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PREFACE

Wave phenomena are among the distinctive features that can

be observed in the velocity and temperature records of in-
struments which are moored in the ocean or in lakes. The

majority of them manifests itself as barotropic or baro-
clinic gravity waves and, in enclosed basins; gives rise
to external or internal seiches, These waves possess short
subinertial periods. Long Deriodic processes can, in gen-

eral, be.attributed to the vorticity nature of the motion'
Existence of these waves is due to the rotation of the
earth and the variation of the bathymetry. In the ocean,

these waves are known primarify as shelf waves, in closed

basins they form the topographic waves and enjoy a parti-
cularly rich structure.

The aim of this study is to analyse this structure of to-
pographic waves in channels, semi-infinite channels and in
closed basj-ns having rectangular shore lines and trough-
like topography. It 1s shown that the topographic wave op-
erator Dossesses a very rich and dense spectrum with es-
sentially three types of modal structures; global, basin-
wide modes, small- scale modes which fill the entire basin
and localized bay modes. The finding of this characteriza-
ti-on must be regarded .as a significant step ahead in the
understanding of topographic waves. The observationalist,
or experimental physical limnologist will learn from it
how difficult it is lo identify from measured data indi-
vidual modes that may be excited by the wind forces.

Kolumban Hutter
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ABSTRACT

Topographic lraves owe their exlstence to the conserva-
tion of potential vorticity. Equations and approxlma-
tions describlng these processes are derived. An over-
vie\"i of existing exact solutions lllustrates the appli-
cabilj.ty and Ij$ltatlon of these models. An economic
numerical method rrrhich accounts for the characteristic
Dropertj.es of topographj-c waves and the geometry of the
domain is introduced in order to approxj-mately solve
the wav€ equation. Results in straight infinite chan-

nels demonstrate the quality of this method and moti-
vate extension towards application in closed and curved
domains. The class of solutions is much richer than has

been assumed fron the exact mod.els. Three types of ei-
genmodes can be found: Iarge-scaIe, smaIl-scale and bay-
trapped modes. The investigatlon of wave reflections at
a shore-zone gj-ves a natural explanation of these dif-
ferent types. Bay-trapped modes are eigenmodes or res-
onances of' the semi-open domain such as a bay or estu-
ary. This new result enables a more appropriate inter-
pretation of long-periodic signals in 1akes, and direc-
tions of further investJ-gati.ons are outlined.
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ZUSAMMENTASSUNG

Topographische Wel1en existieren aufgrund. der Erhaltung
der potentiellen Vortlcit:/. Die Gleichungen und Nähe-
rungen, welche diese Be\"regungen beschreiben, werden her-
geleitet. Ein Ueberblick über die bekannten exakten Lö-
sungen zelgt die Anrrrendbarkelt und Grenzen dieser Mo-
delle auf. Eine ökonomlsche numerische Methode wird be-
schrieben: diese trägt den charakteristischen Elgen-
schaften topographischer Wellen und der ceometrie des
Gebie{s Rechnung. Damit witd die Wellengleichung nähe-
rungsweise gelöst. Resultate in geraden, unendlich lan*
gen KanäIen zei.gen die.,...oualität dieser Methode und mo-
tivieren ein€ erweiterte Anr./endung auf geschlossene und
gekrümmte cebiete. Die Klasse der Lösungen ist bedeu-
tend vietrfäILiger als aus der bisherigen Kenntnis ange-
nommen \"rerden könnte. Drei Typen von Eigenmoden konnten
gefunden rrerden: gross- und kleinskalige Moden und soI-
che, die auf eine Bucht beschränkt sind. Die Untersu-
chung von V'lellenreflektionen an einer Uferzone lieferte
elne zwanglose Erklärung dieser drei beschriebenen Ty-
pen. Dabei sind Moden, die auf eine Bucht beschränkt
bleiben, Eigenschwingungen bzw. Resonanzen dieser halb-
offenen Gebiete. Dieses neue Resul-tat ermöglicht eine
zutreffendere Int.erpretation langperiodlscher Signale
in Seen, und die Richtung weiterer Forschungen ist an-
gedeutet.
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RESUME

Les ondes topographiques existent sur Ia base de la con-
servatj-on du vortex barotropique potentiel. Les 6qua-
tions et approiimations qui d6crivent ces mouvements
sont d6veloppees, Une vue d'ensemble des solutions ex-
actes connues montre les possibilit6s d' application
ainsi que.les lj-mites d.e ces modäIes, Une m6thode num€-

rigue Economlque est d6crite; elle correspond aux par-
ticularit6s caract6ristiques des ondes topographiques
ainsi qurä Ia g6om6trie de Ia r6gion. C'est ainsi que

l'6quation de 1'onde est rösoLue de maniöre approch6e.
Les r6sultats obtenus poux des canaux rectilignes infi-
niment long rtrontrent la qualit€ de cette n6thode et
nous encourage ä lrappliquer sur des rögions courbes et
ferm6es. La classe des solutions 6tait nettement pl-us

diversifiee guradmis jusqu'ä pr6sent. Trois types de

modes propres ont pu 6tre trouv6: des modes ä grandes

et petites 6chelles ainsj- que des modes restrej.nts ä

cles baies. t'6tude de la reflecion dronde sur une rive
a donn6 une explication claire de ces trois types. Des

modes restreints ä des baies sont des osclllatlons resp.
resonnances de ces regions semi-ouvertes. Ce nouveau

16sultat rend possJ.ble Irinterpr6tation de signaux ä

longues p€riodes dans des Iacs. La direction pour des

nouvelles recherches est indiguee,

[traduction par Dr. M, Funk]



-9-

1, Introduction

waves in rrraters, such as the ocean, lakes, channels, etc., arise in a

varlety of forns and types and have various physical reasons of their
existence. There are basically tLoo qualfüu which govern r.rave motion in
open r.raters. Firstly, water exhibits certain phqücilL pnopettLLe.a, ano thus
gi-ves rise to mechanical, chernical and electromagnetic response mecha-

nj-sms; secondJ-y the water is confj-ned to the geometry of the container
rdhere 1t resides. Thus wave motions also ref lect geome,tnic pnc:putie.t. For
instance, acoustlc waves are due to the physical property of compressi-
bility and are hardly influenced or modified by the geometric shape of
the basin.

I'laves are generated by external forces. These forces are complex in their
spatlal and temporal structure and thus impose a large spect.rum of the
typical nhysical scales, The larger the "scale" of the driving mechanism

of the wave is, the lower will, in general, be its frequency. Whereas a

typical acoustic wave has a frequency of 102 s-1, external gravity waves

have about 10-3 s-r and lnternal topographic waves in a lake as small as

t0-5 s-]. This shows that rlraves in waters occupy a broad frequency spec-
trum rrrhich spans over many log cycles. Figune l.l provides a first survey
of these various r^/aves.

One property of waves in onen waters is that to any such r.rave on a rot-
ating frane there exists a counterpart in an inertial frame. This pro-
perty characterj.zes a particular claAt of waves; those belonging to it
are called (Ltat cLdÄ6 unvQÄ.

Quite differently, tlc)taLLc)na,[. LtnveÄ owe their being to the existence of
the rotation of the carrier medium; in the linit of zero rotation they
cease to exist. Waves having this property are called tecond claÄ6 unve.6.

These are long-periodic wave phenomena with periods of the order of days

to weeks, once excited they can persist a considerable amount of time
and influence the wave field of a water body. In the context of geophy-

sical fluid dynamics second class waves occur in vari.ous forms:

Planetary waves are due to the north-south variation of the CorioLis
parameter, a measure of the loeal angular velocity of the Earth's rota-
tion. A variable basin depth plays an analogous role, though on a smal-
Ier scale, and gives rise to topographic waves (referred to as Tw here-
after). Topographlc !,raves are structurally more complex than planetary
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Variety of waves occurring in waters $rith their individual
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lj-sted be1ow. "Seiche" is the name of a global lake sur-
face osciLlation due to gravity.

waves, because bathymetric variations can arise in a1I directions and

with greater variability.

This study concentrates on the investigation of the physics of topogra-
phic waves. Such long-periodic motions have first attracted interest at
the begining of this'century. Poincare (1910) pointed out the existence
of these waves in a rotating circular basin with parabolic depth pro-
file, and Lamb (1932) presented the solution for this configuration. It
was only recently, that Saylor et aI. (I980) interpreted long-periodic
oscj-Ilations observed in Lake Michigan by TW's in a circular basin with
a power-law bottom profile (see section 3.2). The observatj.ons in Lake

Michigan disclose a distinct eigenperiod of about 100 hours. Figunel.2

shows the bathymetry of the lake (a) and one exarnple of the spectra of
kinetic energy density recorded at three stations (b) . These so-called
rotary spectra distinguish bet\"/een anti-clockrdise and clockwise rotat-
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ing vector components. rt can be recognized that at stations 10 and 1r
the current vector predominantry rotates anti-cloekwise during one pe-
riod; the opoosi.te is true for station 9. This is characteristic of a
topographic wave mode.

Sirnilar studles were performed in Lake Ontario (Csanady, 1g76,) , in the
Baltic Sea (Simons, 7978\ and the Gulf of Bothnla (Kielman & Simons,
1984), For a detailed review the reader is referred to Stocker & Hutter
(1987b). Long-periodic signals lvere al-so reported. in smarler, i.ntermon-
tane lakes in switzerland. Mysak et al. (1985) discuss wave motions with
a period of about 74 hours. Most of the moori-ng sites 1n the swi.ss take
of Lugano record time series with a distinct spectral peak in the re-
gion of 50 to 95 h, see Fi4u.te 1,3. Equa1ly, Lake of Zurich exhibited
long periodic rniave motion of about I10 h, see. Hutter & Vischer {l-9g6)
and Eorn et aL (1986).

Mysak (1985), Mysak et aI. (1985) and a revised. form by Johnson (1987a)
present analytic solutions of TW's in an elliptic basin which can, to
some extent, explain the observed. periods that arouse in Lake of Lugano.
Both models, howerrer, suffer from substantial- sreaknesses. To obatin the
fundamental period of 74 h, the nodel of Mysak predicts a basin with a

b,L

!
x
H

s
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(a/2r) / cycles per hour
Figure I.3
Variance spectra of the mean temperature
tions at different mooring sites in Lake
lFrom Mysak et al.. 1985]
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width to length ratio of 2:3 instead of 1:10. .fohnson, on the other
hand, shows that a 74h-ej-genmode in a elllptlc basin with realistic
bathynetry can not be fund.amental but rather consists of many small-
scale vortices \"rlthln the entire basin, ThIs mode has a large azj_muthal
wavenumber (about 20 nodes along the basin axls) and lt ls questionable
whether such a complicated rnode represents h'hat was observed ln Lake of
Lugano.

A third, disturbing controversy $ras brought by numerical solutlons of
the Tw-equation. This eguation was numerically solved for Lake of Lugano
using a finite element code. The findings of Trösch (1984) were compl-e-
tely unexpected and not comgatible with what is known of topographic
waves from analytic studies. In the period range of 65 h to 100 h a

Iarge number o'f f'f solutions is found. ?hey lack the resemblance of any

fundamental character: Some mod.es conslst of many snall-scale vortices
which are distributed over the whole domairt aki.n to those of Johnson.

T2=81h =91h

t=0

Figure 1,4
Three bay-trapped modes of longperiodic
waves in Lake of Lugano obtained by the
flnite element technique.
IFrom Trösch (1984) with alterations]

Tr= 69h
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I{ore interesting and puzzllng is the occurrence of modes which are l_n-

dependently trapped to one of the bays. Thls is illustrated fn Fi4wrtet.4.

Such modes are new and were not known fron all the existl.ng exact mo-
dels. Moreover, their physicaL origln is not at all clear and obvious.

The solution of the. lW-problem,..apgarentLy is subtle and the anserer to
the above fundamental guestions can not be expected from a mere applica-
tion of an elaborate and sophlsticated nurneri.cal apparatus. These con-
troversj.es call for a solution procedure which is more direct and expli-
citly accounts for (i) the physics of topographic waves and (ii) the
particular bath].metry of the l-ake basins. Vllth lt, we hope to explain
and llft the aforementloned seemlng controversles and to provide an

extension of the knowledge of Tw-notion in enclosed and open domalns.

In 9@p{%_9 we derive the governj-ng equations of Tw-notion and. discuss
the various approximations. Equations of a two-Iayer model accounting
for barocllnic effects are also given.

9b4g!*_! revie!,rs existing exact models hrhich can solve the Tw-problem
in domains r,rith different bathlmetrles, Characteristic physical proper-
ties of Twrs are discussed.

Ift 9@et%-! a numerical proced.ure, the !ÄeXhod o{ We-Lghtet ReAUua.tÄ, is in-
troduced. It is an approximate solution technlque used in a form which
preserves the physical properties of Tv{-motion and maintains their trans-
parency.

The method is apolied and tested for straight, infinite channels in
9@E*_,, and the effect of curvature ts investigated in glyet*_!..

9@W%_'!_ deals with solutions of the TW-problem in rectangular and cur-
ved basins. Three distinct mode tvpes are uncovered, and various proper-
ties of these are examined.

In gLSp{%_t the refl-ectlon of TW's lnduced by a shore zone are studied,
and it is demonstrated that this approach Drovides a physlcally consi-
stent explanation of the .different mode types.

The study concludes with a surunary and an outline of further possible
work.
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2. Governlng equations

In this chapler r^re introduce the equatlons and approxlmatLons from which
the Tw-equation and assoeiated boundary condltions are derlved. No com-
pleteness is intended.

2.1 Equatlons of adlabatic fluld flow

Fundamental to the description of the motlon of $rater are the balance
laws of mass, momentum and energy that can be appJ-J.ed to a fluld body.
These three fundamentaL laws and. the equaLion of state lead to the equa-
itons, quoting Peälosky (1982),

au r

5t * tgsrad) u+ 2O.xg = S-8 * (nxr)- f, sradpr

N{*ai'(pu) = o,

3t.,*sracr)p=0,
p = 9(P,T)r

{2.1)

in which the chemical and viscous aspects of the problem have been ig-
nored. The system (2.1) describes adiabalic fluid*l motion in a system
subject to steady rotationi in other words, (2.1) contains all aspects
of geophysical fluid dynamics. Mathematically, (2.1) constitute five non-
Iinear partial differential eguations and one algebraic equation, the
equatlon of state. Complemented by appropriate boundary conditions these
six eguations determine the six unknown fieLds

g (4' t) velocity field,
P (I' t) denslty field,
n (1, t1 pressure field,
T(x. t) tenperature fieId,

which arö aII functions of space and time. The glven fields are

Q (l) angular veloc!ty**J
g(tl gravity field.

A process is ca77ed. adiabatict if ress and heax d.lffusion are ignored- Thus, if also
tadiative and shear heaXing are neglecXed, tie Da]üce of internal energy inpTies
de/dt = 0, whiclt ce be expressed as dp/dt = 0.

On the f-, or $-plae (a pTane tangentiaT to the gTobe) with the x-axis pointing
xowards Easx, g-axis pointing xowards North and the z-axis pointing jn täe radjaj
direction fl äas the components I = fO,TtZ, f/2 ) whete

r = zlnl sinQ, i ='e [!l cos 6.

0 js the latitude ilgle and f the corioTis pataneter. tte assme here nid latitude
positions on the Northern henisphere for vhic!1 case Q > o anit f * 70-4 s-7. we

shalT also assune f to.be constüt (g 
= At/Ag - 0, no g-effect).
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Equations (2.I) are completed by boundary and initial condltlons. The
boundary conditions are:

(i).at the lake bottom Fg = H(x)+z = 0, a tangency condition of the
flow and the prescriptlon of the heat flow through the bottom
(usually assumed to be zer'o):

(2.2'

(ii) at the free surface Fs = 6(Irt) - z = Q t a kLnetnatic condition, the
prescription of .the atmospheric stresses !$b and the prescription
of the surface temperature:

rs(T.t) = 0. (2.3)

ln (2.21 and (2.3) ! is the unit normal vector, g is the stress tensor
in the fluid and !3*, ts are known functions of position. The boundary
conditions represent constraints on the motion, in that they select for
instance eigen(ne4uenci of seiches and ,'quantize,, the other$/ise free
waves j-n cLosed basins. Moreover, equations (2.1)-(2.3) pertain to a

broad spectrum of wave motion (external and internal waves): gravity
waves or sel-ches, Kelvin rraves, Poincare vraves, shelf waves, topographic
r"raves, etc. Not only rrrater Iltotion on the Earth but equally atmospheric
motion can be explained. Among these are buoyancy eraves, Föhn waves,
frontal notlons, Rossby waves, 

.etc.

Parallel $rith the generality of the above equatj_ons goes the difficulty
to solve them. A general soluf,ion, which would embrace all aspects of
fluld notion in a given confj.guratlon (e.g. channel, lake basin, atmo-
sphere, etc,) ls not yet found and is not srorth searehing for. The aI-
ternative is to introduce more or less reasonable neglectlons and ap-
proximatj-ons which (1) simplify the system (2.1)-(2.3) (1i) filter out
all those effects which are not of concern but (iii) retain the charac-
teristics of the notlon of j.nterest. This approximation procedure has
cast llght on various different domalns of the spectrum. These often lie
apart and forn distinct regimes with distinct behaviors. Connections to
oveilapping mechanisms can sometimes be obtained by adopting perturba-
tion analyses.

u. grad Fs = 0, I- I at Fp(x) = 0,
gradT ' grad Fs = 0, J

, dF"EÜ=0, 
Ig.l(I,t) = !3t' (I,t), f 

ac

T(x,t) = Ts(x't), 
J
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2.2 Vortlcity, potential vorticity, topographic vraves

rn order to derive the governing eguatton of Twrs consider the sonserva-
tion of a guantity carled poten*;.ilL votttic,i'tq. r,et us d.emonstlate here by
means of a simple model that the equation of topographl-c waves emerges
essentlal-ly from the conservatj-on of angulo.,L momentLür, In a second step,
by deriving the evolution equation of potential vorticity, this state-
ment wiII be put into a more rigorous setting.

As a preparation to the rnodel_ we need the definition of the (relative)
vonLLcLtg u = eurl u of the velocity field u. Recall that for a rigid
rotatlon with anguJ.ar velocity OR this vorticity is 2 !R. Hence, a.rigid
rotation wlth angular velocity SR rerative to the f-plane rotating $/ith
O has an absolute angular velocity 8A = eR+g and an absolute vorticity
$rhi.ch is t\,iice thls value,

Consider the simple model sketch-
ed Ln FLguLe 2.1. Isolate a watex
column, which is assumed to be a
rigid cylinder rotating about its
vertical axis, The angular velo-
cities in the t\^ro respectlve po-
sitions are Q1 and Q2. The angu-
lar veloclty, r^rhich column I wiII
take upon transportatlon to posi-
tion 2 can be calculated when the
csnservation laws of mass and an-
gular momentum are applied.

Figure 2. I
A mechanical analogy of the mecha-
nism of the topographic wave motion.

(2 .4)

ylelds

Balance of mass in the columns requires

n/(pr) = r? HL = 13 uz

and conservatlon of angular momentum about the vertical

t^,?.ar=1'"13a2.
Equations (2.4) and (2.5) are satj.sfled provided the quantity O/H
lowing the fluid tnotion remains constant:

(2.s)

foI -

(2.51O/H = constant.

Because the vertical component of the absorute vorticity of a rigid body
motion is twice Lhe total angular veLocity, equation (2.6), on the ro-
tating Earth, is tantamount to the statement

(u"+f) /H = constant, (2.7\
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r{here ürz is the vertical component of relative vorticity and f the Co-
riolis parameter. This quantity must therefore be conserved when one
follows the fluid motion, lmplying that (2.7) takes.the form

whlch is the conservation law of banotnopic potenLld!. vozLtüfu. The opera-
tor al/dt is the convective derivative operator

da
dt = ät + ugrad,

in which u is the fluid velocity,

To derive (2.8) more rigorousLy we form the curl of the momentun egua-
tion (2.I)f. After fairly routine transformations (see e.g. Hutter, 1984a,
p. 25) this yields

ftr$r = o,

do-
ff = etua g'9" - g" dlv u +

9" = g+2Q = curlu+2f1.

(2.8)

(2.91

(2.10)

(2.12)

gradP x gradp
p2

where

Accordingly, the material rate of change of the ahtoLute voa-ticltq au ls
made up of the three terms on the right hand side of (2.9). The last
term j.s the production of vorticity due to the fact that denslty gradi.-
ents and pressure gradients are not parallel-; this is vorticity produc-
tion by baroclinicity. The first and second term on the right describe
the production of vorticity due to vortex titting and vortex.stretching
(see Pedlosky, 1982),

More useful than the concept of vorticity, in the present context, is
the coniept ot potenLi-ot vontici,tg, which was introduced by ErteL tLg42).
In the presentation below, we follow essentlally pedlosky (1992).

