant in (2.23) is irrelevant and equations (2.22), (2.23) may be

written as .
’T[w] = ZEWI+I E1=0, wmo

= ’

(2.24)
v =0, on an, : [
where D is a two-dimensional domain and 30 its boundary, while
E[y] = V. EHE),
and (2:25)

Yy 23 (f 3y 3 (f)
x ay H) T3y R F

are operators. E[.] is an élliptic and J[.,.] the Jacobian operator.

SIS IE

We now prove the following statement: If J[.,.] is identically zero,
(2.24) does not admit wave-like solutions. Indeed with J[.,.] = 0, we

may set ¢ = LI»exp(iwt)

and then obtain from (2.24)
E[y] =0, in D,

“ (2,26
Y =0, on 23D, !

According to the maximum principle (Protter & Weinberger, 1967, p. 61)
any non-constant . that obeys (2.26) must assume its maximum and mini-
mum on 3D which are both zero. Hence (2.26) admits only the solution

¥ =0 in D,

The requirement J[.,.] # 0 implies that'in a hiofating frame one of the
following cases is satisfied:

- The case Vf # 0, VH = 0 leads to planetary Rossby waves. They are signi-
ficant in global atmospheric and ocean wave dynamics.

- The case £ # 0, VEf =0 but VH # 0 distinguishes Zfopoghaphic waves.
In this case the basin must be distant from the equator (f # 0) and
its North-South extent L ought to be small enough that BL = (3f/3y)L

<< f£. This requires L < 500 km.
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- When £=0, VE# 0 but VH=0 wave-like solutions are called equatorial
planetary Rossby waves,

- The case £#0, Vf# 0, VH#0 characterizes planetary topographic Rossby waves .
They arise in oceans distant from the equator and describe large scale
dynamical events.

- Finally, when £=0, but Vf#0, VH# 0 one limits attention to regions
close to the equator. These waves may be called equatorial planetarny to-
pographic Rossby waves.

Szeady solutions of the TW-equation (2.24) are described by

J[W,%] =0, in D,
(2.27)
Y = 0, on 3D.

Any solution of (2.27) is a field of mass transport currents which is

tangential to the isotrophes, i.e. lines f/H = constant.

Indeed, the Jacobian operator can be replaced by
£
Vi x ¥V (—H~) =0,

which means that both gradients are parallel. Since VY and V(£/H) re-
present the orthogonal trajectories of the respective contour iines,
the current vectors (orthogonal to Vy) are parallel to the isotrophes
(orthogonal to V(f/H)).

This analysis also provides the basic understanding of the restoring force
mechanism of vorticity waves. Whenever w(gg,t) is such that V¢ yields a
value J[y, £/H] # 0, in other words, whenever the mass transport stream
lines are not parallel to the contour lines £/H = constant, the operator
3E[¥]/3t of the wave equation (2.24) acts to restore this parallelicity.
This is why vorticity waves tend to follow the isotrophes.

A last and potentially useful property of the TW-equation (2.24) is ob-
tained, when the equations are made dimensionless. Accordingly, let Lg
and Hp be typical length and depth scales and Yo a characteristic value

for the mass transport stream function. Introducing the transformations
U=y ¥, (x,¥,H) = (Lgx', Lyy', Hgh'), t = £lgr,

it is straightforward to demonstrate that (2.24) also holds for the di-

mensionless variables as follows:

2 BV 3, /K] = 0, i DY

Y* = 0, on 23D'.
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Because this boundary value problem does not contain any scale dependent
terms, i.e. the iengths Lo and Hp do not appear, we conclude that solu-
tions to the TW-equation must exhibit a scale {nvariance: Periods and wave-
forms of the mass transport stream function are the same for all geomet-
rically similar basin profiles, {wrespective of thein size. The same invari-
ance also holds for velocities if these are scaled according to yg =

Lo Ho Up, where Up is the velocity scale. However, in the individual case
the validity of the approximations in deriving (2.24) need be checked.

The scale invariance of the TW-equation is the result of the imposition
of the rigid-lid assumption. This can be seen as follows: Consider the
shallow water equations

3L

vl Ve(Hu) = 0,

du " 0
——Bt+fgxt~1+ch— 5

and eliminate u to deduce the single equation for the surface elevation
. 1
Ve(HVze) + £ J[H, ;]—?Lct= 0, (2.28)

The first two terms represent the TW-operator for the surface elevation,
the last term on the left is due to the deformation of the free surface.
Owing to the definition of L = 32/3t2+ £2, (2.28) is a third order
partial differentiallequation in time which admits three wave-type so-
lutions. When £ = 0 or J = 0 the degree of the equation is reduced; in"
this case the TW-solution is eliminated and the remaining solutions re-
present gravity waves. Furthermore, in the low-frequency approximation,

L = f2, the equation becomes first order in time and only the TW-solu-

tion survives.

Writing (2.28) in dimensionless form as demonstrated above we obtain
T2
Ve(hVgy) + JLh, 2] - R Lee=0 (2.29)

where now all variables and operators are dimensionless, R? = £2/(gH,)
is the external Rossby radius, L and Hg are typical horizontal and ver-
tical length scales®. The first two terms on the lhs of (2.29) are

*) Strictly speaking, Hp should be the maximum depth relative to the deformed equi-
librium surface of the rotating body. With the condition of volume preservation
of the water body, L and Hp are then related. For a paraboloid of latus rectum
L and depth Do it may be shown that Hp = (1-f21/2g)Dg, where Do is now the
rotation independent scale depth., This recognition yields alterations in the de-
finition of ‘the Rossby radius and the frequency relation (3.8) below, see Miles
& Ball (1963).
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scale invariant, but obviously the last terms is not, because

2 _ L, f1

R? Ho' ' g 7!

of which the second factor is size dependent. It follows that the scale
independence of the TW-equation emerges because the Rossby radius is
large; the low-frequency assumption alone as sometimes claimed does not

suffice.

2.3 Baroclinic coupling -~ the two-layer model

Vertical temperature profiles in stratified lakes can be subdivided

roughly into three parts (from top to bottom):

Epilimnion: layer with an average surface temperature of about 18°C and

several meters depth,

Metalimnion: layer containing the thermocline and experiencing strong tem-

-perature gradients,

Hypolimnion: layer with a lower temperature of about 6°C and several tens
of meters depth.
This typical stratification is mainly
found during summer periods, when the

0 5 10 15 20°C

0 I ] I 1 surface layer is heated by solar ir-

I
m EXTRAPOLATION —-/
o this situation is simplified by intro-

-

radiation. In a first approximation

> // ducing a two-layer system of which
the interface represents the position

W i: of the thermocline (Figwte 2.27). Subse-
quently, the depth of the upper layer

15T will be assumed much smaller than
that of the lower layer.

20 4

95 4 Figure 2.2

Upper and lower bound temperature profiles as measured
in Lake of Zurich during August/September 1978. The
30 < : dotted lines are extrapolations. Also shown are the two
layer approximations with density discontinuity at'12 m
depth and upper and lower layer temperatures 18°C and
6°C, respectively. [From Hutter, 1984a]
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Motions occur in both layers and are subject to a coupling by the ther-
mocline. As we shall show later on, this coupling mechanism is weak in
the sense that it is mainly one-way, i.e. the motion of the thermocline
is driven by the barotropic transport. If the velocity fields in the two
layers are unidirectiohal the motion is barotropic, if they are in oppo-

site directions it is baroclinic.

The configuration of the lake and the notation is summarized in Figure 2.3.
Important in the depicted geometry are the vertical side walls that ex-

tend beyond the thermocline well into the hypolimnion.

1 A2
2t P B(x)
B'(X)'7,~r B*(x)

g’ <7x K7 =y
‘gz , D1 @ % E'Ho(X)
> >

K Holx)

Figure 2.3

Side view of a cross section of the two-layer lake in
its natural coordinate system (X,y,z). Upper and lower
layer variables are denoted by an index 1 or 2, respec-
tively. The lake is within a rotating system of spati-
ally constant angular velocity ¥2 f£.

Lake topography varies in space only in the lower layer, i.e. the upper
layer is confined by two vertical side walls, which must exceed the depth
of the thermocline, so H(g) > D; for all x. We accept the varying of the

side walls with x because of analytical simplicity.

Basic idea in obtaining a description of the physical behavior of our
system is to formulate equations which describe conservation of mass, mo-

mentum and energy for the individual layers. Thermodynamic effects will
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be neglected in this study. The evolving nonlinear system is linearized
by the assumption of small Rossby numbers. Furthermore, surface eleva-
tions ¢ are thought to be small in comparison to the depth of the upper
layer. Turbulence will be ignored but wind stress, distributed over.the
thin upper layer, and acting as a driving force will be considered. Under
these approximations, the equations of motion in components of a Carte-
sian system take the form (Mysak et al., 1985)

U m fVy = =gl + T (P DY),

Vig +fu = —g;ly+'ry/(plDl), (2.30)
Dy (g + Vi) = Top = L1y

\.12t" fV2 = -gClx'g'(sz'E_]é),

Voe ¥ FUy = -9ty -9 (e mhyy), | (2.31)
(Hyup)y + (Hyvy)y = =Cpey

where g' is the reduced gravity g' = g(p-p1)/p3. Everything that follows
can be directly derived from equations (2,30)-(2.31).

c) Approximations

We will now transform the above equations and introduce further approxi+
mations which will make it apparent why the conservation law of potential
vorticity is still a reasonable approximation for vorticity waves when

barotropic-baroclinic coupling is present.

) Rigid-lid approximation

It is known that to every wave type of the above system there exists an
internal and an external variant. The periods of the latter are generally
much smaller than those of the former and, by applying the rigid 1id ap-
proximation, the external modes are impeded. This means, that compared
to the interface elevation'any surface elevation can be neglected, i.e.
the underlined terms in (2.30) and (2.31) are ignored. With this, it fol-
lows from the mass conservations (2.30); and (2.31)3 that the quasi-solen-
oidal velocity field can be replaced by the stream function through which

the components of the integrated transport are given by

_.\py = Dyuy +Hy uy, Y, = Dyvy + Hyv,. (2.32)
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Y is called the barotropic or mass transport stream function. Equations
(2.30)-(2.31) can be transformed into a compact system in the variables

Y and g3 F ;. Assuming a constant Coriolis parameter f the result reads

vty be) + E(VY xVH_l)-z = -g'D (VngH‘l)-g
(2.33)
1 -1 H -17.=
+E—£[VX(EH 1+, TXVH ]z,
2 D £D
2. _ 8B _ e R et Y 0. 3
HV g, 3., ‘L>ct+ i, VL, -VH i, (VEx9H) - 2
1 -
= —— | V(LYy)xVH | -2
g'Hz[ (Lo i) -2 (2.34)
H 2,
—— (VX LT)-2
o1 Dy ( -2,

where the operator L = att+f2 has been introduced.

Mysak et al. (1985) give a detailed discussion of the physics of equa-
tions (2.33) and (2.34), which is now briefly summarized. In the absence
of stratification (g' = 0) and wind forcing (t = 0), equation (2,33) redu-
ces to the conservation law of potential vorticity, (2.24). Wind is the
external force; the second term on the rhs of (2.33) may therefore be in-
terpreted as the supply of potential vorticity due to wind action. Stra-
tification (g' # 0) in a basin with variable topography (VH # 0) couples the
barotropic part of (2.33), namely its lhs, with the baroclinic processes.
The first term on the rhs of (2.33) is therefore the production of po-
tential vorticity due to baroclinicity; it represents the influence of

the baroclinic effects on the barotropic motion.

By the same argument, equation (2.34) describes the influence of the ba-
rotropic processes (terms involving ¥) and the wind (terms involving 1)

on the baroclinic motion. Ignoring these barotropic terms results in an

equation describing internal waves with a phase speed

D e wl e @
Cine = g' Dy Hp/H.

When VH= 0 the third and fourth term on the lhs vanish, and the equation

describes classical internal Kelvin and Poincaré waves.

Thus, equations (2.33) and (2.34) exhibit in general a two-way coupling, a
baroclinic-barotropic coupling and a barotropic-baroclinic coupling the

strengths of which must be estimated by a scale-analysis.

When deriving (2.33) and (2.34) from (2.30)-(2.31) the layer velocities
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can be expressed in terms of Yy and f. The expressions are

1 g 1 > - > -~
Lgl == [EXV(LW + Hyg'(V Te fngg) + DlDl('_f_t fgx:“)},
e 5 {2.38)
Luy = —;— ZxV(LY) - Dy g' (Vg -£2XVT) - -p—-——(')_" --fng)],
L ~ 17 -

which are additively composed of three parts, i.e. a barotropic, a baro-
clinic and a wind force component. The first are the same (and unidirec-
tional) in both layers, and the second are in opposite directions and
add up to vanishing total transport, reminiscent of barotropic and ba-

roclinic behavior, respectively.

B) Low-frequency approximation

In eqguations (2.34) ¢ appears with a third order time derivative. This
means that (2.34) can contain three types of waves. In fact a more pre-
cise analysis shows that there are two (intefnal) gravity waves and one
topographic wave of which the latter has the longest period. Because we
want to study here topographic waves, we will search for solutions of
(2.33), (2.34) with low frequency w. For w << f we may therefore neglect
w in comparison to f. Thus L reduces to L = £2. Such an approximation,
however, requires that periods are substantially greater than about 17

hours (the period corresponding to f at 45° latitude).

Parenthetically, we might also mention that this approximation holds
only for lakes in which the internal seiche period (of a gravity or Kel-
vin wave) is considerably smaller than the period of topographic waves.
Since the former increases with the lake dimension and the latter is
size-invariant, the frequencies of gravity waves in larger lakes become
of comparable order to those of topographic waves. For the Lakes of Zu-
rich and Lugano the approximation is appropriate, for Lake Geneva or

larger lakes it may be dubious, see Table 2.7.

Lake Surface : Period of internal : Period of
length | gravity waves | topographic waves
[kml | [h] | [h]
: ! 1) Hutter, 1983
Lugano 17.2% 1 < 28Y [ 742 g
% | 1 ! o 2) Mysak, 1985
: | < |
Zurich 28 | < 45 | 100 3) Graf, 1983
2
Geneva = | < 78% { 72 - 96° 4) Bauerle, 1985

Table 2.1 The gap between the eigenperiods of internal gravity
and topographic waves depends on the lake dimension.
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‘The situation is nevertheless not as limiting as this statement might
let us surmise, because we shall prove below that for many situations
the baroclinic-barotropic coupling term on the rhs of (2.33) may safely
be ignored. In this case, the TW-equation (2.33) uncouples from (2.34).
Since also boundary conditions will be shown to be free of this barocli-
nic-barotropic coupling, solutions to the TW-problem can be obtained
without solving the inertial gravity wave problem. The assumption lw] << £

need not necessarily be invoked.

d) Scale analysis

Information about the orders of magnitude of the various coupling terms
in (2.33) and (2.34) is obtained by constructing dimensionless counter-

parts of these eqguations via the introduction of scales.

@) Wind forecing

The external forcing mechanism in equations (2.33) and (2,.34) is the
wind. To estimate .its relative importance consider the. identity ‘
Ux(gHD) + I-)H—lnga'l z m-l(Wxy + (VE D) xT+ Dilngﬁ'l. (2.36)
The first term on the right can be neglected in comparison to the others,
because the atmospheric length scale is in general much larger than the
lake dimensions. Such.a statement is tantamount to ignoring spatial var-
iations of wind stress over the lake's domain. Further, comparing the
last two terms it is seen that they differ by an order D;/H which, in view
of our basic assumption, is small (cf. Table 2.7). Consequently only the
last term of (2.36) survives. In a way this is a strange result: As far
as the barotropic contribution of the motion is concerned, only a lake
with variable topography can be affected by the wind. This leads to the
conclusion that the assumption on atmospheric length scales may be doubt-
ful. Indeed, a varying topography in the vicinity of the lake may play
a significant role as it can modify regional winds with atmospheric
length scales to local winds with smaller length scales. An example is
the topography around Lake‘of Lugano; but experimental evidence for the

wind stress curl to be significant is so far lacking.

B) Gratton's scaling

Gratton (1983) and Gratton & Le Blond (1386) consider lake stratifica-
tions with Dy<<Djy, i.e. a thin upper layer lies on the tocp of a deep
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hypolimnion. For this case they found that the baroclinic effect on the
barotropic motion is of order D;/D; smaller than the barotropic effect
on the baroclinic motion. So, to order D, /D, the coupling only arises as

a forcing of the baroclinic motion by the barotropic mass transport.

Before we demonstrate this result let us point out its significance. The
one-way coupling means that traces of the topographically induced motion
can be observed by measuring baroclinic gquantities such as temperature-

time series of thermistor chains, moored within the metalimnion. The de-
scription of the observations in Lakes of Lugano and Zurich in Chapter 1

are based on such temperature-time series.

We now introduce the following set of nondimensional variables:
V=Yg ¥, g:=¢gptt, T:=T151',
(x,y): = L{x",y"), t:=¢f1.¢7, (2.37)
H: = Dh' = (Dy + Dy)h', Hg: =Dj hp,
where the primed variables are non-dimensional; L is a typical length
scale of the considered waves (e.g. half the lake length). Higher wave
modes, where cross variations are important, may require a (x,y)-scaling

which is different for each spatial direction, but this will not be con-

sidered. With (2.37) we obtain the scaled equations

L DTq

n=l oy ~1y.5 o _ “Ly. o (e~ O =L, 3 .
V(v + (Tyx VT -z C1(Vrx Vh™) g+(fpl o wo) (hg xV) - z, (2.38)
L (v2 L2n < e rhy ez = o, nt (W x e -2
F(V gt--—z——L;t)-D = Vge*Vn i (VgxVh ")z = =Cyhy (Wx zZ
R§ hy 212 282 ; (2.39)
- To L 1 -
- ——— = (VxlT1)z,
Ppg'"Dy &y h ~
where now L = drg +1 and the coupling coefficients are given by
'D £y Dy 1
Cl = _‘J_J:_EQ' c2 = -'_2_... = e e, (2.40)
fYo g' Dy Lo Dz Ci

and Ry = (g'Dy D2/Df2)l/2 is the internal Rossby radius. Note that in
(2.38) and (2.39) we have dropped the primes on the scaled (nondimen-

sional) variables.
Let us now suppose that (2.38) and (2.39) are strongly coupled, i.e.
that C; and C, are both O(l). Then (2.40) implies that

fYo fyo )
g" Dl q" D2 :

(2.41) & (2.42)

Lo = o( ) and Ty = o(

We observe that independent of the Ug-scale, (2.41) and (2.42) are consi-
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stent only if D3;/Dy=0(1l). Since we are concerned with the case Dj << Dy,
it. follows that C; and Cp cannot both be of order unity, i.e. that (2.38)
and (2.39) are only weakly.coupled. Suppose we assume that (2.41) applies
and thus choose Zo £

e B B 2.4
o o o1 ( 3)

as the scaling for the ratio {g/Vg. Then C; =1 and C3 =D3/D3 << 1. There-
fore to 0(D;/Dy), equation (2.39) reduces to
o L

1.3
T2 o (=L R R e e
( (Ri) Jee py g' Dy Zg

(VxLlt)-%, (2.44)
where we have used h/h; =1+0(Dy/Dy). (2.44) is a wave equation forced
by the wind stress curl, but the scale choice (2.43) leads toc an unreal-
istically large value for the [, scale (about g 2:50 m, which is several

times the upper layer depth for most lakes™).

Hence we are compelled to choose the scaling (2.42) (Gratton's choice,
which was basaed on data from the Strait of Georgia, British Columbia).
Putting fﬂl _ £ (2.45)

Vo g' Dy’ ’
we find C2 =1 and C; = D3/Dj << 1, We choose the [y scale by setting
the coefficient of the wind stress term in (2.38) equal to unity, which
gives LD 1o

T 3
Yo = Ty - (2.46)

Substituting (2.46) into (2.45) gives the scale [y in terms of the wind

stress scale Top: LD1g Yo £
to = : AT thaiel
p1 9g' D1 Dy 9 vz

which yields a realistic order of magnitude **). Using (2.46) and (2.47)
in (2.38) and (2.39), we obtain, correct to 0(D1/D3)

Ve(hlvp )+ (VW x YRy -2 = (hrxVnhl).z, (2.48)

(v2- st i) gy = ~(VpxVhhZ2-(Uxly -2, (2.49)

*) wWith £ = 10~4 571, g' = 0.02 ms~2, D; = 10m, Dy = 270 m and Yy = U-L-(Dj + D3) =
0.03.104 % 270 m3 s'l, where U is a velocity scale (approximately 3 cms™i for Lake .
of Lugano)and L = 104 m, one obtains Gy = 40 m.

i

#%) With £ = 1074 571, gr= 0,02 ms™2, Yp= 7x104 m3s~1 and Dy = 270m, (2.47) yields
Co = 1 m. Alternatively, using Tp = Pgir C4 Uw2 with Qair = 1.29 kg m=3, cg =
1.85%10"3 (an average value for lakes during summer, see Simons, 1980, p. 92), and
Uy = 4dms=1, we find Tp = 0.038 Nm~2 and hence according to (2.47), o =1l.5m and
according to (2.46), U = T0/(p1 £D3) = 3.8 cms~l, Both values are typical observa-
tions in the Lake of Zurich and Lake of Lugano, see Table 2,2.
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as the appropriate non-dimensional equations for Y and r. In (2.49) note

that we have introduced the stratification parameter &, defined as
Ri 2
S = (—L—) i (2..50)

For the derivation of (2.49) it is important that hy # 0 (as illustrated
in Figure 2.3). If hy =0, the third and fourth terms on the left side of
(2.39) are not uniformly O(D1/D2) and hence could not be neglected. If an
elliptic paraboloid contained a two=-layer fluid, then clearly hp=0 where
the interface touches the basin wall and (2.49) would not be valid. Thus
Ball's (1965) solution for second-class waves in an elliptic paraboloid

could not be easily extended to the stratified case by our analysis.

The derivation of (2.48) and (2.49) follows Mysak et al. (1985) but is
mere general in that the low frequency assumption has not been invoked
and the wind stress curl has not been ignored. With these two additional
assumptions L would be replaced by L=1 and the last term in (2.49) would
be missing. As stated above thése assumptions are not needed to achieve

the decoupling of the barotropic motion from the baroclinic influence.

Substituting (2.37) and the scaling (2.42) intoc (2.35) and using the
scale yg = ULD, as before, we obtain the following formulae for the ve-

locities:

_17a- » Do -
lu; = Y EXV’-‘P*hZ((VCt“EXVCH‘D‘(It‘EXI)> ’ (2.51)

= D = D -
Lup = %—l[ngup- D—i((Vct—g X VD) + = (14~ 5 3))} . (2.52)

To O(D1/Djy) these can be approximated by
Lu; = l—};(gx VLw+h(Vct—§xV§+'~rt-§x‘£)); (2.53)
1l =

Lup = T 2x VY. (2.54)

Thus for deep lakes, the lower layer currgnt associatedﬁwith topographic
waves is essentially barotropic, whereas the upper layer current con-
sists of a barotropic part, a baroclinic part and a contribution direct~
ly forced by the wind. Hence we conclude that the current motions are

generally surface intensified.

In Table 2.7 we collect some data pertinent to the above estimates. Values
are given for the layer thickness and density difference of the summer

stratification for three Swiss lakes from which Rossby radii, stratifi-
cation parameters and typical values of the thermocline elevation can be

computed. Accordingly, neglecting 0(Dj;/Dp) terms is certainly justified
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Lake Dy mean max Dy P2 =Py R; half 5-1 e
by B _D_gean oy U en gth .
[ml | [m] {m] Ckm] | [km] [m]

]

1)

Lugano | 107 183Y | 276® | 0.055|1.91-103" | 4.05 | 8.6 | 4.5 1.8
pi

zurich | 12Y1 52 | 1242 | 0.231] 1.75-10°3 | 4.13 14 [ 11.5 ] 2.97

4
Geneva | 15¥| 153% | 3107 | 0.008| 1.41-1073" | 4.24| 36 | 72.1|6.97
1) Hutter, 1984b 4) Biverle, 1984
2) Hutter, 1983 5) computed using (2.47)

3) Graf, 1983

Table 2.2 Properties of some Swiss Lakes.

. for Lake of Lugano and still reasonable for the other lakes. Moreover,
the thermocline-elevation amplitude fg is smaller than D; in all three

cases, a fact which gives some confidence in the scaling procedure.

To solve (2.48) and (2.49) in some domain D for a given 1, we have to
prescribe initial values for ¥ and ¢ and the boundary conditions on 30D.
The first boundary condition we impose is that the total mass flux nor-
mal to 3D must vanish: in non-dimensional variables this can be written
as fi.(Dj u;+Dy hp 52)9-1-1 0 on 3D, where fi is a unit vector perpendicu-
lar to 3D. On substituting for u; and uz from (2.51) and (2.52), this

reduces to*

- (

t i)
AN

x y) = 0, on 0. (2.55)

Since f-(ZxVy) = (AxZ)-Vy = §:Vy, where § is a unit vector tangential

to 9D, (2.55) implies 3Y/3s=0 on 3D and hence ¥ =cecnstant on 3D. Thus

in a simply connected domain, without loss of generality, we take
Y = 0, on 9D, (2.56)

Next we require r:m-gi= 0 on 3D for each layer i. Upon again using (2.51)
and (2.52), together with (2.55), we find

3 3¢ L Dy . = - "
ot | R . N . cT~§- = -fi. . 2,
ST T (Bge-2-0p= = B-Epre-Ir o0 90, (2437

@

to 0(D1/D3).

*) These equations actually imply a statement regarding L'(Dj uj + D2 hp uz)-i rather
than the mass transport itself. However if lm = 0 along 3D for all time, then ne-
cessarily m = 0 as well.
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The boundary condition (2.55) applies, whether the simplifying assump-
tions Dj << Dp and w? << £2 are imposed or not. Because (2.48) supposes
D to be small in comparison to Dy we conclude that the barotropic part
of the motion can be determined without simultaneously also determining
the baroclinic response., However, if the corresponding barotropically
driven baroclinic currents or thermocline elevations are to be determi-
ned, then eqguation (2.49) subject to the boundary condition (2.57) must
also be solved. Since (2.,49) is a forced wave eguation, this by itself is
a formidable problem. For weak stratification (S small) simplifications are

possible. This is the case for most Swiss lakes (compare Table 2.2).

To introduce this additional simplification we note that our scales have
been chosen such that dimensionless gradients are order unity. Hence, we
expect 72 to be O0(l) whereas S-1 is large. On the lhs of eguation (2.49)

we may thus ignore V2 in comparison to sl Lh/hy, implying
te = S{LV(ZxTy)- T+ (Vx D) 2], (2.58)

where L™l is the inverse operator of L. Equation (2.58) can be described
as the geometric optics approximation fon . Along the shore 30 we may assume
a constant depth; then vh~1l is parallel to é, the unit normal vector
along 37, and the first term in the curly bracket vanishes”. With non-
vanishing wind stress the emerging equation is not consistent with (2.57).

For the unforced problem, however, (2.58) implies
Q(}j,t) = 0, along 30,

which is consistent with (2.57) provided that the term 32¢/on 3t is ig-

nored. This omission is justified in the low-freguency approximation.

We conclude: the geometric optics approximation is only consistent in the
low-frequency limit. In all other cases the baroclinic coupling should
be computed with the full equations (2.48), (2.49) and (2.57).

2.4 TW-equation in orthogonal coordinate systems

Consider a coordinate system in which the position vector is given by
x = (x1,%x2,%x3), and let U(x) = (Up(x),Up(x), U3(x)) be the map onto the

Cartesian system g = (x,y,2), viz,

21!

= U(x). (2.59)

The path element dx then transforms according to
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304
i 9X§

jon)
b3
]

de

and its length is given by
lag|? = agTax = axT (vu)T (VU)ax.

This leads to the definition of the metric tensor g

g = (vpT (VY
and in comnonents
30k aUk
913 T 9%y axy

The coordinate system (X, Xp,%3) is orthogonal provided, the metric ten-

sor g has diagonal form.