To lntroduce the potential vorticity, replace in (2.9) divu by -ö/p to
wrlte it ln the form

(2.1r)

Consj.der a scalar quantity I which satisfLes the balance stätement

dtr
at = vl'

where p1 may incorporate flux, supply and production terms. Let gradtr
be the gradient field of tr and form the inner product of l2,II) with
gradl. This yields

d ,$ar 1 gradp x gradp
srad l ' aE 

(ä) = (f sraa g'Pu) 'erad l + n'uu r' ffi .

d,€a, I sradP x gradp
drr-t/ = 7eraag.g"* -----;J-.
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If one adds the identity

+ * (qrad tr) = f; .eraa ($) - e'.a I '(srad g. +)
and uses (2.12) these tvro equatlons conbine to yield

d,9a.gradl. p..gradvtr gradp x gradp
dr\____p_, = -__n_ f lrraq^ _____;3_.

is called |.}j,e potenLLol voa*LcÄq. It follows that if

(i) ). j-s conserved for each fluid particle '.e.r ttr= 0, or ÜÄ =constant,
and

(ii) the fluid is barotropic' gradp x gradp= 0 or I can be considered a

function of p and/or p only [eradl = (äI/3p) qradp + (afl?p) sradp],

then the potential vortlcity for each particle remalns constant. Compar-

irg (2.13), (2.14) with (2.8) it is novr plausible that by appropriately
selecting )., equation (2.13) will generate the special case (2.8).

Consider the equations defining the top and bottom boundaries, Fs 
=

e(I,t) -z = const. and Fs = H(x)+z =const., relatlons which must be

valid for all times. Hence, Flr Fgr E's +FB and all product combinations
of these are candidates for l, which make the potential vorticity a con-

f o+20 --l

ü = =-o-'n'"4

served quantity. In particular
FB. z+HA = F".F" = E-H

is conserved along particle paths. Thus

g+2! _,2+H.rs = ---i- . qrao rZ-;8,

rs = (e +20).sra.r,li*,.

r o! '. = g#, for f,.< 1,

The quantity

fs=
6+H

satisfy the evotrution equations

(2.r3)

(2.14)

( 2. 1s)

(2.L7)

( 2.16)

is also conserved. In a barotropic process where p is constant (2.16) is
replaced by the botottwpie potenti-oX votr-tLci.t4

In the shallow r,rater.approximation lrhere the horlzontal gradlents of H

and q are small quantitiös the dominant component of gradl in (2.17) is
the z-component. Thus

w2+f
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d,02+f. ^ d .uz+f.
dr(-z*Hl=0, or dt( H )=0,

The last equation agress $rith (2.8).

for ! .. 1.

To derive the evoruti-on equation for Twts from (2.18) consider the mass
baLance equation*,1

ff.0'(Hs)=0,
in whlch V is the two-dimenslonal, or horizontal gradient operator.
Henceforth thls notatlon will be used throughout, i.e. grad, div, curl
are three-äimensionar, whereas v, v. and vx are used in t$ro dimensions.

When the ,LLgid-Ud atawrption is mad.e, the flrst tern in (2.19) is lgnored.
Thus, introducing the mass transport stream function ü according to

'äüäü
aY = -H"' 5; = Ht'

the contlnulty eguation (2.19) under the rigid 1id assumption Ls satls-
fied.

fn terms of {,.the vertical component of the relative vorticity reads
äväu-16z= 5;- äy = v.ivV.

In a t$/o-dimensional barotroplc model (2,18)2 then becomes

* #'.,#,- * # *,*, .+ # grf;r = o.

(2.18)

( 2.19)

(2.20',)

(2.2r1

Here, non-rinear terms have been ignored and f and It have been assumed
to be tine-lndependent. Equation (2.2L1 can be $rritten ln the compact
vector form

(2.22\

where 2 is a unj.t vector in the positlve z-directlon. Because of 1ts
importance we list once more the assumptlons on which equatlon (2.22) is
based. They are:

(i) Processes must be adiäbatic and
(il) barotropj.c,
(iii) the hydrostatic pressure assumption,
(iv) the shallow $rater assumption and
(v) the.rigld-Ild assumption must hold.

*) mis equaxion can be obxained fron the continuitg equation divu-o bg inxegratingit
fron z = -H to z = 6 and assuning tiat u does noX varg with z. ?äjs nust strjct-
lg be so when (i) the hgdEösxati" ptur"urä assunption is invoked. üd (ii) processes
ate barotrcpic.

Et.,+, + z.(vrp,.vr*rl =!
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variants of (2.22) ' vrhen some of these conditions are relaxed, wlir be
discussed below.

The boundary condltion that must be lmposed is the nn-(tttx ctndil,inn
through the shore of the basin. Thls can be.expressed as äü,/äs=0, where
s is the arc length along the shore. Thus

r-
. ü = constant, along the shore (2.231| '- ----- - |

is the requested boundary conditlon.

In simply connected dbmai.ns, or d.omains with one interior j.sIand, the
constant ln (2.23) 1s irrelevant and equatlons (2.22), (2.23) 63y 56
written as

l"o._Irt,t,l = f,nfv:+r[t,*t = o, i, o, I

'L_ V=0, on äO, I
(2.24)

where 0 is a tvro-dimensional Clomain and ä? its boundary, while

E r,r1 = v. (#) ,

Jr,r,,f I = # &,*,- # *,!",
and (2.25')

are operators. E[.] is an elliptic and J[.,.] the Jacobian operator.

we now prove the following statement: If J[., .] is ldenticall.y zero,
(2.24) does not admit wave-like solutions. Indeed hrlth J [., .] = 0 , we
may set 

ü = [exp(ir,rt)
and then obtain from. (2.24)

etül=0, Ln0,
t = 0' on 30.

(2.26',)

According to the maximum principle (protter & welnberget, !967, p. 6f)
any non-constant fr. that obeys (2.26) must assume its maximum and mini-
mum on ä0 which are both zero.'Hence (2.26) admits only the solution
ü=o in0.
The requirenent Jt., .l t' 0 implies that iin a tLota.tLng dis.rne one of the
fo1lo$ring cases is satisfied:

- The case Vf I 0, VH.= 0 leads Xo plane,tltul Roa$q,rnve.t, They are signi-
ficant in global atmospheric and ocean wave dynamlcs.

- The case f * O, Vf = 0 but VH I 0 distingulshes topognapluLcunvet.

In this case the basin must be distant from the equator (f I 0) and
its North-South extent L ought tobe snall enough that ßL =(Af/ay)f,
<< f. This requires L S 500 kn.
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when f = 0, vf I 0 but vH = 0 wave-rike solutions are ca11ed equatonia,t
pltnefü4 Ro66bq unvu,

The case f I 0, Vtf 0, VE I 0 characterlzes pltnnltag tnpogaoqtvle Rottbg unvu,
They arise in oceans dlstant from the equator and describe large, scale
dynanical events.

Finally, when f= 0, but, VflO, VHIO one litnlts attentlon to regions
cl.se to the equator. These. waves may be called equaton"Lal pltnptoaq to-
pgnapluLe Roatbg wavu.

Stea.dq tolu.tictnr of the TW-equation ( 2 . 24 )

FJtt'fJ = 0' ln

V = 0, on At.
Any solution ot <Z.Ztl ts a field of mass
tangential to the isotrophes, i.e. 1lnes

are described by

0,
(2.271-

transport currents which is
f/H = constant.

Indeed, the Jacobiän operator can be replaced by

vrlxv(f,)= o,

vrhich means that both gradients are parallel. Since Vü and V(f/H) re-
present the orthogonar trajectories of the respective contour 1lnes,
the current vectors (orthogonal to Vp) are para1le1 to the isotrophes
(orthogonal to V (f,/H)).

This ana].ysis arso provides the basic understanding of the restoring force
mechanisn of vorticj"ty lraves. Whenever t(I,t) is such that VV yletds a
value Jl,\r, t/H| * 0, in other word.s, whenever the mass transport stream
lines are not pararrer to the contour Ilnes f/H = constant, the operator
äEtül/at of the wave equation (2.24) acts to restore thls parallelicity.
This is r4rhy vorticlty !,raves terid to follow the lsotrophes.

A last and potentlally usefur iroperty of the Tw-equatron (2.24) is ob-
tained, srhen the equations are made dimensionress. Accordingly, ret Lg
and Ho be typicar rength and depth scales and to a characterlstic value
for the mass transport stream function. rntroduclng the transformations

. ü - tO Ü', (x,y,H) = (LO x', tOYt, HOht), t = f-l t',

lt is straightforward to demonstrate that (2.24) arso holds for the di-
nensionless variables as follows:

ItT "'[p'] + J'[r!,, 1/h,] = o, in or

ü' = 0, on 301
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Because this boundary varue problen does not contain any scare dependent
terms, i.e. the lengths L9 and Hq do not appear, we conelud.e that solu_
tions to the Tw-equation must exhlbit a acoLe. invatLanee: periods and wave-
forms of the mass transport stream function are the same for arl geomet-
ricarly similar basin proflles, .üutupec,LLve o( thoin 6ize. lhe same invari-
ance also holds for velocitles if these are scaled accordinq to Vo =
L6 H9 Ug, lrhere Uo is the velocity scale. However, in tbe indivldual case
the valldity of the approximatrons 1n derivlng (2.24) need be checked.

The scare invariance of the Tw-equation is the resurt of the imposltion
of the rigid-lid assumption. This can be seen as follows: consider the
shallow waler equations

AZ

#*v.(Hg)=0,

P* r !xu +svq = o,dt

and eriminate u to deduce the singre equation for the surface elevation

v.(Hverj +f Jlrr,,t - + | (t = o, (2.28',)

The first tvro terms represent the Tw-operator for the surface elevation,
the last term on the left is due to the d.eformation of the free surface.
Ov/ing to the deflnition of L = A2/At2+ f2, (2.2g) is a third order
partiar differential.€quation in time which admits three srave-type so-
l-utl-ons. when f = 0 or J = 0 the degree of the equation is reduced; in'
this case the Tw-solution Ls eliminated and the remainlng solutions re-
present gravity waves. Furthermore, in the 1ow-frequency approximation,
L = f2, the equation becomes flrst order tn time and only the Tw-solu-
tron survives.

writing (2.28) in dimensionress form as demonstrated above we obtain

v.(hvqt) + ,Jlh, rf - (12 t6t= 0 (2.2e)

where now aL1 variables and operators are dimenslonless, R2 = f2,/(SHo)
is the external Rossby radius, L and H9 are typtcal horlzontal and ver-
tical length scales*,1. The flrst t$ro terms on the lhs of (2.2g) are

*) strictTg speaking, H6 shouTd be the naxinm depth relative to the deforned equi-
Tibriun surface of the rotating bod.g. wixh tlze eond.ition of voTune ptesetvation
of tie water bodg, L ed. HO are t})en related. For a pataboloid of latus tectun
L üd depth DO it nag be shawn that HO = (7-t2L/2g)DO, rlhete Dg is ror täe
rotation independ.ent scaTe depth. this tecoqnition gieTds aTtetations in the de-
finition of tie Rossöy radius ad the ftequenc| relatjon (3.9) below, see iltjles
& Batl ( 1963 ).
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scale invariant, but obviousLy,the last terms is not, because

t2 t c2,

ä = (ü) (jf),
of lthlch the second factor is size dependent. It foLlo\^rs that the scale
lndependence of the Tw-equation emerges because the Rossby radius is
large; the low-frequency assumption aLone as sometimes claimed does not
suffice.

2.3 Barocllnic coupling - the tlro-lal'er rnoqe!

et P_l*9s,*-.!&.

vertical temperature profiles in stratified lakes can be subillvided
rö1ignly into three parts (fron top to bottom):

Epi,LinwLon: Iayer with an average surface temperature of about 18oC and

several meters depth,

Me.taLinwLon: layer containing the thermocline and experienclng strong tem-
.perature gradients,

Hqpoli-nwlon: layer with a lovrer. temperature of about 6oC and several tens
of melers depth.

10 15 200C

This typical slratificatlon is nainly
found during surnmer periods, erhen the
surface layer is heated by solar ir-
radiation. In a flrst approximatlon
this situation is simpllffed by intro-
ducing a tbro-layer system of which
the interface represents the position
of the thermocline lF<Aune 2.21. Subse-
quently, the depth of the upper layer
will be assumed much smaller than
that of the lower layer.

EXTRAPO L ATION +:|.,
T=18oC

-+
T=6"9

Figure 2.2
Upper and lower bound temperature profiles as measured
in Lake of Zurich during August/September 1978. The
dotled lines are extrapolatlons. AIso shown are the t!,ro
layer approximatLons wlttr density discontinuity atr12 m
depth and upper and lower layer temperatures 18oC and
5oC, respectively. [Fron Hutter, 1984a]

12m

-!-p -
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Mot.ions occur in both layers and are subject to a coupllng by the ther-
necline. As we shal1 show lateron, this couplLng mechanism ls weak in
the sense that lt is rnalnly one-vray, i.e. the motion of the thermocline
is drlven by the balot.ropic transport. Tf the veloctty flelds ln the t\,ro

layers are unidlrectiönat the motlon is barotropic, if they are ln oppo-
site directlons it is baroclini.c.

The conflguration of the lake and the notatLon is summarized in Figne 2.3.

ImPortant in the depicted geometry are the vertical slde walls that ex-
tend beyond the thermocllne well lnto the hypollmnion

(,

(2

Side view of a cross section of the two-layer lake in
j.ts natural coordinate system (x,y,zl. Upper and lower
Iayer variables are denoted by an index J-or2, respec-
tively., The lake is within a rotating system of spati-
ally conscant angular,velocity V2 f.

Lake topography vari.es in space only in the lorder 1ayer, i.e. the uPper

layer is confined ty two vertical side $ralls, which must exceed the depth
of the thermocline, so H(x) > D:. for all x. We accept the värying of the
side walls $rith x because of analytical sinpliclty.

bt !go_:kUy_gsg!19ry

Basic idea in obtaining a description of the physlcal behavior of our
system is to formulate equations which describe conservatLon of mass, mo-

mentum and enerqy for the individual layers. Thernodynamlc effects wiIl.

v

Figure 2.3

H(x,y)
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be neglected in thls study. The evolving nonllnear system is linearized
by the assumption of small Rossby numbers. Furthermore, surface eleva-
tions 6 are thought to be small in comparlson to the depth of the upper
layer. Turbulence i'rill be lgnored but wind stress, distrlbuted over the
thin upper Iayer, and acting as a driving force will be consj.dered. Under
these approximations, the equations of motion ln components of a Carte-
sian system take the form (Mysak et a1., L985)

ura - fv,
vtt + ful

urr- fv,
v2r+ fu2

Dt (ulx + vty) = 12a' (Lx t

-9 trtx + txl(p1DI),

i 6rv * rY/$1D1) '

-9 6r* - g'(82*- 6il,
-g 6rv 9'le2"- ey"l ,

(2.30)

(2.31)

(H2u2)x + lHzvzly = -12x,

where gr is the reduced gravlty gr = g(p2-pt)/02. Everything that follows
can be dlrectly derived from equations (2.30)-(2.31).

cl Appnox,ina-LLotu

We vrill now transform the above equatlons and introduce further approxi-
mations r4'hich will make it apparent why the conservation 1aw of potential
vortlcity is still a reasonable approximatlon for vorticity waves when

barotropic-baroclinic coupling is present.

d) RiSid-lid approximation

It is known that to every wave type of the above system there exists an

internal and an external variant. The periods of the latter are generally
much smaller than those of the former and, by applying the rigld lid ap-
proximation, the external modes are lmpeded. Thls means, that compared

to the interface elevation any surface elevation can be neglected, 1,e.
the underlined terms in (2.30) and (2.31) are ignored. With this, it fol-
l"ows from the mass conservations (2.30)3 and (2.3I)3 that the quasi-sol-en-
oidal velocity field can be replaced by the stream function through which
the components of the integrated transport are given by

- ty = Drul + H2 u2, t* = Dr vr + H2v2, (2 .321
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V is cal1ed the barotropic or mass transport stream function. Equations
(2.30)-(2.3I) can be transformed inlo a compact system in the variabLes
p and 62 = E" Assuming a conslant Coriolis parameter f the result reads

v.(H-rv rtr) + f(vg xvs-1). ? = -s'DI(vrxvH-r).a

*=l [vx(tti-r)* 9.*vHrl.z, 
(2'33)

Pt L - uI' J -

,,n2, - 
H2 , ' - 

Dr a'rL { et g'DrHz 'et ' H2 'eL * - ?(vrxvn). i

;fu lo,t*,xvul'2
- -+: f (vx Lr).2 ,

P1 9' u1

(2.34)

where the operator I = ägg+f2 has been introduced,

Mysak et aI. (1985) give a detailed discussj-on of the physics of equa-
tions (2.33) and (2.34), $rhich is now briefly surnmarlzed.. In the absence
of stratification (gr = 0) and wind forcins (r = 0)' equation (2.33) redu-
ces to the conservatlon 1aw of potential vorticity, (2.24). Wind is the
external force; the second term on the rhs of (2.33) may therefore be in-
terpreted as the supply of potential vorticity due to wind action. Stra-
tification (S' I 0) in a basj-n r^'ith variable topography (VH I 0) couples the
barotropic part of (2.33), namely its lhs, vtith the baroclinic processes.

The first term on the rhs of (2"33) is therefore the production of po-
tential vorticit.y due to baroclinicity; it represents the influence of
the baroclinic effects on the barotropic motiön.

By the same argument, equation (2.34) describes the influence of the ba-
rotropic processes (terms involvj-ng rl) and the wind (terms involving r)
on the baroclinic motion. Ignoring these barotropic terms resul-ts in an

equation describing internal waves with a phase speed

c?rt = gt D1 H2/H .

When VH= 0 the third and fourth term on the ths vanish, and the equation
describes classical internal Kelvin and Poincar6 waves.

Thus,equations(2.33) and (2,34) exhibit in general a tvro-way coupling, a

baroclinic-barotropic coupllng and a barotropic-baroel-inic coupling the
strengths äf rhicn must be estimated by a scale-analysis.

When'deriving (2.33) and (2.34) from (2.30)-(2.3t) the layer velocities
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car be expressed in terms of q, and e. The expressions are

lf Hr -l

Lgr = ; l_Zxv(L{,) 
+ H2s'(v 12-12xY r) + 4!tlt-12xlJ'

-rl I 1 (2'3s)
Lu2 = : I ixv(Lü) - D19'(v1.-f2x1t) - +(t*-f!xt)1,H L- 0r -" - -J

which are addltlvely composed of three parts. i.e. a barotropic, a baro-
clinic and a wind force cornponent. The flrst are the same (and unidirec-
tional) in both layers, and the second are in opposite directLons and

add up to vanlshing total transport, reminiscent of barotropic and ba-
roclinic behavior, respectively.

ß) Low-frequepcy approximation

In equations (2.34) 6 appears vrith a third order time derivative. This
means that (2.34) can contain three types of waves. In fact a more pre-
cise analysis shows that there are trdo (inteinal) gravity $raves and one

topographic wave of which the latter has the longest period. Because vre

!,/ant to study here topographic waves, we will search for solutions of
(2.33), (2,34) with low freguency üJ. For o << f we may therefore neglect
o in comparj-son to f. Thus L reduces to L = f2. Such an approximation,
however, reguires that periods are substantially greater than about 17

hours (the period corresponding to f at 450 latitude).

Parenthetically, we might also mention that this approximation holds
only for lakes in which the internal seiche period (of a gravity or KeI-
vi-n wave) is consj"derably smaller than the period of topographj-c waves.
Since the former lncreases rrlith the lake dimension and the latter is
size-invariant, the frequencies of gravj-ty waves ln larger lakes become

of cornparable order to those oi topographic waves. For the Lakes of Zu-
rich and Lugano the approximaLj-on is appropriate, for Lake Geneva or
Iarger lakes it rnay be d.ubious, see TabI"e 2.1 .

Lake Period of

Lugano

z uri ch

Geneva 7231

< 28r)

< 45r)

< 184'|

Period of internal
gravity waves

thl
I topographic waves

-,2\

r002)

72 - 962\

l) Hutter, I983

2) Mysak' 1985

3) craf, 1983

4) Bäuerle,1985

Table 2.I The gap between the eigenperiods of internal gravity
and topographj-c waves depends on the lake dj.mension.
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'The situation is nevertheless not as limiting as this statement might
let us surmiser because we shall prove below that for many situatLons
the barocllntc-barotroPic coupling term on the rhs of (2.33) may safely
be iqnored. In this case, the Tw-equation (2.33.) uncouples from (2.34).

Since also boundary conditions will be shor^rn to be free of this barocLi-
nic-barotropic coupling' solutions to the Tw-Problem cän be obtained
without solving the inertial gravity wave problem. The assumption lrl t't
need not necessaril-y be invoked.

al !yt9_gL{ga_.9

Informatj-on about the orders of nagnitude of the varlo;s coupling terms
i.n (2.33) arid (2.34) is obtained by constructing dimensionless counter-
parts of these equations via the introcluction of scales.

o) wind forcing

The external forcing mechanism in equations (2.33) and (2.34) is the
wind. To estimate .its relat.ive importance consider the. identity

(2.36)

The first term on the right can be neglected in comparison to the others,
because lhe atmospheric lenqth scale is in general much larger than the
lake dimensions. Such.a statement is tantamount to ignoring spatial var-
iations of wind stress over the lakers domain. Further, comparing the
last two terms it is seen that they differ by an order D1/Il which. in,,vfgvt

of our basic assumption, j.s small (cf. Tahle 2.2). Consequently only the
last term of (2.36) survives. In a r"ray this is a strange result: As far
as the barotropic contribution of the motion is concerned, only a lake
with variable topography can be affected by the i7ind. This Ieads to the
conclusion that the assumption on atmosPheric length scales may be doubt-
fu1. Indeed, a varying topography in the viclnity of the Lake may play

a significant role as j.t can nodify regional winds with atmospheric

length scales to locat winds with smaller length scales. An example is
the topography around Lake of Luganoi but experimental evidence for the
s/ind stress curl to be significant is so far lacking.

ß) cratton's scaling

cratton (1983) and Gratton & Le Blond (1986) consider lake stratifica-
tions wlth DL<<D2,1.e' a thin upper layer lies on the toP of a deep

vx(t H-r) + I rxvn-r = H-l(Vxt) +(VH-r) *, * $ rxVH-l.
Dr- ul"
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hypolimnion. For thLs case they found that the baroclinlc effect on the
barotropic motion is of order b1,/D2 smalter than the barotropj.c effect
on the baroclinic motion. Sor to order D1,/D2 the coupling only arlses as
a forcing oi tfru baroclinic motion by the barotropic mass transport.

Before we dernonstr-ate this resurt Iet us point out its. significance. The
one-way coupling means that traces of the topographicarly induced motion
can be observed by measuring baroclinic quantltles such as temperature-
time series of thermistor chalns, moored within the metalinnion. The de-
seription of the observations in Lakes of Lugano and zurich in chapter t
are based on such t.emperature-time series.

H: = Dhr = (O1 + D2)hr, H2: = D2h2 t

where the prj-med variables are non-dimensional; L is a typical length
scale of the consldered waves (e.9. half the lake tength). Higher hrave

modes, vrhere cross variations are important, may reguj-re a (xry)-scaling
whj-ch is different for each spatj.al direction, but this will not be con-
sj-dered. with (2.37) we ott.in the scaled equations

We no\,/ introduce the folLowing set of nondimensional variables:

rl: =rloü', Cz=COet, T3 =16r'1
(x,y): = L(x',y'), t: = f-l . t',

v.(h-1 v,rr)+(vüx vh-l).2 = -cr(vrx vh-r) - ?- (#*jfft) (irtxvh-r1 . i,

f {v'e. #rrtet)-;jf vr..vn 1*;};tve xvi r).2 - -crüt(vuxvh-1)-i

.ft,* f tv*i1r'! '

where now I = ätt + I and Lhe corrpling coefficients are given by

(2 .37 \

( 2. 38)

(2.3e)

(2.40)^ g'Dr60Ut = 

-,

firo
- füo Dl I

g'Dzeo D2 CI'

and Ri= (g'DLDL/D12)U2 is the internal Rossby rad.ius. Note that in
(2.38) and (2.39) we have dropped the primes on the scaled (nondimen-

sional) variables.

Let us now suppose that (2.38) and (2.39) are stronqly coupled, i.e.
tha! C1 and C2 are both O(l). Then (2.40) implies that

6o = o(#ft) and qo = o(Jt). (2.41) & (2.42)

We observe that independent of the Uo-scalet (2.4I\ and,(2.42) are consi-
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stent onli' if D1/D2 =O(f). Since we are concerned \./ith the case Dl << D2,

i.t..follows that C1 and C2 cannot both be of order unity, 1.e. t.hat (2.38)
and (2.39) are only weak)-y goupled. Suppose we assume that (2.41) applies
and lhus choose

l-s- = -.t- e.43,)üo q' Dr

as the scaling for the ratio eOlVO. Then C1 = I and C2=D1/D2 << 1. There-
fore to o(D1lD2), equation (2.39) reduces to

{v2 - rfir2L) et = -;S*-, ,, (v x ts ) ' ! , (2 .441

where i^re have used h/lnr=1+o(DtlD2). (2.44\ is a wave equat.ion forced
by the \^rind slress curl, but the scale choice (2.43) leads to an unreal-
istlcally lat'ge value for the {9 scale (about q9 2.50 m, which is severaL
times the upper layer depth for most lakes*/).

Hence we are compelled to choose the scaling (2.42) (Gratton's choice,
which was based on data from the Strait of ceorgia, British Cotumbia).
Putting eof

,1,; = s, D2,

we find CZ = 1 and Cr = Dr/DZ << 1. We choose the 60 scale by setting
the coefficient of the r,rind stress term in (2.38) equal to unity, which
gj.ves LD Tn

üo = rproi . (2.46)

Substituting (2.a6) lnto (2,45) gives the scale E6 in terms of the wj-nd

stress scale"rg: LDrß gOf
10 = 01 g, Dl Dr:- , (2.47)

which yj-eIds a realistic ord.er of magnitude**,1. Using (2.46) and (2.47)
in (2"38) and (2.39), we obtain, correct to O(DrlDz)

(2.45)

(2.48)

(2.49',)

V. (h-rVür)+(Vü xVh-l).? = (hr xVh-I).?,

(v2- s-r L) et = -(vrf xvh-r) "ä_-(v x Lf). ?,

With f = 7A-4:s-7, Ct =O.O2ns-2, Dl= JOnt DZ= ZZOn and,ltg=U.L,(DI+ D2)=
0.03'704x270 n3s-f, where tl is a ve-Iocitg seale (appzoxinate-Ig 3 cns-l fot Lake
of Lugano)and L =!A4 n, one obtains 10 = qO *.
with f = tO-4 s-7, g,= O.O2 , s-2, .QO= 7 xZ04 a3 s-7 a4 DZ = 27On, (2.47) qietds
EO = 1 n. Aitetnativefg, usingr tp = Qair cd ur2 with pair = 7.29 kg n-3, c6 =
7.85 x7O-3 (an average vaTue for Takes during smer, see Sjnons, 7980, p.92), ad
U, = I ps-7, we find.'tO = 0.038 Nn-2 and hence according to (2.47). EO =l.5rn and
accoxding to (2.46), U ='tO/(pJ tD1)= 3.5 ens-7. Both ya.lues are tgpicaT observa-
tjons jr the Lake of Zurich and Lake of Lugano. see Table 2.2.
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as the appropriate non-d.imensional equalions for V and 6. In (2.49) note
that vre have introduced the stratification parameler S, defined as

(2.s0)

For the derivation of (2.49) it is tmportant that h2 I 0 (as il-Lustrated
in FLgwte 2.3\" If h2 = 0, the third and fourth terms on the left side of
(2.39) are not uniformly o(Dr,/Dz) and hence could not be neglected. !f an

elliptic paraboloid contained a th'o-layer fLuld, then cl-early h2=0 where

the interface touches the basin wal1 and (2.49) would not be valld. Thus

BaII's (l-965) solution for second-class vtaves in an elliptic paraboloi-d

could not be easily extended to the stratified case by our analysis.

The derivation of (2.48) and (2.49) follows Mysak et at.. (1985) but is
more general in thai the 1ov/ frequency assumption has not been invoked

and the wind stress curl has not been ignored. With these t$Io additional
assumptions I would be replaced by t = I and the last term in (2.49) would

be missing, As stated above these assumptions are not needed to achieve
the decoupling of the barotropic motion from the baroclinic infLuence.

Substituting (2.37) and the scaling (2"42) Lnto (2.35) and using the
scale Uo = ULD' a! before, we obtain the following foimulae for the ve-
locities: I r D, ^ ..1Lgr = ä[?*vL,t, +nzkvet-?xvE)+ + t3s-2 x1l).] ' (2.sr)

Rirs = ( r )-

ty, = * i?"ot,t,- fi t,0,.- 2 x\e) + #,,.-? " :,)]

to O(Dr/Dz) these can'be approximated by

tgr = +(a" vLV+h(v6t- 2xv1+"rt-2xr)),

ts, = * 4,v,1,.

(2 . s2)

(2.s3)

(2.54)

Thus for deep Iakes, the.lower layer curre.nt associated.with topographic
waves is essenti-ally barotropic, whereas the upper layer current eon-

sists of a barotropie part, a baroelinic part and a contribütion direct-
ly forced by the wind. Hence we conclude that the current motions are
generally surface Lntensified.

tn To,ble- 2.2 we collect some data pertinent tothe above estimates. values
are given for the layer thickness and density difference of the sunmer

stratification for three Swiss lakes from which Rossby radii, stratifi-
cation parameters and typical values of the thermocline elevation can be

computed. Accordingly' neqleeting o(DL/D2) terms is certainly justified
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Lake D1

lml

^ neü
U?

lml

Dtu'

tnl

Dt

nmean

p?-p1
p2

^i

I kml

half
I ength

i kml

5-l 6g

tml

lusunol toxl tsrr) lrrr'10.0551 r.er.r0-3])l *.ou | 8.6 I +.s I r.a5r

zu.i.nl iz,l szDl nc2) I o.rrrl r.75.r0-3rl o.trl 14 I r.r.s I z.r',

nun.uu l 15ari lsra/ l rro'l o.osel r.4r.ro-34r 1 o.ro l ru l rr.r l u.r',

1) Eutxer. 7984b 4) Bäuerle, 7984
2) Hutter, 7983 5) conputed bsing (2.47)
3) craf, Jgg3

. 
TabLe 2.2 Properties of some SwLss Lakes.

. for Lake of Luqano and stilL reasonable for the other lakes. Moreover,
the thermocline-el-evation amplitude 69 is srnal"ler than D1 in aIJ- three
cases, a fact whlch gives some confidence j-n the scaling procedure.

zl 99,!ryd47_99rJdi49q

To solve (2.48) and (2.49) in some domain O for a given I, we have to
prescribe lnitial values for U and 4 and the boundary conditions on ä0.
The first boundary condition r^'e impose is that the total mass flux nor-
mal to ä, must vanish: in non-dimensional variabl-es this can be written
as fi'{orur+D2h2u2)D-r=0 on ä0, where ff is a unit vector perpendicu-
Iar to ät. On substituting for gt and gz from (2.5I) and (2.52), this
reduces to*,)

!.t!rv'p) = 9, on AD. (2.55)

since i. t? * V,t,l = t{x!) -VU = i.Vr.!, where 3 is a unit vector tangential
to At, (2.55) impties ärpläs=0 on ä0 and hence V=constant on ä?. Thus

in a simply connected donain., without Loss of generality, we take

rl = 0, on A0. (2.55)

Next h'e require i.Ut=o on ä? for each layer i. Upon again using (2.51")

and (2.52), together with (2.55), we find

(2.57)

to o(DrlDz).

*) These equations acxualJ.g inplg a. gtatenent tegarding L,(Dl lJ + D2 h2 r1Z).Ä rather
xhan the nass transport jtself. However it Ln = O aLong ä0 for al-l tine, then ne-
cessarilqn=0asweJ.L.
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The boundary condition (2,55) applies, vrhether the simplifying assump-

tions D1 << D2 and u2 << f2 are imposed or not. Because (2.48) supposes

D1 to be small in comparison to D2 v/e conclude that the barotropic part
of the motion can be determined rr/l-thout simultaneously also deternining
the barocLinic response. However, if the corresponding barotropically
driven barocl,ini-c currents or thermocline eLevati-ons are to be det.erml-
ned, then equation (2.49) subject to the boundary condition (2.57) must

also be solved. Since (2.49) is a forced wave equation, this by itself is
a formidable problen. For 'weatz ttta.tL(icaLLon (s smalL) simplifications are

possible. This is the case for most Swiss fakes (compare Table 2.2).

To introduce this additj,onal sinplification we note that our scales have

been chosen such that dimensionless gradients are order unity. Hence, we

expect V2 to be o(1) whereas S-1 is 1arge. on the ths of equation (2.49)

r^/e may thus ignore V? ln comparison to 3-L Lh/:n2, imPlying

et = s{L-r (2xvu).vh-l+(vxI).!}, (2.s8)

where L-L is the inverse operator of L. Equation (2.58) can be described
as the gzt:me.tnLe opLLca appnnxinaLlon (on r.. Along the shore ä0 we may assume

a constant. depth; then Vh-1 is parallel to !, the unit normal vector
along ä0, and the first. term in the curly bracket vanisheJl. with to.,-
vanishing wind stress the energing equation is not consistent with (2.57).
For the undonced problem, ho$rever, (2.58) impties

e(5,t) = 0, along 30 '
which is consistent vrith (2.57) provided that the term ä21/äniE is ig-
nored. This omission is justified in the low-frequency approximation.

we conclude: the geometric oplics approximation is only consistent in the
1ow-frequency lirnit. rn all other cases the baroclinic couplj-ng should

be computed with the fu1l equations (2.48), (2.49) and (2"57).

2.4 Tw-equation in orthogonal coordinate systems

a) P9qpa4q!.!0ry

Consider a coordinale system ln \,/hich the posj.ti.on

I = (xr, x2,x3), and J-et g(I) = (u1 (1), u2 (I), u3 (I) )

Cartesian system I = (*, y,z) , vIz.
, t = g(r).

The path element dI then transforms according to

vector is given by
be the map onto the

( 2. se)
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äU;ais = ;l axi

and its length is glven by

ld!12 = d1t dI = d:r (vg)r (vu)clx.

This leads to the definition of the metric tensor g

s = (vg)r (vg)

and in comDonents äUt äU:.gij a", a"j '

The coordinate system (x1,x2tx3) is orthogonal provided, the metric ten-
sor g has dj,agonal form.

Let us no$' restrict consideration to coordinate systems which have the
vertical coordinate unchanged (general- cylindric) , that ls

z o rJ3 (1) = x:.

For an orthogonal system with coordinate lines xi = constant j-ntersect-

ing at rigiht angles we then have the condition

äUr äUr äUz äUz
s2r= sLz= T. 1; . * *; = o' (2'50)

Note, that !'rith (2.60) alone the napping (2.59) is not conformal, aI-
though the right angles formed by the basis vectors are conserved. For
orthogonal systems it is convenient to write

["? o ol
t-^ts=i0 Ji 0l: | - 2llo o JL" " "31

with the definition of the scale factors

tauls, = la,il , (2.6r)

and J3 =1. Further, if the mappins (2.59) is conformal-, (2.601 must be com-
pleted with the r6quirement 

_.2 _ _2,ri =.r2. (2.62)

(2.60) and (2.62) can be combined and, provided U is orientaEion pre-
serving, imply the Cauchy-Riemann equations

äUr äUz äU:- äUz

axr = ax2' T", = -5"i
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Tl"b["e 2.3 collects the scale factors for
ordinate systens.

frequently used orthogonal co-

, where J=a(sinh2 E+sin2n1V2

, wnere J=l-Ä(sr'n

Table 2.3 Coordinate systems often used in iake
hydrodynamics and their scale factors.

!{e recall the Tw-eguation (2.22) and the barotropic velocity field in
the coordinate-invariant formulation

3r.f o.,{Ur ) + 2. (vrp 
" vf,) = o,

'I-
:= H(zxvü)'

To obtain these equations in the different coordinate systems the vec-
tor differential oDerators need be written l-n curvllinear coordlnates.
In the orthogonal coordinate system with the scale factors J1, ,J2, J3

the gradient-, divergence- and curl-operator are given by

_laslaslasgrads =(;-- ---)," 'J1 axl' J2 ?x2 ' J, ä*3

divv = 3;*q(5lr"r"r,,rr * 
fit.rr"rvzl+ fit.rr.rz'r)),

curr v = ;;üE l"r -t*(J3v3) - .r, f* r.rrvr) ;

.r, fi r.i, vr) - 12 fi r"r,,rr i

", fi t,r, vz) - 13 fr r"r"rr] .

( 2.63)

where S = S(I) is'a scal-ar and v = !(1) fs a vector in thj-s coordinate
system. A derivation ls found in Pearson (f983).

With (2.63) the qw-equation takes the forn

-L l-L,rz 1 au) * 3 11 * 3gr I * jL _3_rlr _
at Laxr'Jr H axr' ' ?xr'J2 H 3x2') ä*r ax2'H'

_ I aü r aü.g = (- k H T"r, iF t\),

aü a .f .
J 

-t-l

dx2 dxl H = 0,

12 .54)

Coordinates (xr,x2,x3) Jr Jz J3

Cartesian (I, y, z)

cyiindric (r,0, z)

elliptic (t, n, z)

(s, n, z)
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and J3 =1 is assumed. (2.64) reveals the lnteresting property that the

Tw-equatj-on is invariant under conformal mapping due to equation (2.621.

Johnson (1985, 1987b) has pointed at this invariance prlnciple' which

has already been implJ-cit1y used by Mysak (L985) when considering the

el.l-iptic eoordlnate system. Applying thls principle the Tw-eguation can

be solved in rather complicated d.omains whlch evolve from slmple carte-
sian geometries by a conformal- maPplng' Johnson (1987b) presents solu-
tions for a semi-lnfinite channel wlth smooth boundary Ij"nes, see 3.5.

at 9uU%es!-eeeL41v1%

These coordinates are often used in problems which exhibit some rota-
tl-onal slmmetr.y. The coordinates are (r,O,z) which are reLated to the

cartesian systen by the formula

x = rcosO,
y=rsino, rl0;0s0s2r

The scale factors can be calculated with (2.61); they are listed j-n

Table 2.3. liith (2.64) we obtain

tf {,.,), +(*-,rco)'* V,(*)o- l,a tft, = o,
(2.5s)

s=(-*tr,*t,,.
ct E!4U4esL-eseLq!*W

The coordinates of the elliptlö"cylinder system are (6,n,2),and for fixed
z the lines € = const are confocal eltipses whereas the lines n - const
are h1'perbolas, see Figune 2,4. The parameter a denotes the position of
the foci,and the Cartesian codrdinates are cal-culated from (€,n,2) Uy

x = acosh fcosi,
y=asinhEsinl, E>O,OSt1 <2r, (2,66)

The shore line of the elliptic basin is given by

,.2 v2
r -----------l- - 1

(a cosh Es)l (a sintr 6s) z

whieh is an ellipse with the
(rrridth to J-ength)

-_ B _ a sinh fg = tanh Es.a cosh Es

semi-axes A and B and an aspect ratio

(2 .67 \
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4"+
rl=rt/2

!=3r/2tFlgure 2.4
Elliptic cylinder coordinates (E,n). The quantlties i ana $ are unit
vectors in the directions of increasLng € and 11. We iefer to I and 4as radlal and angular coordinates respectively. [prom Mysak, 1.985]

The first tvro scal-e factors are equal and read

J = Jr - JZ = a(sinh2 E+stn2n)V2,

J:=1'
(2.66) therefore defihes a conformal mapping and the Tw-equation for-
nally agrees wlth the Cartesian:

tf v.glq + t$ rr.lln +'tE (*)n - vn tf,l, = o,

(2.68)

e= (-#rn,#rr,.

dl Nahü.al cootLdinolzÄ

For the developments in subsequent chapters vre need. the Tw-equation also
in a natural coordinate system. With this, it is particularly convenient
to describe elongated and curved lake basins. We choose an orthogonal
network r^rhich spans the elongated domain. The basis for it J-s an axis,
which follows more or less ru]ne tholwe4*) of the fake. The arc length s

1=lt ttrl2

I:23nr12
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along this axis forms the first coordlnate of the system.

In vielt of the restrictlon to elongated narro$/ lakes it ls possible to
choose a straight n-axisi so the system is curved only in the s-dtrec-
tion, see Fl"guJLe2.5. In orddr to define the lake domain.uniquely in terms
of these coordinates the radius of curvature R(s) must exceeil half the

P(x,yl r.

L----

(i{sl,!(sll

Figure 2. 5

The natural coordinate system
(s,n,z) in the lake basln with
unit vectors 3, $ ana !. $points to the positive center
of the curvature along s.

FJ-gure 2.6 Basis vectors in the natu-
ral coordinate system.

width of the lake B(s), R(s) >e(s)/2. r,et the lake axls be given by a

parameter represeDtation (i(s) 
' i(s)) withtn a Cartesian system as shown

in FigulLe2,6, The coordlnates of an arbitrary point P are then glven by

x=i(s)-nsino(s),

":!(s)+ncoso(s),Z = Z.

( 2.6s)

The mapping defined by (2,69) satisfies (2.60) but is nor conformal.
Evaluation of (2,61) yields

Jr = J =,1--K(s).n, Jz=L,

and the curvatire K is defined as

K = 9q.ds

We finally obtain the Tw-wquation and the velocity field in natural co-
ordinates:

' ! ''' 
")" 

+ (* {,rr), * v" (f)n- vn tf,t" = otJH tt

s = (- f,,r,", $ v"t .

*) The thalweg of an elongated lake is the line which follows täe deepest points ot
the basin cross säctiors.
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3, Some knÖwn solutlons of the
TW-equation in various dornains

Whereas ou! intentiona in chapter I were to suggest that observations
of long-periodic oscillations in lakes and ocean baslns are likely to
be lnterpretabLe 1n terms of vortlcity induced motions, vre presented in
chapter 2 the baslc equations of such waves and analysed the general
properties of the associated equations.

In this and ensuing chapters we vrill construct explicit solutions. Our
principal aim is to extract through thls analysis the physical proper-
ties of TW's and to see in what respect the lnterpretatlons surmised in
the first chapter can be substantiated..

we shall dlscuss (i) circular basins with a topography being a function
of the radlal dLstance only (parabola, power law), (i1) elliptic basins
with a parabollc bottorn and an exponential shelf profile, (iii) TVt's in
infinlte and, (iv) lWrs in semi-infinite channels. AII these configura-
tions are characterized by the fact that the isobaths follow one coor-
dinate line of the coordinate system (except section 3.3), so that or-
dinary differential eguations emerge. As a result the mathematical tool
is solving t$ro-point boundary-value oroblems.