Let us now restrict consideration to coordinate systems which have the

vertical coordinate unchanged (general cylindric), that is

z = U3(§) = X3.
For an orthogonal system with coordinate lines xj = constant intersect-
ing at right angles we then have the condition

Uy BT, 30U, 23U,

axl oX2 * E‘Xl 3X2

921= 912 = = 0. (2.60)

Note, that with (2.60) alone the mapping (2.59) is not conformal, al-
though the right angles formed by the basis vectors are conserved. For

orthogonal systems it is convenient to write

2
o o J%

with the definition of the scale factors

5, = |28
+ 3%

’ (2.61)

and J3 = 1. Further, if the mapping (2.59) is conformal, (2.60) must be com-

pleted with the requirement
I

2
a3, (2.62)

oo

(2.60) and (2.62) can be combined and, provided U is orientation pre-

serving, imply the Cauchy-Riemann equations

U 39Uy 39Uy aUu»
3%y X3
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Table 2.3 collects the scale factors for freguently used orthogonal co-

ordinate systems.

Coordinates (xy,%2,X3) Jl Jda 3

Cartesian (xs y, z) | 1 1 1%

cylindric (ry ¢ 2) 1 1 r 1

elliptic (€, myz) | 0 3 1 , where J= a(sinh? E+sin2n)1/2
natural (s, ny z) | J 1 1 , where J=1~K(s)-n

Table 2.3 Coordinate systems often used in lake
hydrodynamics and their scale factors.

We recall the TW-equation (2.22) and the barotropic velocity field in

the coordinate-invariant formulation
9 N2 % £
Bt(v (—;))+ g-(wva)
us e (zxT).

To obtain these equations in the different coordinate systems the vec-
tor differential operators need be written in curvilinear coordinates.
In the orthogonal coordinate system with the scale factors J;, Jp, J3

the gradient-, divergence~ and curl-operator are given by

1 9s . 1 38 1 s

S = (5= =i = =—: % =),
grad Jp 9%y " Jp Oxg " Ty ax3)
S 3 3
vy = 555 (a (3 T3)) + - @1 T3 v2) + 3'\?3-(‘7:”7;_,\/3)),
= L 8 e
e JB[Jl axz(‘jx"B’ % Bg Ve (2.63)

3
I3 5 Ta Vi) = % a (T4vq) 5
Iy s Jovy) = J J V,],
3 8%, 272 3 Z)\c 1 lj

where S8 = S(x) is’'a scalar and v = v(x) is a vector in this coordinate

system. A derivation is found in Pearson (1983).

wWith (2.63) the TW-equation takes the form

22 g2 1 3 3Jllﬂ%.’t&.§.£ R A
e lig T, ® o) Y 0, B A% %, %, B~ 0%, O%; H ’
(2.64)
1 sy 1 o

) 14

2= (=558 %, J, B 3%,
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and J3 =1 is assumed. (2.64) reveals the interesting property that the
TW-equation is invariant under conformal mapping due to equation (2.62).
Johnson (1985, 1987b) has pointed at this invariance principle, which
has already been implicitly used by Mysak (1985) when considering the
elliptic coordinate system. Applying this principle the TW-equation can
be solved in rather complicated domains which evolve from simple Carte-
sian geometries by a conformal mapping. Johnson (1987b) presents solu-

tions for a semi-infinite channel with smooth boundary lines, see 3.6.

These coordinates are often used in problems which exhibit some rota-
tional symmetry. The coordinates are (r, ¢,z) which are related to the

Cartesian system by the formula

X = rcos¢,
y = rsin¢, r20; 0<¢<2m

Z =2

The scale factors can be calculated with (2.61); they are listed in
Table 2.3. With (2.64) we obtain

5 1 £ £ _
G Verde * (a7 Yeolo * Velirle~ Vo (g = O
: (2.65)
- (- L 1
4= (= Ver 7 V)

c) Elliptical coorndinates

The coordinates of the ellipti¢ cylinder system are (&,n,z),and for fixed
z the lines £ = const are confocal ellipses whereas the lines n = const
are hyperbolas, see Figute 2.4. The parameter a denotes the position of

the foci, and the Cartesian coordinates are calculated from (&,n,z) by

X = acosh §cosn,
= asinh £sinn, E20,0<n<2n (2.66)
z2 =2,

The shore line of the elliptic basin is given by

x2 Y2

+
(& cosh £g)2 (asinh Eg)?2

which is an ellipse with the semi-axes A and B and an aspect ratio

(width to length) oh €
_
r=—2 =208 o camn g (2.67)
A a cosh &g
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N=51/6

N=111/12

n=131/12

N=7N/6

Figure 2.4

Elliptic cylinder coordinates (£,n). The quantities £ and 0 are unit
vectors in the directions of increasing £ and n. We refer to £ and n
as radial and angular coordinates respectively. [From Mysak, 1985]

The first two scale factors are equal and read
J = J; = Jp = a(sinh? £+ sin2n)¥2,
Jy = 1.
(2.66) therefore defines a conformal mapping and the TW-equation for-
mally agrees with the Cartesian:

1 1 £ £
(7 Yeede+ G Vendn * Ve () - ¥y (F)E 0,
(2.68)
= (= L 1
8= = g ¥nr 7 Ve
d) Natural coordinates

For the developments in subsequent chapters we need the TW-equation also
in a natural coordinate system. With this, it is particularly convenient
to describe elongated and curved lake basins. We choose an orthogonal

network which spans the elongated domain.

The basis for it is an axis,

which follows more or less the thafweg*) of the lake. The arc length s
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along this axis forms the first coordinate of the system.

In view of the restriction to elongated narrow lakes it is possible to
choose a straight n-axis; so the system is curved only in the s-direc-
tion, see F{gure 2.5, In ordér to define the lake domain uniquely in terms

of these coordinates the radius of curvature R(s) must exceed half the

(X(s],yls))

Figure 2.5

The natural coordinate system X

(s,n,z) in the lake basin with

ggiitsvicot?l‘qse §cl>sil~tlivaendce§n':eg Figure 2.6 Basis vectors in the natu-
; P ral coordinate system.

of the curvature along s.

width of the lake B(s), R(s) > B(s)/2. Let the lake axis be given by a
parameter representation (X(s), ¥(s)) within a Cartesian system as shown

in Figure 2.6, The coordinates of an arbitrary point P are then given by

X = X¥(s) - nsina (s),
= y(s) +n cosa (s), (2.69)
Z = Z.

The mapping defined by (2.69) satisfies (2.60) but is nor conformal.
Evaluation of (2.61) yields

Jy £J=1-K(s)'n, Jp=1,

and the curvatire K is defined as

do,

ds *

We finally obtain the TW-wquation and the velocity field in natural co-
ordinates: )

K =

1 J £ £
(55 Yeedst (F Yendn ¥ ¥s (Fin-V¥n (fls = O
1 1
U= (=g ¥ 75 ¥s)-

*) The thalweg of an elongated lake is the line which follows the deepest points of
the basin cross sections.
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3. Some known solutions of the
TW-equation in various domains

Whereas our intentiona in chapter 1 were to suggest that observations
of long-pericdic oscillations in lakes and ocean basins are likely to
be interpretable in terms of vorticity induced motions, we presented in
chapter 2 the basic equations of such waves and analysed the general

properties of the associated equations.

In this and ensuing chapters we will construct explicit solutions. Our
principal aim is to extract through this analysis the physical proper-
ties of TW's and to see in what respect the interpretations surmised in

the first chapter can be substantiated.

We shall discuss (i) circular basins with a topography being a function
of the radial distance only (parabola, power law), (ii) elliptic basins
with a parabolic bottom and an exponential shelf profile, (iii) TW's in
infinite and, (iv) TW's in semi-infinite channels. All these configura-
tions are characterized by the fact that the isobaths follow one coor-
dinate line of the coordinate system (except section 3.3), so that or-
dinary differential equations emerge. As a result the mathematical tool

is solving two-point boundary-value problems.

3.1 Circular basin with parabolic bottom

Following Lamb (1932, § 212) we start our analysis of TW's in circular
basins with equation (2.29), or

Ve (hVge)+ I(h, 0) - (£ Lge = 0. (3.1)

Here all quantities are dimensionless except L and R, a typical length
and the Rossby radius, respectively”. In polar coordinates (3.1) may be
it
written as ik %
(h g e + e (T Coelg + ¢ Gre *
0<r<1. (3.2)

The boundary conditions (no mass flux at the outer boundary, finiteness
of r at the origin) are

*) For a subtlety in defining the Rossby radius see footnote on p. 23.
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z = finite, at r =0,
(3.3)
Ly = 0, at r =1,
Consider a radial topography,
h = h(r) i (3.4)
and assume an azimuthal wave solution of the form
¢ = Z(r) exp[i(mé-ot)], (35)

travelling counterclockwise around the basin; o=uw/f is the dimension-
less frequency and m the azimuthal wavenumber. With (3.4) and (3.5), the

boundary value problem (3.2)-(3.3) assumes the form

h 2 [ 2
(hZ')'+;Z'—[ﬂ§h+%“lr’—+l;'——5Jz=o, 0<r<i,
r (R/L) (3.6)

Z = finite, r=10; 2'=0, r=1.

Primes denote differentiations with respect to r. From these equations
the solutions presented by Lamb (1932), Wenzel (1978) and Saylor, Huang

& Reid (1980) can be obtained as special cases,

For the parabolic bottom profile,

Z(r) can be expressed in terms of a hypergeometric polynomial (Lamb, 1932
§ 212; Miles & Ball, 1963 ; Abramowitz & Stegun, 1972)

v

m=0,1,2, g0,

Z(r) = Ay T® Flm+d; 1-3; mel; r?), 1,2,3, ..., (3.7

in which Apy is a free amplitude and ¢ satisfies the frequency relation

2
g-1 fﬁi _ i g f R m=20,%12, ...,
R/LIZ o 2[2j(mtj-1)-m], y=1,2.3 (3.8)

The frequency occurs in third order which corresponds to three wave ty-
pes, two first class and one second class wave. Here, we concentrate on
second class waves and will therefore exclude the case m=0, (3.8) is

then equivalent to
1y 23 m+-1) .y _ g2-1
g m 2m (R/L)?

The last term on the rhs represents the influence of the size effect via
the external Rossby radius R and a length scale L. An order of magnitude
for R is 500 km and an upper bound for L may be 200 km (Great Lakes), so
2(R/1)2 2 12, The minimum value of the term in curly brackets is 1,

which suggests that the two first class modes entering via the size de-
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pendent term may be suppressed. Approximately, we may write, after neg-
lection of the inertial motion (0 =1 for j=1) and transformation n = j-2,
nEg 0, Lyses

1 2(n+2) (m+n+l) _ mised, Pposnty
T m t B0, Ly s s 132
We thus obtain the approximate frequencies and periods of Table 3.1. The

real parts of the surface elevation f and the mass transport stream

function ¢y for the mode (m, n) = (1, 0) are given by
t(x,t) = AJI(l—% r?) cos(6-ot),
¥(r,t) = Ax(1-r2) (-o- 3 (1-30)r2) cos(8-ot).

The streamlines of this solutien and those of the (1,1)- and (2, 0)- modes

are sketched in Figure 3.1. The periods are larger than 50,7 hours (2.1

4
@/

Do
EO®
®e

t=1/8

//
t=T1/4 ( )

N

m=1, n=0 1, n=1 m=2, n=0

T=118h T=287h T=2845h

Contour lines of the mass transport stream function of the three modes
with the simplest wave structure. The gyres rotate anticlockwise (on the
Northern hemisphere) around the basin.

&/
o)
S

a

Figure 3.1



n=20 n=1 n=2
m g T[h] o T[h] o T[h]
110.143 118 0.0588 287 0.323 524
2 | 0.200 84,5 | 0.0909 186 0.0526 321
4 1 0.250 67.6 | 0.125 135 0.0769 220°
< [ 0.333 50.7 | 0.200 84.51 0.143 118

Table 3.1

Periods of TW's in a circular
basin with parabolic bottom
profile ignoring the size de-
pendent term in (3.8) and com-
puted with £ = 27/16.9 h.

days), but it is likely that only those modes with a very simple struc-

ture will be excited. The simplest fundamental mode has a period of 118

hours and consists of two basin-wide gyres, a cyclonic and an anticyclo-

nic vortex. The entire system of gyres rotates counterclockwise (on the

Northern henisphere)

current vectors at mid basin positions rotate in the anticlockwise direc-

around the basin.

From this fact it follows that

tion while those at near-shore positions rotate in the clockwise direc-

tion. This is exactly the current pattern discovered by Saylor, Huang &

Reid

(1980)

in Southern Lake Michigan, but the period of 118 hours is

too large to fit the period of 100 hours inferred from measurements. They

therefore studied the effect of the topography on the TW-solutions in a

circular basin,

cf.

next section.

The computational results of the wind driven currents in the Bornholm basin by Simons

(1978) suggest that this system of gyres might be interpretable as a TW. Wenzel

inferred from Simons' = (0,2) with a period between 11 and

computations a mode

(n,m)

(1978)

14 days. The period, however, obtained with a parabolic profile (which approximates
is only 4-5 days. Thus Wenzel suggested that the flow con-
figuration in the Bornholm basin might be the interior part of a mode with one or
more nodal circles. With (n,m) = (1,2) the period is 8 days (see Table 3.7), but (n,m)
13.8 days. This mode was numerically computed by fitting a 10th
degree polynomial (the period of this solution is 12.6 days) to the mean topography
of the Bornolm basin and solving the two-point boundary value problem (3.6) numerical-
ly. Wenzel argues that the outer two rings of gyres of the (2,2)-mode should be dis-
carded since the real basin contains an island which disturbes the boundary behavi-

the topography reasonably)

=1(2,2)

our.
island.

3.2

yields T

This particular configuration may rather require a model which accounts for an

Circular basin with a power-law bottom profile

The following analysis is due to Saylor, Huang & Reid (1980) which in-

vestigated the influence of tovography gradients on the periods of to-

pographic wave motion.

Varying the exponent g

h(r)

They used the profile

= (1-r9),

0 <

S < q > 0.

(3.10)

yields an entire sequence of profile geometries

with strong and weak tonography gradients. For g=1 the radial depth

profile is conical, for g=2 it is parabolic, for g>2 it becomes blunt
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and for g -« approaches constant depth. On the other hand, for 0 < g<1l
the profile has a vertex at the center and (except for g=1) has a con-
vex curvature similar to the exponential profile often used in shelf

wave analysis, With ¢ =y (r) exp(i(mb-ot)), use of the TW-equation in cy-

lindrical coordinates (2.82) and a trial solution
Y(r) = Ar™ h2(r), (3.11)

(which satisfies the boundary conditions) the depth profile must fulfil

the differential equation
m
3m+2- —
h'+ ——% n' = 0,
2r

(3.10) is compatible with this provided that

m
3m+2g "’

which is the frequency-wavenumper relationship for the prescribed topo-
graphic profile. Table 3,2 lists the frequencies for a seguence of topo-
graphy parameters q and the wavenumbers m=1,2. The table indicates that

the fopography has a dominant effect on the periods. The solutions

m

Y(r) = Arm (1l-x49), o = Ime2q

embrace all those motions whose stream function ¢ has no radial nodal
circle. Hence, they contain in particular the solutions for the parabo-

lic depth profile as shown in the left and right columns of Figure 3.1.

q ] m= 2

0.5 | 0.250  0.286 Bahle 2.2

1 0.200 0.250 Topography effect on the dimensionless
2 0,143 0.200 eigenfrequency of the two first modes
5 0.0769 0.125 in the model of Saylor et al. (1980).

Figure 3.7 indicates that the bathymetric profile for Southern Lake Michigan can rea-
sonably be approximated by (3.10) and g= 1+€, where € is small. With € = 0.25 the fun-
damental period becomes T = 93 hours which coincides with the observed period of the
TW in Southern Lake Michigan.

Racine Width (km) Holland
0 40 80 120
Figure 3.2 8 | I | I ! I
; ~ 6 A
Average amplitudes of the | 4 2. L)
north and east velocity com- 2 2 Y
ponents for rotational os- SN A v
cillations on the Southern = 30\
Lake Michigan cross section E
during an episode of wave . 60 A ]
excitation, 1-15 July 1976. £ %0 —
Basin Approximations as a g //
paraboloid or as an inverted 120 . 1
cone are also shown. 150 e Northward —{
[From Saylor et al., 1980] 4 Eastward
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3.3 Elliptic basin with parabolic bottom

Most lakes are long in one direction and not well approximated by circ-
les. It is interesting, therefore, to see how the periods and mode struc-
tures of TW's depend on the aspect ratio (i.e. the .width to length ratio)

of the basins.

We consider the TW-equation in dimensionless form and in Cartesian coor-

dinates 1 . o o .
(™% ¥y )y + (A7 ¥y)y - b3t ¥+ hot ¥y = 0,  in D, 3. 15)
¥=0, on 3D,
and choose a parabolic depth profile
h = %((l—a)xz + (l+a)y?) - 1, (3.14)

where A(h) = V/2(h+1)/(1l-a) and B(h) = ¥ 2(h+l)/(l+a) are the semi-axes of the

elliptic depth-contours. These have all identical aspect ratios

B(h) 1-a . 1-r? (3.15)
a(h) Ira Legs |

and the profile has a maximum depth |h|gay = 1. The basin is bounded by

the zero depth contour line, an ellipse with A(0) and B(0) as semi-axes.

The following analysis is due to Ball (1965). With (3.14) and the trans-
formation ¥ = h-2Y

it is straightforward to show that (3.13) takes the form
4he +3((1-a)x Yy + (1+aly Uye) + h(Yy ot ¥y ) +

+ (l-a)x Y, - (l+a)y vy = O, for h <O, (3.16)
Y = finite, for h = 0.

Note that the boundary condition ¥ =0 along 3D necessarily requires that

Y is bounded on 3D. The velocities are given by

u = -h"(h? y)y = ~2hy ¥ - hiy,

v = hl(h2y), 2h, ¥ + hiy.

The advantage of the introduction of the stream function y is that (3.13)
transforms into a differential equation with the following special pro-
perty. Suppose, ¥y is an even (odd) polynomial of degree N, then the

differential equation (3.16) generates again an even (odd) polynomial of

the same degree,
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Taking advantage of this fact, we consider first a polynomial with degree
N=0, i.e. a constant VYoo which obviously satisfies (3.16). This is a
sdimple steady gyre with the velocity field

(u, v) = 29g0 (- (l+a)y, (l-a)x),
representing an elliptical rotation with constant vorticity 4¥gp. Maxi-
mal speeds are experienced along the shore-line,
More insight provides the choice of a homogeneous odd polynomial of de-
gree N=1, the Linear Ball-mode :
Y1 = V1o(t) *x +¥o1(t) *y. (3.17)

Substitution into (3.16) yields the coupled system

(7-32) byg + (1-a) Yy = O,
. (3.18)
(7+3a) lllo]_ - (l+a) Wlo =0,
with ()" 2 d/dt. Assuming a harmonic time evolution e 19t for both coef-

ficient functions, (3.18) allows nontrivial V10 and Yg; if and only if

1-a2

62 = _L1-a?_
49-9a2

(3.19)

This relation describes the dependence of the frequency on the aspect
ratio parameter r (via a, see (3.15)). Table 3.3 lists the periods ob-
tained with (3.19). Obvicusly, a=0 recovers the solution for the cir-
cle with parabolic bottom profile. Smaller a results in smaller o¢; con-
sequently, the more elongated the ellipses become the larger will be
the periods. In view of observational results for Lakes of Lugano and
zurich, reported in Chapter 1 this is unfortunate as these lakes are
long and narrow, and measurements point at oscillations with periods of
3-4 days. This is lower than the 118 hours obtained as a {fower bound

for the fundamental linear Ball mode.

The linearity of (3.,17) implies that the line y; = 0 which separates

linear quadratic
r a o T {h] o T [h]
1.0 0 0.143 M8 | 0.200 84.5 Table 3.3
0.67 | 0.385 | 0.134 126" | 0.190 88.8 Frequencies and periods
0.50 | 0.600 | 0.118 143 | 0.173 97.7 of the linear and quad-

ratic Ball-mode for var-

0.33 | 0.800 | 0.091 185 | 0.139 121 ious aspect ratios r.
0.1 0.980 0.031 542 0.051 335 The periods are calcula-
0 1 0 - 0 - ted with £ = 271/16.9 h.
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vortices of different signs is a straight line which, owing to (3.18),
rotates anticlockwise around the basin. Figure 3.3a shows the time evo-
lution of this mode. The structure of the wave pattern i.e. the number
of gyres is conserved in the course of a wave cycle. This is in accord

with the wave patterns found in the circular basin.

1/8

T/4

—+
1]

500
o0

T=143n T=97.7h

Figure 3.3

Mass transport stream line patterns for the "linear" (a) and "quadratic"
(b) mode of the TW-equation in an elliptic basin with parabolic bottom
profile, [From Ball, 1965]

To obtain the next higher mode, we select an even polynomial of degree
N=2.

Yo = Yo + W0 X2+ U1y Xy +Ugay?, (3.20)
with the time dependent coefficient functions Yy, (t). (3.20) characteri-
zes the quadratic Ball-mode. Substitution into (3.16) and equating equal

powers of x and y, respectively, yields the system

(11-7a) hpp + (L-a) gy + 2(1-a) Y11 = O,

10y + (1-a) Py - (La) Yoy = O,

. ! . (3.21)
(L1+7a) Yoy - (l+a) Ypp- 2(l+ra)y;; = 0,

2hg - Vg0 = Yoz = 0,

which allows periodic solutions proportional to g ior provided that
0(502(5-2a2)~(1-a2)) = 0.

Again, there is a steady solution ¢=0 and an oscillating solution with



5 A =

1-a?

02 = ———,
5(5-2a2)

(3.22)

Table 3.3 collects frequencies and periods for several aspect ratios r.
For a fixed aspect ratio the periods of the guadratic mode are smaller

than those of the fundamental linear mode.

As (3.21) indicates, a steady solution must have

l+a
T e t o= st
¥if =0 and WEZ = g7 Vs
and hence

pst = Yoo+ A ((L-a) x2+(1+a) ¥?),

where Yoo and A are constants. WOO-* 0, A=0 recovers the simple steady

gyre whereas Ygg = 0, A# 0 yields the steady second order solution
¥5% = h2 y5° = 2aR%(h+1) (3.23)

This stream function vanishes along the boundary (h=0) and at the cen-
ter (x, y) = (0, 0) and is positive otherwise; furthermore, its value is
constant along similar ellipses and assumes a maximum value along the
ellipse with h=-2/3 between the center and the shore line, Figure 3.4a.
The steady flow corresponding to the solution (3.23) is qualitatively
indicated in Figure 3.4b. An anticyclonic elliptical gyre in the center

is surrounded by an elliptical ring of cyclonically rotating fluid.

D> ®

Figure 3.4

a) Distribution of the mass transport
stream function and

b) of the associated velocity field
of the "quadratic" steady solution
(3:23) .

Oscillating solutions are obtained by constructing the eigenvector of
(3.21) corresponding to the frequency given by (3.22). We quote Ball's
result (real part)
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¥, = h? y, = A2 [((1+a) (3-2a) y2- (l-a)(3+2a) x2+a) sinot
(3.24)
+ (6(l—a2)/50) Xy cos Ot] %
For t =0 the nodal lines Yy, =0 are the lines x=0 and y=0, whereas for
t >0 they are rotating hyperbolas (note that 0 < a < 1).As illustrated in
Figure 3.3b the wave pattern starts with four gyres of which the two po-
sitive vortices merge together building three gyres in the basin for
most part within a period. The structure of this mode is therefore not
conserved during the cycle. This is a new phenomenon due to the influence

of the aspect ratio parameter a.

3.4 Elliptic basin with exponential bottom

In the previous sections TW's in circular and specific elliptical do-
mains were discussed. Whereas the model of Saylor et al. uncovered a
conspicuous dependence of the frequencies on the topography, Ball's mo-
del enabled investigation of the effect of the aspect ratio. In this
section we present a model which accounts for both bathymetric parame-

ters and therefore permits a more realistic modelling of the lake basin.

To introduce a topography parameter in an elliptical basin, Mysak (1985)
and Johnson (1987a) set out to study the TW-equation in elliptical coor-
dinates (&,n). Basically, this was a generalization of Saylor's choice
who studied a circular domain in polar coordinates and thus lost the
possibility of incorporating into the analysis an aspect ratio parame-

ter.

The derivation of the TW-eguation in the elliptic coordinate system has

already been given in section 2.4; the result was

(h7h pge) g + (07 d ) =hgt by = 0,

N A
o 3
TIN A A

(3.25)

3N

™ O o
A~ ~

¥y =0, €= 2m,

St

where £ is the radial and n the azimuthal coordinate, £g is the ellip-
tic shore-line. Note that £y is related to the aspect ratio parameter
r through

asinh &g

B = e el -
r = i acosh Eg tanh &g . (3.26)

The velocity field can easily be computed from the stream function Y by

means of the formulas

1

ug = D vy, vy = DT g, (3.27)



- 51 -

and the definitions of a and the Jacobian J are listed in Table 2.3.

Consider now a topography which is constant along lines of constant £
(confocal ellipses), and hence has h,=0. For this case (3.25) is a dif-

ferential equation with constant coefficients provided
hg/h = const.

Therefore, we select an exponential depth-profile (shelf) of the form
h(£) = exp(-b&), b > 0, and introduce the separation of variables solu-

tion following Johnson (1987a)
Vg, = Fr(g) &R py(g) TN, neaz, (3.28)
With it, equation (3.25) is equivalent to the system

b
Fi"+bFy' + (_n;_ - m2)F =0,

b (3.29)
F' +bFo' + (- 'mo— - m2)F2 =0,
with ( )' = d/df. Ansatz (3.28) is an extension of Mysak (1985) who
selected Fp = 0, In that case, only two homogenecus boundary conditions
at e.g. £ = £g and £; < &g can be imposed on F;. Fy(g7) = 0 is a no-flux
condition across the line & = £ which can be interpreted by the pre-

sence of a central elliptic island in the domain 0 £ & £ £1. Mysak (1985)
presents solutions for the limit case £; = 0, a central barrier. These

solutions, however, suffer from the fact that Yy is not differentiable at
the foci of the elliptic coordinate system, and hence the velocity field
is not defined there. For 0 < &1 < &g the basin has a central island and

the physically relevant fields are finite, see Stocker & Hutter (1987b).

It is characteristic of the elliptical coordinate system that the for-
mulation of the boundary condition at the center £ =0 is subtle. It is
necessary to have both ¥ and Vy continuous "across" & = 0”, in order

that the velocity field takes physically meaningful values. Therefore,

the four boundary conditions

Fi(£s) = 0, Fal(gg) = 0, (3.30a)
F1(0) =F5(0) = 0, (3.30b)
Fi'(0) +F5'(0) = 0, (3.30c)

must be satisfied. System (3.29) together with (3.30) is a well-posed

*) Clearly, in elliptical coordinates § 2 = 0. Continuity of a guantity ¢(&,n)
"across" £ = 0 means lim¢(E,2m-n)= limd¢(E,n), 0 < n < 2m
EY0 [2%0]



= 52 =

boundary value problem of second order in the interval [0,£g], which
can be solved in terms of exvonential functions. The conditions (3.30)

will select the eigenfrequencies.

Because of the form of (3.29) and (3.30) the radial functions can be

taken as nurely real, and it can be verified that

=B B
F1(£) = e ° sin) (Eg-E), TFa(E) = e’ sinh A(Eg-E) -
AE = EEE - m? - %-bz , A§ = E%E + m? + %—bz,
fulfil (3.29) and (3.30a,b). (3.30c) eventually requires
Ap cot Ay Eg + Ay cot Ay €5 + b =0, v(3.32)

from which the eigenfreguencies can be calculated. Note that for suffi-
ciently large m and o Af in (3.31) becomes negative and F; takes the
same form as F,. The cot in (3.32) equally transforms into a coth, and
then real eigenfrequencies are no longer allowed; the m-th azimuthal

mode is thus bounded by
mb

Equation (3.32) yields a countable set of eigenfreqguencies for given
topography parameter b and azimuthal wavenumber m and for each ¢ the

inequalities 1
(n- 3)11 < A (0)+Eg < nm, =n=1,2,3,...

must hold. Table 3.4 gives eigenfrequencies calculated by Johnson (1987a)
for £ = 0.805 (ellipse with aspect ratio r=2/3) and b = 2.86 (shore
line depth h(&g) = 0.1) and F{gwie 3.5 displays the stream line contours
of the modes with (m,n) =(1,1), (2,1) and (1,2). The patterns resemble
those of Ball's model or Mysak's island model and modifications here
are due to the different choice of the topography (with respect to
Ball (1965)) and of the central boundary condition (with respect to My-
sak (1985)).

1] 0.200  0.0541 0.0235 0.013 Table 3.4

0.327  0.102 0.0458  0.0257 Eigenfreguencies of the first
0.139 0.0659 0.0375 TW-modes in an elliptic basin.

The parameters are &g = 0.805
0.379 0.165 0.0830 0.0483 and b = 2.86.

How N
o
w
~
[=)]




- 53 -

¥ h(gg) =0.1 0.2 0.5 0.8
0.99 0.380 0.281 - 0.128 0.0422
0.67| o0.2001  0.158 0.0783 o0.0270  TaPle 3.3
050 0.143 0.113 0.0569  0.0197 Topography and aspect ratio
effect on the frequency of
0.33 0.0921 0.0732 0.0371 0.0129 the (L,Ll)hede,
0.1 0.0270 0.0216 0.0110 0.00384

The influence on the fundamental mode of the variation of both bathymet-
ric parameters Lg (via aspect ratio) and b (via shore line depth) is

shown in Table 3.5. The influence due to topography is dominant.

SN NESY-———\N
== =

(m,n)=(1,1) (2,1) (1.5
T=84,1h T=51.7 h T=312h

Figure 3.5 Stream line contours of the three lowest modes in an ellip-
tical lake with exponential bottom. [From Johnson, 1987a]

Johnson extends his model also towards more realistic bottom profiles.
The purely exponential profile h(g) = e P& exhibits an unrealistic topo-
graphy in the neighbourhood of £ = 0 in that the basin has the form of

a trench there. He thus investigates a profile given by

e-b(g;"EB) , £y
h(g) = {
1 P 0

describing a basin with flat bottom in its center. Trials of the form

A

£ &g,

in

£ S &g,
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(3.28) can be formulated for the domains £ < £ and £ > £, respectively.
A matching condition requiring continuity of ¢ and Yg must be satisfied
at £ =£fp. We do not intend to go into any details of this calculation
since it can be performed given the experience of the previous deriva-
tions. Table 3.6 lists the frequencies for the parameters £ =.0.805
(aspect ratio r=2/3), €3 = 0.434 (flat bottom occupying half the basin
width) and b = 6.2 (éhore line depth h(gg) = 0.1).

m n=1 2 3 4

1| 0.137  0.0321  0.0129 0.0068 Table 3.6

0.253  0.0629  0.0256  0.0135 Eigenfrequencies of TW's in an
0.340 0.0916 0.0379 0.0202 elliptic basin with flat bottom.

The parameters are &g = 0.805,
0.397 0.117 0.0496 0.0266 Eg = 0.434, b = 6.2,

oW N

Comparison of Tables 3.4 and 3.6 indicates that increasing the width of
any flat region whilst holding shore line depth and aspect ratio of the
basin fixed decreases the eigenfrequencies. Investigation of the stream
function (not presented here) shows that largest speeds occur in the
domain £ < £ < E£g and that the stream lines covering the flat part of

the lake are nearly straight lines.

So far we have studied the TW-equation in various coordinate systems for
closed basins, i.e. finite domains. It was demonstrated that the discrete
spectum  exhibits conspicuous dependencies on the bathymetric parame-
ters, such as the width to léength ratio (aspect ratio) and the topogra-
phy parameter. Generally, increasing the topographic gradients, i.e.
[h'/h|, decreases frequencies considerably. The same but weaker influen-

ce is experienced when the aspect ratio is decreased.

In the next section we intend to briefly present solutions of the vor-
ticity equation in simpler configurations. These are domains which are
infinite or semi-infinite with respect to one or both coordinates. These
ingdnite domains have a continuous spectrum and the properties of it will be

studied extensively in further sections.

3.5 Topographic waves in infinite domains

Major developments in the understanding of second class waves were not
advanced by solving the TW-eguation in {inite domains, but rather by
studying these waves in .(nfinite domains, such as channels, continental

shelves, trenches, etc. The aim is not to provide a complete account of
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the history and the availability of known solutions, for‘this the reader
is directed to Mysak (l980$,b) and more recent literature®. By present-
ing solutions to analytically accessible configurations we would rather

like to work out the typical vhysical properties of the characteristics

of these guided waves. The results presented here will be preparatory

to developments in subsequent chapters (particularly Chapter 5).

In the relevant literature, TW's are usually studied in the context of
shallow water waves in a homogeneous or stratified fluid medium on the
f- or B-plane. Much effort is directed towards an understanding of their
generation, propagation and their modification by topography, stratifi-
cation, nonlinearities etc. Motivation are observations in the continen-
tal shelf regions of the Earth's oceans, and these observations have
often found excellent theoretical explanations through these models. How-
ever, the success in these interpretations was due in parts to the sim-
plicity of the domains and their topographies. This made it possible to
study the low-frequency properties of the shallow water equations and to
demonstrate existence of continental shelf waves, barotropic and baro-
clinic Kelvin waves and edge waves and to analyse their interaction
(Huthnance, 1975, Allen, 1975). All these interactions will be ignored
here, and only the TWw-equation (2.22) will be studied in which barocli-

nic effects and barotropic gravity waves are neglected.

a) Sitraight channel

Consider a straight, infinite channel with the Cartesian coordinate sy-
stem as indicated in Figure 3.6. With a depth profile h(y) which is con-
stant along the channel axis and a car-

rier-wave ansatz of the form
Vo= Y (y) ei(kx—-cft)[ o =w/E
the TW-equation reduces to
=[BTl k20 y=0,  (3.33)

in which ()'= d4/dy.

Figure 3.6 Infinite channel with one-sided shelf. At
the boundary points, 0,s,r the functions
h and h' may not be continuous.

*) Brink (1980), Brink (1982), Djurfeldt (1984), Gratton (.1983), Gratton & LeBliond
(1986), Johnson (1985), Koutitonsky (1985), Lie (1983), Lie & El-Sabh (1983), Ou
(1980), Takeda (1984), Mysak et al. (1979).
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Equation (3.33) is subject to the familiar no-£flux conditions

Furthermore, at interior points we request that™/

vl =0,

at vy =s. 3.34
[ -%u/n1 = o, -2

Equation (3.34a) means that the transport is continuous whereas (3.34b)
follows by integrating (3.33) across the discontinuity:
s+8

tn f (et - Emhry- ety ay = o,
§+0 s-§

; T k . _ s+6 s+§ _ .
] [ T R LY R
J

Because h, ¥ and y' are all bounded at y =s and h is nonzero at y=s the
last integral vanishes in the limit as &+ 0.

Consider the piecewise exponential depth profile (see Figure 3.6)

h(y)_{eeby 0<y<s,

. e s Sy<sr, (3.35)
= +i1n i

b—slns'

It renders (3.33) an ordinary differential equation with constant coef-

ficients. Subject to the boundary conditions the solution is

eP/2°Y gindy, 0<y<s,
viy) =
A sinh k(y-1), s<y<r,
2
B Byl B,
5] 4

Evaluating (3.34) yields the .implicit dispersion relation

1 -1
Ttansk— kcothk(r—s)+g ' (3.36a)
2
2. Ky _2_b (3.36b)
A2 = S b-k -2,

of TW's in this infinite channel with one-sided topography. Figure 3.7
displays the lhs and rhs of (3.36a) as functions of Ar. The lhs is inde-

pendent of o whereas the rhs is a double-valued relation of X due to

*) [o(y)] at y = s denotes the jump of the guantity ¢ defined by
[oes)] = éi’g (¢ (s+e) -~ d(s-€)).
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(3.36b) . For frequencies lower than a critical value there esists a fi-
nite number of intersections (0,A) or (o,k). This number increases step-
wise with decreasing o due to the periodicity of the tangent function.
Note that A2 is only positive provided the signs of k and ¢ are identi-
cal. The dashed curve in Figure 3.7 shows the lhs for A2 < 0, i.e. the tan
is replaced by a tanh. For this case there are no intersections and
hence no real pairs (o,k) satisfying (3.36). This implies that phase
propagation is into the positive x-direction for this configuration,
which amounts to the well-known prop'erty of shelf waves on the Northern
hemisphere (f > 0): the phase propagation is M’ghAt-bounded*). Two limiting

cases of this dispersion relation are of interest.

rhs(3.36a)

Figure 3.7

Plot of the lhs and rhs of the implicit dispersion relation
o(A) or o(k) given in (3.36) for s/r= ¥3, rb= 6. The points
(o0,A) are indicated with O, &, o.

In the limit as r -« the depth profile (3.35) becomes the well-known
exponential shelf. Correspondingly the dispersion relation reads
' 1

’
k+ %

i‘tansl = - (3.37)

A
and the result of Buchwald & Adams (1968) is recovered. Fi{gure 3.8 dis-
plays this dispersion relation for the first five modes. The shapes of

these curves exhibit features which are typical of topographycally trapped

*) Right-bounded means that the shallower region is to the right when looking into
the direction of phase propagation.
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second-class waves: Firstly, long
{ . shelf waves are non-dispersive, i.e.
06 as k+0 cgr =30/3k »c=0/k > 0. Phase
and group velocity are the same, Se-

loi condly, when h'/h*) is bounded, for

0.4 y €l[0,»] then cqy <0 for some range of
i 111 k>0. In other words, the dispersion
v relation o (k) péssesses a maximum at

0.2

k=kg. For k <kg, ¢ and cgy are both

1 v positve, and phase and energy propa-

gate in the same direction; for k > kg,

0 0 i 20 30 c is still positive but cgy is nega-
Figure 3.8 tive., Furthermore, o(k) > 0 as k~+» =,
Dispersion relation o(k) (3.37) These properties which hold in an in-

for the first five modes on a
shelf with b = 5.4,
[ From Buchwald & Adams, 1968] ce (1975) in a more general context.

finite domain were proven by Huthnan-

The stream function in the shelf-wave limit takes the form

eb/2:¥ sinly, 0<gy<s,

eb/2:5 gins .e-kly=s), s <y.

viy) = {

It decays exponentially for y >s and is essentially sinusoidal in the
shelf domain.

d) Thench

A second simple case is obtained when s > r. The dispersion relation is

then reduced to
tanri = 0,

whence b
o= 2 ¥ n= 12w
2 3.2 4 22
X2+ [+ (2]

where the integer n denotes the mode of the wave. The streamfunction of
the n-th mode has n -1 nodes across the channel. Long waves in this

channel are non-dispersive with phase and group velocity

C=cgy = as k > 0.

For very short waves the frequency is inversely proportional to the
wavenumber, ¢ =b/k, and phase and group velocity have opposite sign. The

critical point (kg,0p), where the group velocity vanishes is given by

*) Because of its significance h'/h is often referred to as slope parameter S = h'/h.
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2 b
(kg,00) = [\/‘34-+ 22 ——————~}

b2 nm,2
25+ )

The critical frequency 0g strongly depends on the topography parameter
b = h'/h.

We now demonstrate that boundedness of h'/h is important for the second
of Huthnance's properties, namely existence of vanishing group velocity

for finite kg <=, To this end consider the profile

d, 0<yc«<s,
h(y) = (3.38)
l, s<y«<r.
This profile was used by Sezawa and Kanai (1939), Snodgrass et al. (1962)
and Larsen (1969) to explain edge waves and trapped long waves. Clearly,
since h'= (1-d)§(y-s) vanishes everywhere in ye(0,r) except at y = s,

where h' is infinite, TW's only exist because of this singularity.

With (3.38) the differential equation (3.33) reduces to y"-k2y = 0. Its

solutions are ) ) gsinhky , 0<y<s,
1 y =
|Asinnk(y-x), ssysr.

Inserting this into the matching conditions (3.34) readily yields the

dispersion relation
tanh ks tanh k(r-s
o = (1-d) —— = i (3.39)
d tanh ks + tanh k (r-s)

Figure 3.9 displays o(k) for different values of d, and we notice that

these are monotonically growing functions of k. Indeed

g — 1-d -+
Te@r 3 k7o, :
I
0 prop K, as k=+ 0, 08 d= 0125 7/
and no critical wavenumber kg /}’,— y
exists. Furthermore, there is 06 d/”}zs ]
]
only one single fundamental
TW mode. __{}0 - |
04 / d= 050 Y3
L
Figure 3.9 0.2
e 5.:03
s ; I . T
Graph of the dispersion relation rk
(3.39) for s/r = 0.3 and 3 values 0 = i |

of d. Note o(rk) is monotone. 0 1 2 3 4 5 6 7 8 9
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Shelf waves have also been analysed for different topographies with r =+ ®, Reid (1958)
and Mysak (1968) have investigated the finite width sloping shelf profile of F{guwre
3.10a. The mass transport stream function can in this case be expressed in terms of
Laguerre polynomials and dispersion curves are qualitatively as those shown in Figure
3.9. However, there are now a countably infinite set of shelf modes because of the
sloping portion of the shelf. Ball (1967) on the other hand studied the exponential
depth profile of Figure 3,10b and finds dispersion curves for shelf waves which are
qualitatively as those of Figute 3.8, as would be expected. A similar study for es-—
carpment-, trench-, shelf- and wedge waves was given by Djurfeldt (1984).

- -
Y d B Figure 3.10
a) Finite width slop-
k 1.0 1.0 ing shelf profile,
b) Exponential pro-
{ file.
ks S
& %YIO<Y<S; h"]”e-cy
a) h= D)

b, y»s,

In reality channels have bathymetric gradients on both sides. From the
results obtained so far, it can be concluded that in such a channel (e.q.
with a parabolic depth profile) there will be TW's travelling along ei-
ther sides of the channel each in a right-bounded way. The dispersion
relation then consists of two branches (assume ¢ > 0), one for k > 0 re-
presenting those waves trapped to y=0 and k <0 for those trapped to
y=r. This, and the propagation of TW's in cwwed channels will be dis-
cussed in Chapters 5 and 6.

Island~trapped shelf waves were studied by Mysak (1967), Rhines (1969),
Saint-Guily (1972), Buchwald & Melville (1977) and Hogg (1979). All these
authors solved the TW-equation in cylindrical coordinates, but used dif-
ferent representations of the topographic profile. Mysak used the finite
width sloping profile of Figute 3.10a (in which y is now the radial dis-
tance) Saint-Guily applied the parabolic depth profile, while Rhines,
Buchwald & Melville and Hogg employed the power law

dy%, a<y<a+r,
hiy) = 1, y >a+r,

with o > 0; a is the radius of the island. To our knowledge, solutions
of the TW-equation in the exterior of an elliptical island were not con=-

structed so far but can easily be derived.

The derivation of the relevant equations in elliptical coordinates £,n

is given in section 2.4. We assume the isobaths to follow confocal ellip-
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ses, so that h=h(f). The shore of the island will be given by £ = &1,
the contour line of the outer edge of the shelf by & = £g. The TW-egqua-

tion is given by (3.25);. With the separation of variables solution
Y(E,m) = F(g) eX(m*0t) oy 53,

(the +sign of ¢ is used because a right-bounded phase propagation is

clockwise around the island) the boundary value problem becomes

(lr)e(F o™ -n2nhF = o, £> ¢,
F=0, at | £ = kg, @, (3.40)
[F3 = [F'] =0, at £ = Eg.
With the exponential shelf profile
(PEER) €1 < £ < &g,
h(g) =
1, Eg < &,
the Eolution of (3.40) satisfying the boundary conditions reads
b(&~ 2
e ¢ gE)/ sinK(E-EI) v Er £ €% e ,
F(g) = —mE
Ae Eg £ &,
with 2 - mb _ o _ b2
Ae = = m 7

The matching conditions at £y determine the constant A and yield the
eigenvalue equation

+ tank(Eg-Ey) = - M T (3.41)

N]U"

r €1 Az/Ag b Mode (m,n)
(L1 (2,1) 0 (3.1) (1,2)

2 3.30 0.232 0.358 0.405 0.006
0.99 2.65 3 2.09 0.317 0.408 0.399 0.088
5 1.43 0.379 0.401 0.347 0.120

2.48 0.285 0.396 0.410 0.076
0.5 0.549 3 1.69 0.354 0.410 0.374 0.105
L.22 0.397 0.385 0.318 0.135

2 1.88 0.336 0.411 0.388 0.096
0.1 0.100 3 1.38 0.384 0.398 0.341 0.123
5 1.05 0.408 0.363 0.289 0.149

TPable 3.7

Eigenfrequencies of the (m=1,n=1), (2,1), (3,1), (1,2) modes of TW's around
an elliptic island according to (3.41). r is the aspect ratio (width to
length) of the island, Ag and Ar are the semi-axes of the elliptic shelf
boundary, Ag = cosh g, and of the island A1 = cosh&i, and b is a topogra-
phy parameter such that h(&p) = 0.1.
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This is exactly analogous to the dispersion relation (3.37) for TW's of
a straight shelf, except that the "wavenumber” m is quantized here due

to the 2m-periodicity in n. (3.41) is an example of an infinite domain
with a discrete spectrum. Table 3.7 lists a selection of eigenfrequen-

cies for various values of m, £1, &g and b.

3.6 Semi-infinite channels and elongated basins

In this seétion we present-a method recently described by Johnson (1987b).
The method makes use of the invariance property of the TW-equation dis-
cussed in section 2.4. Given a coordinate system (£,n) which can be
conformally mapped onto the Cartesian system (x,y), it follows from
(2.64) and (2.62) that the PDE governing topographic wave motion form-
ally agress with that in the Cartesian system. Johnson (1987b) investi-

gates the conformal mapping from (x,y) onto (g,n)

£+in = cosh , (3.42)

which transforms the semi-infinite channel |y| <7n/2, x 20 with a cut
on y=0, x2a to the strip 0<ns<mn/2, - «< &<, as shown in Figure
3.11. Note that for large |&| the coordinate system (§,n) approaches
the Cartesian., With a depth profile h(n) varying only with n, the chan-
nel has a constant depth along the thalweg n =0. The boundary can be
chosen at n=ng (0 < ng s 7m/2); this curve and all isobaths are smooth.

Because (3.42) is conformal, the TW-equation takes the form
1 1 £,
(EW%@E+(hwuﬂn+wg(h)n—O, (3.43)

and ¢ vanishes on ng and is smooth across the cut n =0. Assuming two

oppositely travelling waves, viz.
Y = Fy(n) cos(kg-wt) + Fy (n) cos (k&+wt), (3.44)

corresponding to (3.28) with n and § interchanged, (3.43) becomes

Figure 3.11

Coordinate lines of the (£,n)
system in the semi-infinite
channel |y| < ©/2, x 2 0.
[From Johnson, 1987b]




F"-(E)F'—[i~—(—h—)+k2}k*= 0, (3.45)

with ¢ = w/f for F; and F,, respectively. Across the channel boundary
n =ng the no-flux condition

Fi(ng) = Fylng) =‘0, (3.46a)

is requested. The stream function Y must be smooth "across" the cut

n= 0, thus implying
F;(0) -F,(0) 0,

Fi(O) +Fé(0) 0.

{3.46Db)

The exponential depth profile

s ePM M), ng<ns<ng,
ny =
., 0s<ngng,

renders (3.45) a well-posed linear eigenvalue problem with constant co-
efficients. (3.45) and (3.46) completely agree with (3.29) and (3.30)
with the coordinates interchanged. The solutions, citing Johnson (1987b)
read

2 ap 31
F, = [cosh kng + s sinh kr\BJ

exp(- —]2; b(ﬂ—ﬂB)) sin ()‘lms‘”))

(N £ N £ ng)

% sin (Ay(ng-n )
O,
cosh(k(n—nB))——k sinh(k(ﬂ—ﬂg D L0 £ 1n < np)
g o S
Fy = [_cosh kng + ?2 sinh knBJ %
exp(~%b(n—ng))sinh()\z(ns—n))
ng £ n £ ng)
X < sinh (A2 (ng-np))
a2
cosh (k(n-ng)) - Tsinh (k(n-ng)), (0 £n < np)
2 2
2 - kb _ 42 b° 2 - kb 42 D7
Al = k T Az = + ke + e
oy = >‘l cot Xl(ns ‘ﬂB) #* b/zl
¢y = Ay coth'As(ng-ngp) + b/2,
and the dispersion relations becomes
k+oy o
0 = (ay-ay) (1+ tanh? kng) + 2 ——— tanhkng . (3.47)

Note that a channel with no flat central zone, i.e. ng =0, has the sim-



pler dispersion relation

ay +ay = 0,
its qualitative shape is given in Figure 3.8. Due to the invariance prin-
ciple under conformal mapping it is the same dispersion relation as in
a straight infinite channel. More specifically, each frequency ¢ allows
a short and a long topographic wave with their phases travelling from
£=® to §£= -o, The energy of the long wave propagates into the same
direction whereas it travels into the opposite direction for the short

wave .

Figure 3.12 displays contours of ¢ in two semi-infinite channels. A right
bounded wave propagating from infinity towards £ =0 follows the lines
of constant £/h. This amounts to a complete reflection of wave energy
as the reflected wave travelling towards £ - -« has the same wavelength
and amplitude. Hence, the energy of a incident wave is not distributed
among other possible wave types but is transferred without loss to an
outgoing wave with the same wavenumber. We shall present configurations

with a different reflection behaviour in section 8.

The results for the semi-infinite channel can be applied to construct
approximate solutions in elongated basins as proposed by Johnson (1987b).
As mentioned, the (£,n)-coordinate system approaches the Cartesian sy~

stem for growing |&| and x, respectively. A basin of length 2L can then

a)

Figure 3.12 Contours of the stream function of TW's in a semi-infinite
channel. The parameters are ng = 1.5, ng = 0.5, b = 1 and
a) a=1n/4, k=4 and b) a = 1/2, k = 1. [From Johnson, 1987b]
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be constructed by patching two semi-infinite channels at £€; =L - Insinha
together. The coordinate lines coincide there with an error of order
exp(-2L) cosh?a as can be seen from expansion of (3.42) for x > 1. The
stream function (3.44) must be continuous at £ =§&; implying that the
periodicity condition k=mm/2&;,, m=1,2, 3, ... holds. This selects the
eigenfrequencies from the dispersion relation. Figure 3.13 shows plots
of the (m,n) = (1,1), (2,1) and (1,2) modes in the elongated basin of

aspect ratio 1l:6.

The solutions qualitatively agree with those in the elliptical basins,
see Figure 3.3 and 3.5. A particular eigensolution is characterized by
two modenumbers m and n. The "radial” modenumber n governs the struc-
ture of the solution in the transverse n-direction and is incorporated
in the dispersion relation (3.47). Modes with the same radial modenumber
lie on the same branch of the dispersion relation. Figure 3.8 gives a
schematic impression of these branches and demonstrates that each radial
modenumber has its individual cut-off frequency above which only modes
with lower radial modenumbers can exist. The "azimuthal" modenumber m,
defined by the periodicity condition, gives the structure in the £-di-
rection and is related to the number of nodes along the long axis of
the basin. We conclude, that the spectrum is ordered with respect to
both modenumbers individually. The largest eigenfrequencies are expec-
ted from modes with n = 1 and m = mg, where mg is an integer closest to
the critical wavenumber kg. Moreover, this critical modenumber mg dis-
cerns solutions with different properties. Modes with 0 < m < mg are
associated with wavenumbers 0 < k < kg, and from the dispersion relation
we have 930/3k > 0, see Figwie 3.§. Eigenmodes with increasing frequen-
cies have increasing modenumbers and hence exhibit vortices with smal-
ler spatial scale. The opposite is true when m > mg. Since these two
azimuthal mode types belong to the respective domains of the dispersion
relation, they enjoy different physical properties. In chapters 7 and 8
these two and an additional modal type will be discussed further. There,
the dispersion relation of freely propagating TW again proves to be the
key in understanding the structure of the spectrum of the TW-operator

in enclosed domains.

The method of Johnson offers five bathymetric parameters to model the
aspect ratio of a lake and, independently, the form of the lake ends
satisfactorily. It is therefore a more general approach than the ellip-
tic basin of section 3.4 though closely related to it as the latter is

obtained by a conformal mapping, as well.
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Mysak et al, (1985) interpret the 74h-signal in the Lake of Lugano by a
fundamental TW-~mode. Johnson, on the other hand, demonstrates that a
realistic choice of the bathymetric parameters, particularly that of the
aspect ratio, leads to perjods of about T = 300h and longer. He conjec-
tures that a possible TW with a period of the order of 70h must have a
wavenumber of the order of the inverse aspect ratio of the basin. For a
basin with the parameters of Figure 3.13 e.g. the (20,1)-mode has T =
87.2h. Modes with that large azimuthal modenumbers exhibit a very small
scale structure over the entire elongated basin’and it is qguestionable °
whether such a mode can persist in nature to produce a pronounced signal
as in Lake of Lugano and Zurich. It was mentioned in the introduction
that FE-calculations for the Lake Lugano basin point at modes with a com-
pletely different modal structure which lack the property that they have

coherent wave motion in the whole domain.

Johnson's model represents a strong instrument to construct TW solutions
in an elongated lake. However, due to the invariance principle, it is
not known whether the model could produce mode structures resembling
those of the FE-model in Figutre 1.70. Most important, incident topogra-
phic waves in the semi-infinite channel are - for all frequencies - com-
pletely transmitted onto the opposite channel side in the process of re-
flection. However, for each frequency there exists a finite number of
wave modes on which incident energy could be distributed. In chapters 7
and 8 another model is discussed which does not enjoy the invariance
principle but yields a number of additional results towards a broader

understanding of topographic wave motion.

.

Figure 3.13

The modes (1,1), (2,1) and (1,2) in a basin with aspect
ratio 1:6 and ng = 1.5, ng = 0.5, b =1 and a = /2.

The frequencies are: a) ¢ = 0.0511 (T = 331h),
b) ¢ = 0.0966 (T = 175h),
c) o = 0.0258 (T = 655h).

[From Johnson, 1987b]
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4, The Method of Weighted Residuals

4.1 Application to the TW-equation

Construction of analytical solutions to the TW-equation (2.24) subject
to the no-flux boundary condition is possible only for some simple cases.
Even though the equation may still be separable when written . in a spe-
cial coordinate system, the solution of the emerging ordinary differen-
tial equation may either only be expressible in terms of special func-
tions which are tedious to handle, or must be obtained numerically.With
realistic boundaries and non-vanishing curvature of the domain an exact
solution can hardly be found. In this chapter we therefore introduce a
procedure, by which equation (2.24) can be solved approximately. The method
consists of a reduction of the dimension of the mathematical problem by
a basis (shape) function expansion and is a variant of the projection me-
thod, the spectral or modal method and may also be considered a generalized
separation of variables procedure. Its advantage is that despite of its nume-
rical intent, the method permits analytical techniques to be pursued far-

ther than with classical numerical approaches.

There are several techniques by which the reduction of the dimensionality
of a boundary value problem can be achieved and then approximately sol-
ved. One is to derive‘the governing equations from a Variational Principle
For the TW-eguation this involves construction of a functional (Lagrang-
ian) in terms of the mass transport stream function; the TW-equation is
obtained as the Euler-Lagrange equation of this functional and the bound-
ary condition would result from the natural boundary condition of the
variation of the functional. Ripa (1978) and Mysak (1985) proceed this
way. We use here the Method of Weighted Residuals (MWR). Both methods, in
their essentials, are described in Finlayson (1972). The MWR has already
been applied to gravity waves by Raggio & Hutter (1982), to topographic
waves by Stocker & Hutter (1986, 1987a,b), to two-phase turbidity currents
by Scheiwiller et al. (1986) and to the governing equations of a conti-
nuously stratified lake by Stocker & Hutter (1987b).

The MWR and the variational principle in the function expansion approach
are related to the Method of Finite Elements (FE). One fundamental dif-
ference, however, consists in the fact that the domain of integration is
not partitioned into a number of elements in which linear or higher order
interpolation is performed. Rather than assuming the {focal functional

dependence within an individual element and then minimizing some global
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measure, our model approach prescribes the global functional dependence
along one dimension and maps the problem into the orthogonal subspace.
This is achieved by a weighted integration of the equations along this
dimension.
We consider the eigenvalue problem (2.24) formulated in the natural co-
ordinate system shown in Fdgure 4.7,

Dy =0, in D,

By = 0, in 80, (4.1)

with the definition of the differential and boundary operators ID and IB,

respectively
s L[ T2 Bt 2y, @ -1y 24],0078 & _anTt 3
P=3 {—10[35( J 83)+ an(h 4 En)] dn 3s  93s onj’
4.2
B = 1. { 1

¢ = w/f is the non-dimensional frequency and J = 1-Kn, where K is the

curvature of the thalweg.