3.1 Clrcular basin wlth parabollc bottotn

Follolving Lamb (1932, S 212) we start our analysis of TWrs in circular
basins with equation (2.29), or

v. (h vEr) + J(hr q) - (*)2 L6r = 0. ( 3.1)

Here all quantlties are dimerlsionless except t and R, a typical lenqth
and the Rossby radius, respectlvely*/. In poJ-ar coordinates (3.1) may be

$rritten as
(h 6,r), . * ,* 6sg)s + * 6,. *

h- ha r.,* T qe- j q,-(ä)' t 4r = 0,
0 < r < 1. (3.2)

The boundary conditions (no mass flux at the outer boundary, finlteness
of ( at the origln) are

*) ?or a subtfetq in defininq tire Rossög radius see fooxnote on p.23
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t =finite, at !=0,
tr = 0, at r = I.

Consider a radial topography,

h = h(r)

and assume an azimuthal r.rave solutlon of the fortn

(3.3)

(3.4)

(3.s)

(3.6)

(3.6)

e = z(Yl exp [1 (m0- ot) ],
travelJ.ing counterclockwlse around the bastni o -- w/f ls the dimension-
Iess freguency and m the azimuthal wavenumber. With (3.4)and (3.5), the
boundary value problem (3.2)-(3.3) assumes the form

(hz')'* I.* lfn.ä y . #lr=0, ocr<1,
Z=finite, r=0; Zt=0, r=1.

Prlmes denote differentlations with respect to r. From these equations
the sol-utions presented by tamb (1932), Wenzet (I9?8) and Saylor, Huang
& Reid (1980) can be obtained as special cases.

For the parabollc bottom proflle,
h -- L-r2,

z(r) can be expressed in terms of a hypergeometric polynornial (Larnb, 1932,
$ 2I2; Miles & BaIl, 1953; Abramowitz & Stegun, I9Z2)

z (r) = Ari rn F(m+j; r-j; m+1; r2' m = o'L'2"" 'tt J=L,2,3,..., (3.7)

in whlch Ari is a free ampritude and o satisfies the frequency relation

#..+ = 2t2j(m+j-l)-ml, n = O,L,2, ....,
j = 1,2,3, ...,'

The frequency occurs in third order which corresponds to three hrave ty-,
pes, two first class and one second class wave. Here, we concentrate on
second class waves and w1ll therefore exclude the case rn=0. (3.8) is
then equivalent to

! , ,2) (n+j-I) rr o2-!.
o = t ----;- -r.r - 

;m(R/E)2 
.

The last term on the rhs represents the influence of the size effect via
the external Rossby radius R and a length scale L. An order of magrltude
for R is 500 km and an upper bound for L may be 200 kn (creat Lakes), so
2(R/L)2 a 12. The minimurn value of the term in curly brackets is l,
which suggests that the tr.ro fj,rst class modes enterlnq via the size de-
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pendent term may be suppressed. Approxl-mately. we may hrrite, after neg-
lection of the inertial motion (o = I for j = 1) and transformat.ion n = j-2,
n = 0, 1,..,

we thus obtain the approximate frequencies and periods of TdbLe 3.1. The

real parts of the surface elevation t and the mass transport stream
function Q for lhe mode (m, n) = (I, 0) are given by

6(r,t) = artr-f 12) cos(0-ot),

V(r,t) = Ar(1-12) (r-o- f tr-:o)r2) cos(o-ot).

The streamlines of this solutian and those of the (1, I)- and (2,0)- modes

are sketched. in FigaLe 3.1. The periods are l-arger than 50.7 hours (2.1

t=0

t=I/8

L - t/.t

(3.e)

m= 1, n= 0

T= IIBh
m= 1, n= 1

I=287n
m=2, n=0
T = 84,5 hFlgure 3,1

Contour lines of the mass transport stream function of the three modes
with the simplest wave structure. The gyres rotate anticlockwise (on the
Northern hemisphere) around the basin.
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m

n=0
o Tlhl

t

r[h]
n

o

n= 2

s Tl

I

2

4

0. 143 1 18

0.200 84.5

0.250 67.6

0.333 50.7

0.0588 287

0.0909 ,l86

0.125 135

0.200 84.5

0.323 524

0.0s26 321

0.0769 2?0

0.143 I 18

Table 3.1
Periods of Twls in a circular
basin with paraboJ.ic bottom
proflle ignoring the size de-
pendent term in (3.8) and com-
puted with f = 2r/L6.9 h.

hl

days), but it is likely that only those nodes with a very simple struc-
ture will be excited. The simplest fundanental_ mod€ has a period of 118

hours and consists of t!r'ro basin-wide gyres, a cyclonic and an anticycl-o-
nic vortex. The entire system of gyres rotates countercläckwise (on the
Northern henisphere) around the basin. From this fact it follows that
current vectofs at mid basin positions rotate in the antLclockwise direc-
tion while those at near-shore positj-ons rotate in the clockwise direc-
tion, This is exactl-y the current paltern discovered by Saylor, Huang &

Reid (1980) in Southern Lake Mj-chigan, but the period of l_18 hours is
too large to fit the period of I00 hours inferred from measurements. They

therefore studied the effect of the topography on the Tw-solutions in a
circular basln, cf. next section.

The computational results of the wind driven currents in the Bornholn basin by Sinons
(1978) suggest that this systen of gyres night be interpretable as a tw. wenzel (1978)
inferred fron Simonsr conputations a rcde (n,m) = (0r2) with a period between lI and
14 days. The period, however, obtained wj-th a parabolic profile (which approximates
the topography reasonably) is only 4-5 days. Thus Wenzel suggested that the flow con-
figurai.j-on in the Bornholn basin mj-ght be the inLerior part of a node wlth one or
nore nodal circtes. with (n,n) = (1,2) the period is B days (see Tablle 3.1), lut (n,n)
= (2.2) yields T = 13.8 days, This node was nunerically computed by fitting a loth
degree polynonial (the period of this solution is 12.6 days) to the nean topography
of the Bornolm basin ard solving the two-point boundary value pxoblen (3,6) nunerical-
ly. i.lenzel argues that the outer two rings of gyres of the (2,2)-mode should be dis-
carded since the real basin contains an island which disturbes the boundary behavi-
aur. This particular configuration may rather require a nodel which accounts for an
island.

3.2 Circular basin with a porder-Ialv bottom profile

The followj-ng analysi.s is due to Sayfor, Huang & Reid (1980) which in-
vestigated the influence of tooography gradients on the periods of to-
pographic wave motion. They used the profile

h(r) = (I-rq), 0SrSI. q>0. (3.10)

Varying the exponent q yields an entire sequence of profil-e geometries
s/lth stronq and weak tooography gradients. For q = I the radial depth
profile is eonical, for q=2 it is parabolic, for q>2 it becomes blunt
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and for g+@ approaches constant depth. On the other hand, for 0 < q S 1

the profile has a vertex at the center and (except for q = l) has a con-
vex curvature sjmilar to the exponential profile often used in shelf
wave analysis. With ü=V(r) exp(i(mo-ot)), use of the fw-equatlon in cy-
1lndrical coordinates (2.82) and a trial solutlon

U(r) = Arn h2(r), (3.rr)

(which satisfies the boundary conditions) the clepth proflle must fulfil
the differential equatio 

^ m
Jm+ z- -hu + - o h' = 0,zr

(3.f0) is compatible with this provided that

^_m- 3rn+2q'
which is the frequency-$ravenumber relationship for the prescrlbed topo-
graphlc profile. TebLe3.2 lisls the frequencies for a sequence of topo-
graphy parameters g and the wavenumbers m=1,2. The table indlcates that
the topogtaphu tla^ d" donLnant zddec.t on tle petiod's. The solutj-ons

ü(r) = a5m (1-re) t 6 = j-+tn-
embrace all those motions. whose stream function r! has no radial nodal
circle. Hence, they contain in particular the solutions for the parabo-
1ic depth profile as shown in the left and right columns of Figutte 3.1.

n=2
Tab1e 3.2
Topograph!' effect on the dimensionless
eigenfrequency of the tr,ro first modes
in the model of Saylor et al. (1980).

Figu^L3.2 indicates that the bathynetric profile for southern Lake Michigan can rea-
sonably be approximated by (3.f0) and q= l+9, where e is small. wj-th e = 0.25 the fu-
danental period becomes T = 93 hours which coincides with the observed period of the
Tw in Southern Lake Michigan.

n(
I
2

5

0. 250
0. 200
0.143
0.0769

0. 286
0.250
0.200
0.125

Raci-ne
o

Holland
t20

tlidth (km)
40 80

Figure 3.2

Average amplitudes of tlte
north and easc velocity com-
ponents for rotational os-
cillations on the Southern
Lake Michigan cross section
during an episode of wave
excitaLion, I - 15 July 1976.
Basin Approxi-Btions as a
paraboloid or as an j-nverted
cone are also shom-
[r'ron Saylor et aI., 1980]

I

E

ao0
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3.3 Elliptic basin with parabolic botton

Most lakes are long in one direction and not well approximated by clrc-
les. It is interesting, therefore, to see how the periods and mode struc-
tures of TW's depend on the aspect ratio (i,e. the.$ridth to length ratio)
of the basins.

we consider the Tw-.equation in dimensionless form and

dinates (h-r vxr)x + (h-r Y"g)y - h;r vv + htr vx = 0,

Y=0, on ä0,

and choose a parabolic depth proflle

and the profile has a

the zero depth contour

The following analysis
formation ü = h-2v

it is straightforward to show that (3.13) takes the form

4ps + 3 ( tt-a)x üxt + (I+a)y rp".) + h(üxxt+,l,rrr) *

+ (l-a)x py- (1+a)Y üx = 0,

in Cartesian coor-

Ln0'
( 3.13 )

, h= t{,t-",x2+(t+a)y2)-r, (3.r4)

where A(h) = {r$-n7oä and B(h) ='/uh.D/w; are the semi-axes of the
el1lptic depth-contours. These have all- identical aspect ratios

B (h) ,l-ilt T-r2r= Atr'i =Vf.. ' d= T;?,
(3.rs)

rnaximum depth lhlr.* = I. The basj"n is bounded by
line, an ellipse with A(0) and B(0) as semi-axesd

is due to Bal-I (1965). With (3.14) and the trans-

(3.16)

rf = f inite'

for h < 0,

for h=0.

Note that the boundary condition \y = 0 along ä0 necessarily requires that
V is bounded on ä0. The velocitles are given by

u = -h-1 ,62 {,)v - -2hy ü - hty,

v = h-1(h2V)x _ 2hrt+htx.

The advantage of the introductlon of the stream functlon ü is that (3.13)

transforms into a di.fferentiaf equation lrith the following special pro-
perty, Suppose, P is an even (odd) polynomial of degree N, then the
differential eguation (3.16) generates again an even (odd) polynomlalof
the same degree.
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'Iaking advantageofthls fact,vre consider first a polynomialwlth degree
N=0r i.e. a constant tqg which obviously satisfies (3.16). This is a

6.bnpl-e 6tea-du gqtLe with the veloclty fleld
(u, v) = 2too (-(1+a)y, (r-a1x),

representing an eI).iptlcal rotation with constant vorticity 4gOO. Maxi-
ma1 speeds are experienced along the shore-l1ne.

More insight provides the cholce of a homogeneous odd polynomlal of de-
gree N= 1r the {inetnBa.tl-nodz:

with ( )' = d,/at. Assuming a harmonic time evolution e-iot for both coef-
ficient functi-ons, (3.18) allows nontrivial rlyo and t91 if and only if

" I-a2
' 49-9a2 ' (3. r9)

This relation describes the dependence of the frequency on the aspect
ratio parameter r (via a, see (3.15)). Table3,3 llsts the periods ob-
talned with (3.19). Obviously, a=0 recovers the solutlon for the cir-
cle with parabollc bottom profile. Smaller a results in smal-ler o; con-
sequently, the more elongated the elllpses become the larger witl be
the periods. In view of observational results for Lakes of Lugano and
Zurich, reported in Chapter 1 this is unfortunate as these lakes are
long and narrovi, and measurements point at oscillations with periods of
3-4 days. This is lower than the L18 hours obtained as a {ocoe,rr bound
for the fundamental linear BalI mode.

The linearity of (3.I7) irnplies that the line rf1 = 0 which separates

Vr = tto(t)'x+Ps1(t)'!.
Substltution into (3.15) yields the coupled systen

(7-3a) t1s + (l-a) 0s1 = 0 ,

(7+3a) $s1 - (f+a) tro = 0 ,

r a

l!near
o Tthl

quadratic
o Tthl

'I .0

0. 67

r. 50

). 33

l.l
0

0

0,385

0.600

0.800

0. 980

I

0.143 ll8
0.134 126

0. I l8 143

0.091 t85

0.03t 542

0-

0.200 84.5

0.190 88.8

0.173 s7.7

0.139 121

0.051 335

0@

(3.r7)

(3.18)

Table 3.3

Freguencj.es and periods
of the linear and quad-
latic Ball-mode for var-
ious aspect ratios r.
The periods are calcula-
ted vrith f = 2n/I6.9 h.
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vortices of different signs is a straight Ij-ne which, ovring to (3.18),
rotates anticlock!,rise around. the basin. FigwLz 3.3a shows the time evo-
lution of this mode. The structure of the \^rave pattern i.e. the number

of gyres is conserved. In the course of a wave cycle. This is in accord
with the r.rave patterns found in the circular basin.

+-nL-U

t = I/8

r, = I/4

T = 1'.13 hFigure 3.3

Mass transport stream J-ine patterns for the "linear" (a) and rrquadratic"
(b) mode of the Tw-equation in an elliptic basj-n with parabolic bottom
profile. Irron ea],t, t9651

,ö s\c e

To obtain the next
11 - t

r =97,7 n

higher mode, \de select an even polynomial of d.egree

ri,z = üoo +ü20 x2 + rirrt xy +!ozy2, (3.20)

with the time dependent coefficient functions {r"(t). (3.20) characteri-
zes the qua"dt-a,tLcBalJ-node-. Substitution into (3.15) and equating equal
powers of x and y, respectively, yields the systen

(I1-7a) 
'i,zo 

+ (1-a) ,i,92 * Z 11-.1 ürr = 0,

I0 rir1, + (I-a) to2 - (l+a) üzo = 0,
(3.21)

(11+7a) i,oz - (Iial ri,2e- 2(1+a) Vrr = 0,

2,i,oo-,lzo-,i,oz = 0,

whlch allows periodic solutions proportional to e-i'ot provided that

o(562 (5-2a2\-(l-a2) ) = 0,

Again. there is a steady solutj.on s = 0 and an oscillating solution with
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1->2
u - 

-.

5 (5-2az)

Table 3,3 col-lects freguencies and periods for several
For a fixed aspect ratLo the periods of the quadratic
than those of the fundamental linear mode.

(3.22',)

aspect ratlos r.
mod,e are smaller

As (3.21) indicates, a steady solution must have

eil=o and üü=
and hence

tlt = too + A ( (l-a) x2 + (1+a) Y2) ,

where rf66 and A are constants. rlg9.l 0, A=0 recovers the sirnple steady
gyre whereas,üoo = 0, Al 0 yields the steady second order solution

Ylt = 6z t7t = z Ah2(h+1) (3.23)

This stream function vanishes along tbe boundary 11 = 91 and at the cen-
ter (xr y) = (0, 0) and is positive otherwlsei furthermore, its value ls
constant along sinilar ellipses and assumes a maximum value along the
etlipse with h=-2/3 between the center and the shore line, Figune3.4@.

The steady fJ.ow correspondlng to the solution (3.23) is qualitatively
indicated in FLguno- 3.46, An anticyclonic elliptlcal gyre in the öenter
is surrounded by an elliptical ring of cyclonlcally rotating fluid.

Figure 3.4

a) Dlstribution of the mass transport
stream function and

b) of the associated velocity field
of the "guadratic" steady solution
(3.23).

oscillating sol-utions are obtal-ned by constructing the el-genvectÖr of
{3.21) corresponding to the frequency given by (3.22). We quote Ballrs
result (real part)

1+a1- e;5 ,

B

4
.j--

+.+ A

J.+ a
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Yz = hz üz = ?'h2 l{rr*"1 (3-2a1 y2- (r-a) (3+2a) x2+a) sinot

+ (61r-s2 I /5o) xy.o" ot]
(3.24)

For t=0 the nodal lines ü2=0 are the lines x=0 and y=0' whereas for
t > 0 they are rotating hyperbolas (note that 0 < a < I). As illustrated in
iigune 3.3b the wave pattern starts with four gyres of which the two po-
sitive vorti.ces merge together.building three gyres in the basin for
most part within a period. The structure of this mode is Lherefore r?ot

couenved during the cycle. This ls a nevr' phenomenon due to the influence
of the aspect ratio parameter a.

3.4 Elliptic"basin with exponential bottom

rn the previous sections T!'Irs in circular and specific elLiptical do-
mains vrere discussed. Whereas the model of Saylor et aI. uncovered a

conspicuous dependence of the frequencies on the topography, BaIlrs mo-

del enabled investigation of the effect of the aspect ratio. In this
section r,re Dresent a model which accounts for both bathlmetric parame-

ters and therefore Dermits a more realistic modelling of the lake basin.

To introduce a topograrrhy parameter in an elliptical basin, Ivlysak (1985)

and Johnson(1987a) set out to study the Ti,g-equation ln elliptical coor-
di-nates (€,n). Basically, this \rras a generalization of Saylor's choice
vrho studied a circular domain j-n polar coordinates and thus lost the
possibility of incorporating into the analysis an aspect ratio parame-

ter,

The derivation of the Tw-equation in the elLiptic coordinate system has

already been given in sectj.on 2.4; the result was

(h-r {Et)E+(h-r rlnr)n-h!r rfn = o,
(3.25)

ü=0,

o<E<ts,
0<n<2T,

€=Es,0SnS2rT,

where € is the radLal
tic shore-line. Note
r through

a sinh {5
a cosh tg = tanh {g. (3.261

The velocity field can easily be computed from the stream function {, by

means of the formulas

oE = -(h,l)-l ün, un = (hJ)-r üt, (3 .27 \

and n the azimuthal coordinate, Es is the ellip-
that 6s is related to the aspect ratio paraneter

D
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and the definitions of a and the Jacobian ,J are listed !\ TabLL Z'3.

Consider nov, a topography which is constant along lines of constant E

(confocal ellipses),'and hence has hn=0. For thls case (3.25) is a dif-
ferential equation \^tith constant coefficients provided

hg/h = const.

Therefore, vre select an exponential depth-profile (shelf) of the form

h(E) = exp(-bg), b > 0, and introduce the separation of variables solu-
tlon following ,fohnson (1987a)

ü(5,n) = rr(6) .i(tn-ot) + F2(E) ei(-nn-ot), n=!,2,-.'

I\rith it, equation (3.25) is equi.valent to the system

F1" + b F1'

F2" + b E2'

m2) F1 = 0,

m2) F, = g,

( 3.28)

(3.29\
,mb
'o

,mb
'o

with ( )' = d/d6. Ansatz (3.28) is an extension of Mysak (1985) who

selected F2 = 0, In that case, only two homogenecus boundary conditions
at e.g. E = 6s and [1 < 6s can be imposed on FI. Ft(Er) = 0 is a no-flux
condition across the Ij-ne E = €t which can be interpreted by the Pre-
sence of a central eltiptic island in the domain 0 S E S 11. Mysak (1985)

presenls solutions for the limit case 6f - 0, a central barrier. These

solutions, however, suffer from the fact that rf j-s not differentl-ab1e at

the foci of the elliptic coordinate systen, and hence the velocity field
is not defined there. For 0 < Er < Es the basin has a central isl-and and

the physically relevant fields are finite, see Stocker & Hutter (I987b)'

It is characteristic of the elliptical coordinate system that the for-
nulation of the boundary condition at the center E = 0 is subtle- It is
necessary to have both rlr and Vrf continuous "across" E=O*), in order
that the velocity field takes physically meaningful values- Therefore'
the four boundary conditions

Fr (Es) = 0, Fz (€s) = 0,

Fs (0) :F2 (0) = 6,

rj(o) +F2'(0) = o,

(3.30a)
(3.30b)
(3.30c)

rnust be satisfied. system (3.29) together wi-th (3'30) is a werl-Posed

*) clearJv, in elliptical
"aciossi E=O means

coordinaxes E > = 0. continuitU ot a quantiq q(E,\)
tinQ(E,211-rt)= rin6(t,,1), o < t1 < 2ft.
a+a E+o
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boundary value problem of second order ln the l"nterval [0,8s], which
can be sol-ved in terms of exDonential functions. The conditlons (3.30)
will select the eigenfreguencies.