Figure 4.1 ¢

Elongated lake and transverse
section in a natural (s,n,z)-
coordinate system. The thalweg
axis (n=0) may be a center of
symmetry (not necessarily) and
have curvature K(s).

Let {Py(s,n)} be a complete set of basis functions indexed by «, in terms

of which the mass transport stream function ¥(s,n) is expanded:

i

N
U(s,n) = 3 Pgls,n) ¥gls) = Pyig. (4.3)

=1

Each basis function is weighted by a residue function ¥4 (s) which is as-
sumed not to depend on the transverse coordinate n. All functional de-
pendence on n is now incorporated in the preselected basis functions Py,
a general form of separation. Expansion (4.3) represents the exact solu-
tion for a separable problem provided the basis functions are appropria-
tely selected. For non-separable systems as (2.24) generally is, and for
an arbitrary set {Py} with N < =, the expansion is merely an approxima-
tion. Clearly, fast convergence is anticipated so that truncation of

(4.3) for very small N may furnish a sufficiently accurate solution.
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The integration of (4.1) with an arbitrary bounded weighting function
§¢ (s,n) over the lake domain and along the shoreline, respectively, leads

to the integral formulatiocons

[ @y soaa =0, § @Y 6ear=o. (4.4)
D 3D
If (4.4) holds for any weighting function this is equivalent to (4.1)
owing to the fundamental lemma of the Calculus of Variation (Courant &
Hilbert, 1967). Expanding also the weighting function in terms of the

complete set {Qpl}, viz.

M=z

§¢(s,n) = Qg (s,n) Segls) = Qg Sbg,

1

B8

and inserting these expansions into (4.4) yields

[ (D Pyuy) Qg Sogda = 0, §(Bryuy) 0gsegat = 0.0 (4.5a,b)

0 D
The integration over the lake domain U can be split up into two integra-
tions over either coordinates using da= Jdn ds for the area element in
the natural coordinate frame. Further, the trivial form of the boundary
operator IB =1 suggests the special choices

Pa(s,Bi) =0, Qg(s,Bi) = 0y for all ¢,B (4.6)

such that the only contribution to (4.5b) arises from the ends of the
lake.

Since the weighting functions are arbitrary, (4.5) can be replaced by

n=B*
f (D Py vy JQB dn = 0
n=B"

A w

U (8) . 0

=0,L
The residue functions Y, depend only on s and are therefore extracted
from the integration by carefully accounting for the effect of the dif-

ferential operator ID on Yy (s). Substituting (4.2) into (4.7), we obtain

Bt _1
0= | [-10 R Ze, W]+ vt R v
J

w @)

anl 3 amt g,
X MUREL. g ya)l Qg dn,

'l Al
(3) (4)
where use of the summation convention has been made. Each term in this

expression will be evaluated separately. In the following deductions we
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need Leibnitz' integration rule

Bt B*
3F - ich
jé-s—Gdn—f (FG) dn jras dn
B~ B~
B+ B+
B as Pl
- 2 [ 76 an-(ra)| -2+ pc)l - [F 5% an,
B~ B+ B”

where F and G are arbitrary, differentiable functions of s and n.

With these preliminaries the terms (1) to (4) can be evaluated. The rule of
transformation is to remove differentiations of the topography h as far as

possible, which can be achieved by integration by parts:

Term (1):

3t 3
W = [ (5 5 (e w) gg dn
_ 3 (hl o3 nt o3
= 5577 55 Pa v Ggan - [Ty as(a‘“
3 hl 9Py Wy (7t 7
B E[ 0[5 B9+ 5[ 5 Pa 0gdn)
nt 3y 30g e (7t
TR m T R
_ KL aPu h 9Py aQB
- v [ FRogan - [ TE 2 an
h~l 9P, n-1
[T R [T gan
h 308 32 vy (nl
J5F By Ran] + T3 (2 2 gpan,
Term (2):
(2) = J(%[h‘lJ ® %)] g dn
=-fntad (Pa Uo) == dn
3Py 30
= —yg, {nl pie B
= Vo )b 3 3n O
Terun (3):

_ a7l o3
(3) = [ 5= 5= (By by) Qg dn

- - r ) an

%, 3
_ % @ o _ o (41 8
= —bg [ B m(g e dn - 2 [ 0T (p, 0p) dn,



s T

Terum (4): L
_ _rant g
(4) = J—E 5 (PC! lpa) QB dn

9 (-1 3 ey
- g [T v Qg dn + f W (v 0g) dn

9P,
B -1 aPa B 9 . a
=..__th __QBdn waa—-s[h ———anQedn

s on
P,
1 3 9Py o -1 o
g [ HE 22 gp an v F2 [ it 52 ogan.

Parenthetically we may remark that the process of this evaluation is
more complex when the basis functions are not restricted by the condi-

tion that they vanish along the shore, because further integration by

parts is necessary in that case. (4.7) thus takes the form
) 32 Yo ht
0 - -1 T[22, o an]
o nl 3Py 3 (nt nt o 30
ral [F g L Fnge-] e
9 h—l aPa hi aPa aQe 1 3Pa BQB - (4.8)
thal5 [T T aw [T w5 g [itI 5 5y an]
Wy -1 3P ( 0 1
e Jlo [T 28 - -1 e
5 - n dn - | R By 5y dnj
P, 0 9P, 9Q ap
-1 %o 9B (.1 %o 9B il Iv-—l o
! — — = — % TP w2 Y
+V°‘Hh il el B R ol = L i S R Qg dn] ,
B+
and the integrals are understood as J .. (4.8) can be written in the
-
form
Mg, Vy. = 0 0<s <L
Ba Ya ,
} 0B = 1,...,N { (4.9)
Yo = 0 s =0,L,
with the matrix operator elements
00 10
2 dM dMm
= @i 00 4¢ , (TBo a0 _ 01y & Bo 1l 22]
Mgy 10 [MBOL ds2 +( ds +MBOL MBG) ds +( ds Mgy MBa)
. dméo (4.10)
20 02, 4 _ o 12 21 B
- (Mg + Mp) 35 - (g + Mga - Mgy) (@B =1,...,M).

The matrix elements Mé represent quadrature formulae in the transverse

J
a
direction, explicitly:
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00 _ -1 ;-1
Mpy = J h™" J 7 By Qg dn,

-1 9P o1 1ol %
10 _ -1 -1 %Fg - 2 B
My, = fh 7 57 Qgdn, Mg, Jh T Py o dn,

o
Még = fh'la—ff‘Qs an, Mgé = Jh’l By a_a?né dn, (4.11)
M;=[h'lJ'lf—: %%ﬁdn, Mé§=Jh'lJ%%i—8 n,
M§§=jh'la—§sﬁa—fn—g n, M§;=Jh_l%%%§dn.

The individual components M%g in (4.11) are known functions of s and
depend on the topography of the lake, h, on the metric of the natural
coordinate system, J(s,n), on the shape of the lake shore, Bt(s), and

on the sets of basis functions {Py(s,n)} and {Qg(s,n)}.

Notice that (4.9) is only meaningful as long as all entries of the ma-
trices (4.11) are bounded. Since J and J°! are both regular, this
means that the basis functions Py and Qg must be chosen such that the
combinations h‘lPa Qg h‘laPa/as Qp, etc. arising in (4.11) are inte-
grable. For h >0 no difficulties arise, however, when h =0 along the
shore the functions Py, Qg must be taken from a set of which the near-
shore behavior is dictated by that of h. This is a drawback of this

method and restricts it essentially to profiles with finite shore depth.

Equations (4.9) form a system of coupled one-dimensional differential
equations that replace the single two-dimensional boundary-value pro-
blem (4.1). These two formulations are presumed to be equivalent provided
(i) the sets of basis functions are complete in [B7, B*] and (ii) N = o,
The selected order N of the system sets a natural bound to the variabi-
lity of the approximate solution as well as to its quality. At a first
glance the MWR seems to leave us with a more complicated task. Finite-~
difference calculations, however, have indicated numerical difficulties
such as slow convergence, particularly for complicated topographies and
for large wavenumbers (Biuerle, 1986). This semi-analytical procedure may
thus well prove advantageous in achieving a better physical understand-

ing.



4.2 Symmetrization

More insight into the structure of the operator (4.10) is gained when
the physical configuration exhibits symmetry with respect to the axis

n =0. Such a symmetry may exist for channels and it often applies ap-
proximately for elongated, narrow lakes. The symmetrization is also mo-
tivated by the fact that solutions found for circular and elliptic ba-
sins, indicate that the phase rotates counterclockwise and the stream
function continuously changes its symmetry with respect to the symmetry
axis of the lake */. As a consequence a split into symmetric and skew-
symmetric Pasis functions is appropriate. We shall, for the purpose of
studying channels and basins which have a symmetry axis, formulate prob-
lem (4.9) in a symmetrized version. To this end, the functions Py, Qg -

J and J-! are symmetrized by introducing the decompositions

f(s,n) = f*(s,n) +£f (s,n),
ft(s,n) = f£f*(s,-n), (412
f=(s,n) = -f7(s,-n).

This decomposition is applied to the matrix elements Még in (4.11); the

important result here is

00 _ m00++ 00-- 00~+ 00+- -
MBa = MB& + MBa + Msa + MBa (@,8=1,...,N)

[l h* By of an+ [h7H(3H)* P} O dn

+ [n(a P Qfan+ [ hl(a )R 0f dn (4.13)
20 20-+ 204~
Mpy = Mgy + MBOL
apg +

ap
fh’l—— QE dn+jh‘l —a—ngQé dn ,

oan
with analogous expressions for Mgé and Mgé respectively. It has been
assumed above that h™ = 0 (symmetric depth profile), and the integration
is from B~ = -VY2 B(s) to B* = Yy2B(s). Because the basis funtions Pgy
and Qg are decomposed according to (4.12) the expansion (4.3) of the so-

lution Y (s,n) must be replaced by

#) IFf in Figure 3.3 the long axis is identified with the s-axis it 1s seen that for
t = 0 the mass transport stream function { is skew-symmetric and for t = T/4 it

is symmetric.
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v(s,n) = Pr(s,n) ¥ (s) + P3(s,n) vz(s),

where the * superscripts on yy indicate merely affiliation to the indi-

vidual PE. In vector notation the stream function reads

Y= e U VI V) = (YT,

and the matrices (4.13) take the form

M00++ ¥00—+ R 0 M20-+
, u%0 = N , etc.
MO0+~ MOO-= M20+- o

Mo =

With this notation the differential equations (4.9) read

' LA Q W[

- ic +
LA ¥ 0 L

(4.14)

1]
o

with the matrix operators M and IN the particular form of which is

unimportant in the ensuing arguments.

The coupling of the solution vectors y* and ¢~ is induced by the off-
diagonal operators Qﬂ‘*, Qﬁ*' and ]y‘*, }y** respectively. The former
are due to curvature and vanish when K = 0. The latter originate from
the vector product in equation (2.22) and express the effect of the Co-
riolis force. The restriction to only symmetric basis functions reduces
(4.14) to two decoupled equations. This obviously corresponds to the
claim that both terms of the sum of eguation (2.22) be individually
zero. On imposing the boundary condition this implies Y 2 0, c.f. sec-
tion 2.2, It suggests that the .approximate system requires a set of
basis functions containing both symmetric and antisymmetric functions

if qualitatively correct results are to emerge.

The remainder of this monograph will almost exclusively be concerned

with the solution of equation (4.14) in various different domains.
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5, Topographic waves in straight infinite channels

In this chapter properties of topographic waves in infinite channels
will be discussed. The first four sections deal with our own solution
procedure using the model equations (4.9) and follow Stocker & Hutter
(1985, 1986, 1987b). In section 5.5 solutions obtained with analytical and
numerical finite difference techniques (Gratton, 1983, Gratton & LeBlond,

1986, Bduerle, 1986) will be investigated.

5.1 Basic concept

The suitability of the approximate model equations (4.9) deduced with
the MWR is now tested using a straight, infinite and symmetric channel

with a topography of the form

h(s,n) = hg(s}(L+e- |—33—[q), (5.1)
B(s)
where € is a sidewall and g a topography parameter, see Figure 5.1, which

provides the possibility of modelling both concave (g >1) and convex

(g <1) transverse depth profiles. The sidewall parameter € has been in-

“—— =05

— g= 10

€-hyls)

—— q=20

. q->

hgls)
Figure 5.1
Cross-sectional depth
profiles of a symmet-
ric channel.

troduced in order that. all matrix elements (4.11) take finite values.
The complete sets of basis functions {Py} and {Qg} will be chosen to be
identical (Galerkin procedure) with the symmetric and skew-symmetric

parts reading, see Fdgure 5.2,

L, 2n
pP{(s,n) = cos(ﬂ(a—'a)ngT),
(@=1,...,N). (5.2)
- . 2n
P>(s,n) = sin (ma B(s))'

+ - . . 2 2 . ™
Here, pg and Py arise in pairs; N thus characterizes a model consisting
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Pg.a=1
1
- 8ls) 2 8ls)
s n
Figure 5.2
Symmetric and skew-symmetric \P+ qz=2
basis functions Py. @

of 2N basis functions. These satisfy the boundary conditions (4.6) along
the shoreline n = £ %B(S). Substituting (5.1) and (5.2) into (4.11) and

assuming B(s) to be constant®/ it is seen that

00 - -1 .00 22 .., ok oLl 22
MB(X = B ho KBKX i MBQ = B hO KBC! 3
20 _ -1 20 02 _ =1 02
M3 = ngt k20, M2 = ngt k32,

while the elements with the superscripts 10, 01, 11, 12 and 21 all vanish.

The dimension-free matrix elements Ké depend on € and g and straightfor-

3|
o
ward calculation leads to the expressions for these:

Kgg++ = f h:l cos T (a - %—) y cos (B - %_—) ydy.

Kgg" = jh:l sinmay sin7By dy,

ka3 = 4n2(@-3) (8- [mlsinale- 3)y sinT (8- ydy,

Kgiw = 472 gp J h’;l cos may cos TRy 4y,

Ké?“ = —211(01-%) jh'*l sinﬂ(tx-—‘%) y sin7 By dy. 18-
Kég_+ = 2ma [h:l cos may cos T (B- ']2;) y dy.

Kg§+~ = 27a Ih:l COSTY(Ci—"]é-') y cosm By dy,

Kg§_+ = -211(6—!2'-) [h;l sin Moy sian(B-——%) y dy,

with h, = l+e-y% and the integration is meant to be from y =0 to y=1.

The numerical evaluation of these elements was performed on a CYBER com-

*) This assumption is not necessary and the operator IM for 9B/3s # 0 is given in
Stocker & Hutter (1985).



o T8 =

puter using IMSL-library subroutines. The results for some values of g

and € can be found in Stocker & Hutter (1985). (4.10) takes the form
dh
o e - io(a2 k00 8% _ g20p-1 £70y poo & 22}
K = Bhg M m[Bxg 3e2 B2 (hgl =) K°° 57 - K

ah (5.4)
- B(K20 4 K02 % + B(hgt _d_s}l)!szo.

This operator has constant coefficients whenever the depth-profile is
constant or exponential with respect to the basin axis. For an infinite

channel, however, we prefer hg(s) = constant. A carrier-wave ansatz

b= Wy = oks/L _ eiks/Lg' (5.5)

4 (C1renerCNiCrLs e+ 1CoN)
with a dimensionless complex-valued wavenumber k, Im(k) # 0 is meaningful
in semi-infinite and finite channels, and a length L is then appropriate.
With (5.4) and (5.5) the symmetrized form of (4.9) reduces to a system

of-algebraic equations

o((rk)2 KOO+ 4 k22+%) - (rk) (K20-* 4+ K02-%) (5.6)

_(xk) (K20 + KO2+7) o ((rk)2K00-" + K2277)

in which the aspect ratio parameter r = B/L has been introduced. Notice
that r and k enter only through the product rk, suggesting that solutions
for r = 1 only need to be constructed. C is a (2N x 2N)-matrix and de-
pends on ¢ and k. Equation (5.6) admits a non-trivial solution vector ¢
if and only if

det C(o,k) = 0. (5.7)
This characteristic equation forms the dispersion relaticn o(k) for topogra-
phic Rossby waves in a straight infinite channel. It is a polynomial
equation of order 2N in (rk)? with real coefficients. For each frequency
a Nth order model, therefore, yields 4N wavenumbers counting complex

conjugates and pairs having opposite signs.

Let ky(y =1,...,4N) be a root of (5.7) corresponding to a frequency o and
let cy/(Cyy) be the associated eigenvector (component) of (5.6). A general

channel solution y(s,n,t) can then be written as

4N N 28
-i0ft ikys/L -
Yis,n, t)=e " b3 Sikys/ dY[Z Bl (s,n) Cay + 20 Puyls,n) cﬂY] , (5.8
y=1 a=1 a=N+1

in which solutions belonging to individual k occur in a linear combina-
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tion by an arbitrary complex vector d,(dy). Representation (5.8) is an
appropriate solution in a straight infinite channel. For this particular
configuration problem (2.22) is separable, the coefficients of the sepa-
rated differential equation, however, are non-constant, and for very
special topographies exact solutions can be obtained, see later sections
5.2 and 5.5. The MWR probably offers more freedom in mcdelling the chan-
nel topography, because improved accuracy can be obtained by higher-

order models, and convergence is expected.

5.2 Dispersion relation

Solutions of (5.7) may be plotted schematically for a first-order model,
N =1, in a (Re(k), Im(k), 0) ~coordinate system, see Figure 5.3. This is a mo-
del which uses one symmetric and one skew-symmetric basis function of the
form (5.2) and is of lowest possible order. Its graph is symmetric with
respect to both axes Re(k) = 0 and Im(k) = 0. Three regimes 1, 2, 3 can
be distinguished where the wavenumbers k take real, complex and purely
imaginary values, respectively. Table
5.1 gives the periods at which the
individual regimes join for different
topography and sidewall parameters.
In regime 1 all wavenumbers k are
real and, therefore, represent phy-
sically possible channel solutions.
Evidently in regime 1, there exists
for each frequency a long and a short
wave. This is typical of Rossby waves
and has ‘also been observed for shelf
waves in chapter 3, provided the slope

parameter S =h'/h was bounded in the

domain. This is so also for channels:

Figure 5.3

Schematic plot of the complex dis-
persion relation o(k) for an infini-
te channel with € = 0.05 and g = 0.5
in a first-order model. In regime 1,
k is real; in regime 2, it is com-
plex with the constant modulus |kj;
and in regime 3, k is purely imagi-
nary, taking asymptotie values k; and
k, for large o.
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in other words it can be proven that existence of a wavenumber k| =
]kol < = such that cy = do/dk = 0 is guaranteed only if h'/h is bounded
everywhere across the channel width (see Appendix C). At this critical
wavenumber no energy is transported along the channel. This corresponds
roughly to wavelengths of about:0.5 ...1 of the channel width; and the
periods are listed in Table 5.7. It is also worth noting that Re(k) can
have both signs. This is in contrast to planetary Rossby waves which are
due to the R-effect (Holton, 1979) or Rossby waves on the continental
shelf (LeBlond & Mysak, 1980), the reason being that here h'/h changes
sign in the channel. So, such configurations enable topographic Rossby
waves to propagate in both directions. In either case, as an effect of
the Coriolis force, the structure of the wave on the Northern hemisphere
is right-bounded with respect .to the direction of phase propagation. The
dispersion relation (5.7) contains only even powers of o such that (5.7)
is independent of the sign of o. It is a convention that the sign of £
(positive on the Northern hemisphere) determines the sign of the non-

dimensional frequency o.

q Tylh] Talh] k|
€=0.06 €=0.10 €=0.05 €=0.10 £=0.05 €=0.10
0.5 52.8 58.3 10.5 1.8 6.6 5.9
1.0 60.5 64.3 13.2 14.4 6.9 6.2
2.0 83.0 88.2 22.0 22.6 6.8 6.3
5.0 | 174 199 58.2 61.8 6.1 5.8
Table 5.1

Periods and corresponding wavenumbers in a first-order mo-
del, which separate the regimes, depending on topography
and sidewall parameters q and e, respectively. The period T
is calculated using T = 16.9 h/¢ corresponding to 45° lati-
tude. At T} no wave energy is transported.

The structure of the stream function depends upon the frequency range.
Small frequencies (regime 1) favour periodic patterns along the channel.
Waves with intermediate frequencies of order 1 (regime 2) have a mixed
periodic-exponential structure and do not represent possible solutions
in an infinite channel. At frequencies o >1 (regime 3) the solutions
grow or decay exponentially. For later use, the union of the three regi-

mes of the dispersion relation in Figuwte 5.3 will be called a mode unit.

Let us proceed to the second-order model; it furnishes 8 wavenumbers to

each frequency and its dispersion relation consists of two interlocking
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mode units, see Figute 5.4. Thus there are now two branches with real,
complex and imaginary k, respectively. The relative size of the mode units
and their spatial positions within the (k,c¢)-coordinate system depend
crucially upon the topography. The cylindrical surface of the first-or-
der model degenerates tc the smaller bell-shaped surface, i.e. |k| now
depends on the frequency. The second mode unit forms an outer shell,
which here has the form of a cone. Physically possible solutions for the
infinite channel exist in regime 1 for both mode units and in regime 2
only for the first mode unit. The gualitative shape of the dispersion re-
lation for an Nth-order model can be guessed from Figures 5.3 and 5.4. The
modulus |k| is plotted for a third-order model in F{guwte 5.5, demonstrating

clearly the addition of the next mode unit.
Summarizing the main points, we state the following remarks:

- The dispersion relation of an
Nth order model consists of N
mode units each of which has 3
regimes, in which wavenumbers

are real, complex or imaginary.

- Solutions for infinite channels,
which are physically meaningful,
can only be constructed for
wavenumbers k which are real.
Therefore, when h'/h is bounded,
there exist maximum frequencies,
for which channel solutions may
occur isee Table 5.1) . At these
maxima energy cannot propagate;
for smaller k's group and phase

velocities are unidirectional,

for larger k's they are antidi-

rectional.

Figure 5.4

Schematic plot of the complex dis-
persion relation o(k) for an in-
finite  channel with € = 0.05 and
g = 0.5 in a second-order model.
Five regimes with respect to ¢ can
be differentiated.
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- In domains, which are of finite extent also in the s-direction (lakes),
solutions can be constructed with real, complex or imaginary wavenum-
bers k. Their spatial dependence is either periodic, periodic exponen-

tial or exponential.

- From this point of view, lake solutions occur for all oc€&(0,«»). How-
ever it must be remembered, that in section 2.3 a low-frequency appro-
ximation w? << f2 was made. Therefore, physical applications of re-

sults with |o| >1 may be dubious.

2.0
q=05
€=005
1.5
é lo_ﬂy_gggqrgg 2NPMoDE UNIT | 3R0MODE UNIT Figure 5.5
Modulus k of the third-order-
dispersion relation for an in-
054 finite channel, g= 0.5,¢ =0.05.
0 T T ——
0 5 10 . 15 20
Ikl ==

The reader should be alerted to the fact, that these properties are tied
to the existence of a finite k = kg, where the purely real dispersion

relation branches off to become complex.

The MWR is an approximate approach, and therefore convergence properties
are expected. These are studied for the real branches of the dispersion
relation. Figure 5.6 summarizes the results. The dispersion relation for

N =3 differs only slightly from that of the second-order model. The cor-
rections of the second mode unit when increasing the order are also shown;
however, for a statement on codvergence a 4th-order model would be
needed. Convergence is not uniform in k, being better for small k than
for large k; furthermore, it is better for convex (g = 0.5, Figure 5.6a)
than for concave (g = 2, Figwwes 5.6b,¢) topographies, which is unfortunate
as the latter are more realistic. Calculations have shown that the side-

wall parameter € does not influence convergence ‘appreciably (Figure 5.6¢).

The quality of the MWR-approximation is more cobvious when the dispersion

relation is compared with that of an exact solution as in Figuwre 5.7. The
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Figure 5.6

Convergence of the different
modes, increasing the order
of the model from

..... N =1,
o as N o= 2 Ho
N = 3,

for convex (g =0.5) and con-
cave (g =2.0) topography and
two side-wall parameters.

simple configuration of a straight channel leads to separable equations;
these are easy to integrate provided the depth profile is piecewise ex-
ponential as indicated in the inset of Figuwie 5.7. The dispersion rela-
tion o(k) evolves from the matching conditions of the stream function
within the channel. As F{guwie 5.7a demonstrates, the approximate disper-
sion curves calculated by the MWR applied to the same depth profile
converge fast to the exact dispersion relation for the first mode. N =2
already represents a satisfactory approximation within a few percent
Convergence of the second mode is slower, as stated earlier. For steeper
depth profiles, Figure 5.7b, convergence is significantly slower and
higher-order models may be required. But it also appears that the selec-
ted set of basis functions is not best for such configurations, as wave

activity is concentrated at the shore.

Figure 5.8 shows the influence of the variation of the topography para-

meter g in a first- and third-order model. Comparison of Figures 5.8a



Figure 5.7

(N =1) and 5.8b (N= 3) indicates clearly how sensitively the dispersion
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Comparison of the dispersion relation o(k) of the exact
solutions in a piecewise exponential channel (see inset)
with the MWR solutions for N = 1, 2,3 and the two first
modes.

relation reacts to the topography. Generally, an increase of g shifts

the dispersion relation to smaller frequencies; thus periods at the

same wavenumber become longer. This could already be inferred from the

fact that topography gradients tend towards the boundary as g increases.
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Figure 5.8 Effect of topography on the dispersion relation in a channel,
—— first mode, ——— second mode, (a) N =1, (b) N = 3.

Correspondingly, the slope parameter |h'/h| grows which generally lowers
the frequencies. Comparison of the dispersion curves for the first mode
also indicates that the first order model may reproduce the dispersion
relation for strongly convex profiles (g = 0.5) guite adequately, while

it is definitely inadequate when profiles are triangular or concave.

Finally, Figure 5.9 displays the dispersion relation of a second order
model for two different values of the sidewall parameter ¢ and for both,
convex and concave depth profiles. The latter are less affected by ¢
than the former because all convex profiles of the form (5.1) join the

sidewall horizontally. The sidewall effect consists of a decrease of the

04
03]
!

G 0.2

(0N R

0 5 10 15 20

Figure 5.9 Effect of the sidewall parameter € on a) convex (g = 0.5)
and b) concave (g =2.0) profiles in a second-order model.
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The question of whether kg at which 30/3k = 0 exists for all topogra-
phies or wander off to infinity is of some practical significance.
Figure 5.10 displays kg against the tovography parameter g for a few va-
lues of €. Whereas for convex profiles kg hardly depends on the side-
wall parameter € this is not so for concave profiles; a decrease of ¢
conspicuously increases the values of kg. Alternatively, for large to-
pography parameters kg is fairly independent of g. It is evident that
models with very small sidewall parameters have very large critical

wavenumbers. This problem is also considered in section 5.5, Figurte 5.72.

25 0.25
€=001
b o
—030
20 o
— 035
Figure 5.10 — 040
15 +
Plot of the critical wave-
number ko, where the group ~0.50
velocity vanishes, as a
function of topography and 10 -+ 060
sidewall parameter for the -
first mode in a third- — 080
order model. -
100
5 Tt
0 10 20 30 40 50

5.3 Channel solutions

Equation (5.8) represents a general solution in a straight, infinite
channel with arbitrary cross-section. § is a complex-valued function and
so,both real and imaginary parts are physically reasconable solutions.
However, as can be easily shown, they differ only by a spatial or tempo-
ral phase shift., We recall the identities

Im(z) = Re(-1i2), z € C,

= B e—J_«TT/Z ,

and obtain from (5.8)
Im(y(s,n,t)) = Re(e ¥ ™2 y(s,n,t))

Re(Y(s,n,t + T/4)).

]

Therefore, the complete information about the solution ¥ is already ob-

tained when considering Re(y) alone.

Before discussing the solutions in detail, however, a gualitative argu-

ment is shown by which the stream function is related to the barotropic



velocity field according to

Wt = £ (Zxy) (5.9)

It follows from this, that the deeper the channels are, the weaker the
velocities will be. Further, convex stream function surfaces are connec-—
ted with anti-cyclonic velocity cells (Figure 5.11), and the steeper the

Vy-surfaces are the stronger will be the velocities in these cells.

Rather than considering general solutions such as (5.8) we investigate

solutions to particular wavenumbers.

Figunes 5.12-5.14 display perspective views and contour lines of Re(y) in
a straight infinite channel for a third order model. The pattern con-
sists of two right-bounded topographic waves evolving from the superpo-
sition of the solutions Y (o,k) and ¥ (o,-k). Each mode shows its own
characteristic cross-channel behavior. As would be expected, the com-

plexity of the system of gyres increases with the mode number.

-y
‘,‘
P i
T LK
e I!

Figure 5.11

Explaining the anticyclonic
barotropic velocity field on
a convex stream function sur-
face,

We now study the properties of the solution (5.8) for a single wavenum-
ber. Figurte 5.15 exhibits the quality of the approximate solutions. Cal-
culations have revealed that for a convex topography solutions converge
rapidly for a wide range of wavenumbers, a result which is in accord
with the observations above. For a concave topography (g =5.0, Figure 5.15)
the third-order solution is an acceptable approximation when k = 2 [Fi-
gwie 5.15a); however, as Figute 5.6 has already suggested, convergence for
higher wavenumbers is slower (Figure 5.15b). Convergence is obviously also
influenced by the choice of basis functions and it seems that the trigo-
nometric functions are an appropriate set for small wavenumbers. It was
a straightforward choice and made for analytical and computational sim-
plicity. There may, however, be other complete sets, fulfilling the
boundary conditions, which provide better results in some special cases.

With the (sin, cos)-set the exact transverse functional dependence is well
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15% Mode Unit
Figure 5.12 a)

Time sequence of the stream function
surface in steps of V16 T in a channel
-¥2 B<n<Yy2 B, 0<s <6 Lr and aspect
ratio r =1. Note that the phase motion
in the domains n>0 and n<0 is right
bounded.

b)

Time sequence of lines of con-
stant ¢ relative to 90 % of
the maximum value at each time
step. The cellular structure
of cyclonic (+) and anticyclo-
nic (-) vortices is clearly vi-
sible.
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Figure 5.13 a)

Time sequence of the stream function
surface in steps of Y16 T in a channel
-¥2 B<n<y2 B, 0<s <6 Lr and aspect
ratio r =1, Note that the phase motion
in the domains n>0 and n <0 is right
bounded.

b)

Time sequence of lines of con-
stant ¢ relative to 90 % of
the maximum value at each time
step. The cellular structure
of cyclonic (+) and anticyclo-
nic (-) vortices is clearly vi-
sible.
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Time sequence of the stream function
surface in steps of Y16 T ih a channel
-¥2 B<n<y2 B, 0<s <6 Lr and aspect
ratio r =1. Note that the phase motion
in the domains n>0 and n <0 is right
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1 -
t=8|
1
=T
t16'
o T o5 T o>
ESlieSlleSlkeS)leHId
t=0 =2 [ O (=Y
=SS e fcesH)id
= | | D D [ ¢
=y == =5 e il

0.0573, T = 295h, k = 4,00

b)

Time sequence of lines of con-
stant ¢y relative to 90 % of
the maximum value at each time
step. The cellular structure
of cyclonic (+) and anticyclo-
nic (-) vortices is clearly vi-
sible.
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Figure 5.15

Convergence properties of the stream function of the first mode scaled
to a maximum value 1.0. The view is in the positive s-direction into
which the phase propagates in a right-bounded way. The:sidewall parame-
ter € = 0.05 is selected, g=5, (a)k=2; (b)k =10.

modelled for fundamental modes with not too large wavenumbers and small

topography parameters.

Figure 5.16 analyses the effect of the cross-sectional topography on the
stream function using g as a parameter. In view of the previous results,
a third-order model is anticipated to be sufficiently accurate. The ef-
fect for small wavenumbers (k =2) and the first mode (Figure 5.16a) is com-
paratively weak; wave activity is slightly shifted towards the right
boundary for increasing topography parameters. Larger wavenumbers enhance
this effect.

For the second-mode solutions an increase of the topography parameter
again causes a shift of the y-surface towards the right boundary, see
Figure 5.16b. The right-most crest, however, is weakened and for larger to-

pography parameters the main activity is in the middle crest.

1.0 . 1.0
:a :b q=0.5
0.5 ] 0.5 1] q=10
] q=5.0 ]
3 q=20 ]
0 . o 4
: 9:05 7| 5
-0.5 1 N=3,1st gq=1.0 -0.5 E N=3, 2nd q=2.0
] k=2 ] k=2 q=5.0
'].O‘.:-.(.-:--nulll'l _]'0-‘"""“"".I.‘|lrj
1.0 0.5 0 -0.5 -1.0 1.0 0.5 0 -0.5 -1.0

Figure 5.16

Transverse topography dependence of the stream function for the wavenum-
ber k =2 and the first two modes, N =3, (a) first mode; (b) second mode.
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Evidently, the transverse structure of topographic Rossby waves also de-
pends strongly on the wavenumber k. This effect is comparable in magni-
tude with that of the topography. Figure 5.17 demonstrates this for both
types of topographies and the first two modes.

1.0 7 / 1.0 7
0.5 1 1st 0.5 E
0 4 0
] 2nd :
-0.5 3 k=10 -0.5 1
: —k=2 ]
1. 0 -0.5 -1.0 1.0 0.5 0 -0.5  ~1.0

Figure 5.17

Wavenumber effect of the stream function for convex and concave topogra-
phy, € =0.05 and the first two modes of a third-order model, (a) gq=0.5;
(b) g=5.0.

An increase of k generally shifts the stream function towards the right
shoreline. The effect is large (small) for profiles with large (small) g
particularly for the first-mode unit. Topcgraphy and wavenumber effect,
therefore, act in the same way. These properties have not been clearly
demonstrated in previous work. Suffice it to state that they have impor-

tant practical bearings when mooring sites are projected.

5.4 Velocity profiles

The general channel solution (5.8) which satisfies the homogeneous sy-
stem (4.9) is determined up to a constant factor. In order to compare
different velocity profiles this constant should be fixed by using a
further criterion. It seems reasonable to scale the occurring wave pat-
terns by normalizing the free constant such that the global kinetic
energy content is constant. (There is no potential energy for topogra-
phic Rossby waves in a rigid-lid formulation). Here, the problem is po-
sed in terms of the barotropic mass transport stream function and a so-
lution yields information about a depth averaged velocity field. This al-
lows the calculation of only a {fower £imit of the true kinetic energy
content.

The kinetic energy per unit mass that is contained in an infinitesimal

volume is 1
d3 By, = 5 (u2+v2) Jdnds adz, (5.10)
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in which the velocity components u, v can be expressed in terms of the

stream function using (5.9), and for straight channels J = 1.

A minimum average energy density is obtained by integrating (5.10) across
the channel axis and over the vertical, operating with

1 IT 1 JL
(¢) = lim+z | (+)dt, Llim—=— | () ds
To e D g

and dividing by the cross-sectional area (T and L are not necessarily

related to the spatial and temporal periods). It then reads (y fixed)

T
= _ 1 ay ., 2y o+ - 2 + +1 2
Eyip = ————l—-f _h(kYIPa Coy + Py Syl + 4| Py Suy+Pooy Coyl ),
+E- ==
g+l

where y =2n/B and '= d/dy. When the stream function is scaled by
l/(Ekin)V2 each wave contains the same kinetic energy. This enables compa-
rison of the strength and structure of a wave pattern as a response to

a given energy input.

Figure 5.18 displays the amplitude distributions of the alongshore and
cross-channel velocity profiles for the first mode at k=10 and e =0.05
for four different topography parameters g. Sign changes correspond to

a phase shift of 180°. Evidently, the u-component indicates a strong
right-bounded coastal jet which is well known in forced circulation mo-
dels (Simons, 1980). Its strength depends upon the parameters g and ¢.
An increase of g lowers the absolute value of the velocity components

considerably.

We have also observed, and Figure 5.18 provides partial corroboration,

1.0 1 1.0 5
1 N=3,1st 1 N=3,1st
0.5 1 k=10 p.5 § k=10
° :7 s 1 _
] q=0.5 1 q=05
- qg= 1.0 T = 1.0
la q= 80 1b L
-],O T Rl i ; T T TT LENRS SNNS m § ; T v 1 T ']-0 i S A' AL i i S S 1 ; LI I )

1.0 0.5 0 -0.5 -1.0 1.0 0.5 0 -0.5 -0.
Figure 5,18 '

Transverse topography dependence of the depth-averaged velocity compo-
nents (a) u (along-channel) and (b) v (across-channel) for N=3, k =10,
€ = 0.05 and the first mode. All profiles are scaled such that the ki-
netic energy contents are comparable.
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1.0 1.0 5
1 :N"3 . k=10
1 1 9=20 k=2
0.5 ] 0.5 1 15t
] ] k=2
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0.5 3 0.5  [v=component]
] :b . k=10
1.0 e} -1.0 et
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Figure 5.19
Wavenumber effect of the depth-averaged velocity components for g =2.0,
€= 0.05 and the first two modes of a third-order model, (a) u-compo-
nent; (b) v-component.

that convergence of at least u is slower than that for the stream func-
tion. The reason is, of course, differentiation. Deviations of the com-
puted velocity profiles from what they should be occur at the left shore-

line (Figures 5.18a and 5.19a)

Figure 5.19 illustrates the wavenumber effect for the case g =2 (parabo-
lic) and € = 0.05. With growing wavenumber, activity in the u-component
shifts to the right shore and, correspondingly, activity diminishes in
the left part of the channel. Alternatively, cross-channel components
grow with increasing k. Therefore, long waves exhibit particle motion
which is mostly along the channel axis. Shorter waves with wavelengths
smaller than about a channel width have velocities of comparable order

inn both directions. These properties also hold for the second mode.

As anticipated when introducing the sidewall parameter e its effect on
the depth-averaged velocity profiles is very weak and only recogizable
in the u-component and close to the shoreline. Figwie 5.20 demonstrates

this for a channel with parabolic depth-profile. Velocity profiles dif-

g 3
0 ]
=l Figure 5.20
z
-2 4 Effect of the sidewall parameter
.- e on the u-compoent (along-chan-
T N=3, 18t €=0.05-— nel) at k=10 and with g = 2.0,
-4 3 g=20 €=01 — Because the profiles differ from
B each other only at the right shore
T T T this domain is enlarged, N =3,
-0.6  -0.7 -0.8  -0.9  -1.0 first mode.
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fer from each other only very close to the right boundary. There, the
u-component of the velocity vector is directly governed by € and its ab-

solute value increases as € approaches zero.

The above results can be used to answer guestions which arise when to-
pographic wave motion in channels or narrow elongated lakes is to be
detected and recorded. Scrutiny of the wavenumber dependence shows that,
in order to record the first mode on a concave topography (q= 2.0, g =
5.0), the mooring system is best placed within a domain that is 0.05 B
(B is the channel width) away from the shore. Then, both velocity com-
ponents are of comparable magnitude and a whole range of wavenumbers
can be detected with a velocity vector which turns clockwise. The second
mode can most likely be detected within a domain which is 0.1 B to 0.2B
away from the shore. For a proper test of the wave structure two moor-

ings at the same side of the channel are desired.

5.5 Alternative solution procedures

Instead of applying the MWR to the TW-equation, one can start directly
from equation (2.22), introduce the plane-wave-trial solution

Y(x,y) = F(y) exp (i(kx-ot))
and deduce the two-point boundary value problem (TPBVP) for the trans-
verse distribution function F(y):

SR LR S ¢
o Y F (k<- o

al=

) F =0, vyi<y<ya,
(5.11)

F =0, Y=Yy, Y2-
Gratton (1983), Gratton & LeBlond (1986), B&uerle (1986) and Biuerle &
Hutter (1986) solve (5.11) for different channel topographies, whereas
Lie (1983), Djurfeldt (1984) and Takeda (1984) perform a shelf-wave ana-
lysis (y, = «)*/,
Gratton and LeBlond (1986) investigate a channel with linear (asymmet-
ric) or parabolic depth profile and y; = -y,. They discuss two types of
approximate solutions. In the first, the so called smakll slope approximation,
h is regarded as a constant except when differentiated. For large bot-
tom slopes, both h and h' are treated as functions' of y. They show that

for these profiles the solution of (5.11) can be expressed in terms of

*) Some of these authors formulate the problem in terms of the surface elevation
instead of the stream function. The emerging ODE is, however, similar to (5.11),
compare (3.1).
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special functionsv.ln their configuration h'/h is bounded everywhere
and so it is argued that Taylor series solutions about the interior re-
gular point y = 0 are more convenient. This expansion consists of two

linearly independent Taylor series, viz.
=2 =]
F=A) Coy +B Y Dyy". (5.12)
n=0 n=0

The coefficients are selected such that Co =1, C; =0 and Dy =0,D;=1,
and Cp, Dy, n 2 2 are determined by substitution of (5.12) into (5.11).
The free constants A, B follow from the boundary conditions F(-y;) = 0
and F(yz) = 0. The former yields

ch(-n)n
RS EY

and the latter leads to the implicit dispersion relation
[Zcn v3] [EDnt-y2)"]-[ B pa v3] [Bcat-v2)"] = 0.

Cn and D, depend on ¢ and k for n 2 2. For the V-shaped channel the

B =

v

jump condition at y = 0 must alsoc be accounted for.

Gratton and LeBlond show dispersion relations for the first three modes
for both V-shaped and parabolic bathymetries which are gualitatively as
those of Figures 5.6-5.9. They refrain, however, from discussing the nu-
merical properties of this solution procedure (convergence,truncation

of the series).

When h(y) is not so easily expressible in terms of analytic functions,
solution of (5.11) by standard numerical techniques is probably more
economical. Because of the nature of the TPBVP (5.11) the shooting me-
thod using either the Runge-Kutta method or any other high order multi-
steo forward finite difference scheme that may account for the stiff-
ness of the equation at large k or large h'/h may be the most efficient

approach.

By solving the eigenvalue problem (5.11) with straightforward finite dif-
ference techniques, replacing derivatives with central second order dif-
ference expressions we will obtain a feeling and information about the

reliability of numerical solutions of the TW-equation in two-dimensio-

*) The small slope approximations lead to elementary functions (linear profile) and
to parabolic cylinder functions (parabolic bottom), the solutions of the full
equations can be expressed in terms of Kummer functions (linear profile) and ge-
neralized spheroidal functions (parabola), respectively.
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Figure 5.21

Convergence properties of the
dispersion curves a) and of the
frequency o(k) for the wavenum-
bers belonging to the first
mode b) for increasing number
of grid peints. ol§, and ol3,
denote asymptotic frequencies
for NN =401 and k=10, 30, re-
spectively, and €= 3.5-10-5.

[ From B&uerle, 1986]
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nal domains. Bduerle (1986) and Biuerle & Hutter (1986) applied this
technique to straight infinite channels and used the depth profile (5.1).
It is instructive to compare their findings with the MWR results of sec-
tions 5.1 -5.4. Figure 5.2la displays the dispersion relation of TW's in
a parabolic channel for an increasing number NN of grid points. The

side wall parameter € is chosen very small in order to demonstrate the
sensitivity of the numerical results with respect to e¢. For larger va-
lues of ¢ convergence is generally better; fewer mesh points can be se-
lected to obtain reliable results. We infer from Figure 5.2la that NN =13
vields acceptable results only for very small wavenumbers. Due to the
small value of € the qualitatiyely correct behavior, i.e. very large
critical wavenumber kg for which 30/3k = 0, is nredicted only when NN =
101 and larger. Moreover, convergence is decelerated for increasing q and
k. Flgure 5.21b illustrétes this for the fundamental mode 1, qg=0.5, 2
and 9, and two wavenumbers k = 10, 30. Hence, high resolution is required
to obtain satisfactory numerical orediction of the dispersion relation
and mode structure, and this resolution must be higher for concave than
convex profiles. This is unfortunate because concave profiles are more
realistic. But the result also suggests caution with determined mode
structures and periods of two-dimensional topographic waves in enclosed
basins where coarser fesolutions are necessary because of cost or memory
limitations of the available computer device. Observations to this ef-
fect were made by Bennett & Schwab (1981).

Figure 5.22 corresponds to Figure 5.10 and exhibits the sensitivity of the
critical wavenumber kg with respect to the number of grid points NN.
Differences of the curves kg(q) for NN =49 and NN =401 are observed
mainly for small sidewall parameters e. For these and for 49 grid points
the dispersion relation leads to k =kg which is independent of q when-
ever g > 5; this is refuted when NN =401 and a linear behavior emerges.
Thus, one has to be very careful when selecting small sidewall parame-
ters or, more generally when h'/h is large in the domain of integra-
tion.

Bduerle (1986) also compares the dispersion relations for € = 0.05 and
a=0.5,1,2,5 as determined by his finite difference technique (NN =
401) and the MWR using a third order model, see Figuwrte 5.23. For g< 2 and
the indicated wavenumber range the curves agree satisfactorily; devia-
tions are observed for large k and g. Such configurations require higher

order MWR-models as has already been pointed out in section 5.2.

This approach clearly shows that excessive resolution of the channel
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60 Figure 5.22
ko €:35-107% Critical wavenumber ko at which
the group velocity vanishes
501 plotted against the topography
‘marameter g for three values of
401 the sidewall parameter.
[From Biuerle, 1986]
o,
301
204
104
Figure 5.23 —_—
Comparison of the dispersion
curves calculated by the fi- finite difference NN = 401
nite difference (solid) and ——— MWR.N=3
the MWR.technique (dashed). 0 .
[From Bauerle, 1986] 0 é 1b 15 20

width is necessary to achieve numerically reliable dispersion relations
and mode structures. Because of the wave trapping schemes with variable
mesh size or higher order finite differencing might, perhaps, be advan-
tageous in lowering the total number of mesh points. However, the re-
sults indicate that one ought to be cautions with any coarse finite dif-
ference or finite element resolution in spatially two-dimensional do-
mains. Elongated domains are therefore prone of requiring a large number
of grid points.

This last remark may provide (heuristic) indications why our MWR-ap-
proach may be of advantage when one is attempting to solve the TW-equa-
tion in a two-dimensional elongated domain. Basically a relatively small
number of éhape functions seems to guarantee a sufficiently accurate
resolution of the problem in the transverse direction. The problem in
the long direction becomes a vector ODE-equation, possibly with varia-
ble coefficient matrices. Thus, when the problem is solved in the long
direction high accuracy ODE-software can be used with advantage., We
will demonstrate this in Chapters 7 and 8.
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6. Curved channels

6.1 Incorporation of curvature

Many of the intermontane lakes, such as Lake of Zurich or Lake of Lu-
gano exhibit a significant curvature of their elongated basin. We shall
thus explore the influence of this geometric parameter on both, wave-
length and frequency of freely propagating topographic waves. Obviously,
a possible effect is only experienced for waves with wavelengths of
equal or larger scale than the radius of curvature. Shorter waves are

likely not to be modified by curvature.

In chapter 4 the Method of Weighted Residuals was used to deduce approxi-
mate solution techniques of the TW-equation in a natural coordinate sy-
stem, and the preceding chapter demonstrated its usefulness in a domain
with zero curvature. We now make use of this additional bathymetric pa-
rameter which is incorporated in the Jacobian J of the natural coordinate

system. The Jacobian is given by
J(s,n) = 1-K(s) -n.

For variable curvature K(s) it is a non-separable function of its varia-
bles s and n. However, a symmetrization was introduced by which J and J°%

were split into symmetric and skew-symmetric parts according to (4.12),

iz .
Jgt =1, J” = -K-n,
(6.1)"
A el )" = R,
1-K2 n? 1-K%n?

These expressions enter the matrix elements (4.11). For constant basin
width B(s) but arbitrary K(s) some of these elements Még“ are still
functions of s because K(s) can not be extracted from the integration.
This means that these elements must be calculated at each position s
within the basin. However, when K(s) is constant the MWR provides an
economic solution procedure, and the elements need be calculated only
once for a particular basin geometry. We therefore consider domains
with constant curvature and further assume the width B(s) to be a con-
stant.

The matrix elements Ké&“ in (5.3) were calculated by introducing the
new variable y = 2n/B. This suggests to use the non-dimensional curvatu-

re _ KB
= . (6.2)

With it the expressions (5.3) take the form
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K30 = KQO** + kO™ + KRV + KQO*T
- jh—l(ﬁ) cos T (a- 3)y cosT (B~ 3)y ay
+ Jh”l (1—_;7) sinToy sinTmfy dy (6.3a)
+ jh—l(IjE;;E)sinnay cos T (B- %)y dy
+ Ih*l (l—_'—:-zy—y-i) cos T (0= %—)y sinmBy dy,
K22 = KBZUH 4 k22T 4 K2 4 k220

il

4n? (@- 2) (8- 3) [Wlsinm(a-3)y sinw (8- )y dy
+ 41248 Jh‘l cosTay cos T By dy (6.3b)

+ 4n2a (B~ %) Ih_l(Ky) cos Tay sin (B~ %)y dy

+ 472 (u——;—)B J( h_l(Ky) sin® (a- —;—) y cosmBy dy,
with h = l+e-y9, and the integration is from 0 to 1. The matrices gég
and §g§ are unaltered. The curvature k generates additional off-diago-
nal entries of Kgg and Kéé which amount to a stronger coupling of y+
and ¢7; the quasi-diagonal structure of these matrices is now destroyed,

see equation (4.14).

It was shown in chapter 2.4 that the natural coordinate system can only
be defined provided the radius of curvature exceeds half the width of
the lake. Therefore k must satisfy the inequality [k| < 1, and all inte-
grand functions in (6.3) are regular in [0,1]. The assumption of con-
stant x and width B describes a domain which has the shape of a ring
with inner and outer radii 1/K +B/2, respectively. Consequently, the
continuous dispersion relation would have to be subject to a periodicity
condition k= %g-m, m integer. This quantization will not be imposed-
in the figures simply because the full curve will provide a clearer un-

derstanding of the qualitative effects of curvature.

We proceed as in section 5.1, assume a carrier-wave of the form (5.5)
and obtain the matrix C

€ = Ci+Cay
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a((xk)? KOO+ 4+ g22++) L (rky (x20°* + gO2°%)

€ =
- (rk) (1520+— 5 1502"‘) o ( (k)2 I~(oo-- & I~(22--)
(6.4)
0 0((rk)2 IS00-+ + 1522—+)
Cy = 5 i
o((rk)® KOO+~ 4+ g22+-) 0
the dispersion relation is given by
det C (0,k) = 0. (6.5)

It follows from (6.3) that all elements of C; have the common factor «
and thus vanish for zero curvature. In that case, equation (6.5) repre-
sented a polynomial equation of order 2N in (rk)2. Due to Cy # 0, (6.5)
now is a polynomial of order 4N in rk; so, rk and =-rk are no longer
simultaneous solutions. Hence, the symmetry o(k)= o(-k) is destroyed by
the presence of the curvature. This is easy to understand because non-
zero curvature permits us to distinguish between an inner and an outer
shore line. Likewise, the critical points (kg.0q) at which 90/3k = 0
will be different for k< 0 and k > 0, respectively. A change in sign of
k, on the other hand, only affects the matrices K00*% and K22%%  they are
skew-symmetric with respect to «, whereas all other entries of C are

symmetric. Therefore, the dispersion relation enjoys the property
o(k,k) = o(-«,-k), (6.6)

which inclpdes the special case of k =0.

6.2 Dispersion relation

Figure 6.1 shows the dispersion relation (6.5) of a third order model
for the first two mode units. For k = 0 the symmetry with respect to
the vertical is visible whereas for ¥ > 0 it is broken. For a given
frequency all wavenumbers are shifted to the right which implies that
curvature shortens waves for k >0 whereas they become longer for k <O0.
Recalling that the solution ¢ is proportional to el(ks-wt) ang y is
right bounded, it follows th;t the waves travelling along the i;ner
(outer) shore line are longer (shorter) than in the case « = 0", Fur-
ther, the critical point (k{,o§) in the domain k > 0 is translated to
lower frequencies and larger wavenumbers, and the opposite is true for

(kp,0p) in the domain k < 0. Consequently, there exists a frequency

*) The same is true when K < 0 or the coordinate system is chosen such that s points
into the opposite direction. It is a consegquence of the general property (6.6).
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Figure 6.1 Dispersion relation of a third order model for various va-
lues of curvature. The parameters are N=3, g= 0.5, € =0.05.

range 06 < 0 <0y, where only waves with k <0 can propagate. These are
trapped along the inner shore line. If there existed eigenfrequencies
in this range for ‘a closed basin, their modal structure would exhibit a
particular pattern with wave motion primarily at the inner shore line.
This is discussed in section 7.5. Table 6.1 lists the boundaries of these
frequency ranges. For increasing curvature the values of ogj and o} lie

farther and farther apart; this effect is weak for steep topographies.

qv k=0 k=0.2 k=0.5
99 0.2745 0.2799 0.2947 Table 6.1
2.0 af 0.2745 0.2708 0.2669 "
Frequencies 05 for k 2z 0
bo 0 0.0091  0.0278 where 30/3k = 0 for differ-
i AL R A e sl dadtie ent values of curvature «
a9 0.2081 0.21M 0.2188 and topography q. The para-
5.0 o} 0.2081  0.2059  0.2033 meters Bra N = 3, &= (.05,
first mode unit.
Ao 0 0.0052 0.0155
q k=0 k=0.2 k=0.5
ko - 14.9 = 124 - 7.83
2.0 kg 14.9 17.8 21.9
kg-ikgl 0 5.7 14.1 Table 6.2
k5 -17.7 - 14.6 - 9.83 Wavenumbers ké correspond-
; ing to, Table 6.1.
5.0 kg 17.7 20.7 25.1
ko=1kg | 0 6.1 5.3
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Note, that from an observational point of view the difference is very
small, e.g. Tg = 57h and T§ = 63h for g=2 and k =0.2, a difference
that is unlikely to be detectable by field observations.

On the other hand, for increasing k and q the difference of the wave-
numbers increases. These properties are also displayed in Figure 6.2.
Two mode units of the dispersion relation are given for different val-
ues of topography and curvature parameter. The results support the
findings listed in Tabfes 6.1 and 6.2.

o 04
] —— %=00 N=3 :
] cC- %202 £-005 to
03] === %=z05 - 9=2,1" O
02 ]
01 ]

UBEJABL B SRS S A I e B L Lt L L T B L (R e e e

-30 =20 -10 0 10 20 30

Figure 6.2 Curvature and topography effect on the dispersion
relation.

Figure 6.3 Dispersion relation as a function of the wavelength
A =2nm/k. Short waves are not influenced by curvature.
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In Figure 6.3 the frequency o(A) is plotted as a function of the wave-

length A =2n/k. As surmised above, short wavelengths are hardly influen-

ced by «, whereas long waves experience strong curvature effects.

6.3 Curvature and vorticity

So far we abstained from giving a physical explanation of the curvature
effect and only listed and discussed the various alterations that arose
in the dispersion relation because of the presence of curvature. In or-
der to understand the physical mechanism which produces the asymmetry
of o(k) we now work out the characteristic difference between the equa-
tions formulated in the natural coordinate system and in the Cartesian
system. It was shown in section 2.2 that topographic waves evolve by
conserving pofential vornticity. This quantity contains three contributions:
the curl of the velocity field representing the relative vorticity, the
Earth's rotation as an additional vorticity and the bottom topography.
It is the relative vorticity which is primarily influenced by curva-

ture. We give a rough analysis.

Consider a weakly curved domain; introduce a polar coordinate system
with its origin in the centre of curvature and assume that the curved
channel is well described by this coordinate system in the neighbour-
hood of ¢ = 0. The difference between the polar and the Carteéian system
emerges when one calculates the relative vorticity of the horizontal
velocity field. Far away from the centre, i.e. for large radii of cur-

vature, one has the following correspondences (see R@u&eé,ﬁ

Up — -u, vp Gt v
[ R | o
r 3¢ ox ' or oy '
dup 1 dvp 1 @ _ Ju v
z(qu)—-—F-—r-a—(p up<—>g(qu)—-§§-+H.
/ u, > —>
e y v
NP Ve
AL > X u
POLAR CARTESIAN
Figure 6.4 Coordinate systems and position of the components of

the velocity field. The systems are :located in the
centre of curvature.
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Obviously, the term -%up is the main perturbing quantity. To lowest or-
der it embodies the effect of curvature and physically, it represents
vorticity due to a circular motion around the centre of curvature. For
a weakly curved basin we may thus use the natural coordinate systems,
but pretend that it is Cartesian and account for the curvature effects

by adding the additional vorticity wg

= = -k
Wg = Ku = HW’ (6.7)

where (2.20) was used. The conservation law of potential vorticity tak-

ing into account the effect of curvature to lowest order thus takes the

£ d wytwg+f

zTWK

s ———;r——d =0, (6.8)

instead of (2.18). With the use of (2.20) and upon linearizing this

ields
& 3 0. T _ K 3V

> /f - &
ﬁ:(.v'—ﬂ' -5 3§)+§-(wa\7\7))—0' (6.9)

for K + 0 equation (2.22) is recovered. Here all cperators are meant to

be Cartesian.