Because of the form of (3.29) and (3.30) the radlal functlons can be

taken as nurely real, and it can be verified that

b.-79
F1 (l) = e'

.2 bm
ll = 

- 

-IO

-9E
sin trr(6s-E) , F2(l) = e ' srnh t2(t"-€) ,

n2-oLaz, ^a=+,^2*f,az,

(3.3r)

(3,32)

fulfil (3,29) and (3.30a,b). (3.30c) eventually requires

11 cotll 69 + tr2 cotl2 Es + b = 0,

from which the eigenfreguencies can be calculated. Note that for suffi-
ciently large m and o fi in (3.31) becomes negative and F1 takes the
same form as F2. The cot in (3.32) equally transforms into a coth, and

then real.eigenfrequencj-es are no longer allowedi the m-th azimuthal
mode is thus bounded by

rnb
om < ------l-i-

"b.*' * -z-

Equation (3.32) yields a countable set of eigenfrequencies for given
topography parameter b and azimuthal wavenumber m and for each o the
inequalities 

I(n- :y'r < tr1(o).6s < nr, n=L,2,3,...

rnust ho1d. Ta,bte- 3,4 gives eigenfrequencies calculated by Johnson (1987a)

for !. = 0.805 (ellipse with aspect rati-o r =2/3) and b = 2.85 (shore

Iine depth h(Es) = 0.1) and Figune 3.5 displays the stream line contours
of the nodes with (rn,n) = (f,I), (2,1) and (1,2). The patterns resemble
those of BaIl's model or Mysäk's island model and modifications here
are due to the different choice of the topography (with respect to
BaII (1965)) and of the central boundary condition (with respect to My-

sak (1985) ) .

I

2

J

4

0.201 0.0541

0.327 0. I02

0.376 0.139

0. 379 0. I 65

0.0235 0.01 30

0.0458 0-0257

0.0659 0.0375

0.0830 0.0483

Table 3.4

Eigenfrequencies of the first
Tvl-modes in an elliptic basin.
The parameters are Es = 0,80S
and b = 2.86.
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h(€s) =o.t 0.2 0-5

0.380 0.281

0.201 0. I 58

0..l43 0.1'l3

0.0921 0.0732

0.0270 0.0216

0.'128 0.0422

0.0783 0.0270

0.0s69 0.0l 97

0.037.l 0.0129

0.0r I 0 0.00384

0.8

The influence on the fundamental mode of
ric parameters 6s (via aspect ralio) and

shown in TabLe 3.5. The influence due to

Table 3.5

Topography and aspect ratio
effect on the frequency of
the (1,f)mode.

the varj-ation of both bathylet-
b (via shore line depth) is

topography is dominant.

0. 99

0.67

0. 50

0. 33

0.'l

@@@,,
t=T/B

t=I /4

(m,n)=(1,1) (2,L) (L,2)

T=8rt,1h T=5l.7h T=372n

Eigure 3. 5 Stream li.ne conlours of the three fowest modes in an ellip-
tj-cal lake wj-th exponential bottom. lFrom Johnson, I987a]

Johnson extends his model also toltards more realistic.llottom profiles.
The purely exponential profile h(6) = e-bl exhibits an unrealistic topo-
graphy in the neighbourhood of | = 0 in that the basin has the forrn of
a trench there. He thus investigates a profife given by

,eutE-6n1, EssE<Es.
h(r) = {Lr , osEsEe.

describlng a basin wj-th flat bottom in its center. Tria1s of the forn
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(3.28) can be formulated for the domains E < €s and E> Ee, respectively.
A matching condition requiring continuity of !i and üE must be satisfied
at 6 = 6e. lrle do not intend to go into any details of this calculation
since it can be perfdrmed given the experience of the previous derlva-
tions. Tab!-e 3.6 lists the fresuencies for the parameters 6e =.0.80S
(aspect ratio r =2/3)., Ee = 0.434 (flat bottom occupying half the basin
width) and b = 5.2 (shore line depth h(€s) = 0.I),

n= I

1

2

3

4

0.137

0.253

0. 340

0-397

0.0321 0.0i29 0.0068

0.0629 0.0256 0.0135

0.0916 0.0379 0.020?

o.ll7 0.0496 0.0266

Table 3.6

Eigenfrequencies of Tw's in an
elliptic basin with flat bottom.
The parameters are 6s = 0.80S,
Ee=0.434,b=6.2.

Comparison of Tablle.d 3.4 and 3.6 indicates that increasing the width of
any flat region whilst holding shore lj-ne depth and aspect ratio of the
basi-n fixed decreases the eigenfrequencies. rnvestigation of the stream
function (not presented here) shor,rs that l-argest speeds occur in the
domain 6e S 5 S qS and that the strean l-ines covering the flat part of
the lake are nearly straight 1ines.

so far we have studied the Tw-equation in various coordi-nate systems for
closed basins, i.e. {Lwi,,tz donaLn"t. It \,ras demonstrated that Li.e d.Lie.,Le,te

'peQ.tlun 
exhibits conspicuous dependencies on the bathymetric parame-

ters, such as the wj-dth to löngth ratio (aspect ratlo) and the topogra-
phy parameter. Generally, increasing the topographlc gradients, i.e.
lln'/hl, decreases frequencies considerably. The same but $reaker influen-
ce is experienced when the aspect ratio is decreased.

In the next sectiön we lntend to briefly present solutions of the vor-
ticity equation in simpler conflgurations. ?hese are domains which are
infinite or semi-infinite h/ith respect to cne or both coordinates. These
indini.tz dctnwLnt have a cor-tlnulut 6pec,t4un and the properties of it wil!1 be
studied extensively in further sections.

3.5 Topographic waves in inflnite domains

Major developments in the understandj-ng of second class waves were not
advanced by solving the fw-equation 1n dLwi.te domaLns, but rather by
studying these waves in indlu.te domains, such as channels, contlnental
shelves, trenches, etc. The aim is not to provide a complete account of
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the history and the avaltability of known solutions, for this the reader.
is directed to Mysak (1980a,b) and more recent llterature*). By present-
ing sol-utions to analytically accessible conflgrurations we would rather
Iike to work out the typical physical properties of the characteristics
of these quided waves. The results presented here will be preparatory
to developments in subsequent chapters (particularly Chapter 5).

In the relevant Ij-teiature, TW's are usually studied in the context of
shallow water waves in a homogeneous or stratlfied fluid medium on the
f- or ß-plane. Much effort is dlrected towards an understanding of their
generation, propagation and their modificatlon by topography, stratlfi-
cation, nonl-inearitl-es etc. Motivation are observations in the continen-
tal shelf regions of the Earthrs oceans, and these observations have

often found excelLent theoretical explanations through these model-s. Ho\^t-

ever, the success in these interpretations vtFS due in parts to the sim-
plioity of the domains and their topographies. This made it possible to
study the low-frequency properties of the shalfow water equations and to
demonstrate existence of continental- shelf waves, barotropic and baro-
clinic Kelvin waves and edge waves and to analyse their interaction
(Huthnance, ]975, Allen, I975). All these interactions will be ignored
here, and only the Tw-eguation (2.22) wLlL be studied in which barocli-
nic effects and barotropic gravity rrJaves are neglected.

4) tt&1ry channel

infinite channel s/ith the Cartesian coordinate sy-
Figune 3,6, with a dePth profile h(y) which is con-

stant along ihe channel axis and a car-

Figure 3.6

rler-rrave ansatz of the forrn

r! = ü(y) ei(kx-ot) . o=6/r.

, the Tw-equation reduces to

(h-1 V,)'-lf;fi"l'* 12 6-r]rp = 9. (3.33)

in vrhich ( )'= d,/dY.

Infinite channel with one-sided shelf. At
the boundary points, 0' s, r the functions
h and h' may not be continuous.

*) Brink (1980), Brink (1982), Djurfeldt (1984), craxxon (!983), ctaxton & LeBlond.
(J986), Johnson (1985), Koutitonskg (1985), Lie (1983), Lie e Bl-Sabh (J983), ou
(1980), Takeda (1984), ugsak et al. (J979).

consider a straight,
stem as indicated in



Equatlon (3.34a) neans that the transport is continuous whereas (3.34b)

follows by integratltg (3.33) across the aliscontinuity:
s+6

lp l^tr'-tu')'-+(h-1)'rf -k2h-1 r!)dv = o,
6'lo s-ö

iiä lF-',r'- | ir+ -]:l: .l.r'[* t'r'- k2 h-] 'r']av] = o'

Because h, ü and ür are all bounded at y=s and h is nonzero at y=s g6.

Iäst integral vanlshes ln the linit as 6 * 0-

-56-

Equation (3.33) is subject to the farnifiar no-flux conditlons

ü(0)=t(r)=0.

Furthermore, at interior points we reques! that*/

[Ün = 0'
t .t Y = s.

[ (ü'- ä ü)/hn = 0'

ol 94qryry4 _ut14 _o_ry9:t44 _tqeo-yL*pLu

0SySs,
sSyjrr

(3.34)

(3.3s)

(3.36a)

( 3 .36b)

FLgune 3.7

lhs is inde-
I due to

consider the piecewj-se exponential depth proflle (see Ft-gutte 3.6)

leebY o<y<s,h(v) = i- [] ssy<r'
. 1, Ib=:In:.

1 gbl2.y slntry,
ü(Y) =1o"r,nk(y-r),

Lt renders (3.33) an ordinary differential equation with constant coef-

ficients. Subject to the boundary conditions the solution is

k .) 62

^.= T o-*--7-.

Evalualing (3,34) yields L]ne )upliü't diapen'sLon ,LQlt'tion

I
Ttan9^ =

-1
k ."ril(r;.;] '

r2- k u-12-b24'

of TW's in this lnfinite channel vrlth one-sided topography.

displays the ths and rhs of (3.36a) as functlons of lr. The

pendent of o whereas the ::hs is a double-val-ued relation of

*l fQfyl]atg=s denotes
[0/s)n =

the junp of the qaantitg Q defined bg

tin (0 (s+e) -q(s-e)).
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(3.35b). For freguencies lorder than a critlcal value there eslsts a fl-
nite number of intersections (ortr) or (ork). This number increases step-
rrise with decreasing o due to the periodiclty of the tanqent function.
Note that 12 is only positLve provlded the signs of k and o are identl-
cal. The dashed curve in Fi4utte3.l shows the ths for 12.0, i.e. the tan
is replaced by a tanh. For this case there are no intersectlons and.

hence no real pairs (o,k) satisfylng (3.36). This implles that phase
propagatlon ls into the posltlve x-directLon for this confl-guratl-on,
which amounts to the well-known property of shelf waves on the tilorthern
hemisphere (f > 0): the phase propagatlon Ls nLgh't-bounded*)" Thto limiting
cases of this dispersion relation are of interest.

---ls--------

o= 0.1

rhs (3.36o)

! rgure J. /
Plot of the lhs and rhs of the lmplicit dispersion relation
o(l) or o(k) given in (3.36) for s/t= \3, rb= 6. The polnts
(o,l) are indicated with D, A, o.

"t lL*{
In the limit as r+- the depth profile (3.35) becomes the well-known
exponential shelf. Correspondtngly the dispersion relation reads

I s.
;f ton F r^

11
T tans^ = -:--E-,

K*z
(3.37)

and the result of Buchwald & Adams (1968) is recovered. Figale 3.8 dis-
plays this dispersion relation for the first five modes. The shapes of
these curves exhlblt features \^/hlch are typlcal of topographycally traPped

*) Right-bounded neans xhax the shaLTower tegion is to the tight when looking inxo
the direction of phase pEopagation.
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Figure 3. I
Dj.spersj.on relation
for the first five
shelfwithb=5.4.
IFrom Buchwald & Ades,

o(k) (3.37)
modes on a

196e I
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second-class rraves: firstly, long
shelf waves are non-dispersive, I.e.
as k+0 car=äo/äk+c=o/k>0. Phase

and group velocity are the same. Se-

condly, when h'/h*/ is bound.ed., for
y € t0,ol then cgr < 0 for sorne range of
k > 0. In other words, the dj-spersion
relation o (k) possesses a maxlmum at
k = kO. For k < k6, c and cgr are both
posi.tve, and phase and energy propa-
gate in the same direction; for k > kg'
c is still positive but csr ls nega-

tive. Furthermore, o(k) + g as k+ -.
These properties t/hj"ch hold in an in-
finite domain wexe proven by Huthnan-

ce (1975) in a more general" context.

The stream function in

ü(Y) =

It decays exponentiall-y
shelf domain.

dl r19y9t1

A second simple case
then reduced to

whence

the shelf-srave linit takes the form

feb/z'v sinly, oSySs,
I ea/z's sin ).s . e-k(y-s) r s < y.

for y > s and is es:sentially sinusoidal in the

o' .1*. t$rr]
o=Lt2,...,

is obtained when s+r. The dispersion relation .is

tarl = 0r

kb

where the integer n denotes the mode of the wave, The streamfunction of
the n-th mode has n - 1 nodes across the channel. Lonq waves in this
channel are non-dispe.rsive with phase and group velocity

c=csr==r-f- as k+0.

{l * t$r2 ,

For very short waves the frequency is inversely proportional to the
i"ravenumber, o =b/k, and phase and group velocity have opposlte sign. The

critical point (kO,oo), where the group velocity vanishes is given by

*) Because of its significance ht/h is often refetred to as slope pataneter S = h,/h.
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The critical frequency oO strongly depends on the topography parameter
b = h'lh.

e) s_iye!9_11ep-1446

We now demonstrate that boundedness of ht/h is important for the second
of Huthnancers properties, namely existence of vanishing group velocity
for finite kO . -. To this end conslder the profile

Id, o < y < s,
. htv)=lr, s<y<r. ( 3.38 )

This profile was used. by Sezawa and Kanai (1939), Snodgrass et a1. (1962)

and Larsen (1969) to explain edge waves and trapped long waves. Clearly,
since h'= (f-d)6(y-s) vanishes everywhere in y€(0,r) exeept at y = s,
where hr is i.nfinite, TWts only exist because of this singuLarl-ty.

With (3,38) the differential equation (3.33) reduces to V"-k2ü = 0. Its
solutions are

ü( 
(sinhky, 05ySs,

vt= 
[asinhk(y-r), ssysr.

Inserting this into the matching conditions (3.34.) readily ylelds the
dispersion relation

o = (1-d) tanh ks tann k(r-s)
d tanh ks + tanh k (r-s)

Figunz3.9 displays o(k) for different vaLues of d, and

these are nonotowLca!.l.t4 gnowLng functions of k. Indeed

(3.39)

r"re notice that

- l+d'
o prop k,

as k+or

as k*0, 0.g

and no critical wavenumber k6

exlsts. Furthermore, there ls 0.6

only one single fundamental
Tw node. 0.6

Figure 3.9

Graph of the dispersion relation
(3.39) for s/r - 0.3 and 3 val-ues
of d. Note o(rk) is monotone.

I

d:0.125

---1-
ilg

I

d= 0.25 3/"'

+" J- 50 lt
7

I rk
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sherf waves have also been analysed for different tolpgraphies with x + -. Reid (1958)
and Mysak (1968) have investigated the finire width sloping shelf profile ot F.i4uZe-
3.10a,,'tne mass transport stres function can in this case be expressed in tems of
Laguerre polynonials and dispersion curves are qualitativeLy as those shown in Fl.gaLe
3.9, However, there are now a cowtably infinite set of shelf modes because of the
sloping portion of the shelf. Balt (196?) on the other hand studied the exponential
depth profile ot Figune 3.10b ana finds dispersion curves for shelf waves which are
qualitatively as those at FiguJLe 3.8, as woufd be expected. A similar study for es-
carpnent-, trench-. shelf- and wedge waves was given by ojurfeldt (1984).

Figure 3.10

a) Finite width slop-
ing shelf profile.

b) Exponential pro-
fiIe.

I *y, g.y.r, h.l-e-oY
a) h=1' b)

L l, Yts,

In reality channels have bathymetric gradlents on both sides. From the
results obtained so far, j.t can be concluded that in such a channel (e.g.
with a parabolj.c depth profile) there wiIl be TW's travelling along ei-
ther sides of the channel each in a right-bounded way. The dispersion
relation then consists of two branches (assume o > 0), one for k > 0 re-
presenting those \^raves trapped to y = 6 and k <0 for those trapped to
y=r. This, and the propagation of tW's in cuLued.channels will be dis-
cussed in Chapters 5 and 6.

{t l!9!p4e-u.Ury4

Island-trapped shelf waves r,/ere studied by Mysak (1967), Rhines (1969),
saint-Guily (L972), Buchwald,& MelvilIe (1977) and Hoss (1979). A1l these
authors sol-ved the Tw-equation in cyrindri-car coordinates, but used dif-
ferent representations of the,topographic profile. Mysak used the finite
width sJ-oping profile of Figunz 3,10a. (in $/hich y is now the radial dis-
tance) Saint-cuily applied the parabolic depth profile, while Rhines,
BuchwaLd & l4e1vil1e and Hogg employed the power la!,t

(dy0, a<y<a+r,
titv) = 

J r, y > a + rt

with o > 0i a is t'h,e radius o, anu island. To our knowledge, solutions
of the Tw-equation in the exterior of an elliptical island were not con-
structed so far but can easily be derived.

The derivation of the relevant equations in elliptical coordinates E,n
is given in section 2.4. We assume the isobaths to foltolv confocal ellip-
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ses, so that h=h(6). The shore of the island hri1l be given by t = Er,
the contour line of the outer edge of the shelf by 6 = En. The Tw-equa-
tion is given by (3.25)1. With the separation of variables solution

ü6,n) = n(6) ei(nn+ot) r r= L,2,3,...
(the + sign of o is used because a right-bounded phase propagation is
clockwise around the island) the bound.ary value problem becomes

(h-r F'),*(ä rr,-r)'_ m2 h-1) F = 0,

F = 0,

[Fn = [r']l = 0,

With the exponential sheJ-f profile

. -b(E'-EE)
h(E) = ilr'

Table 3.7

. _b(E-tF)/2 ,

",r,: Je-'--'E"-sintr({-{1) , \S €Ste,
I a.-'s EE s E,

mbrb2a' = o - m-- 4 '

Ert/(9I:9:9E,

6ss6,

E>ty
at { = fr,o,

at €=5n.

(3.40)

(3.41)

the solution of (3.40) satisfying the boundary conditlons reads

hri-th

The matching conditions at qE determine the constant A and yield the
eigenvalue equat,ion

f tunr(EE-6r) = Jgr ü= 1,2,3,....

r 6y AE/AI b Mode (m, n )

(1,r) (2,r) (3,r) (1,2)

0.99

0.5

0.I

2.65

0. 549

0. 'I00

z
3

5

2

3

5

2
J

5

3 .30
?.09
I .43

2.48
L69

1 .88
I .38
I .05

0.232 0.358 0.405 0.006
0.31 7 0.408 0.399 0.088
0.379 0.401 0.347 0.120

0.285 0.396 0.410 0.076
0.354 0.4]0 0.374 0.105
0.397 0.385 0.318 0.135

0.336 0.411 0.388 0.096
0.384 0.398 0.341 0.123
0.408 0.363 0.289 0.149

Eigenf.requencies of the (m=I,n=1), (2,1), (3,f), (1,2) modes of TWrs around
an ell-iptic island according to (3.4I). r is the aspect ratio (width to
length) of the island, A6 and Ar are the semi-axes of the elliptic shelf
boundary. AB=cosh€s, and of the island Ar = cosh{1, and b is a topogra-
phy parameter such that h(Er) = 0.1.



-d)-

This is exactly analogous to the dispersion relation (3.37) for Twrs of
a straight shelf, except that the "wavenumber" n is guantized here due

to the 2n-periodicily in n. (3.41) is an example of an infj-nite domain

with a discrete spectrum, Table 3,7 lists a selection of eigenfrequen-
cies for various values of m, 6r, {s and b.

3.6 Semi-infinite channels and..elongated basins

In this section \^'e present a method recently described by Johnson (1987b).

The method makes use of the invariance property of the Tw-equation dis-
cussed in section 2.4. civen a coordinate system (E,n) which can be

conformally mapped onto the Cartesian system (x,y), it follows from
(2.64) and (2:62) Ehat the PDE governing topographic wave motion form-

ally agress Lrith that in the Cartesian system. Johnson (f987b) investi-
gates the conformal mapping from (x,y) onto (6,n)

. -r sinh (x + iY)g+In = COSn'----=----
sinh a

(3 .42)

which transforms the semi-infinite channel lyl <r/2, x20 vrith a cut
ony=0, x)a tothe strip 0SnST/2, - @<q<6, as shown Ln FiguLe

3,11, Note that for large l6l tne coordj.nate system (E,n) approaches

the Cartqsian. with a depth profile h(n) varying only with n, the chan-

nel has a constant depth along the thalvreg n =0. The boundary can be

chosen at n =ns (0 < ts S r/2)) this curve and all isobaths are smooth.