The simple configuration of a trench, discussed in section 3.5d) helps
to explain the effect of the additional vorticity wyg. Based on Figure

3.6 with s=r we assume

R ei(kx—ct), o = WwE,
and study the trench profile
H(y) = ee”,
I 1
b = ?1!1—&—,
insert it in (6.9) and obtain
Y= (b+R) Y ' + (k—;’ -k2)y =0, (6.10)
With ()'= d/dy. The stream function y satisfies the no-flux condition
at y=0 and y=r, viz.
Y(0) = y(r) = 0. (6.11)
Equation (6.10) allows the solutions
b+K
y(y) = e z . (A sin Ay + Bcos Ay),
)2
a2 = XKoo p2  (b+KR)E
g 4

and the dispersion relation follows from imposing (6.11)



- 107 -

or explicitly

Its asymtotic behaviour is

tanri = 0,
om kb
g2, (p#K)2 | onmyp (6. 12)
4 r
g —+ B,k = b *k
ph (b+K)2+ (nn)z as k > 0,
4 r (6.13)
b
Qg == _E— as k *> o,
and the critical point (kg,0g) is given by
b+K)?2 -
(kg.0g) = L—*‘l—) + (2%, (6.14)
5 (b+K)2  nm 2
s ()

For K = 0, the equations given in section 3.5d) are recovered.

Figure 6.5

b) c)

Two trench profiles, a) and b) can model the effect of cur-
vature in the natural coordinate system ¢} . Curvature is
introduced in the Cartesian coordinate system by a "first
order perturbation" of the TW-equation. The effects on the
dispersion relations are indicated (dashed for K=0 or k =0,
solid for K #0) below.
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Figure 6.5 displays the two trench profiles in the respective Cartesian
coordinate system as a rough model for the parabolic channel (Figure 6.5¢)
and schematic graphs of the dispersion relation (dashed for K=0). In-
spection of (6.13) demonstrates that the phase velocity Cph increases
(decreases) with growing |K| when K < 0 (K > 0), and the critical point
(kg,00) is shifted towards smaller (larger) wavenumbers and higher
(smaller) frequencies when K < 0 (K> 0). Furthermore we learn that short
waves are not influenced by curvature. These results are gqualitatively
the same as those obtained in the previous subsection. The trenches
with K< 0 and K > 0 describe those parts of e.g. a parabolic channel
(Figure 6.5¢c], where waves propagate with k < 0 and k > 0, respectively.
The qualitative alterations of the dispersion relation are in accord
with the respective changes for K< 0 and K> 0 in the trench profiles.
Differences are the intersections of the dispersion relation in Figure
6.5¢ which are not shown by the simple trench model. The reason is a
constant slope parameter b for the trench profiles, which varies across
the parabolic channel.
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7. Topographic waves in rectangular basins

As we learnt in chapter 3 there exist a number of analytical models for
TW's in enclosed domains. Typical properties of TW-motion in these fini-
te domains were found; among these were the conspicuous structure of the
lowest modes (linear and quadratic Ball-mode), the counterclockwise phase
propagation, the rotation of the velocity vectors, to name a few. In
special cases these models allowed satisfactory interpretation of long-
periodic phenomena in lakes. However, only a restricted number of para-
meters was offered to model é particular basin geometry. Moreover, ob-
servational results in Lake of‘iugano and Lake of Zurich are still await-
ing interpretation by models which account more accurately for their
elongated shape, topography and, perhaps, include curvature effects. Par-
ticularly, the study of TW's in the Northern Lake of Lugano raised fur-
ther questions regarding the applicability of the analytical models to
this basin. On the one hand, the elliptical model of Mysak et al. (1985)
could explain the 74h-trace in the measurements; it was interpreted as a
(1,1)-TW-mode with a global wave pattern. The choice of bathymetric pa-
rameters by Johnson (1987a), however, is more convincing. According to
his model the 74h-signal must be explained with a mode with a high azi-~

muthal wavenumber exhibiting a rich structure along the thalweg. On the

%

Figure 7.1 ] PORLEZZA

Are the results obtained by an
exact model, a), and by applying
a finite element technique to a 3 km
realistic bathymetry, b), contra-

dictory? See also Figures 1.9 and
1.10. MELIDE
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other hand, Tr&sch (1984) applied a finite element method of the elonga-
ted basin and found a completely different wave behavior in the 65-100h
interval: Rather than a global pattern he observed {ocal wave motion for
which wave activity was trapped to the three bays of Lake of Lugano,
leaving the other parts of the lake calm™. Figure 7.1 illustrates this
apparent controversy. So we must ask the question: are exact models ap-
plicable to real basins and how can the finite element results be physi-
cally interpreted?

These open questions have motivated us to try to use the channel method
developed in the previous chapter for the construction of a model of
TW's in rectangular basins. What follows is based on Stocker & Hutter
(1985, 1986, 1987a,b).

7.1 Crude lake model

We call a lake model "crude" if in the natural coordinates (s,n) its topo-
graphy varies only in the transverse direction n. For such a model it
is straightforward to extend the results obtained for infinite channels.
We use the depth profile (5.1) with hg(s) = const. As there exist 4N in-
dependent channel solutions of the form (5.5) in a Nth order model, these
can be superposed to a lake solution. A crude lake model is obtained by
inserting vertical walls at two positions s =0 and s =L. At these points

the stream function ¥ must vanish. So, in view of (4.9) we have Yy = 0

(a=1,2,...,2N) for s =0 and s =L and hence

4N

2 Caydy = O (7.1a)
=t (@=1,...,20).

aN

ik

3 e Tegydy = 0, (7.1b)
=1

Recall from chapter 5 that the coefficients cqy are functions of o. This
homogeneous system has a non-trivial solution provided that its determi-
nant is zero. This selects the eigenfrequencies of the system which de-
pend on the bathymetry given by r, g and ¢. Periodic lake solutions have
been seen to exist only for 0 < o < 0y, where oy denotes the maximum of
the real branch of the first-mode unit. Consequently, frequencies de-
crease appreciably when the topography parameter g increases. This ef-
fect is demonstrated in Table 7.1 which compares the first eigenfrequen-

cies for models of different order. For a parabolic depth profile a

*) Local TW-motion was also observed in the numerical model of Lakes Ontario and
Superior by Rao & Schwab (1976).
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2:1 basin N =1 N=2 N=3
q=0.5 0.314  0.335 0,337 Table 7.1
0.292 0.316 0.317 First eigenfrequencies ¢ for r =
0.264 0.293 0.295 0.5 and € =0.05 in a simple lake
q=2.0 0.198 0.260 0.274 model. There is always a pair of
0.186 0.254 0.271 eigenfrequencies differing from
0.169 0.246 0.267 each other by less than 1 % and
the table shows only one of them.
q=5.0 8-8217 g-}g; 8-;82 N= 1,2,3 indicates the order of
. . . th odel.
0.073  0.158  0.202 e
Table 7.2
q r=0.5 r=0.4 r=03 r=0.2 The first eigenfrequency in a
second -order model for various
?'g 8'382 g'ggz 8'283 g'gg;? aspect ratios r and topography
2‘0 0.260 0.260 0.261 0'261' parameters q, € = 0.05. Question
5'0 .167 ' W : ” marks indicate computational dif-
. 0. 0.167 0.167 0.168 ? Fliculties,

third-order model offers adequate estimates of the eigenfrequencies. A
parameter study also reveals that the topography parameter g influences

the eigenfrequencies much more than do r or even e, see Table 7.Z.

Caleulations further showed that for small aspect ratios system (7.1)
is very difficult to handle. The smaller r is, the larger will be all
IIm(k)], and terms of (7.lb) become dominant; the smallest inaccuracies
in the eigenvector dy are fatal because of their amplification in the
terms proportional to eiXY. A remediable approach might be a superposi-
tion of two semi-channel solutions which are displaced with respect to

each other'by a lengﬁh L.

Figute 7.2 shows a series of isolines of the stream function of a lake
solution in a basin with a side ratio 2:1. The influence of the vertical
walls is obvious in that wave crests approaching them die out. The funda-
mental mode does not resemble Ball-type behavior; rather, the wave pat-
terns exhibit local structure. As the eigenfrequencies decrease the lo-
cal character becomes stronger, but there is still a right-bounded phase
propagation. Figure 7.3 presents some specific lake solutions for other
aspect ratios and for N=2 and N =3 models. The mode in . Figure 7.3a is
similar to a compound channel solution, wave patterns along the two op~
posite shores seem not to interact, whereas for a higher mode (Figure 7.3b)
flow across the channel is observed. Figure 7.3¢ displays the stream func-

tion pattern of a very complex solution with strong local structure.
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Figure 7.2 Figure 7.3
Lake solution in a.-2:1 basin Stream function of three examples
plotted for three different of solutions in a crude lake model.
times through a quarter of a The parameters are
period T, using N= 2, g= 0.5, N | r q € g
o = 0.335. Wave activity is
strongest in the middle of ) 204 2.0 0.05. 0260
the basin and damped at both by 210.4 2'9 D03 5284
ends . c) 3 10.3 0.5 0.05 0.120

Note that the basin center may not be an exact center of point symmetry.
This is due to numerigal inaccuracies and the different properties of
the lake boundaries at s =0 and s =L. The dependence on the wavenumber
ky enters the boundary conditions (7.la and b) differently. To no sur-
prise, the asymmetry is particularly visible in Figute 7.3c. Choosing the

coordinate s symmetrically would eliminate this imbalance.

These and many more results that were obtained are rather distressing
and show no relation to the solutions of exact models. Very simple mode
structures with a global phase propagation could not be found. This, how-
ever, is not surprising. The rectangular basin with vertical end-walls
has lines of constant f/H (isotrophes, isobaths) which are wnof continu-
ous: they start at one wall and reach the opposite wall in a straight
line. It is known that the phase propagation tends to follow these lines
and therefore, global phase motion around the basin (as in the linear
Ball-mode) may not be expected here. Hence, there is a need for an impro-

ved lake model which has continuous depth lines.
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Parenthetically we also remark that, in order to preserve the algebraic
procedure (7.1) for the determination of the eigenfrequencies, a modi-
fied lake basin can be studied. This consists of three sections each of
which exhibits an exponential depth profile of the form exp(-cs), see
Figure 7.4. Three finite lake solutions can be patched together at the
slope discontinuities s =s;, s =s; and a system much like (7.1), but
three times larger must be solved. We have done this for several confi-
gurations shown in Figute 7.4, however the results are no more encourag-
ing. A likely reason is that, even though the isobaths now are continu-
ous they are not differentiable at the intersection points s; and s;.
We therefore are urged to relax the assumption hg/h = constant and allow
for an arbitrary h(s,n) leading to smooth isobaths. .In this case, the

matrix operator IK then no longer has constant coefficients.

E—
S
0 S Sy L
1n
c<0 = ¢>0
——— C=0 =0 i Gz )

Figure 7.4

Variety of basin topographies in the parameter space (si,s;) which can
be treated after the refinement of the topography assumptions. In this
section only solutions to topographies marked with % were calculated.

7.2 Lake model with non-constant thalweg

a) Numerical method

Consider a rectangle of width B and length L which has the depth profile

his,n) = ho(s)(1+s-i2—8’l|q), 0<ss<L -$B<ns< 3B, (7.2)

with constant € and 0 < g < «». This bathymetry possesses a finite shore

depth ehp(s), which is necessary to have (8h/93n)/h bounded everywhere. It

was demonstrated in chapter 5 how the boundary value problem (2.24) was

transformed to a new one-dimensional problem for the coefficient functions
+

Yy (s). The result was Ky(s) = 0, 0<s<L,

743
vis) = 0, s = 0,L, ( )
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in which & i _ _ T
I,B= (wl....,le; UJl,---,\UN)= (Y;IP‘);
2 Gl 7.4
K= ~-ig [52 k00 & _p2 (-1 8By goo & K22J bwd
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& - ds ds’ ~ °

Here and henceforth h =hg, and it has been assumed that the operator IK
has coefficients which depend on the variable s through an arbitrary
thalweg depth h(s). Furthermore, the symmetrized form of IK is obtained
by using (5.3) to express the K's in symmetrized form. For the numerical

solution we transform (7.3) to a xeal, fiusi-order system. Introducing

¥ = (Re y% Re 7 Re §7 Re ¢7 Im ¢, Im ¢7 In §7 In §7), (7.5)
with ()" = d/ds and substituting s' = s/L, d/ds'=Ld/ds we obtain after
dropping primes a '

a—g—g = A(s) ¥, 0<s<1, (7.6a)
BY = 0, s = 0,1 (7.6b)

This system has dimension 8N; B is a constant diagonal matrix with

Bjy =1 for i=1,...,2N and i =4N+l,...,6N and else Bj; = 0. The ma-
trix A can be split up into a part which is independent of s and another
part proportional to the slope parameter S

dh

S(s) £ h~t G5 (7.7)

explicitly Als) = g+S(s) .D.

The matrices C and D take the form (the subscripts R and I stand for

real and imaginary parts)

[cr -C: Dr -Di |
c= | i D = | (7.8)
LS Cr Dy + Dgrl
with the (4N x 4N)-submatrices
[ 0 1 0 0 1
Cr = , Cr = o 1 : i
~ ;Lz_(goorlgzz 0] = 910 ?(goo)-l (gzo_kgoz)J
(7.9)
]’ 0 0 5 r 0 0
Dy = ;D= =] P
== 0 1 B I 1¢ SO SR

and the aspect ratio r = B/L. The matrices (7.9) are independent of s

and need be calculated only once during the integration for se€[0,1].
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Figure 7.5

Thalweg profiles (6.10)
for different values of
the exponent p. For p>1
slopes at the lake ends
are zero, a), when p<1
they are infinite, b).

D)

Solutions of the TPBVP (7.6) were constructed numerically for the profile
(Figure 6.5)

h(s) = n + sinP{ms), (7.10)
here with p= 2. n and p are parameters; n > 0 guarantees that the depth
is never zero and the exponent p could be varied such that the longitu-
dinal variation of the depth is more or less concentrated at the long
ends of the lake. The slope parameter S(s) is easily calculated from

(7.10); one obtains "
: P ‘
pT sin (1s) cos (ms)
S(s) = (7.11}
n+sinp(1rs)

For p>1 and n > 0, S(s) vanishes at the lake ends, which is a numerical
advantage, when 0 <p< 1l the slope parameter is not finite at s = 0,1.

In order to keep S(s) finite everywhere (7.10) could be replaced by

n+ bs, 0<sc<s,
h(s) = <sinP(ms), &<s<1-358,
n+b(l-s), 1-8<s<1,
in which, for a given shore-slope b, n and § can be calculated such

that h and h' are continuous at s = 5. With this choice (7.7) is finite
everywhere and for all p > 0. The lake model now consists of two-side-
wall parameters € and n (or alternatively €& and the shore-slope b) and a

longitudinal and transverse topography parameter p and q, respectively.

Equation (7.6a) allows the formal integration

S
¥(s) = exp( [ A(5) a8) ¥(0),
(7412}

E(s) ¥(0).
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(7.6b) implies

e
=)
1

(0, $r(0): O, P (0)), (7.13a)
¥(1) = (0, §r(1): 0, Yr(l)), (7.13b)

and the symmetrization has been dropped for convenience of ensuing ar-
guments. Formally, E(s) in (7.12) is a matrix valued function. At the

basin end, it can be written as

E

: . (7.14)
E

Note that E(l) is a function of the frequency o via (7.12) and (7.9) and

the Ejy are (2N x 2N)-matrices. For each initial vector of the form

(0y = (0,0,.9¢,0,1,0,0;,...,0), 2N +1L
P — et 6N + 1

(3-13 (8N-73)

4N, {7:15)
aN,

A IA
LU
NI

the corresponding vector ¥5(1l) is computed using a discretized form of
(7.6), see below. From (7.12) and (7.13) it then easily follows that the
solution ¥4 (1) corresponding to the j-th initial vector ¥;(0) is the j-th
clumn of the matrix E(1l). (7.13b) eventually requires

Ei2  Eia| | ¥r(0)

)

E3p 3a ] | Dr(O)

which allows derivation of the equation which determines the eigengrequency
in this lake basin. It takes the form

[Ei2 Eus

det | = 0. (7.16)

LEs2 Eas
It remains to select the integration routine for the 4N initial-value
problems (7.6a) with (7.15). This choice depends on how the matrix A(s)
is available. Here A can be computed for all s [0,1] and the fourth
order Runge-Kutfa scheme (or higher order multi-step schemes may be ap-
propriate. This is a well known single-step forward integration techni-
que *). We discretize the integration interval [0,1] into M equidistant
increments of length d = 1/M. The ¥j,) at the position sj,; within the
interval is then given by

*) The fundamental single-step forward integrator 1s the Euler-Cauchy scheme. It
reads Yj.j = Y; +dA(s;)V; and the local error is order d2 and is therefore only
slowly converging.
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Ysu = Yy *+ ¥
= 1
Vvo= g%§l+252+2§3+§4L
Ky = Alsi) ¥y,

)

2 = Alsy+d/2)(¥; +K, 4/2),
K3 = A(s;+d/2) (¥ +Kpd/2),
Ky = A(sy+d) (¥; +K3d).

With this scheme the local error is of order d°. When A(s) is only de-
fined at discrete points the method of Adams or other multistep methods

may be preferable, see Szidarovszky and Yakowitz (1978).

The actual computation uses shooting, the shooting parameter being the

frequency o and the penalty function being the determinant (7.16).

All exact models permitted explicit determination of eigenfrequencies
and solutions when two mode numbers were given. There exists, however,
no simple rule to predict mode numbers for a given frequency interval
and thus to discover all eigenmodes in this interval. Furthermore, by
increasing the order N of the expansion (4.3) more transverse variabi-
lity is introduced and, if possible, additional eigenfrequencies and mo-

des are added to the spectrum.

We investigate the spectrum of topographic waves in a second and a

third order model. The basin is rectangular with an aspect ratio r =0.5,
a parabolic cross section (g =2.0) and a thalweg varying as a (sin)?Z2.
Figutres 7.6 and 7.7 display a selection of modes from the spectrum of a se-
cond and a-third crder model, respectively. It is apparent that in the
period interval from 35 h to 140 h (corresponding to 45° latitude) a
large variety of qualitatively different eigenmodes can be detected. Ac-
cording to the complexity of their modal structure we distinguish three

Zypes of elgenmodes.

Type 1 is the well known mocdal pattern described by all exact models of
topographic waves in enclosed basins. It is akin to Ball's solutions
(Ball, 1965) and therefore called Ball-fype. Both,the linear (o = 0.155)
and the guadratic (o = 0.213) Ball-mode occur in the spectrum and addi-
tional eigenmodes are identified as type 1. All exact models for which
solutions have been constructed so far, have shown qualitatively simi-

lar solutions. Generally, type 1 modes consist of a few large-scale
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vortices moving counterclockwise around the basin, and the water in the
whole basin underlies this wave motion. The rectangular basin, however,
appears to sustain also two new types, which so far were unnoticed in

other models.

Type 2, with only a few candidates in this freguency interval, can be
called bay-Zype. Wave motion is mostly trapped to the long ends of the
lake; very weak activity is experienced in the lake center and along its
long sides. The pattern shows one or more mid-scale gyres which do not
propagate along the entire isobaths (lines of constant £/H) but are ra-
ther trapped in the bays. This type arises above the cut-off frequency
go of any mode unit, see Figure 7.8, and thus embraces contributions with
complex wavenumbers. The amplitudes of these modes are exponentially
evanescent in space which makes it understood why bay-type solutions do
exist for enclosed basins. The fact that there are eigenmodes with fre-
guencies 0 > 0gp is a new result. These modes were neither detected by the

analytic models nor by the crude lake model presented in the previous

3

section*/.

COMPLEX BRANCH
[TYPE2

Figure 7.8 ~TYPE 3

REAL BRANCF

Schematic plot of one mode unit i
of the dispersion relation of +— i
topographic waves in a channel i
with parabolic transverse depth “TYPE1,
1
1
!
|

profile. A Nth order model con-
sists of N mode units.

ko Ikl ==

Type 3, eventually, appears most frequently in the spectrum. In con-

trast to type 2, all wave acti&ity is now trapped along the long bound-
aries of the basin and consists of a large number of small-scale vorti-
ces. Along the long sides two only weakly interacting beat patterns are
observed. The transverse structure of these modes is simple and suggests,
in the considered frequency range, a "radial" wavenumber of 1. The pat-
tern is very similar to that found in straight infinite channels; type3

is thus named channel fype.

The modal structure of the different types can be explained with the

*) Their determination iIs very difficult even with high-accuracy integrators. In or-
der to obtain patterns with |Y(s,n)| = |¢(l-5,n)| the eigenfrequency need be known
up to a relative error of 10~7,
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help of the dispersion relation in Figuwie 7.5. Type 1 enjoys the property
that increasing o brings about more complex structure since it consists
primarily of modes with wavenumbers k <kp. For k<kg 00/8k >0 and so the
wavelengths of the contributing modes decrease with growing o. Type 3,
the channel-type, on the other hand, reveals the opposite property: the
scale of the wave pattern gradually decreases with decreasing frequency.
Type 3 solutions are mostly made up of modes with k >kg. In this range,
30/3k < 0 and consequently the wavelengths decrease with decreasing o,

c.f. Figures 7.6 and 7.7.

Types 1 and 3 exhibit properties identical to those of the solutions
obtained by Johnson (1987b), see section 3.6. There, the dispersion re-
lation determines the modal behaviour of the solutions in the same way.
o(k) has a relative maximum at (kg:0p) which naturally divides the
range of wavenumbers, i.e. the azimuthal mode number into two parts.
The properties of the two ranges k <kg and k > kg are described above
and accordingly in section 3.6. Therefore, Ball-type and channel-type
modes are ﬁathematically closely related solutions. Both configurations
Johnsons elongated basin and the rectangular basin, sustain these ei-
genmodes. Explicitly, both Ball-modes and channel-modes can be labelled
with a pair of modenumbers (m,n)*. The frequency range shown in Figures
7.6 and 7.7 lies above the cut-off frequency o1 of the second mode unit.
Modes with (m,l) and m <mgp are of the Ball-type and those with (m,1)
and m >mg are chanel-type; mp is an integer closest to kop. Higher radi-
al modenumbers only occur below o1,0;,..., successively and it is only
the azimuthal number which determines affiliation to the respective
types.

The fact that topographic waves in a rectangular basin occur as bay-
trapped modes casts light on the results of Tré&sch (1984) . These seemed
to entirely contradict the applicability of analytic models to real ba-
sins as anticipated in Figute 7.1. Each mode is'trapped to one of the
bays and does not seem to influence the rest of the basin. The few trap-
ped vortices exhibit roughly the scale of the bay. The rectangular ba-
sin, yet a much simpler configuration than Lake of Lugano, reveals equal-
ly bay~type modes ftogether with the known Ball-type solutions which in
the interested period range were not found by Tr&sch (1984). This model,
therefore, links these two different approaches and demonstrates that

the propagation of topographic waves in enclosed basins cannot merely be

*) m is the "azimuthal"” modenumber counting the nodes along the thalweg line, where-
as n denotes the "radial" modenumber associated to the number of the transverse
nodes.
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described by those analytically determined modes of exact models that
were so far constructed. It remains to be proved or disproved that type-2
modes also exist in ellipses with parabolic or exponential bottom pro-
files and that these modes have a period of the same order of magnitude
as those above. The model of Johnson (1987b) should be scrutinized by
this direction first. Above the highest cut-off frequency the disper-
sion relation (3.47) gives an infinite number of complex wavenumbers k
which describe exponentially evanescent modes for £ +® or £ + -, re~
spectively. Are there particular frequencies allowing a superposition ¥
such that ¢ vanishes for ||+« and y is smooth at £ = 0? Many further
guestions need to be answered to fully understand the behaviour of TW's
in enclosed basins. Twe facts have, however, transpired: Firstly, the
smootheness of>the isobaths is essential in enabling global TW-features
and, secondly, careful numerical solution procedures are needed to find

bay-type modes.

The guality of approximation strongly depends on the type of wave con-
sidered. Ball-type modes have large-scale vortices, and a good repre-
sentation of these modes with comparatively few basis functions is ex-
pected. High orders of expansions are therefore not needed and fast con-
vergence 1s observed. By contrast channel-type solutions consist of
small-scale modes with large wavenumbers. As was shown in section 5.3
convergence is slow for large wavenumbers and this must equally be ex-

pected for tyme 3 modes.

Table 7.3 collects results of a convergence test for the same configura-
tion as in Fdiguwres 7.6 and 7.7. Type 1 shows convergence for both, eigen-
frequency and stream function; similar but considerably slower conver-
gence is found for types 2 and 3. For type 2 it is particularly diffi-
cult to determine the correct distribution of the étream function along
the axis, as small changes in the eigenvalue ¢ result in relatively
large changes of the eigenfunction. Thus, high resolution and small step
sizes in the numerical integration procedure are needed. Since for ODE
high accuracy integrators exist, the channel method allows for some com-
promise, and this at least explains the superiority of the method in

comparison to some other numerical procedures.

Table 7.4 collects the dependence of ¢ on the aspect ratio and transverse

topography for the solutions that correspond to Ball's guadratic mode.
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Type N=1 N=2 N=3
Tab 743
1, Ball-type 0.143 0.153* 0.155* able
0.18] 0-2]]: 0-2]3: Convergence properties of the
0.195 0.255 0.260 eigenfrequencies in a 2:1 ba-
i ith
2, bay-type - 0.297% 0.314 s
- 0.263*  0.284* q=2.0,
- 0.115%  0.240% e = 0.05,
n = 0.01.
3, channel-type | 0.151 0-254: 0-273: Stars indicate plotted modes
gm 8%;1253* g-ggg* in Figures 7.6 and 7.7.
Ball Table 7.4

quadratic r=0.5 r=0.4 r=0.3

Tonography g and aspect ratio

q=1.0 0.267 0.250 0.219 r influencing the eigenfre-
q=2.0 0.211 0.195 0.170 quency of the quadratic Ball-

mode. The parameters are N=2,
q=5.0 0.140 0:123 ? e =0.05,n=0.01.

As expected from the behavior of the dispersion relation in a straight
infinite channel the slope of the transverse topography has a dominant
influence on the values of the eigenfrequency. Steeper profiles (g =
5.0) lower the eigenfrequencies. An equal but weaker effect on Ball-
type modes is experienced when the aspect ratio is decreasing. Table 7.4
demonstrates that these modes are much more governed by the transverse
depth profile than by the aspect ratio. All this is in line with re-

sults obtained from the crude lake model.

Tables 7.5 and 7.6 investigate the influence of the two bathymetric para-
meters g and r on the three types of basin solutions. Again the topo-
graphy effect is seen to be more influential. By going from a triangu-
lar depth profile (g=1.0) to & very steep U-shaped profile (g=5.0)

the eigenfrequencies'diminish by up to a factor of 2. As far as the to-
pography effect is concerned, Ball and channel types react the same way,

whereas the freguency of the bay type increases with qg.

Table 7.6 demonstrates that basins with a smaller aspect ratio sustain
Ball-type waves with decreased eigenfrequencies. This decrease is over-
proportional as it is enhanced for smaller aspect ratios. By contrast,
bay- and channel-type solutions show an opposite behaviour. Decreasing
the aspect ratio increases the eigenfrequency; this time the response
is under proporticnal and for bay-type solutions the dependence of o©

and r is very small.
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r=0,5 | Ball- bay-  channel- Table 7.5
type type type :

_ Topography effect on the fre-
9=1.0 | 0.200 0.299 0.250 quency of the three wave ty-
q=2.0 1 0.153 0.395 0.232 pes. The 'parameters are as
q=5.0 | 0097 0.415 0.153 n Takte T8,

q=2.0 | Ball- bay-  channel-
type type type Table 7.6

r=05 0.153 0.263 0.232 Aspect ratio effect on the
r=20.4 0.139 0.267 0.251 three types. The parameters

are as in Table 7.4.
r=20.31{0.118 0.269 0.258

The occurrence of bay-trapped modes in enclosed basins was unexpected
and raises further questions concerning the properties of solutions of

of the eigenvalue problem (2.22).

When the aspect ratio of the basin is decreased the bay vortices of
these modes lie farther and farther apart and we wonder whether these
isolated gyres become uncoupled. There are two points to be remarked in
this context. Firstly, basins with no symmetry seem to sustain decoupled
bay modes as in Figure 7.1b. Secondly, with our procedure it is very dif-
ficult to determine the parity*) of these solutions with respect to the
long axis of the basin. In this regard very fine resolution is needed

to obtain reliable solutions. The basic problem is to bring numerical
information through the "dead" zone in the center of the domain. This
suggests to consider again semi-infinite channels and to ask the ques-
tion of a possible existence of bay-trapped modes. A partial answer is
given in the following chapter.

7.3 Current patterns

In the preceding sections knowledge of conspicuous properties of topo-
graphic waves in channels and lake basins was acquired with the result
that, in an enclosed domain, three qualitatively different types of

waves are observed. Of these, eigenfrequencies and evolution of the

*) W(s,n) has positive or negative parity with respect to s when U(s,n) = Y(l-s,n)
or Y(s,n) = -Y(l-s,n), respectively.
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stream function were investigated. In practice, further properties are
of equal importance; e.g. what is the path of a particle, tracer or pol-

lutant which is affected by a particular TW-mode?

Consider the evolution of the transport vector g x VY and of the velocity
field (Z xVy)/H at {ixed positions within the basin. An outstanding pro-
perty of topographic waves is the fact that the field vector rotates
either cyclonically or anticyclonically at a fixed position. Established
statistical methods exist that permit calculation of the orientations of
the rotation and of associated eigenfrequencies from periodograms of
time series of velocity or transport field components. These so called
notarny spectra are described in Gonella (1972). The method has been success-
fully applied by Saylor et al. (1980) and Horn et al. (1986) in order to
detect dominant rotational senses in velocity time series in Lake Michi-

gan and the Lake of Zurich, respectively.

In the present study all fields have harmonic time dependence, and hence
the tip of a field vector will describe an ellipse. This ellipse is cal-
led transport ellipse (for the transport vector Z xVY) or cwuent ellipse
(for the velocity vector (g x V¢) /H). Under certain assumptions the cur-
rent ellipses can be associated with the particle paths. This problem
is examined in subsection a); subsection b} presents transport ellipses
of a few selected solutions belonging to the individual mode types and

particle paths are studied in subsection c).

A current ellipse is defined as the trace of the tip of the velocity
vector (§ x V) /H at a fixed position. The following analysis shows that,
apart from a scalar factor, in a linear theory the current ellipse re-

presents the particle path or path-line.

The path-line in a time-dependent velocity field u(x,t) is given by the

differential equation

[e})
s

T2 = s (x,t), (7.17)

which determines: implicitly the path-line x(t). Alternatively, we can

consider the corresponding integral equation
x(t) = [ u(x(®,t) dt+x(0) . (7.18)

The velocity field that is used in equations (7.17) and (7.18) is refer-
red to as the Ewlerian velocity field. Equivalently, one could write
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(7.18) in terms of the Lagrangian velocity field urp(x(0),t), i.e. the ve-
locity at time t of the particle which was at x(0) at time t=0. Making
use of the correspondence

up (x(0),t) = u(x(t),t),

and inserting the integral equation (7.18), the Lagrangian field reads

t
up (x(0),t) = u (ng(g(O),E)dE+ §(0),t).
o]

For short times or small velocities the integral in the function argu-
ment is small in comparison to x(0). Taylor expansion about x(0) thus
yields ©
uL (2 (0,t) = u(x(0,t)+ [(JULQ((O),E) dE)'V] u(x (0),t) + ...,

9 (7.19)
and the Lagrangian field in the integral can be approximated to lowest

order by the Eulerian field at the fixed position x(0). We may also
write (7.19) as

up (00 ,£) = u(x(0),t) +ug(x(0),t), (7.20)
where .t o R .
us(x00),8) = | [[u(x(0,8) aE] 7] u(x(0),¢) (7.21)
0

is called the Stokes drnift velocity, see LeBlond & Mysak (1980). This term
is non-linear in the velocity field and represents the influence of ad-

vection. The particle-path then becomes

t t
x(£) = x(0)+ [ u(x(0),t)dt + [ug(x(0),t) dt, (7.22)
0 0

correct to O(u?). Let us calculate the net displacement x(T)-x(0) after
one period. In this study we assume a periodic velocity field of the
form

u(x,t) = Re (e71¥* Ux))
(7.23)

Re U.cos wt + Im U sin wt,

which when inserted into (7.22) yields

‘ T T
g(T)-x(O) = ReU Jcos wt+Imgfsin wt dt
0 0
T
+ [ (£ Re Usinut - L ImU cos wt+ L Im U)-
0

. (VRe U cos wt + VIm U sin wt) dt,
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where T = 27/w. The contribution of the Eulerian field averages out; the

Stokes drift, however, causes the net displacement
%x(T) - %(0) = = (Re U VIm U-Im U VRe U). (7.24)
o g

We must emphasize‘that the velocity field (7.23) is obtained by solving
the linearized TW-equation (2.22). This linearization was motivated by
small velocities u such that the advection term u Vu could be neglected.
To be consistent, (7.24) can only serve as a {{nust estimate of the (non-
linear) displacement of the particle caused by the topographic wave mo-
tion. Consistency requires neglection of ug in expression (7.22) so that

the path-line in a linear theory is given by

t
x(t) = x(0) + [u(x(0,t) at,
0
which in view of (7.23) becomes
1 1
x(t) = x(0) + — u(x(0),t-T/4)+ = Im U. (7+25)

The path-line is therefore basically the scaled trace of the tip of the

Eulerian velocity vector.

The qualitative structure of the stream function does not strongly de-
pend on the values of the geometric and bathymetric parameters. It there-
fore suffices to examine one particular case. Figures 7.9-7.11 display
eigenmodes of three examples of each type and their transport patterns.
63 positions within the rectangular basin are evaluated and the trans-
port ellipse is plotted as a dashed (solid) curve if the transport vec-
tor rotates in the (counter) clockwise direction. The transport field is
only determined to within a constant factor because the TW-equation is
linear and homogeneous (no external forcing); the same holds true for the

velocity field.

The first Ball-modes are characterized by a central area with counter-
clockwise rotation, see Figure 7.9. Its size depends on the mode, and we
note that only the linear Ball-mode has a non-vanishing current vector
in the centre. This central area is surrounded by a region of clockwise
and weak rotation. However, only Ball-modes with no "radial" mode are
given here, others emerge at much smaller frequencies, i.e. below the

cutoff frequencies of the next mode units, cf. Figwies 3.5 and 3.13, and
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Figure 7.9

Stream function and transport ellipses for three Ball-modes. The small
frames show contours of the stream function for t =0 (bottom), t=T/8,
t =T/4 (top). Transport ellipses are dashed (solid) for (counter) clock-
wise rotating transport vectors. A indicate mooring sites on the linear
arrays A and B, respectively. The parameters are N=2, r=0.5, ¢ =0.05,
n=0.01, M = 100.
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Figure 7.10

Same as Figure 7.9 for three bay-modes.
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Same as

Figure 7.9 for three channel-modes.
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would consist of more interlocking areas with different senses of rota-

tion.

Figune 7.10 shows a selection of three bay-modes. At the lake ends wave
activity is observed in the form of clockwise rotating currents. For
higher bay-modes these transport ellipses degenerate to nearly linear
motion. It follows a zone of strong counterclockwise rotation, roughly
at the position where the slope of the thalweg has a maximum. Beyond it,

closer to the center, wave motion rapidly decreases and dies out.

The stream functions and transport ellipses of three channel-modes are

plotted in Figure 7.11. It is typical and could already be inferred from
the stream function plots, that there are bands along the long side of

the basin. Close to the shore line clockwise rotation is observed being
strongest in the middle of the lake but weak at the long ends. Parallel
to it follows a band ‘where the current vectors rotate counterclockwise.
Along the whole basin in the neighbourhood of the thalweg line nearly no

wave activity is experienced.

Figure 7.9 (top) further displays a proposed mooring array by which the mo-~
dal type of an eigensolution in the basin is likely to be determined:

this is described in section 7.4.

¢) Parnticle paths

A consistent linear wave theory predicts closed particle paths - the el-
liptic motion of surface particles in a gravity wave are an example.
Within this linear approximation, the path-line represents the scaled
trace of the tip of the Eulerian velocity vector, the current ellipse,
see equation (7.25). Figure 7.9-7.11 give an impression of the shape and
orientation of these particle paths. Note, however, that they apply for

transport ellipses and therefore depth-integrated path-lines.

The linear theory can be extended to provide a first estimate of the
particle path caused by advection; this is a non-linear effect. Equation
(7.24) expresses this Stokes drift - it is a net displacement during one
cycle due to the spatial variation of the velocity field. Observationally,
the Stokes drift manifests itself as a mean transport and, if all other

perturbations were absent, could be visualized by a tracer.

Figures 7.12-7.14 show the depth-integrated Stokes drift and correspond
to Figures 7.9-7.11. The latter illustrate particle paths (current ellip-
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Depth-integrated Stokes drift during one period for three Ball-modes.
The parameters are given in Figure 7.9.
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ses) in a linear theory whereas the former provide a first estimate of

particle motion due to non-linear advection.

It is a property of the Ball-modes (Figwre 7.12) that the counterclockwise
propagating gyres produce a net drift in the clockwise direction. This
induced circulation is closer to the boundaries the higher the Ball-modes
are. For the quadratic and the higher Ball-mode a weak cyclonic rotation

in the lake center is observed. At the lake ends there is no drift.

.The bay-modes in Figure 7.13 exhibit significant transport at the lake
ends; each in a different fashion. The mode with ¢ =0.395 has a pronoun~
ced drift along the short sides of the basin against the direction of
phase propagation. The lower left and top right corners act as sources;
the others are sinks of the drift current. The next bay-mode shows a
pair of lateral gyres and the structure of the stream function of the
mode with 0 =0.263 inplies a drift along the ends of the long sides. The

role of the sources and sinks is now interchanged.

Figure 7.14, finally, shows drift vectors for the channel modes. They
hardly differ from each other, and the pattern consists of two near-shore
drifts in opposite direction to phase propagation. The drift is experien-
ced only close to the loﬁg sides of the basin and most of the lake has no
transport at all. Opposite corners again act as sources and sinks, re-

spectively.

The Stokes drift has a particular sense of direction which is mainly
clockwise around the basin (on the northern hemisphere). Nevertheless,
the three mode types have different transport properties: Ball-type mo-
des exhibit a circular pattern confined to the centre of the lake. Bay-
and channel-type modes show a straight drift current along the short and
long sides of the basin. respectively. This again underlines that know-

ledge of the modal type is of particular importance.

7.4 Detection of topographic waves

In this section we establish criteria which allow a distinction of the
three individual mode types. These criteria are deduced from the behavi-
our of the transport field at a fixed position. The eigenfrequency is not
significant enough to allow distinction between individual types of topo-
graphic waves because, generally, small differences arise which are in
many cases beyond the resolution of the observations. Moreover, for

elongated or large lakes the spectra of second and first class waves may
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overlap or, more frequently, the periods of bay-modes may be of the

same order as those of internal gravity waves. However, provided the
current structure in the basin is known to a certain extent, it is pos-
sible to identify the modal type. As was demonstrated above, the basic
problem with which the observer is confronted is the richness of the
spectrum of topographic wave motion in a particular basin. This is con-
trary to gravity waves (seiches) which exhibit a simple, well-ordered
spectrum (if one. abstains from considering transversal modes) with eigen-
frequencies which lie reasonably far avart. Therefore, a particular fre-
quency can readily be associated with a certain modal behaviour even in
case of some observational uncertainties. However, as is evident from
Figures 7.6 and 7.7 the eigenfrequencies of TW's may differ by less than

1 % which is far below the accuracy with which an eigenfrequency can be
detected in nature. The fact, whether a TW occurs as a Ball or as a bay-
type has important implications on the particle transport caused by this

wave motion.

In what follows, we refer to Figures 7.9-7.11 of the preceding section. A
proposed mooring array (A) is inserted; it consists of two straight strings
(A and B) perpendicular to each other. A follows the thalweg line and
extends over its strongest depth variation, i.e. where the bay-zone joins
the deeper area of the lake baéin. Array B accounts for the transverse
variation of the topography and is positioned in the centre of the basin
extending to the shore line. Both arrays consist of 4 (or more) equidi-
stant chains carrying the measuring instruments. In-a-stratified water
body a current meter is attached to the chain which records the evolution
of the velocity vector in the epilimnion. It is followed by a thermistor
chain detecting the position of the thermocline. In the hypolimnion a fur-
ther current meter is positioned. Such a device (A and B) provides 8 time
series of the velocity vector for both layers and a sequence time se-
ries of isotherm depths (after conversion of temperature time series at
fixed depths within the metalimnion). From these data spectra can be cal-
culated; the time series of the velocity vectors further allow determi-
nation of the spectra of the rotational sense of the vector, see Gonella
(1972) . This will eventually lead to a detailed picture of the transport
structure at these 8 positions”*/. Eigenfrequency and associated sense

and strength of rotation form part of this information.

*) The transport field is connected to the observed velocity field according to egua-
tions (2.32) for a two-layer model.
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Comparison of the results from array A with these of array B brings

about the mode type of the observed eigenfrequency. From Figures 7.9-7.11
we learn that a channel-type is characterized by a very weak or vanish-
ing signal. along array A. Similarly, the signals decrease on B when ap-
proaching the centre of the basin. Maximum values are experienced between
shore and thalweg line. The channel-modes displayed in Figute 7.1] further
show (counter) clockwise rotating transport vectors close to the (centre)
shore. These features belong to the first mode unit, and hence the rota-
tional sense changes only once on array B. Accordingly, higher transver-

se modes exhibit more changes.

Bay-modes, on the other hand, give vanishing signals on array B which is
positioned far away from the bays. Array A shows increasing signals to-
wards the shore zone of the bay reaching maximum values about at the po-~
sition of steepest descent of the thalweg and again decreasing after a
change of rotational sense. Two arrays, A and A', placed at either long
end of a natural lake basin may record different response properties
(with respect to eigenfrequency and spatial distribution) imitating in-
consistency. Each bay of a natural basin is, however, able to sustain
its individual bay-modes */. Such results are therefore not contradictory

but rather require a refined interpretation.

Whereas both, channel- and bay-modes had typically one array recording
very weak signals, the signal strength is comparable on array A and B
when a Ball-mode is detected. For the fundamental mode (o = 0.153) the
signal weakenes towards the shore lines on both A and B while changing
once its rotational sense from a counterclockwise to a clockwise rotation.

Higher Ball-modes exhibit vanishing current vectors towards the centre.

A general property of TW-modes is that the Eulerian velocity vector com-

pletes a rotation in the course of one period. This clearly distinguishes
voricity governed TW-motion from gravity dominated motions. As an excep-

tion thereof we must mention Poincaré waves which, near a vertical wall

or in the neighbourhood of a bend of a flat bottomed channel, exhibit

also rotating velocity vectors, see Taylor (1920), Webb & Pond (1986).

The spatial and temporal interrelation between the individual mooring

sites (A4) must be discussed as well. This can be readily achieved by cal-

*) This is explained in detail in section 8.3 and evidence is given that a bay-mode
in an elongated basin can be considered as a local wave phenomenon.
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culating lines of constant phase and lines of constant amplitude of the
transport stream function and the velocity vector fields.

An observed quaﬁtity & shall be given by
$x,t) = Re(e ¥ 0 ),

where separation of time and space has been assumed. ¢ is a complex scalar or vector
field, independent of time. The complex field is determined by the two real fields Re ¢
and Im® or, alternatively, A and ¢ according to

O =Red+iInd, or 0=ae?

A= V(Re¢)2+ (Im )2,

3 Re® > 0, Imd >0,
¢+ m, Red <O,
¢+2m, Red >0, Imd < o0,

with

€
[}

$ = arctan (Im$/Re ).

For brevity, lines of ¢ = const are called co-phase or co-tidal lines, A = const are
called co-amplitude or co-range lines.

Figures 7.15-7.17 display co-tidal and co-amplitude’ lines of all impor-
tant fields, i.e. the stream function (scalar) and the transport field
(in components). The linear Ball-mode (Figure 7.15) has the simplest struc-
ture. Co-range lines of the stream function field are mainly circular
giving rise to a positive amphidromic point in the centre of the lake.
The co-tidal lines join at this point. The transport field (related to
Vy) has now two amphidromies located at conjugate positions for both com-
ponents; each exhibits a positive sense. Note that the transport field

is weak towards the lake ends.

Figure 7.16 gives the quantities for the next higher Ball-mode (quadra-
tic). The co-tidal lines repeat themselves once in the revolution, i.e.
the co-tidal line pattern exhibits central symmetry. This was already
evident from the stream function pattern as the phase does not complete
an entire revolution around the basin during one cycle. The transport
field shows now three amphidromic points for each component all of which
are positive. The patterns of a bay-mode are different, see Figure 7.17.
Co-phase lines are mainly straight joining at one or two positive am-
phidromic points at the centre of the basin. The v-component of the

transport has a nodal line across the basin near the lake end.

In view of the smaller spatial scale of the vortices the channel-modes
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-bines of constant phase (solid; co-tidal lines) and lines of constant
amplitude (dashed; co-range lines) of the stream function, the u-com-
ponent (along thalweg axis) of the transport and the v-component for
the linear Ball-mode., The parameters are given in Figure 7.9. The num-
bers labelling lines of constant phase correspond to multiples of an
eighth of a period; those of constant amplitide indicate the fraction

of the maximum amplitude.
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(not shown here) have much more complicated patterns.

The suggested mooring array (A and B) is not appropriate to draw con-
clusive inferences regarding the co~tidal line structure of the three
mode types since, in most cases, both strings A and B coincide with a
particular phase line. A third string C should be deployed which links
both far ends of A and B and forms a triangle with' them. The mooring si-

tes or string C then record the passage of the co-tidal lines.

In this section we indicated with a first rough method how the indivi-
dual types of TW's could be discerned. Both, the behaviour of the field
at fixed positions and their interrelations were important pieces of
information. Depending on position and modal type the current vector de-
scribes an ellipse; co-tidal lines exhibit characteristic structures

and allow the desired distinction.

7.5 Curved basins

In this section a first step towards more realistic basin geometries is
taken, where we investigate the effect of constant curvature on the dif-
ferent eigenmodes of closed basins. The calculation of the matrix ele=-
ments Kég" which contain the entire bathymetric information (including
curvature) must now be performed including the Jacobian, J= 1-K-n of the

constant curvature.

The modified matrix elements are listed in equations (5.13). Curvature
will be measured by the non-dimensional parameter

KB
= =
for which 0 £ |k| < 1 must hold. Using the modified elements, the very
same integration procedure is performed as before in order to obtain

eigenfrequencies and eigenmodes as was described in chapter 7.2. This
demonstrates that the channel method used here allows a broad variety
of basin geometries to be analysed without considerable alterations of

the calculations.

First effects of the curvature were presented in chapter 6 and the dis-~

persion relation o(k) of TW's propagating in a hypothetical channel

with constant curvature was calculated. The most important findings

were

i) The symmetry o(k) = o(~k) is broken and replaced by the relation
o(k,k) = o(-x,-k);
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ii) for «k > 0 all wavenumbers belonging to a given frequency are shif-

ted to more positive values;

iii) therefore, TW's propagating along the inner (outer) shore line are

longer (shorter) than for straight channels;

iv) there exists a frequency interval [05,05] such that free TW's are

sustained only along the inner shore line, compare Figure 6.1.

It is obvious, that solutions in a curved basin which has lost symmetry
across n =0 will lack this symmetry as well. The curved thalweg line
is not even locally a centre of symmetry. Due to iii) spatial scales
will be larger along the inner shore line than along the outer, this
being a consequence of additional vorticity induced by curvature. Ac-
cording to remark (iv), if there exist eigenfrequencies in the critical
interval [06,05], these eigenmodes exhibit an interesting structure.
For waves propagating along the inner shore the wavenumber is real and
a spatially periodic pattern with a number of nodes evolves; on the op-~

posite side k is complex.

Figures 7.18 and 7.19 show corresponding eigenmodes for different values
of the curvature ordered according to frequency. Generally, curvature
does not alter the eigenfrequency very much. Deviations of the eigen-
frequencies for a strongly curved basin (k= 0.5) from the values in the
straight lake are throughout less than 5 %. Eigenfrequencies decrease
with increasing curvature. There is little hope to detect experimental-
ly any effect of curvature on the eigenfrequency. The stream function

patterns, on the other hand, show more pronounced modifications.

The Ball-modes clearly demonstrate the influence of remark (iii) in the
above list. Although the total number of vortices remains constant when
increasing « from « = 0, the number of gyres along the inner shore de-
creases in favour of that along the outer. Along with this, the inner

vortices become larger.

As could be expected in advance, the stream function of the bay-modes
(0=0.395") and o = 0.115) is hardly altered in the curved basin. This
is rather obvious, because the bay does not "see" much of the curved
basin. Mainly modes which consist of wave motion over the whole curved

domain will be influenced by this change of geometry.

*) The modes G > 0 for x = 0.2 and k = 0.5 are obtained by shooting from both
s =0 and s = L.
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Comparison of eigenmodes in straight and curved basins, their lines of
constant depth are shown in the top row. The modes are ordered for de-
creasing frequency and the continuation is given in Figure 7.19. The cut-
off frequency op splits in the case of curvature building an interval
[0.05] in which the modes show uncommon patterns. The parameters are
N=2, r=0.5, q=2, € =0.05, n=0.01, M= 100.

The channel-modes demonstrate remarkable changes. By increasing the cur-
vature the wave motion is significantly attenuated in the region towards
the centre of curvature. For « = 0.5 (an extreme case) the eigenmode only

consists of a trail of waves trapped to the outer shore line.

In the critical interval I = [03,06] there are indeed eigenfrequencies
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Figure 7.19 See caption Figure 7.18.

which exhibit the conjectured structure. Few large scale vortices are

trapped at the inner boundary of the basin. In Figure 7.6 one finds a bay-
mode with an eigenfrequency very close to but above 0g. This mode is not
shown in Figure 7.18 for x = 0 because, strictly, the modes for k =0.2 and
k =0.5 with €I have no limit for k + 0, and it is not clear whether and
how a possible eigenmode could be constructed right at o = g3. Thus, solu-
tions for x > 0 with o€l are structurally new. In the course of one cycle
the vortices do not propagate around the basin but rather remain trapped
in the domain n > 0., This mode, however is not a true bay-mode since wave

motion in n > 0 originates primarily from the #eaf wavenumbers k < 0.
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8. Reflections of topographic waves

In this chapter, which follows Stocker (1987) and Stocker & Hutter (1987b),
TW's impinging on a vertical wall or shore zone is investigated. The con~
figuration of a semi-infinite channel is especially of interest as a li-
mit of elohgated basins, for the distribution mechanism of TW-enerqgy
within an enclosed basin may be supposed to consist primarily of a series
of subsequent reflections at the long ends. This will result in a super-
position pattern which eventually will be observed as a basin mode. Al-
ternatively, if a semi-infinite channel should permit bay-modes trapped
to the channel end then it is plausible that similar modes in elongated

rectangles could exist Jindependently at either lake end.

Scrutinizing the properties of one individual reflection will, however,
not only shed light on this problem but equally help us to explain most
of the conspicuous features found in the previous chapter. There, we ob-
served that the crude lake model (vertical walls) did not give rise to
fundamental modes. The wave structure was rather small-scale and no glo-
bal phase rotation wa; obtained. Can this result be substantiated by

the study of TW-reflection ? Moreover, in section 7.2, by using merely
phenomenological arguments, we distinguished three types of TW's. These
showed different parameter dependencies; conjectures were put forward
for their physical explanation. We assert here that the key to these
answers can also be found by extracting the basic mechanism: the reflec-

tion of TW's in a semi-infinite channel.

To date, little is known about the solution of the TW-equation (2.22)
in semi-open domains such as gulfs, harbours, etc.. Johnson (1987b) was
the first to present an exact solution of (2.22) in a semi-infinite
channel, see section 3.5f. Due to the special configuration, however,
only the case of perfect transmission could be studied: an incident TW
of given wavelength and amplitude is completely reflected as a wave of

identical wavelength and amplitude.

Most research considering such domains is concerned with first-class
waves and their behaviour under reflection. Taylor (1920) showed that
the energy of an incident Kelvin wave propagating towards a vertical
wall is distributed among a reflected Kelvin wave and a whole spectrum
of Poincaré waves. Provided o < op where op is the cut-off frequency of
Poincaré waves the latter exhibit a spatially exponential decay and

therefore are only important in the neighbourhood of the reflecting wall.
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Brown (1973) also constructed solutions for o > op using the method of

collocation. For this case, some of the Poincaré& modes are oscillatory

and no longer evanescent; they may also destroy the symmetry of the re-
flection pattern. A summary is given in LeBlond & Mysak (1980). Webb &

Pond (1986) investigated the transmission and reflection of a Kelvin

wave propagating in a channel when hitting a bend.

Another important effect which occurs in open domains is called hatbour
resonance. Although to our knowledge there exist no studies of this ef-
fect for TW's, considerable knowledge has been acquired for first class
waves, see the review article by Miles (1974), Miles & Lee (1975) and
Buchwald & Williams (1975).

8.1 Reflection at a vertical wall

A property of our channel ﬁechnique is the fact that it furnishes solu-
tions with complex wavenumbers in a natural way. This suggests that so-
lutions of the form (5.9) can be found which represent the situation of
reflected topographic Rossby waves in a channel. The idea is to super-
pose several waves with the same frequency; one incident and some reflec-
ted waves. The incident and at least one reflected wave have real k*/,
and the remaining modes have Im(k) > 0; they are important only in a
boundary zone where the reflection is induced. The superposition satis-

fies the boundary condition ¢ = 0 {(no flux) at the reflecting wall.

Consider a semi-infinite channel s 2 0 with a wall at s =0. One particu-
lar wave mode forms the incident wave; possible candidates are indicated
in Figure §.1. These modes have their group velocity directed towards the
wall, and the transverse structure of the incident wave depends on the
mode unit to which they belong. Reflected modes which take part in the
superposition must not be among the indicated modes and must satisfy the

inequality Imk > 0. (8.1)

With this the superpoéition and determination of the compound solution

is unique and consists of one incident mode and 2N reflected modes. This
argument relies on the fact that the real branch of the dispersion rela-
tion has domains of k > 0 where. 30/3k < 0 and 30/3k > 0. It also makes

use of the existence of a complex branch of the mode units. A series of

*) This implies that O < Op, Op is the cut-off frequency indicated in Figure 8.1,
above it all wavenumbers are compiex.
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Figure 8.1

Dispersion relation o(|k|) of a third
order model in an infinite channel.
Possible incident modes with group nh Slhlie W
velocity into the negative s-—direc~
tion are indicated by

B for cpy tt cgy and @ for cpy ¥t cgr.

Above the cut-off frequency og all
wavenumbers are complex.

Figure 8.2 Selection of possible incident (W,®) and reflected (o)
modes in a semi-infinite channel.

examples of this selection is shown in Figure §.2. Incident waves are
marked with full squares, reflected modes are shown with open circles.
Those on the real branch have the energy propagating away from the bar-
rier s = 0, those on the complex branch arise in pairs, but actually
represent four complex wavenumbers of which only two have Imk > 0, see
Figure 5.3.

Dropping the harmonic time dependence a general wave in a straight, in-

finite channel reads ks
v =) dy e Y el By, (8.2)
Y a

where we have neglected to explicitly distinguish between P§ and P; with
a=1,...,N and use for simplicity only P, with a=1,...,2N. A solution,re-

presenting wave reflection, is then given by
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2N i 2N 2N . 2N
1 s 1 S
V= Win * Your = z Yo =€t zcai Po + ZdYe r Cay Pgr (8.3)
a=1 o=L Y=L a=1

with the unknown vector dy. The coefficients cy; are known if the fre-
quency ¢ and corresponding wavenumber k; of the incident wave are pre-
scribed. They are computed with the methods of chapter 5. Analogously,
to each of the wavenumbers ky (o) of the reflected waves the correspond-
ing cqy can be computed. Hence kj, ky, cqi and cgy (@,y = 1,2,...,2N) are

known.