Because (3,42) is conformal, the Tw-equatj-on takes the form

(*.1.q)E+(+ü.n)n*,t,g tfl, = o, (3.43)

and rf vanish€s on lg and is smooth across the cut n =0. Assuming two

oppositely traveJ-ling $raves, viz.

rl = Ft (n) cos (k6-ot) + F2 (n) cos (k€+ot) , (3,44)

corresponding to (3.28) wj.th n and 6 interchanged, (3.43) becomes

n =i-"

rr =lnu Fig.lte 3.11

rl=0 coordinate lines of the (t,n)
svsten in the semi-infinite

l=!n cirannel lyl t n/2, x z o.' I lFron Johnson, I987bl

,=*n



-53-

F" - (*') "'- lt *,qn, . tz]r = o, (3.45)

r.rith o =- w/f for FI and F21 respectlvely, Across the channeL boundary
n = tg the no-flux conditj-on

F1 (ns) = Fz (ns) = 0, (3.46a)

1s requested. The stream function U must be smooth "across,, the cut
n = 0, thus implying

Fr(0) -F2(0) = 0,

Fi(o) +ri(o) = o. (3'46b)

The exponential depth profile

' h(n) - J 
e-b(n-nB)' nssl3rls'

[I , osrlSr')e,

renders (3.45) a well-posed ll,near eigenvalue problem with constant co-
efficients. (3.45) and (3.46) completely agree with (3.29) and (3.30)
with the coordinates interehanged. The solutions, cj_ting Johnson (I9BZb)
read

T 0r r-lrr = L 
cosh kns + af sinh kne I

[ .*p(- ä b(n-nB)) sin (Ä1rnr-n))t--

*l sin(trs(n5-o)) 
(nBsnsns)

I

["o'i,(t tn-ns))-f, sinn(:<rn-ne]). .(o S I S nn)

lcosh kns +

{

Ixl
t

d) :-r
n| sinh xna I 

*

exp(- ä b tn-ne t)'ini (rz ( ns-n))

sinh(t2 {n"-ns))

cosh (k (n-ns l) - f, =rni, (ktn-nn )),

(nBSnSns)

(0SnSrle)

kb '62 r2 = .kb .l<2
^i= o -K'--4., ^i=G-*

0l = lt cot 11 (ns -ns) + b/2,

c2 = tr2coth.l2(ns-na) +b/2,

and the dispersion relatj-ons becomes

^ k+o,1 o'2
I = (or-a2) (I+ tanhz kas) + 2 --- tanhknB . (3.47)

Note that a channel wlth no flat central zone, '.e. nB = 0, has the sim-

62,4
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o1 +a2 = 0,

its qualitatlve shape is given in Ft4une 3.8. Due to the invariance prln-
ciple under conformal mapping it is the same dispersion relation as in
a straight infinite channel. More specifically, each frequency o a1J.ows

a short and a long topographic vrave with their phases travelling from
6= - to q= -@. The energy of the long wave propagates into the same

direction whereas it travels into the opposj-te dj-rection for the short
wave .

Fi4utte 3.12 displays contours of ü in two semi-infinite channels. A right
bounded wave propagating from infinity towards 6 = 0 follows the lines
of constant f/h. This amounts to a complete reflection of wave energy
as the reflected wave travellj,ng towards 6 . - - has the same wavelength
and amplitude. Hence, the energy of a incident lvave is not distributed
among other possj.ble wave types but is transferred vrithout foss -to an

outgoing wave wj-th the same wavenumber. We sha1l present configurations
with a di-fferent reflection behavlour in section 8.

The results for the semi-infinite channel
approximate solutions in elongated basj_ns

As mentioned, the (6,n)-coordinate system
stem for growing lll ana x, respectively.

can be applied to construct
as oroposed by Johnson (f987b).
approaches the Cartesian sy-
A basin of length 2L can then

a)

bWffi
Figure 3.I2 Contours of the stxeam function of TW's

channel. The parameters are rtg = I.5, nt
a) a = tr/4, k= 4 and b) a = r/2, k= I.

in a semi--i-nfinite
=0.5,b=1 and

[rroo Johnson, 1987b]
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be constructed by patching two semi-infinite channels at EL= L - lnsinha
together. The coordinate lines coincide there with an error of order
exp(-2l,) cosh2a as can be seen from expansion of (3.42) for x >> 1. The

stream function (3.44) must be continuous at t =[" implying that the
peri.odicity condition k=mr/ZEt, m=I,2,3,,.. ho1ds. This selects the
eigenfrequencies from the dispersion relation. Figutte 3,13 shows plots
of the (m,n) =(1,I), (2,1) and (1,2) modes in the elongated basin of
aspect ratio I:5.

The solutions qualj-tatively agree with those in the elliptical basins,
see FLgwte 3.3 a.nd,3,5. A particular eigensolution is characterized by

tvro modenumbers m and n. The "radial" modenumber n governs the stxuc-
ture of the,solution in the transverse n-ciirection and is incorporated
in the dispersion relation (3,47r. Modes with the same radial modenumber

lie on the same branch of the dispersion relation. F.i4une 3.8 gives a

schematic impression of these branches and d.emonstrates that each radial
modenumber has its individual cut-off frequency above which only modes

with lorrrer radial rnodenumbers can exist. The "azimuthal" modenumber m,

defined by the periodicity condition, qives the structure in the {-di-
rection and is related to the number of nodes along the long axis of
the basin. we conclude, that the spectrum is ordered $rith respect to
both modenumbers individually, The largest eigenfrequencies are expec*
ted from modes with n = I and m = mO, v/here m0 is an integer closest to
the critical wavenumber kO. Moreover, this critical modenumber nq dis-
cerns solutions vrj-th different properties. Modes with 0 < m < mO are
associated Lrith wavenumbers 0 < k < kg, and from the di.spersion relation
!,/e have äo/ök > 0, see FLgune 3.8. Eigenmodes $/ith increasing frequen-
cies have increasing modenurhbers and hence exhibit vortices with smal--

1er spatial scale. The opposite is true when m > mo. Slnce these tr,/o

azimuthal mode types belong,to the respective domains of the dispersion
relation. they enjoy different physical properties. In chapters 7 and I
these tr,ro and an additional modal- type will be discussed further. There,
the dispersion relation of freely propagating TW again proves to be the
key in understanding the structure of the spectrum of the Tw-operator
in enclosed domains.

The method of Johnson offers five bathymetrj-c parameters t,o model the
aspect ratio of a lake and, independently, the form of the lake ends

satisfactoriJ-y. It is therefore a more general approach than the e]Iip-
tic basin of section 3.4 though closely related to it as the latter is
obtained by a conformal mapping, as well.



a)

r.\u.l

c)
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Mysak et al, (1985) interpret the 74h-signal in the Lake of tugano by a

fundamental Tw-mode. ,Johnson, on the other hand, demonstrates that a

realistic cholce of the bathlzmetrlc parameters, particularly that of the
aspect ratio, leads to perj,ods of about T = 300h and longer. He conjec-
tures that a possible TW with a perlod of the order of 70h nust have a

wavenumber of the order of the. inverse aspect ratio of the basin. For a

basin $/ith the parameters of Figune 3.13 e-g- the (20,1)-mode has T =
8'1.2h. Modes wlth that large azimuthal nodenumbers exhibit a very sma1l

scale structure over the entire elongated basin;:and lt is questlonable
whether such a mode can persist in nature to produce a pronounced signal
as in Lake of, Lugano. and Zurich. It was mentioned in the introduction
that FE-calculations for the Lake Lugano basin point at modes with. a eom-

pletety diff6rent modal structure which l-ack the property that they have

coherent wave motion in the whole domain.

Johnsonrs model rebresents a strong instrument to construct TW sol-utions
1n an elongated 1ake. Horrever, due to the invaxiance princlple, it is
not known whether the modeL could produce mode structures resembling
those.of the FE-modeI ln Figuhel.l0. Most important, incident topogra-
phic waves in the seni-infinite channel are - for aI1 frequencies - com-

pletely transmitted onto the opposite channel side in the process of r'e-
flection. However, for each frequency there exists r ilnit" number of
wave modes, on whieh incident energy could be distributed. In chapters 7

and B another model is discussed which does not enjoy the invariance
principle but yields a number of additional results tovrards a broader
understanding of topographic wave motion,

<.-
Figure 3. 13

The modes (I,1), (2,1)'and (1,2) in a basin with aspect
ratio 136 and ns = I.5, nB = 0.5, b = I and a = r/2.
The frequencies are: a) o = 0.051L (T = 331 h),

b) o = 0.0966 (r = 175 h),
c) o = 0.0258 (r = 65s h).

[From Johnson, 1987b]
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4, The l'lethod of Weishtecl Residirals

4,1 Application to the TW-equation

Construction of analytical solutions to the Tw-equatj-on (2.24) subject
to the.no-fIux boundary condition is possible only for sone simple cases.
Even though the equation may still be separable when written.in a spe-
cial coordinate system, the solution of the emerging ordinary differen-
tial equation may either only .be expressible in terms of special func-
tions which are tedious to handle, or must be obtained numerically.With
realistic boundaries and non-vanishing curvature of the domain an exact
solution can hardly be found, In this chapter we therefore intloduce a

procedure, by which equation (2.24) can be solved appttox'inal.e,Lq. The method

consists of a ieducti-on of the dimension of the mathematical problern by

a basis (shape) functi-on expansion and is a variant of the pttojec'tionme-

thod, lhe Apect)La! or mldaL me,thod and may also be considered a genet-a!-Lzed

Az!)ilrß,Ll(tn o{ votLablu pstocedwte. Its advantaqe is that despite of its nume-

rical i.ntent, the method permits analytical techniques to be pursued far-
ther than with classical numerical approaches.

There are several techniques by which the reduction of the dimensionality
of a boundary value pioblem can be achieved and then approximately sol-
ved. One is to derive'the governing equations from a Va,r,La,t'LovLaL PnLncip!.z.

For the Tw-eguation this involves construction of a [unc.LLona.L (Lagrang-

ian) i-n terms of the mass transport stream function; the Tw-equation is
obtained as the Euler-Lagrange equation of this functional and the bound-

ary condition would result from the natural boundary condltion of the
variation of the functional. Ripa (1978) and Mysak (l-985) proceed this
way. we use here the Me.thod o( We,Lghted Rp.tLduat's (MWR). Both methods, in
their essentials, are described in !'inlayson (1972). The MWR has already
been applied to gravity waves by Raggio & Hutter (1982) , to topographic
waves by Stocker & Hutter (1985, 1987a,b), to two-phase turbidity currents
by Scheiwiller: et a1. (1986) and to the governing equations of a conti-
nuously stratified lake by Stocker & Hutter (1987b).

The MwR and the variational principle in the function expansion approach

are related to the Method of Finite Elements (FE). One fundamental dj.f-
ference, however, consj-sts j-n the fact that the domain of integration is
not partitioned into a number of elements in which linear or higher order

interpolation is performed. Rather than assuming th.e Local functional
deDendence withtn an individual element and then mj-nimlzing some globa1
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measure, our model approach prescribes t}re globalL functional dependence

along one dimension and maps the problem into the orthogonal subspace.

This is achieved by a rrreighted integration of the equations along this
dinension.

We consider the eigenvalue problem (2.24) formulated in the natural co-
ordinate system shown in f.i4une 4.1,

lP{ = Q1 in 0,
l!rf = Q' ln DD,

with the definition of the differentj.al and boundary
respectively

. = +[-'"1.*,S
rB =, 1.

fr1. ftrn-'" il,')l.q# *

B*(s)

(4.r)

operators ID and lB,

ah-r a 'l

as anl'
(4.2)

1-Kn, where K is the

s<
/

o - w/t is the non-dimensj-onal frequency and ,J =

curvature of the thalrdeg,

Figure 4.1
Elongated lake and transverse
section in a natural (s,n,z)-
coordinate system. The thalweg
axis (n=0) may be a center of
strrnmetry (not necessarily) and
have curvature K(s).

s=L

B-(st h (s,n)

0

Let {Pa(s,n)} be a eomplete set of basis functions indexed by o, ir terms
of !'/hich the mass transport strean function V(s,n) is expanded:

N

V(s,n) = ! eo(s,n) tq(s) = P*'rü. (4.3)
q=I

Each basis function is $Teiqhted by a residue function üa(s) which j-s as-
sumed not to depend on the transverse coordinate n, AIl functional de-
pendence on n is now incorporated in the preselected basis functions Pa,

a general form of separation. Expansion (4.3) represents the exact solu-
tion for a separable problem prövided the basis functions are approprla-
tely selected. For non-separable systems as (2.24) generally is, and for
an arbitrary set {Ps} with N < 6r the expansion is merely an approxima-
tion. clearly, fast convergence is anticipated so that truncation of
(4.3) for very small N may furnish a sufficiently accurate solution.
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The integration of (4.1) with an arbitrary bounded !üelghting function
60(s,n) over the lake domain and along the shoreline, respectlvely, leads
to the integral formulations

I ,t*, dg da = o,
D

r n=Bf
I __ tt Po üol Jeg dn =

ü^(s) I* ls=0,L

o = i[-,",*i? ftrno,ror]*
B- \---__

(r)

f ,*t, do d!, = o.
AD

(4.4) yields

f tn eo rrs) eg dog ds = o.

AD

(4.4)

If (4.4) holds for any weighti-ng function this is equivalent to (4.1)
owing to the fundamental lemma of the Calculus of variation (Courant &

Hilbert, 1967). Expanding also the weighting function in terms of the
complete set {0p}, viz. 

N

60(s,n) = X OS(s,n) 609(s) = Qg ö0ßr
ß=l

and inserting these expansions into

J (D Psüs) Qg 649 da = 0,

U

(4.5a,b)

The integration ovbr the lake domain 0 can be split up into ttro integra-
tions over either coordinates using da=.ldn ds for the area element in
the natural coordinate frame. Further, the trivial form of the boundary

operator IB = I suggests the special choices

Po(s,nl) = 0. gg(s,ai) = 0, for all o,B (4.61

such that the only contributj-on to (4.5b) arises from the ends of the
lake.
Since the weighting functions are arbitrarY, (4.5) can be replaced hy

The residue functions {s depend only on s and are therefore extracted
from the integration by carefully accounting for the effect of the dif-
ferential operator.ID on qro(s).'substituting (4,2) into (4.7), we obtaj-n

,l *'ß=r""'N' (4'7)

*[nto frrno,r,ot]l

(21

where use

expression

. E"t 3r","" k) - # f;r"o vol] ou u,,,

s---_/-g---_Y-

(3) (4)

of the summation conventi.on has been made. Each term in this
will be evaluated separately. In the following deductions we
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need Leibnltzr integratj.on rule

B+ B+

J*"dn=lftuclan-
B- B-

, ?*u" dn-(pc)l .** + (rc)t .-?+ - ?.u pu",= äs J_ r\' urr-,..,1u*'F ' ,",1r_ 5s J_' 5;

where F and G are arbitrary, differentlable functions of s and n.

with these preliminaries the terms (1) to (4) can be evaluated' The rule of
transfornation is to remove differentiations of lhe topography h as far as

possible, which can be achieved by integration by parts:

TUun (L't.,

o = J *$ * (Pd 
'ta)) oB dn

= äi i + * (pa üs) eß a,', - f !-"r f tno lolp un

. *[t, I+ *ou*. *J*""ou""]
- *,1+* * u'- S J$*P*

= *.[*l+*esdn-l+* P""]
.*[l+ *esdn**t+rqa6dn
- l+n *u"] . # l* n"e6dn.

rzt = (1rX 
[n-t " fir"o uor] ouu,,

= -ln-t "frrnoro,ffu''
., r .-r - äPa äQß 

^^=-vcJn-'TäTi-o',

ct = l* *(Po to) es dn

= - I * (ftreo ,i,ol os)-r,-r an

= -*" J 
ot *,* es) dn - $ 1 

n tfltn" os) dn,

B+jr|$a"

Tuutl (2, .

Tetu (3\:



Te,ur u) '
(4) =

Parenthetically we rnay remark that the process of this eval-uation is
more complex when the basis functions are not restricted by the condi-
tion that they vanish along the shore, because further integration by
parts is necessary in that case. (4.7) thus takes the foxm

o =-ioiI+lJ$n*oua"l
L 2s2 L).1 c-11 J

. *l JS * es dn + * I+ P., oß dn - f +",**l
* u"L* J + * os an -J + * Sa'-fr.'" * *."il (4'8)

. * l- J 
n-'ft ouun - J n-'o.$ u"]

. u"ll n-'* Su"- i r'9# Su.- frjn-'*ouu"l,

and the integraLs are understood as gl-.. tn.8) can be wrj,tten in the
form

ußoüo'=oi".u=r,..:,*{o<s<L' 
(q.s)

tu=0J ts=0,L.

vrith the matrix operator elements

Mßo = -iolu!! #.,#."äg -'Bä)*.(#-'fi- uffir]

- tufr! . 
'84, * (-+$ * uffi - ruft) (q,ß = r....,N) .

I# $ r"o ,r,o) ou u,,

- * J n-t $teo 't'ol 
es dn + j tt *" 

($rno vol ou) a"

- {3 / n-'* e6dn - t" ä1 J n-r Sqra,,

* ,ro I n-t *,* ou, a,, * $ J i,-' $ ou a".

(4.r0)

The matrix elements t'tfl represent quadrature formulae in the transverse
direction, explicitly:
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=

loMß" -

20
Mßc =

J ir-r r-r P* og dn,

I r.-r r-r $ ou u",

f r'-'ffou a",

f r,-r rr * *u",
f n-tP P un.,dsdn
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uffi=

,'& = ln-,

"äj = J n-'

/ r'-r .r-r e* S

I n-t 
"o 

9. u,,,

dn'0t
MBc =

_ äpa aeß -J -E;. E- dn,

aPd a08

dn ds

(4.rr)

I1
Mßo :

L2
Mßo =

The individual compone"ts ruil in (4.11)
depend on the topography of the 1ake, h,
coordinate system, .I(s,n), on the shape
on the sets of basis functions {Po(s,n)J

are known functions of s and
on the metric of the natural

of the lake shore, B!(s), and
and {Qp (s,n) }.

Notice that (4.9) is only meaningful as long as aII entries of the ma-
trices (4.11) are bounded. Since J and J-I are both regular, this
means that the basis functions po and ep must be chosen such that the
combinations h-1po eg, h-räpo/äs eg. etc. arising in (4.II) are inte-
grable. For h>0 no difficulties arise, however, when h=0 along the
shore the functions Po, Qg must be taken from a set of which the near-
shore behavior is dictated by that of h. This is a drawback of this
nelhod and restricts it essentialry to profiles vrith finite shore depth.

Equations (4.9) form a system of coupled one-dimensionar differential
eguations that replace the singre two-dimensional boundary-value pro-
blem (4'1). These two formulations are presumed. to be equivalent provided
(1) the sets of basis function! are comptete in [B-, B+] and (ii) N = -.
The selected order N of the system sets a natural bound to the varlabi-
lity of the approxi-mate solution as werl as to its quality. At a first
glance the MwR seems to reave us with a more complicated task. Finite-
di.fference calculations, however, have i-ndicated numerical di,fficulties
such as slow convergence, particularly for complicated topographies and
for large wavenumbers (Bäuer1e, l-986). This semi-analytical_ procedure may
thus welr prove advantageous in achieving a better physical understand-
ing.
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4.2 Symnetrization

More insight into the structure of the operator (4.10) is gained when

the physical configuration exhibj-ts s]'rünetry with respect to the axls
n = 0. Such a symetry may exist for channels and it often applies ap-
proximätely for elongated, narrow 1akes. The slrrunetrization is also mo-
tivated by the fact that solutions found for circular and ell.iptic ba-
sins, indicate that the phase rotates countercLockwise and the stream
function continuously changes its synunetry with respect to the s)dunetry
axis of the lake*J. As a consequence a split into symlletric and skew-
syrmetric basis functions is appropriate. We sha1l, for the purpose of
studying channels and basins raihich have a syrunetry axis, formulate prob-
Iem (4,9) in a,synrmetrized version. To this end, the functions Ps, Qg,

J and J-I are slrlRmetrlzed by introducing the decompositions

f(s,n) = f+ (s.n) + f- (s,n) ,

f+(s,n) = f+(s,-n).

f-(s,n) = -r-(s,-n).

(4.L2)

This decomposition is applied to the matrix elements Uil in (4.11-); the
important result here is

*83 = 
"83.. 

**83-- **83-* *M83*- (o.ß=r,...,u)

= J rr-rt.r-tf r[ oi an * J 
n-rt.r-r1* { o[ an

+ f ir-r1s-r| r[ of an + J rr-110:-r1-p+ a[ dn , (4'13)

,.2O - ,.2^ r ,^r 'M6i = Pld *Mö'

= In-, * o;,an* J rr-r $ ou u",

with anal-ogous expressions for lafrj a"a upfr respectively. It has been

assumed above that h- = 0 (synmetric depth profile), and the integration
is from B- = -V2 B(s) to B+ = V2B(s). Because the basis funtions Pd

and Qg are decomposed according to (4.12) the expansion (4.3) of the so-
lution ü(s,n) must be replaced by

.) If in Figure 3

t=0thenass
is sgnnetric.

3 the lonq axis is identified with the s-axis it is seen that fot
transport sttean function'$ is skew-sgmetric and for t = 1:/4 ix
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t(s,n) = Pä(s,n) ,!ü(s) + P;(s,n) rlö(s),

where the ! superscripts on {ro indicate merely affiliation
vidual ffi. rn vector notation the stream function reads

g= ('1i,..',vfr, vi,""vi) = (rl+;o-)1

and the matrices (4.13) take the form

to the l-ndl-

f Moo++ M00-+ I
Moo=l l.- | voo+- $oo-- I 

'

with this notation the differential equations (4.9) read

(4.r4)

v/ith the matrix operators lM and lN the Particular form of which ls
unimportant in the ensuing arguments.