Imposing the no-flux condition §4 =0 at s= 0 yields the linear system

2N
ZCGY dY = = Cyyr a=1,...,2N, (8.4)
=1
dy and cy; are vectors of length 2N and coy is a (2N x 2N)-matrix. Due to
the orthogonality of the set {Py} and the modes belonging to different

wavenumbers ky the matrix cgy is regular and (8.4) can be inverted.

Figure §.3a displays tHe wave pattern which results, when a wave belong-
ing to the first mode unit with both phase and group velocities directed
towards the wall is reflected. Alternatively, incident phase and group
velocities may have different directions as in the second-mode response
of Figure §.3b. We have found that the largest portion of the reflected

energy lies in the mode with the corresponding wavenumber belonging to

r0000YLR0 O

>

a
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b OOOOOOO O O OO0

Figure 8.3

p-contour lines of.a reflection of topographic waves at a vertical wall.
The insets explain the composition of the reflection pattern with e, in-
cident wave and o, reflected wave. The selected parameters are N = 3,
€= 0,05, for a) g = 1.0, o= 0.305 and b) g = 0.5, o= 0.202.
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the same branch of the dispersion relation (indicated by arrows in the

insets of Figure 8.3).

Therefore, the mode with the negative of the incident wavenumber is hard-
ly excited, and reflection causes primarily a shift of wavenumber rather
than a change of its sign. As a consequence, wave activity remains at
the side of the incident wave. What results is a beat pattern with its
first "calm" area at approximately 2mB/ |kin-kout| away from the wall. The
structure depends on the two main wavenumbers ki, and kg,.. If these dif-

fer markedly from each other rather local and small-scale patterns emerge.

These results give a better understanding of the basin modes obtained
when studying a crude lake model. Comparing Figure 8.3a and 7.3a clearly in-
dicates that the basin mode is merely the superposition of two nearly in-
dependent reflection patterns which are induced by the two vertical walls.
Due to the fact that the discontinuous depth lines prevent wave energy
from changing the side in the channel, there are no simple reflection
patterns to be expected that occupy the whole channel. Hence, in a semi-
infinite channel or even a lake basin the along-axis depth profile at
the very end is of crucial importance for the structure of the reflec-

tion pattern.

8.2 Reflection at an exponential shore

We now consider a case which has continuous (though not everywhere dif-
ferentiable depth lines at the end of the channel. In order to keep the
convenient algebraic procedure (8.3), (8.4) we let the channel be compo-
sed of two sections. Close to the end-wall, for 0 < s < sy, the depth in-
creases exponentially as h(s)=¢(1l+ %05/50, for s > sg it is constanf.
The isobaths no longer intersect the wall but are C:-shaped. Safe a time-

dependent factor et the solution then takes the form

4N . 2N
W0 = ) ap ™ el vy, 0<s<so,
W‘= =1 a=1 (8.5)
. 2N 2N 2N
Wm - ezkis Zcui Py + ZdY eikys Zch Py s sg<s,
a=1 =1 asl

where kj is the incident wavenumber, {kr}fN is the whole set of wavenum-
bers and {kY)iN is the restricted set with Imk 2 0 and the group velocity
directed away from. the' end wall, all corresponding to o. Superscripts 0
and. » denote the domains 0 < s < sg and sg < s, respectively. ch is the

. T
(2N x 4N)-matrix corresponding to (5.8) but for the case h'/h = const # 0.
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The stream function ¢ must be continuous and differentiable at s = sp

and vanish at s =0, Thus, for a =1,..., 28"
u’gl =0 : c:F dr = 0,
|s=0
- ikps ik ik ;
w3 =g roc:" ar = ¢y, e Y0 d . gy e 150, (8.6)
s=sg s=sQ
3 . . ikys, . ik;
3% ¥2 =--3i5- Vol : lkre krso cor dp = iky e ¥ ocaydy+lk1caie iso0,
s=s5q |s=so

with the 6N unknowns dr and dy must be satisfied. This can be written as

ex
c 0 -l 0
r
a ar
ik ; ikjs
cex el. rso -c el.k-YS() = Cay © iS0 (8.7)
al ay a
Y ;
ikrs ikys . ikjsg
ikpcore 10 -ikycy e VO ikj cqi @

and the vectors dr and dy are determined by inverting (8.7).

Figure 8.4 shows solutions y for a composed channel; two significant dif-

ferences to Figure §.3 are observed. Now, there is wave activity also in

[0 OUEEII O00BaR
a (/3000000000

Y

L

So

b

Figure 8.4

Reflection pattern in a composed channel. For 0 < s < sy the depth varies
exponentially along the axis whereas it is constant for s > sg. This
connects the isobaths of both channel domains n >0 and n <0 and enables
wave energy to leak into the opposite domain in the course of reflection.
The selected parameters are € = 0.05, for a) N=2, g = 2.0, o= 0.260,
sg = 2.0 and b) N=3, q = 0.5, ¢ = 0,200, sg = 1.0.

*) We now omit the summation signs over '=1,2,...,4N and Y=1,2,...,2N.
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the opposite half of the channel corresponding to the negative of the in-
cident wavenumber. This amounts to a weak {eakage of wave energy by reflec-
tion into the other channel domain (Figute §.4a). However, probably owing
to the non-smootheness of the isobaths at sg it is comparatively weak

and most of the reflected waveactivity remains on the incident side.

Figure 8.4b shows a reflection pattern of lower frequency, ki and Koy lie
farther apart and therefore more local and complicated structures result.
Moreover, at the beginning of the reflecting shelf (s =sg) wave intensifi-
cation is observed. These specific results demonstrate that the global
wave pattern is very sensitive to the basin shape and the depth profile
at the channel end. However, these results still do not explain the dis-
tinction of TW's into three different basin types as suggested in section
7.2. We wouldAlike'to have these explained e.g. as special cases of three

different reflection patterns.

8.3 Reflection at a sin2-shore

This section closely follows the analysis in section 7.2. The procedure
is, however, slightly more complicated since we must construct solutions

in an open domain.

a) Numerical method

The domain of interest is a semi-infinite channel with the depth profile
(7.2) and a thalweg depth

s
n+ sin? —, 0<s <sg-s
n(s) = 220 (8.8)

l+n, sg < S.
This profile is smooth at sg and the slope parameter S(s) = h~! dn/ds

takes the form .
m sin(7s/sq)

2 ' 0 <s < sgr
5(s) = 2sg (n+sin® (ws/25p)) (8.9)

(UM sQ < S.
The solution ¥ in the two domains is given by

S

¥0 = exp( [ A(3) @3) ¥0(0) = E(s)¥%(®), 0 < s < o
. 0 (8.10)
Y= 2N
¥ = 4T+ ) ¥Y Dy, 0 < s
Y=l

where (7.5) and (7.12) have been used. f? is the incident mode with wave
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number ki and, in real notation, has the form
¥ = (Reyy, Rep;, Imyp;, Imy;), (8.11)

which is a vector with 8N components; one such component, e.g. {Re Vvila
is given by Re exp(i kj s) caj Po. If Dy and g? are also separated into
real imaqinary parts, they have the form*/

(8.12)

As was the case for the incident wave, Yy consists of 2N components,

each of which has the form
(y)a= €Y% ey By, WPyl = iky €Y% gy By, @=1,2,...,2
and wavenumbers are restricted such that Imky 2 0.
The representation (8.10) has 8N real unknowns, ¥0(0) =(0, §3(0); o0, §9(0))

and Dy. These are determined with the help of the matching condition at

s =sg, viz.

) e . 0 — -
¥ =¥ Ecsp ¥ =¥ +) ¥y Dy,
ls=so 1s=so Y
or more precisely,
Ej2 Eiq VR0
. - - y® w0 = 7
SRS AR C IR s (8.13)
Eq2 Eaq Dy .

and the calculation of the E;y's is described in the text below (7.15).
The computational scheme therefore requires, firstly, numerical integra-
tion by a Runge-Kutta method to obtain the Ej4's and secondly, an alge-
braic procedure to calculate both f? and, for a preselected incident

wavenumber-k; , the corresponding ¥7.

We learn from (8.10) that 2N+l modes are superposed which make up the

solution ¥* far away from the reflecting zone. It is of particular in-
hS Y

*). The extended formulations (8..2) do not contain more information than the form
(7.5) and only account for the characteristics of the complex multiplication.
Capital subscripts R and I denote real and imaginary parts, respectively.
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terest to determine the reflection coefficients Ry corresponding to the
individual modes with wavenumber kY' Usually, these are calculated with
the help of an energy argument: Ry then is proportional to the averaged
total energy contained in the mode ky. As section 5.4 has revealed, any
attempt to draw conclusions concerning the energy content of TW-motion
is ambiguous when considerations are restricted to a barotropic formula-
tion. This is so, because the averaged velocity fiéld does not account
for the energy content due to vertical velocity variations and therefore

is always a {fower bound. Hence, we propose another pfocedure.

The measure of "strength" of the contributing modes is selected by scal-
ing the maximum value of the modulus of the stream function ‘1’? with the

maximum value ‘of that of the incident mode ‘gf. More precisely, we define

RY as 2N
max l (DRry + iD1y) Z Cay Py (n)
ne[B*, B7] a=L
Ry = . (8.14)

2N
maxl ani Py (n) l
nog=l

We have calculated the reflection coefficients Ry for a second and a

third ordef model. The former has already revealed remarkable results
which are demonstrated in Figure §.5. It shows Ry of the two possible”/
reflected modes as functions of the frequency. The reflected modes are

induced by the incident mode @ which has cgr #t ¢ towards s= 0.

When solving (8.13) two cases have to be considered. If g > gg there ex-
ist no modes which are periodic in space, i.e. Imk # 0 for all k. Con-
sequently we cannot define an incident mode as in (8.10). Setting y‘;=0,

(8.13) allows a non-trivial solution if
det [E(sg), - ¥y] = 0. (8.15)

On the other hand, when o < agp, \g‘f #0 and (8.13) is invertible provided

the determinant does not vanish.

Calculations have shown that there are indeed real frequencies ¢ > gy

satisfying (8.15). Consequently, there exists a discrete spectrum fon g >0g.
and a continuous spectaum for o < gg. The contour lines of the stream func--
tion (8.10) for different frequencies are also plotted in Figure §.5. Cor-

responding to the terminology used in Quantum Mechanics we call the

*) A4 possible reflected mode has cqr = 30/dk directed away from s = 0, i.e. towards
s =+% and Imk = O.
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waves which belong to the discrete spectrum bound states of TW's in the semi-
infinite channel whereas the waves “for o < gy are free states of the sy-
stem. This terminology is very appealing and obviously applies here well

as inspection of the stream functions in Figure 8.5 reveals.

The bound states must be identified with the type 2 waves (bay-modes)
found in the improved lake model in section 7.2. ‘Indeed, the frequencies
0 = 0,395 are the same and when ignoring in the rectangle the stream
function at the far end s =1 the mode structures are alike, see Figure 7.6.
We therefore conclude that the occurrence of the bay-mode in the rectan-
gular basins for o > gp is due to two trapped bound states of TW's in
either lake bays at s =0 and s = 1. The stream function of this mode con-
sists of 2N modes ky with Imky> 0 for s > so and is spatially .evanescent.
The longer a lake basin is, the weaker will be the coupling of the bound
modes in the respective bays. The two additional bay-modes shown in Figurte
7.6 at o = 0.297 and o = 0.263 are also originating from bay-trapped to-

pographic waves not shown in Figure 8.5

The fact that equation (2.22) has a discrete spectrum above O > Op consisting of bound
states resolves the seeming controversy formulated in section 7.1. In particular, in
elongated lakes with very steep transverse topography (q $ 10 for Northern Lake of Lugano
as determined by Bauerle, 1986) this new result is of importance. Let us estimate the
frequency of the quadratic Ball-mode of the elongated Northern Lake of Lugano. The ba-
sin is 17 km long and has an approximate width of 1.5 km. This gives an aspect ratio
of r = 1.5/17 = 0.088. Using (3.15) and (3.22) yields the estimate

o ~ 0.049, T =~ 350 h. (8.16)

Remember that the topography of the lake has a markedly steeper profile than the para-
bolic used in the Ball-model. Due to the conspicuous topography effect, (8.16) is cer-
tainly an overestimate for 0. Periods would therefore have to be expected to be even
longer. Measurements, however, indicate a distinct signal at around 74 h, clearly far
above the cut-off frequency Op for this basin. One possible new interpretation is thus
put forward, and it seems reasonable that the 74 h-~signal could be the trace of a bay-
Zrapped fopoghaphic wave of one of the bays at Melide, Lugano or Porlezza, see Figure
7.1. ‘Although, the bay-modes have been constructed for a 2:1 basin, these results still
apply for more elongated lakes. -For constant sQ only the topography parameters p and q
determine the frequency of the bay-mode. Decreasing p and increasing g lowers O con-
siderably. So, a bay-mode with 0 = 0.395, T = 42.8 h can easily be brought into accor-
dance with the observed 74 hours. A further argument supporting this interpretation is
the fact that spectral peaks of temperature time series of moorings at the Melide end
(see Figute 1.3) haVe this maximum at periods which are generally slightly larger than
74 h; alternatively, the corresponding peak for the Porlezza mooring is at a slightly
smaller period (compare Figutres 1.3 and 1.4. The difference could be interpreted as
being due to two independent bound modes that are generated by the different topogra-
phies at the two lake ends. The FE~results of Trdsch (1984) support this interpreta-
tion, see Figute 7.7. Mysak et al. (1985), however, also list limited facts which
conflict with this view. Giviné a final answer would require data which would uncover
the spatial structure much more clearly.

Starting from oo .and decreasing ¢ we observe that the wave pattern un-

dergoes considerable alterations which correspond to changes in the re-
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lative strength of the two reflected modes. More precisely, as R, de-
creases Ry increases. For o < 0.25 R, oOscillates weakly whilst gradual-
ly decreasing and Ry, 2 0.98. This can be verified by considering the as-
sociated stream functions. For 0.254 < ¢ < 0g the reflected wave mainly
consists of the o-mode. What evolves is a beat pattern at the same chan-
nel-side where the incident mode is located. The increase of R, mani-
fests itself as a growing <{eakage of wave activity into the opposite
channel side, because the e-mode has k = -kj. For 0.120 < ¢ < 0.254 Ry
is dominant, and this is clearly visible in the wave patterns. The dis-
persion relation has 30/3k > 0 for this reflected mode and consequently,
increasing wavelengths accompany decreasing frequencies. At o = 0.115 a
remarkable resonance is discovered: Two coinciding peaks give rise to a
local minimﬁm and maximum for R, and Ry, respectively. Looking at the
wave pattern suggests that this again is a bay-trapped mode. Contrary to
the trapped modes with o > 0y which are true bound states, this mode has
also a non-vanishing periodic contribution in s > sp. The pattern is,
however, a bay-mode or type-2 wave because the characteristic structure
is due to the modes with Im ky> 0 belonging to the second mode unit which
still has a complex branch for o) < g < dg (see inset).

The resonance ¢ = 0.115 coincides with an eigenfrequency in the closed
basin as indicated with A. The structure agrees well with that shown in
Figute 7.6. Below the resonance the component Re dominates R, again and

large-scale TW's are observed. There is a further resonance at ¢ =0.088.

For o < g; all modes have Imky = 0 in this second order model and no fur-
ther bay-modes can be expected. Instead of this, contributions of the
real branch belonging to the second mode unit are possible. F.igure §.6 dis-—
plays the reflection coefficients for the frequency interval [0.052,0; ].
All reflection coefficients change smoothly and, as expected, no reso-
nances occur. For 0.063 < 0 < 0y R, belonging to the second mode unit is

dominant (see inset for an explanation of the symbolic subscripts). For

--— Figure 8.5

Reflection coefficients and stream function patterns in sub~
domains of the frequency interval [0),00] of the two reflec-
ted modes e and o, respectively. The coefficient of the in-
cident mode B is scaled to 1 and both cgy and cpp are direc~
ted towards the reflecting shore. A indicate lake solutions
for ¢ > 0.11 corresponding to Figure 7.6, The inset explains
the position of the modes within the dispersion relation and
the parameters are N =2, r =1, q=2, ¢ = 0.05, n = 0,01,
sg= 1 (dashed line), M= 50 for o > 0.2 and M= 200 for o< 0.2.
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lower frequencies the influence of the second mode unit is comparatively
weak. Comparing Figure 8.5 and Figure 8.6 reveals, that close to the cri-
tical frequenciesvco and 0; energy is distributed among several modes,

whereas for other frequencies most of the reflected energy is contained
in the e-mode. This is the mode with the negative of the incident wave-

number.

8.4 Wave reflections and modal types

So far, we have studied the reflections of TW's, when the incident wave-
mode B belongs to the first mode unit and has cph #4 ¢y towards the re-
flecting zone. We also investigated the situation for an incident mode
with cpn +4 cgr . For this case, the graph of Figuwte 8.5, qualitativeély
looks the same except that the curves R, and R, are interchanged. The

position of the two conspicuous resonances is unchanged.

Figure 8.7 collects the results of importance. The incident mode with

Cph ¥t cgy has its wave crests at the opposite side of the channel. Ener-
gy is propagating towards sg whereas the phase propagates away from it.
These two cases distinguish two different types of reflection patterns,
type 1 and type 3. Type 1 has a large scale structure with increasing
wavelengths for decreasing o. Conversely, type 3 exhibits a small-scale
pattern which is intensified for decreasing frequeqcies. The'distinction
of these types and their individual properties agree with the classifi-
cation suggeﬁted in éection 7.2. There, we only were able to make the
distinction plausible by phenomenological arguments. We now have disco-
vered a physical explanation for the occurrence of bay-modes, Ball-modes
and channel modes in enclosed basins. Comparing Figute 8.7 with Figure 2.6

makes it clear:

(1) The type l-modes or Batf-modes originate from a sequence of reflec-
tions at the lake ends which are induced by an incident wave with
Cph 1t Cgr. For an appropriately selected frequency, i.e. the eigen-
frequency, the pattern is not evanescent in time and a Ball-mode

survives.

-—— Fiqure 8.6

Reflection coefficients and stream function patterns for
0.052 <o < 0; for the four reflected modes. The coefficient
Rpg of the incident mode is scaled to 1, The parameters are
as in Figure 8.5 and the inset explains the modes.



(ii)

(iii)
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The basin solutions classified as type 2 or bay-modes are due to
the conspicuous resonances observed in Figure §.5. As Figure §.7 de-
monstrates the structure in the bay is only weakly influenced by

the incident mode.

Finally, the channef modes or type 3-waves of Figure 7.6 can be
explained as the result of a sequence of reflections at the lake
ends which are ‘induced by a mode with ¢y ¥t ¢y . Contrary to the

Ball-modes, the spatial scale decreases with decreasing frequency.

These results justify and strengthen the statements which were made in

section 7.2. They provide a more precise and broader understanding of

TYPE 1 TYPE 2 TYPE 3

—_— e 60 [NV | —

@ "\')””JIO E
' 0 = 0.260 '
: @ ' “O”’\ O.\u

Q
n

0.255

;01 O @O @\‘:':. -

O\rf\ﬂo'\\,\“ Iu/x 0:\?: % I\/O‘ IO O O| \(

I")‘ I’\-\I dx“ | ‘j \“ |")' O

1 -IO»IO\)O\IO\J(

BL0AE0R0 0

0.251

T

0.207 m&OPO&”;OC.oaooouo 00070

R IREERIRT AT AT

=N
Wy PN
\\’1 a1 RS
)
l“ dog i
Ill/\/\“\l'\’l\ Uy 0

G =
_ /G \ _ B INCIDENT _ /G N\
SR\, 2} REFLECTED SN\




- 161 -

TW's in channels and lakes. It is now clear that the models to which
(some) exact solutions were presented in chapter 3 do not exhibit the
complete variability of TW's in basins but provide us only with Ball-mode
solutions. These often do not suffice for a reliable interpretation of
field measurements. As the model of Mysak et al. has shown, the ellipse
which could model the 74 h-signal had a far too large aspect ratio. This
discrepancy seems to be removed if the signal is interpreted as a bay-
trapped mode with a frequency that exceeds the cut-off frequency for the
particular basin.

On the other hand, what has been conjectured at the end of chapter 6 is
now made clear in a quantitative manner.The existence of three distinct-
ly different wave types is a natural consequence of the typical disper-
sion relatioh of topographic Rossby waves. The conspicuous eigenmodés in
the rectangular basin can be understood in terms of xeflections of TW's at
either shore-zone. Depending on the structure of the incident wave the
corresponding type is established. All parameter dependencies are expli-

cable with the help of this correspondence.

In elongated lakes the quantities determining the TW-features may, pér—
haps be listed as follows:

Firstly, the zransverse depth-profile fixes the frequency range, in which
solutions can be expected. We draw this conclusion from the conspicuous
topography dependence of the frequency illustrated in Figure 5.8 and Tables
3.2, 3.4, 3.6, 5.1, 7.1, 1.2, 7.4, 7.5. The larger topography gradients
for a fixed maximum depth are, the lower will be the frequencies. There-
fore, o is strongly influenced by h-1|Vh|. Secondly, the form of the fake
ends is of particular importance as far as the structure of the solution
is concerned. This determines whether a Ball-, bay- or channel-type wave
will occur. Thirdly, it should not be forgotten that TW's are wind-gene-
rated. Depending on the scalé of the exciting force the lake basin will
respond differently. Small-scale driving forces will preferably excite
bay-modes or channel-modes whereas large-scale wind forces may produce

Ball-modes.

-ag—— Figure 8.7

Reflection patterns induced by an incident wave with
cph t* cgr (type 1) and cph ¥+t cgr (type 3), respectively.
The mode at the resonance ¢ =0.115 constitutes type 2.
The parameters are as in Figure 8.5.
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9. Conclusions

9.1 A brief summary

This report provides the reader with a state~of-the-art of long periecdic
vorticity waves in channels and enclosed basins. Because a large number
of intermontane lakes and many other aquatic domains, e.g. fjords, estu-
aries, channels, exhibit an elongated and narrow shape, we studied here
the application of an economic numerical solution procedure: the Method
of Welghted Residuals, It is essentially a projection method and uses a
truncated shape function expansion of the mass transport stream func-
tion. With it, freely propagating topographic waves in straight channels
are investigated. This constitutes an important test in face of exact
solutions which have already been established. Acceptable convergence is
achieved for a low order of truncation. The generality of this approach
allows investigation of the effect of curvature on the dispersion rela-~
tion of TW's.

The knwoledge, which is acquired in straight and curved channels is then
emploved to investigate TW-~solutions in the simplest possible enclosed
domain. This is a straight channel with two vertical end walls having no
along-axis depnth variations. Such a domain has straight lines of constant
f/H (isobaths) which are not closed and inconvincingly models a natural
bathymetry. Eigenmodes have no similarity to any of the available exact
models. An important finding is the fact that isobaths must be closed and
smooth curves as they normally are in reality (on a f-plane). This neces-
sary condition was implemented in a basin with a parabolic transverse

and a sin? along-axis depth profile. The spectrum of such a rectangular
domain is surprisingly rich: it exhibites solutions with very different
spatial behaviour but comparable eigenfrequencies. Three types of eigen-
modes could be discerned: Firstly, modes with a few large scale vortices,
the Ball-modes, occurred; they are well known from existing exact models.
Secondly, the channel-mode exhibits a large number of small-scale vorti-
ces trapped along the long boundaries of the basin. Mathematically, this

distinction is not compelling; physically, however, it is helpful.

The new result, which at first sight is an insolved puzzle, is that the
spectrum of the TW-operator contains yet another, so far unreported, mode
tvpe. Whereas the previously mentioned eigenmodes show wave motion af-
fecting the entire basin, this type has wave activity only at the long

ends of the elongated basin. It is therefore called bay-mode. A further
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surprise is that at large frequencies, which exceed the natural bound

for Ball- and channel-modes, further bay-modes are found.

The study of TW's in a less restricted domain provides the key to the
understanding of these three wave types: The reflection of a wave in a
semi-infinite channel as it approaches from infinity and impinges on a
shore zone or bay. In the process of reflection the incident energy is
distributed among possible reflected modes with different wavelengths.
They form a reflection pattern which is characteristic of the incident
mode. Depending on the incident mode, i.e. whether it has a short or
long wavelength, a Ball~-type or channel-type mode evolves. The critical
wavelength (frequency) is given by the dispersion relation of TW's in
the straight infinite channel and is the length (frequency) of the wave
with non-nropagating energy. Further, at distinct frequencies the confi-
guration exhibits a resonant behaviour. A small excitation from infinity
causes pronounced wave activity in the shore zone. This wave motion re-
mains trapped at the channel end. Moreover, above the critical or cut-
off frequency non-trivial solutions are possible which decay exponenti-
ally towards infinity. These are true bound states of the system and
coincide with the bay-modes of the closed basin. The semi-infinite chan-
nel, therefore, discloses a spectrum consisting of a continuous and a
discrete part which join at the cut-off frequency of TW's in a straight,
infinite channel. This appealing analogy to results in Quantum Mechanics
was mentioned. The calculus of linear differential operators might be

capable to put these preliminary findings on a mathematical basis.

The existence of bay-trapped modes also has bearings on the interpreta-
tion of observations. The FE-sélutions of Lake of Lugano, for example,
which seemed to contradict the existing TW-solutions and related inter-
pretations turn out to be mast likely the bay-modes of this natural ba-
sin. This lake has a large cut-off period (Tg¢ >100h)} and TW-motion was

expected only with T >Tg. Bay-modes, however, can also have T <Tg.

In a further step, our spectral method was also extended to curved bathy-
metries. It can now easily be applied to basins of constant curvature
which have an arbitrary width, arbitrary transverse depth profile (e.g.

vower~-law) and an arbitrary thalweg depth.

Lastly, because the two-dimensional problem is reduced by the presented
technique to a system of ordinary differential equations, high-accuracy

integrators {Runge-Kutta, etc.,) can be used to advantage. It was this
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channel approach which left enough freedom for analytical insight and

basically brought the deeper physical understanding.

9.2 An outlook

A considerable number of questions could be answered, but still many

await clarification.

a) On the theonetical sid

The main open problem is the explicit proof of the existence of bay-trap-
ped modes in an exact model. We must be aware of the fact that this study
only presents‘appMOLUmie solutions. Strong arguments were given for the
reliability of this approach. Nevertheless, we are not dispensed of seek-
ing a convincing proof. A step towards this goal is perhaps the applica-
tion of Johnson's conformal mapping technigue by constructing solutions
which are exponentially evanescent towards infinity. This may only be
achieved by the superposition of several transverse modes of a particular

(unknown) frequency.

An alternative way, equally promising and more general, is to make use
of the comparatively simple form of the governing equation. The two-di-
mensional boundary value problem (2.24) is linear, homogeneous and regu-
lar provided the basin depth is positive in the domain and on its bound-

ary. The theory of linear differential operators may thus be applied.

More direct problems are:

Topographic wave modes in rectangular basins were only determined for a
few values of the topographic parameters q, €, n, p. It would in particu-
lar be important to investigate the quantitative influence of variations

of these parameters on the mode structure and eigenfrequencies.

The next step is then to study the forcing of topographic waves by the
wind. How are these forces-distributed among the different modes? It is
probable that neither the low-frequency nor the rigid-1id approximation
continue to hold in this case. Due to the presence of bay-modes the
coupling of vorticity waves with gravity waves is possible. Further, den-
sity variations of the water body must be taken into account; the govern-
ing equations of such a barotropic-baroclinic coupling in the case of

continuous stratification are given in Stocker & Hutter (1987b).
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It is hoped that this report may motivate data analysts to more criti-
cally interpret observational data. Attention must be focussed on vortex
motion in characteristic and partly isolated regions of lake basins in
order to discover independent bay-modes. First attempts towards this
goal are presented in Stocker & Hutter (1987c). But it also became clear
that measurements at hand often do not suffice in order to clearly dis-
cern particular TW-modes because important results concerning the spatial
structure of the modgs are not available. Further, the TW-response in a
natural basin may be ﬁartly hidden behind the more pronounced signals of
long and short periodic gravity waves. We gave, to some extent, some li-
mits and suggestions for the design of a mooring arrangement. With these,
the different TW-modes are likely to be detectable.
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