The coupling of the solution vectors r!+ and ü- is induced by the off-
diagonal operators D_4-*, Y*- and lN-+, IN+- respectively' The former

are due to curvature and vanish when K = 0. The latter origj-nate from

the vector product in equation (2.22) and express the effect of the co-
rloli-s force. The restriction to only slrrünetric basis functions reduces

(4.14) to two decoupled equations. This obviously corresponds to the

claim that both terms of the sum of eguation (2.22) be individually
zero. on imposing the boundary condition this implies U = 0, c.f. sec-

tion 2.2. It suggests that the.approxinate system requires a set of
basis functions containing both s1&unetric and antisymrnetric functions
if qualitatively correct results are to emerge.

The renainder of this monograph wilf almost exclusively be concerned

with the solution of equation (4.14) in various different domains.

Mro=[ I Y'o-*l 
,- Luzo+_ g I

i l_ry** ry_*.] [ o ry_*ll it.\
[-'" Lry*- 4.4--]. L *l- n li \o-l 

= ''
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5, Topoqraphic waves in straight infinite channels

In this chapter properties of topographic waves in infinite channels

wilI be discussed. The first four sections deal r^rith our own solution
procedure using the model equations (4.9) and follow Stocker & Hutter
(f985, f985,1987b). In section 5.5 solutions obtained with analytical and

numerical finite difference techniques (Gratton, 1983, Gratton& LeBlond,

1986, Bäuerle, I986) wj,lI be investigated.

5.1 Basic concept

The suitability of the approximate nodel equations (4.9) deduced with
the MWR is now'tested using a straight, infinite and symmetric channel

with a topography of the form

( s.1)

lrhere e is a sj-dewall and q a topography parameter, see Flgunz 5.1, which
provides the possibilj-ty of modelling both coneave (q > l) and convex
(q <1) transverse depth profiles. The sidewall parameter € has been in-

B(s)

h(s,n1 = ho(s)(r+e- l#l-,,

t.ho(s)

q=0.5
q= 1.0

q=2.0
q+-

(s.2)

a model consisting

ho(s)
Figure 5.1
Cross-sectional depth
profiles of a strmmet-
ric channel.

troduced in order that. al-1 matrix elements (4.11) take finite values.
The complete sets of basis functions {eo} and {Qg} wiff be chosen to be

identical (Galerkin procedure) with the syrnmetric and skew-slmmetric
parts reading, see FigaLe 5.2,

p[(s,n) = .os(nr.-]r 5p,".,1 ,

(o=1,....N).

P;(s,n) = sin(ro fr$t,
nere, pj and Po arise in pairs; N thus characterizes

\
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Figure 5.2

Slmmetric and skew-symmetric
basis functions Ps.

of 2N basj-s functions, These satisfy the boundary conditions (4.6) along

the shorellne n = * |ef"l. substitutinq (5.r) and {5.2) into (4.II) and

assuming BisI to be clnst.rrt*'/ it is seen that

*33 = u nrt *Bl , nffi = "-t 
t'ot *63,

rufr! = r.'or xfr!, i'r[] = i'or xffi ,

while the elements with the superscripts 10, 01, 11, 1,2 and 21 all vanish.

The dinension-free matrix elements xfi:o aepena on e and q and straightfor-
ward calculatj-on feads to the expresslons for these:

--00++ (--j I 1K6 = Jhltcosr(c-i) ycosn(ß-jlVaV,
nn__Kil = I frl' sinndy sinrßy dy.)*

*7j3** = Att2(e-)lrc.ll f n;r"rnota-]lv sinrTto- jtvav.

"41-- = 4r2 o.ß J r,;1 
"o. 

roy cos rßy dy,

*ffi.- = - 2r (u-*, I ni sin r (o- jl r "n 
n ßy dy,

--20-+^('lK6ö = 2ro j h-r cosrdy cosr(g-:y' V aV,

A1L- ,-_r 1.Kö; = zto J hlr cos tr (o-ä) Y cosr ßY dY,

*83-. = -zn<a-|,t f n;r 'i.rTdy sinnte-*t v av.

with h* = l+e-yq and the integration is meant to be from y = 6

The numerj-cal evaluation of these elements was performed on a

*) lhis asswption is nat necessatg and the opeEator
Stocket e Huttet (1985).

14 tor ZB/As I 0 is given in

(s.3)

to Y =1.
CYBER com-
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puter using IMSL-Iibrary subroutines. The results for some values of q

and e can be found in Stocker & Hutter (1985). (4.I0) takes the form

K = Bho y = - iols2 xoo *1 - 
"r<not *, 0.. *

- B(K2o * {o'l * + a(h[r *, O'0.

x22l-)
(s.4)

This operator has constant coefficients whenever the depth-proflle is
constant or exponential !.rith respect to the basin axis. For an infinite
channel, however, we prefer ho(s) = constant. A carrier-wave ansatz

(s.s)

with a dimensi'onless complex-valued wavenumber k, rm(k) I 0 is meaning.ful

in semi-lnfinite and finite channels, and a length L is then appropriate.
with (5.4) and (5.5) the symmetrized form of (4.9) reduces to a system

of- algebraic equati.ons

(s.5)

in which the aspect ratio parameter r = B/L has been introduced. Notice
that r and k enter only through the product rk, suggesting that solutions
for r = I only need to be constructed. C is a (2N x2N)-matrix and d'e-

pends on o and k. Equation (5.5) admits a non-lrivial solution vector c

if and only if
der q(o,k) = 0. (5.7)

This characteristic equation forms the d'<'spe'uLctn tteLat'Lon o(k) for topogra-
phlc Rossby waves in a straight infinite channel. It is a polynomial

equation of order 2N in (rk)2 wlth real coefficients. For each frequency

a Nth order model, therefore, yields 4N wavenumbers counting complex

conjugates and pairs having opposite signs.

Let ky(y =!....,4N) be a root of (5.7) corresponding lo a frequency o and

1et c1,(co") be the associated eigenvector (component) of (5-6). A general

channel solution p1s,n't) can then be written as

99=0,
o( (rk)2 Kco++ + K22++) _ {rxt {I2ö-+ + Ko2-+)l

L
- (rk) (K20+- + 1402+-, o( 1s112600-- * X22--))

eikYs/L ur[ ü
4N

ü(s,n,t) = e-ioft X
Y=1

ej(s,n) coy * X n!-"(s,n) cor], (s'8)
s=N+1

in which solutions belongj.ng to individual k occur in a Iinear conbina-
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tion by an arbltrary complex vector d, (dy). Representation (5.8) is an

appropriate solution ln a stralght infinite channel. For this partj-cular
configuration problem (2.22) is separable, the coefficients of the sepa-
rated differential eguationf however, are non-constant, and for very
special topographies exact solutions can be obtained, see later sections
5.2 and 5.5. The MWR probably offers more freedom in modelling the chan-
nel- topography, because improved accuracy can be obt.ained by higher-
order models,and convergence 1s expected.

5.2 Dispersion relatlon

Solutions of (5.7) may be plotted schematically for a first-order model,
N=1, in a (Re.(k), Im{k),o)-coordinate system, see FLguLe 5.3. This is a mo-

del which uses one slnunetric and one skert-symmetric.basis funct.ion of the
forn (5.2) and is of lovrest possible order. Its graph is sl'mmetric rdith
respect to both axes Re(k) = 0 and fm(k) = 0. Thräe regimes l, 2, 3 can

be distinguished where the wavenumbers k take real, complex and purely
imaginary values,respectively. TabLe

5.1 gives the periods at which the
i-ndi-vidual regirnes join for different
topography and sidewaLl parameters.
In regime 1 al-l wavenumbers k are
real and, therefore, represent phy-
sically possible channel solutions.
Evidently in regime l, there exists
for each frequency a long and a,6hort
wave. This is typi.cal of Rossby waves
and has also been observed för shQX6

unvu in chapter 3, provided the slope
parameter S =hr/h was bounded,in the
domain. This is so also for channels:

Figure 5. 3

Schematj.c plot of the complex dis-
persion relation o(k) for an infini-
te channel with e = 0.05 and q = 9.5j-n a first-order model. In regine 1,
k is real; in regime 2, it is com-
plex with the constant modulus lk i;and in regj-me 3. k is purely imagi-
nary, taking aslzmptotie values k1 and
k, fot large o,

a

t
I

k
I

I

v,/l

>K

/il
/il

I l.)r'ltnrl
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\. \.-
oi



- 80 -

in other words it can be proven that existence of a wavenumber lki =

Itol. - such that cs = do,/dk = 0 is guaranteed only if h'lh is bounded

everywhere across the channel width (see Appendix C). At this critical
wavenumber no energy is transported along the channel. This corresponds

roughly to wavelengths of about:0.5...1 of the channel width; and the
periods are listed ln Table 5.1, ft is also viorth noting that Re(k) can

have both signs. This is in contrast to planetary Rossby waves whj-ch are

due to the ß-effect (Holton, 1979) or Rossby waves on the continental
shelf (LeBlond & Mysak, 1980) , the reason being that here h'/h changes

sign in the channel. So, such configurations enable toPographic Rossby

waves to propagate in bollr directions. In either case' as an effect of
the coriolis force, the structure of the r^rave on the iNorthern hemisphere

is right-bountled with respect.Lo the direction of phase propagation. The

dispersion'relation (5.7) contains only even powers of o such that (5.7)

is independent of the sign of o. It is a convention that the sign of f
(positive on the Northern hemisphere) determines the sign of the non-

dimensional frequency o.

Trlhl

e=0.05 e=0.'l0

T2thl

e = 0.05 e e - 0.10

0.5

t.u
?.0

5.0

52.8

60. 5

83. 0

174

58. 3

64. 3

88. 2

199

10. 5

13.2

22.0

58.2

I I .8

14.4

zz.6

6l .8

6.6 5.9

6. 9 6.2

6.8 6.3

6. 1 5.8

TabLe 5. I
Periods and corresponding wavenumbers in a first-order mo-
de1, which sepärate the regimes, depending on topography
and sidewall Parameters q and e, respectively. The period T

is calculated using T = 16.9 h/a corresponding to 45e lati-
tuie. At Tl no !,tave energy is transported.

The structure of the stream function depends upon the frequency range'

Small frequencies (reglme l) favour periodic patterns along the channel.

waves with intermediate frequencies of order I (regine 2) have a mixed

periodic-exponential structure and do not represent possible solutions
in an lnfinite channel. At frequencies o > I (regime 3) the solutions
gro}/ or decay exponentialJ"y. For later use, the union of the three regi-
mes of the dispersion relation in Ft-gulLe 5.3 will be called a mod.e uwi.t.

tet us proceed to the second-order model; it furnishes 8 wavenumbers to

each frequency and its dispersion relation consists of two interlocking
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mode units, see Figuhe5,a. tfrus there are now tr,ro branches with real,
complex and imaginary k, respectively. The relatlve size of the mode units
and their spatial posit.ions within the (k,s)-coordinate system depend
cruclally upon the topography. The cylindrical surface of the first-or-
der model degenerates to the smaller bell-shaped surface, i... ikl now
depends on the frequency. The second mode unit forms an outer shell,
which here has the form of a cone. physicalry possible sorutlons for the
infinite channel exist in reglme 1 for both mode units and in regi-me 2

only for the first mode unit. The qualitative shape cif trre dispersion re-
ration for an Nth-order model can be guessed from Figu,LeÄ s.3 d.nd s.4. The
modurus ltl is plotted for a thlrd-order moder in F,Lguhe 5.5, denonstrating
clearly the addition of the next mode unit.

Sufiunarizing tlie main points, $/e state the following remarks:

- The dispersion relation of an

Nth order model consi.sLs of N

mode units each of which has 3

regimes, in whlch wavenumbers
are real, complex or imaginary.

- Solutions for j.nfinite channels,
vrhich are physicalj.y meaningful,
can only be constructed for
wavenumbers k which are real.
Therefore, wheh h'lh is bounded,
there exj-st maximum frequencies,
for which channel solutions may

occur (see Tabl,e 5.1). At these
maxima energy cannot propagatei
for smaller k,s group and phase
velocities are unidireitional,
for larger kts they are antidi-
rectional.

Figure 5.4

Schematic plot of the complex dis-
persion relation o(k) for an in-
finite channel with e = 0.05 and
g = 0.5 in a second-order model.
Five regimes with respect to o can
be differentiated.



-82-

fn domains. which are of finite extent also in the s-direction (lakes),
solutions can be constructed with real, complex or imagj-nary vravenum-

bers k. Their spatial dependence is either periodic, periodic exponen-
tial or exponential.

From thj.s point of view, lake solutions occur for aII o€(0,-). How-

ever j-t must be remembered, that in section 2.3 a low-frequency appro-
ximatj-on u2 << f2 was made. Therefore, physical applicatlons of re-
sults with loi tf may be dubious.

Figure 5.5

Modulus k of the third-order-
dispersion relation for an in-
finite channel, q= 0.5, e =0.05.

2.4

1.5

j'o

The reader should be alerted to
to the existence ()f a finite k =

relation branches off to become

20

the fact, that these properties are tied
kg, where the purely real dispersion

complex.

The l4/tR is an approximate approach, and therefore convergence properties
are expected. These are studied for the real branches of the dispersion
relation. Figui? 5.6 summarizes the results. The dispersion rel-ation for
N =3 differs only slightly frorn tha! of the second-order model. The cor-
rections of the second mode unit when increasing the order are also shown;

however, for a statement on convergence a 4th-order rnodel would be

needed. Convergence is not uniform in k, being better for small k than
for large k; furthermore, it is better for convex (q = 0.5, Figwte 5.6a)

than for concave G = Z, Figu./17Ä 5.6b,e) topographies, which j-s unfortunate
as the latter are more realistic. Calculations have shown that the side-
wall parameter e does not influence convergence 'apprecj.ably lFiguhq 5.591,

The quality of the MwR-approximation is more obvious lrhen the dispersion
r.elation is compared with that of an exact solution as in F.i4une 5,7. The

3RolaoDE utttT
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0.3

I

äo,

0.1

0

Figure 5.6
Convergence of the dlfferent
modes, i,ncreasing the order
of the model from

-._._ N = I,
--- N=2Lo

- 

N = 3,

for convex (g =0.5) and con-
cave (q = 2.0) topography and
two siderwal-1 paraneters.

q= 2.0 b
e = 0.05

q=?..0 c
e = 0.10

0.4

0.3

I
ö 0.2

0.1

04

510 1520k*

!0,

r0
k+

t5

simple configuration of a straight channel leads to separable equations;
these are easy to integrate provided the depth profile is piecewlse ex-
ponential as indj-cated in the inset of F.LgaLe 5,7. The dispersion rela*
tion o (k) evolves from the matching conditions of the stream function
within the channel. As F,Lgune 5.74 demonstrates, the approxfunate disper-
sion curves calculated by the MWR applied to the same depth profile
converge fast to the exact dispersion relation for the first mode. N=2
already represents a satisfactory approximation within a few percent
Convergence of the second mode is slower, as stated.earlier. For steeper
depth profiles, F.Lgune 5,7b, convergence is slgnificantly slower and

higher-order models may be required. But it also appears that the selec-
ted set of basis functions is not best for such conflgurations, as wave

activity is concentrated at the shore.

Figune 5.8 sho!'rs the influence of the variation of the topography para-
meter q in a first- and third-order mode1. comparison of Figunel 5.8a

20

.)--!)+=
N=3 \-
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solutions in
with the MWR

rnodes.

the dispersion relation o(k) of the exact
a piecewise exponential channel (see inset)
solutions fcr N = L, 2,3 and the two first

2520t5l0

(N =I) and 5.8b (N= 3) indicates clearly how sensitively the dispersion
relation reacts to the topography. Generally, an increase of q shifts
the dlspersion relation to smaller freguencies; thus periods at the

same wavenumber become J.onger. This could already be inferred from the

fact tbat topography gradients tend towards the boundary as q increases.
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Figure 5.8 Effect of topography on the dispersion relation in a channel'
' first mode, -'-'- second mode, (a) N = f, (b) N = 3.

corresnondingly, the slope parameter lh',ihi grovrs which generally lowers
the frequencies. Comparison of the dispersion curves for the first mode

also indicates that the first order model may reproduce the dispersion
relation for strongly convex profi-Ies (g = 0.5) qulte adeguately, whi-Ie

it is definitely inadeguate when profiles are triangular or concave,

Fj-nally, FiguLQ- 5.9 displays the dispersion relatj-on of a second ord.er

model for two dj.fferent values of the sidewall parameter e and for both,
convex and concave depth profiles. The latter are less affected by e

than the former because all convex profiles of the forn (5.1) join the
sidewall horizontally. The sidewall effect consists of a decrease of the
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Figure 5.9 Effect of the sidewal-I palameter e on a) convex (g = O.S)
and b) concave (g=2.0) profiles in a second-order model.
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The question of whether kg at \,rhich äo/ak = 0 exists for alL toPogra-
phies or v/ander off to infinity is of some practical significance'
Figate 5.10 displays k0 against the tooography parameter q for a few va-
fues of e, Whereas for convex profiles kg hardly depends on the side-
wall parameter E this 1s not so for concave profiles; a decrease of e

conspicuously increases the values of ko. Alternatively, for large to-
pography parameters kg is fairly independent of q' It is evident that
models with very smal1 sidewafl parameters have very large critical
wavenumbers. This problem is also considered in section 5.5, Figule 5.22.

F j-gure 5.10

Plot of the critical vrave-
number k9, where the {roup
velocity vanishes, as a
function of topography and
sidewall parameter for the
first mode in a third-
order model.

^, e=0.01
1l Ko
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e=0.10 j X tt
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q + dk lk;"
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0.25

0.30
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5.3 Channel solutlons

Equation (5.8) represents a general solution j-n a straight' infinite
channel with arbj-trary cross-section. Ü is a complex-valued function and

so,both real and imaginary parts are physicalJ-y reasonable solutions.
Howeverr as can be easily shgwn, they differ only by a spatial or tempo-

ral phase shift. We recalL the identities
rm(z) = Re(-iz) , z €G,

-i = --L'T/2
and obtain from (5.8)

Im(U (s,n,t) ) = ne(e-i'n/2'l' ts,n,tl)
= ne(rl(s,n,t + T/4\).

Therefore, the complete information about the solution ü is already ob-

tained lvhen considering Re(ü) alone.

Before discussing the solutions in detail, hovreverf a qualitative argu-

ment is shown by which the strean function is related to the barotroPic



vefocity field according to

(s. 9)

It folLows from this, that the deeper the channels are, th.e weaker the
velocities will be. Further, convex stream function surfaces are connec-
ted with anti,-cyclonic velocity ce]-Is lFig,u.'te S.Ill, and the steeper the
tp-surfaces are Lhe stronger will be the velocities in these cells.

Rather than sonsidering general solutions such as (5.9) we i.nvestigate
solutions to partl.cular wavenumbers.

Figuiu 5.12-5.14 display perspective views and contour lines of Re(rl) in
a straiEht infinite channel for a third order model, The pattern con-
sists of t\4ro'rig'h.t-bounded topographic waves evolving frol{t the superpo-
sitlon of the sol.utions ü(o,k) and ü(o,-k). Each mode shows it.s own
characLeristic cross-channel behavior. As would be expected, the corn-
plexlty of the system of gyres idcreases with th.e mode number

Figure 5.11

Explaj.ning the anticyclonic
barotropic velocity fie1d on
a convex stream function sur-
face.

we now study the properti.es of the solution (5.g) for a single wavenum-
ber. F,Lgunz 5.15 exhibits the quality of the approximaLe solution.s. car-
culations have reveared that for a convex topography sorutions converge
rapid.ry for a !^ride rang'e of wavenumbers, a.resuLt $/hich is in accord
wiLh the observations above. For a concave topography (g = 5.0, Figutte 5.lS)
the third-ofder soluLion is an acceptable approxj.mation when k = 2 lFi_
gtne 5.l5ali hol"rev€r, as Figune 5.6 has already suggested, convergence for
higher wavenumbers j-s slower lF,iAunz 5.15b). Convergence is obviously also
influenced by the choice of basis functions and it seems that the trigo-
nometric functrons are an approprlate set for srnalr wavenurabers. rt was
a straighlforward choice and made for analyticaL and computational sim-
plicity. There nay, however, be other complete sets, fuLfilling the
boundary condilions, which.provide beLter resurts in some speciat cases.
with the (sin'cos)-set the exact tran.sverse functional dependence is well

-l
got = f (zxvü)
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Figure 5.12 a)
Time sequence of the stream function
surface in steps of VI6 T in a channel
-V2 BSnSV2 B, 0 Ss S6 Lr and aspectratiö r = 1. Note that the phase nolionin the domains n>O and n<0 is right
bounded.

T=53,Bh, k=4,00
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Time sequence of lines of con*
stant ü relative to 90 ? of
the maximum value at each time
step. The cellular structure
of cyclonic (+l and anticyclo-
nic (-) vortices is clearly vi-
sib1e.
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N=1, e=0.05

Figure 5.13 a)

Time sequenee of the stream funct.ion
surface in steps of V16 T in a channel
-V2 BSnsV2 B, 0 Sss6 Lr and aspect
ratio r =1. Note that the phase motion
in the domains n >0 and n<0 is right
bounded.
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2nd llode Unlt
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b)

Tlme sequence of lines of con-
stant $ relative to 90 g of
the maximum value at each ti_me
step. The cellular structure
of cyclonl"c 1+1 and anticyclo-
nlc (-) vortlces is clearly vi-
sible.
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Time sequence of lines of con-
stant U relative to 90 t of
the maximum value at each time
step. The cellular structure
of cyclonic (+) and anticyclo-
nic (-) vortices is clearly vj.-
sible.
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Pigure 5.15
convergence propörties of the stream function of the first rnode scaled
to a maximum value 1.0, The view is in the positlve s-direction intor^'hich the phase prppagates in a right-bounded way. The;sidewall- parame-ter e = 0,05 ts selecteal, S =5, (a) k =2; (b) k =l-0.

moderl-ed for fund.amentar modes v,rith not too large wavenumbers and smalt
topography parameters.

Figwte 5. i6 analyses the effect of the cross-sectional topography on the
stream fhnction using q as a parameter. rn viev, of the previous resurts,
a third-order model is anticiBated to be sufficientry accurate. The ef-
fect for small wavenumbers (ft =2) and the first node lFigune 5.16a) is com-
paratively weak; wave activity is sli-ghtly shifted towards the right
boundary for increasing topography parameters. Larger wavenumbers, enhance
this effect.

For the second-mode solutions an increase of the topography parameter
again causes a shift of the rp-surface to$rards the right boundary, see
Figune 5.16b. The right-most crest, however, is weakened. and for larger to-
pography paraneters the main activity is in the middle.crest.

0.5

0

-0. 5

-l .0
t.0 0.5

Figure 5. 16

Transverse topography dependence of the stream function for the wavenum-ber k=2 and the first two mod.es, N=3, (a) first mode; (b) second mode.
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Evidently, the transverse structure of topographlc Rossby waves al-so d.e-
pends strongly on the wavenumber k. This effect ls comparable in magni-
tude $rith that of the topography. figuJLe 5.17 demonstrates this for both
lypes of topographies and the flrst two mod.es.

0

-0. 5

-1.0

1.0

0.5

0

-0. 5

-t.0
1.0 0.5 0

Figure 5.17
wavenumber effect of
phy, e =0.05 and the
(b) s = s.0.

-0.5 -1.0

the stream function
first two modes of a

0.5 0 -0.5 -l.Q

for convex and concave topogra-
third-order model, (a) g =9.5.

An increase of k generally shifts the stream functlon tor./ard.s the right
shoreline. The effecL ls Large (snalI) for profiles vrith large (smalJ.) q
particularly for the first-mode unit. Topography and wavenuinber effect,
therefore, act in the same way. These propertles have not been clearly
demonstrated in previous work. Suffice it to state that they have impor-
tant practical bearings when mooring sites are project.ed.

5.4 Velocity profiles

The general channel solution (5.8) which satisfies the homogeneous sy-
stem (4.9) is determined up to a constant factor. In order to compare
different velocity profiles this constant should be fixed by using a

further crj-terion. It seems reasonable to scale the occurring wave pat-
terns by normalizing the free constant such that the gtobal kinetic
energy content is constant. (There is no potential- energy for topogra-
Dhic Rossby waves in a rigid-Iid formulation). Here, the problem is po-
sed in terms of the barotropic mass transport stream function and a so-
lution yields information about a depth ave,rtaged velocity fie1d. This aI-
Iows the calculation of only a llowett tini,t of the true kinetlc energy
content.
?he klnetic energy per unit mass that ls contained
volurne is

d3 Erin = ! bz+vz1J dn ds dz ,

in an infinltesfunal

( 5. r0)
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in which the velocity components u, v can be expressed in terms of the
stream function using (5.9), and for straight channels ,J = 1.

A minimum average energy density is obtained by integratlns (5.10) across
the channel axis and over the vertical, operating $rlth

.T-L
(;) = ti, * [ t.l at, r:.n * [ (.) as

r*-.6 L+o!6

and dividing by the cross-sectlonal area (T and t are not necessarlJ-y
related to the spatial and temporal periods). It then reads (y fixed)

I
E; = - 

l--T- 
J 3rrrf lej cor+pJ-" .ovl2+ a lej'cor*rjlp "orl2),

q+l -r

where y =2n/B and'= d,/dy. When the stream function is scatred by
1/(E;i.)l/2 each wave contains the same kinetic energy. This enables compa-

rison of the strength and structure of a wave pattern as a response to
a given energy input.

Figate 5. l8 displays the amplitude distribut.ions of the alongshore and

cross-channel velocity profiles for the first rnode at k=10 and e =0.05
for four different topography parameters q. Sign changes correspond to
a phase shift of 1800. Evidently, the u-component indicates a strong
rj-ght-bounded coastal jet which is well known in forced circul-ation mo-

dels (Simons, 1980). fts strength depends upon the paraneters q and e.
An increase of q lowers the absolute value of the velocity components

considerably

we have also observed, and Figune 5.18 provides partial corroboration,

0

-0. 5

-1.0

N:J,lst
k =10

%--

F;"'p"*"tl
a

q= 0.5
q= 1.0

q= 2.0
q= 5.0

I .0 0.5

Figure 5.18
0 -0.5 -t.0 L0 0.5 0 -0.5 -0.

Transverse topography dependence of the depth-averaged velocity compo-
nents (a) u (along-channel) and (b) v (across-channel) for N =3, k =10,
e = 0.05 and the first mode. AIl profiles are scaled such that the ki-
netic energy contents are comparable.

1.0

0.5
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Figu-re 5.19
wavenumber effect of the depth-averaged
e = 0.05 and the first lwo modes of a
nenti (b) v-compo,nent.

-0.6 -0.7 -0.8 -0.9

1.0 0.5 0 -0.5 -0.

velocity components for q=2.9,
third-order mode1, (a) u-compo-

Figure 5.20

Effect of the sidewall parameter
e on the u-compoent (along-chan-
nel) at k =I0 and wj.th q = 2.0.
Because the proflles dlffer frorn
each other only at the rlght shore
thls domaln J.s enlarged, N=3,
first mode.

0 -0.5 -1.0

that convergence of at least u is slower than that for the stream func-
tion. The reason is, of course. differentiation. Deviations of the com-
puted velocity proflles from what they should be occur at the left shore-
Line lF,Lgunu 5.18a. and. 5.19a,).

FigulLe 5.1g illustrates the wavenumber effect for the case q =2 (parabo-
lic) and e.= 0.05. With growing wavenumber, activity in the u-component
shifts to the right shore and, correspondingly, activity djrinishes in
the Ieft part of the channel. Alternatively, cross-channel components
grow with increasing k. Therefore,, long waves exhibit particle motion
which is mostLy along the channel axls. Shorter v/aves with wavelengths
smaller than about a channel width have velocities of comparable order
in both directions. These properties also hold for the second mode.

As anticipated when introducing the sidewarl parafieter e its effect on
the depth-averaged velocity profiles is very weak and only recogizable
in the u-component and crose to the shorerlne. Figuie s.z0 demonstrates
this for a channer with parabollc depth-profile. verocity profiles dif-

F *".p*;tl \
N = 3, I tt ..0.05 -
q = 2.0 e=0.1
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fer from each other only very close to the right boundary. There, the
u-component of the velocity vector is directly governed by e and its ab-
solute value increases as e approaches zero.

The above results can be used. to ansvrer questions which arise when to-
pographic wave motion in channels or narro\^, eLongated lakes is to be

detected and recorded. Scrutiny of the wavenumber dependence shows that,
j-n order to record the first mode on a concave topography (5,= 2.0, e =
5.0), the moorj"ng system is best placed within a domain that is O.O5B
(B is the channel wldth) away from the shore. Then, both velocity com-
ponents are of comparable magnitude and a whole range of wavenumbers

can be detected with a velocity vector hrhich turns clockwise. The second
mode can most"likely be iletected vrithln a domain whlch is 0.1 B to 0.28
away from the shore', For a Droper test of the wave structure two moor-
ings at the same side of the channel are desired.

5.5 Alternative solution procedures

Instead of app]-ying the MwR to the Tbf-equation, one can start directly
from equatior. (2.22),,. i.ntroduce the plane-wave-trial solution

ü(x,y) = F(y) exp (i(kx-ot))
and deduce the two-point boundary value problem (TpBVp) for the trans-
verse distrj.bution function F (y) :

u" - #u'- (k2- S fr u = o, yr<!<y2,

F = 0r !=rat yt.
( s.11)

cratton (1983) , cratton & LeBlond (1986), Bäuerle (1986) and Bäuerle &

Hutter (1986) solve (5.11) for different channel topographies, whereas
Lie (1983) , Djurfeldt (1984) and Takeda (1984) perform a shelf-wave ana-
lYsis (y2 = -1*/.

cratton and LeBlond (1986) investigate a channel wj-th linear (aslmmet-

ric) or parabolic depth profile and yt = -y2. Thet d.iscuss two types of
approximate soLutions, In the first., the so calLed ,SmaLJL ALope apptaLinaLLo\

h is regarded as a constant exceipt when differentj-ated. For large bot-
tom slopes, both h and h' are treated as functions of y. They shohr that
for these profiles the solution of (5.I1) can be expressed in terms of

*) Sone of these authors fornufate the ptob)-en jn terms of the sutface eJ-evation
instead of the strem function. The energinq ODE is. bowevet, siniJar to (5.11),
conpare (3.f).
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special functions*/. Ln their configuration hr/h is bounded everywhere
and so it is argued that Taylor series solutions about the interior re-
gula! point y = 0 are nore convenient. This expansion consists of two
Iinearly lndependent Taylor series, vlz.

F= yn+ Dt Yt' (s.12)

The coefficients are selected such that Co =1, Ct =0 and Dg =0, Dt= I,
and Cn, Dv n > 2 are d.etermined by substitution of (5.12) lnto (5.11).
The free constants A, B follow from the boundary conditions F(-y2) = 0

and F(y2) = 0. The former yields

tc' ( -Yz )"
B= -A-'

fon (-y2)n

and the latter leads to the lmplicit di.tpu.tion .,LeLl,tLon

[r"" "i] lxo"r-vzl"]- [E o" v!] [rc"(-vz)"] = o.

Cn and Dn depend on o and k for n > 2. For the V-shaped channel the
junp condltion at y = 0 must also be accounted for.

Gratton and LeBlond show disperslon relations for the first three modes

for both V-shaped and parabolic bath!'metries which are qualitatively as

those of F,Qune,t 5.6-5.9. They refrain. however, fröm discusstng the nu-
merical properties oi this solution procedure (convergence,,truncatlon
of the series) .

When h(y) is not so easily expressible in terms of analytic functions,
solution of (5.I1) by standard numerical tectrniques is probabty more

economical. Because of the nature of the TPBVP (5.11) the shooting nä-
thod using either the Runge-Kutta method or any other high order multi-
steo forward finite differencg scheme that may account for the stlff*
ness of the equation at large k or large h'/h may be the most efficient
approach.

By solving the eigenvalue problem (5.11) with straightforward finite dif-
ference techniques, replacing derivatives with central second order dif-
ference expressions we will obtain a feeling and information about the
reliabillty of numerical soLutions of the Tw-equatlon in two-dimensio-

*) The snaLf sJope approxinations JAad to eJ.enentarg funcxions(lineat prafile) üd
to paraboJic cglinder functions.(parabolic boxton), the so.lutjons of the full
egua.tjons can be expressed in tems of Kunnner functions (lineat prcfile) and ge-
neraJized spheroidaL iunctions (parabola), respectivefg.

Bt
n=0

o \-.

n=0
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Figure 5.21

Convergence properties of the
dispersion curves a) and of the
frequency o(k) for the wavenum-
bers belonging to the first
inode b) for increasing number
of grid points. o|!, and ol$1
denote aslmptotic frequencies
for NN = 401- and k = 10, 30, re-
spectively, and e = 3.5.I0-s.
IProm Bäuerle, 1986]
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nal dömains. Bäuerle (I98G) and Bäuerle & Hutter (19g6) applied this
technigue to straight i"nfinite channer-s and used the depth profire (5.r).
rt is i-nstructive to compare their findings wi.th the MWR results of sec-
tions 5'r -5.4 - Figu'te 5.zra disprays the disperslon reration of rwrs in
a parabolic channel for an increasing number NN of grid points. The
side walr parameter e is chosen very smalr in order to demonstrate the
sensitivity of the numerj-ca1 rq.suLts with respect to E, For larger va_
Iues of 6 convergence is generally better; fewer mesh points can be se_
lected to obtain reliab]-e resurts. we infer from F,Lgwtz5.zta. that NN =13
yields acceptabr-e resur-ts onLy for very smarl wavenumbers. Due to the
small value of e the qualitatively correct behavior, i.e. very large
critical wavenumber kg for which ao/ak = 0, is Dredicted only vrhen NN =
l0l- and larger.,Moreover. convergence is decelerated for increasing g and
k. F.Lgute 5.21 b ill,ustrates uris for the fundamental mode l, q = 0.5, 2
and 9, and tvro wavenumbers k = 10, 30. Hence, high resoruti.on ls reguired
to obtain satisfactory.numerical prediction of the dispersi-on reration
and rnode structure. and this resolution.-must be highei for concave than
convex profiles. This is unfortunate because concave profiles are more
realistic. But the result also suggests cautj-on with determined mode
structures and periods of two-dimensionar topographic waves in enclosed
basins where coarser iesorutions are necessary because of cost or memory
limitations of the avairabre computer device. observati.o.s to this ef-
fect vrere made by Bennett & Schwab (IgBf) .

Figuze 5.22 corresponds to F,Lgu,\-e 5.10 and exhibits the sensitivity of the
criti'cal wavenumber kq wlth respect to the number of grid points NN.
Differences of the curves kg(q) for NN =49 and NN =40r are observed
nainlv for smar] sidewarl parameters €, For these and for 49 grid points
the dispersion relation leads to k =ko which is independent of q when-
ever q > 5; thi-s is refuted when NN =40r and a linear behavior emerges.
Thus' one has to be very careful when serecting smarl sidewarl parame-
ters or, more generally when hr/h is large in the domain of integra-
tion.
Bäuerle (1986) also compares the dispersion relations for e = O,05 andq = 0.5, L,2,5 as determined by his finite d.ifference technique (NN =40I) and the MWR using a third order model, see Figunz S.Zi. For qS 2 andthe lndicated wavenumber range the curves agree satisfactorily; devia*tions are observed for Iarge k and q. Such configurations require higher
order MwR-models as has already been pointed out in sectlon 5.2.

This approach clearry sho\4rs that excessive resorution of the channel
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Figure 5.22
CriticaL wavenumber kq at which
the group veloclty vanlshes
plotted agalnst the topography
narameter q for three values of
the sidewall parameter.
[From Bäuelle. 1986]

q 10o

Figure 5.23 +
Comparison of the dispersion
curves calculated by the fi-
nite difference (soIid) and
the MWR.technique (dashed) .

IFron Bäuerle, 1986]

width is necessary to achieve nurnericarly reliabre dispersion relations
and mode structures. Because of the wave trapping schemes with variabr_e
mesh si.ze or higher order finite differencing might, perhaps, be advan-
tageous in lowering the total number of mesh poj_nts. Hovrever, the re_
sults i-ndicate that one ought to be cautions vrlth any coarse finite dif-
ference or finite erement resolution in spatiarly t$ro-dimensional do-
nains' Eronqated domalns are therefore prone of requirlng a large number
of grid points.

This last remark may provide (heuristic) indlcations why our MlilR-ap-
Droach may be of advantage when one ls ättempti.ng to sorve the Tw-equa-
tion i-n a two-dimensionar eronEated domain. Baslcalry a rerativery smarl
number of ihape functions seems to guarantee a sufficlently accurate
resorution of the problem in the transverse directlon. The problem in
the long direction becomes a vector oDE-equation, posslbly wlth varia-
bre coefficlent matrices. Thus, when the probl"em ls sorved in the long
direction high accuracy ODE-soft\^rare can be used !^/ith advantage. We

wlll demonstrate this in Chapters 7 and B.

5.01.0

| ,'--:qos

- 

finile difference NN: 401

--- MWR.N=3
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6, Curved channels

5.1 Incorporatj-on of curvature

Many of the intermontane lakes, such as Lake of Zurich or Lake of tu-
gano exhibit a significant curvature of their elongated basin. We shall
thus explore the influence of thls geometrlc parameter on both, wave-
Iength and frequency of freely propagating topographic waves. Obvlously,
a posslble effect is only experienced for vraves vrith waveLengths of
equal or r.arger scale than the radius of curvature. Shorter waves are
llkely not to be modified by curvature.

In chapter 4 the Method of welghted Residual-s was used to deduce approxi-
mate solutlon technigues of the Tw*equation in a natural coordlnate sy-
stem, and the preceding chapter demonstrated lts usefulness in a domaln

vrlth zero curvature. We now make use of thls additional bathlmetric pa-
raneter whlch is incorporated in the Jacob.lan J of the natural coordinate
system. The Jacobian is given by

J(s,n) = I-K(s).n.

For variable curvature K(s) it is a non-separable function of its varia-
bles s and n. Holrrever, a synmetrlzatlon was introduced by which iI and ,J-l
were split into s)Eunetric and skew-s1'mmetrlc parts according to (4.12),
viz.

.t - ru-tt

,--r,+ I
\v I - I-K" nz

J- = - K.n,

(J-1)- = *l=.
l-Kz nz

(6.r)

These expressions enter the matrix elements (4.1f). For constant basin
width B(s) but arbitrary K(s) some of these elements !4älo" are stilL
functions of s because K(s) can not be extracted from the integration.
This means that these elernents'must be calculated at each posltion s

within the basin. Hov/ever, when K(s) is constant the MWR provides an

economic solution procedure, and the elements need be calculated only
once for a particular basin geometry. We therefore consid.er domains
r,rith constant curvature and further assume the width B(s) to be a con-
stant.

The matrix elements fi]" in (5.3) were calculated by introducing the
new variable y = 2T/8. This suggests to use the non-dlmenslonal curvatu-
re KBK = i. (6.2)

with tt the expressLons (5,3) take the form
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^83** 
* *83-- * xt!-+ + xff!.-

f n-r1=-*,) cosn (a- j)" .o"nts- *lv ay
'. I_rz yz

+ [ n-r f - f- I sln noy sj-n rß y dy ( 6.3a). L_K. y.

+ J n-r +3=l srn ncy cos r (g- jl v av, L_K.yz

+ Jn*r t#a cosn(o- ])v "i.nov av,, L-RZV.

*ä3** * *ä3-- * xfrfi-. + xfrfi*-

4tr2 (a- |l re- ]l / h-l "i" to- ]l v sin r (ß- ]lv uv

+ 4r2 ag J 
h-r .orroy cos r gy dy (6.3b)

+ 4r2arc- ll lrr-r (*y) cos rq,], sin r (g- |l v ur

+ 4r2 (a-]i o Jn-t1*"1 sinn (o,- ]) y 
"osngy ay,

with h = I+e-y9, and the integration is from O to 1. the natrices Ifr!
and Xll are unaltered, The curvature K generates additional off-dj.ago-
nal entries "f x!$ ana xfrl which amount to a stronger coupling of rf+

and {-; the quasi-diagonal structure of these matrices is now destroyed,
see equation (4,14).

It rrras shown in chapter 2.4 that the natural coordinate system can only
be defined provided the radius of curvature exceeds half the width of
the lake. Therefo::e K must satisfy the inequality i*l . l, and all- inte-
grand functions in (6.3) are regular in t0,11. The assumption of con-
stant K and width B describes a domain which has the shape of a ring
with inner and outer radii L/KtB/2, respectively. Consequently, the
continuous dispersion relation would have to be subject to a periodicj.ty
conditi-on k, = +m, m integer. This quantization will not be imposed

in the figures sinply because the full eurve will provide a clearer un-
derstanding of the qualitatlve effects of curvaLure.

We proceed as in sectlon 5.1, assume a carrier-wave of the form (5.5)

and obtain the matrix C

9 = 9r+ 92,



:r-

9z=

fo,,'*,'
L - (rk)

[", ,'*,'

- r02

500** * g22++1

(fzo+- + xo2+-;

0

K00+- + K22+-)

- rrkt (520-*

o( tr112 600--

o( (rk)2 s00-*

*oz-*yl

x"))'
Srr-.)],

(6.4)

the dispersion relation is given by

detC(o,k) = 0. (6.s)

It follows from (6.3) that al-l elements of C2 have the conrmon factor K

and thus vanish for zero curvature. In that case, eguation (6.5) repre-
sented a polynomial equation of order 2N in (rk)2. Due to gZ * O, (5.5)
now is a oolynomlal of order 4N in rk; so, rk and -.rk are no Ionger
simultaneous solutions. Hence, the slmrnetry o(k) = o(-k) is destroyed by

the presence of the curvature. This is easy to unaierstand because non-
zero curvature permits us to distinguish between an inner and an outer
shore line. Likewise, the critical points (ko,oO) at which äo,/äk = 0

will be different for k < 0 and k > 0, respectivel-y. A change in sign of
K, on the other hand, only affects the matricss K001;6n6 6221;, they are
ske\,/-syrunetric with resgect to K, rrrhereas all other entries of C are
slmmetri.c. Therefore, the dispersion relation enjoys the property

o(r,k) = o(-r,-k),

which includes the speclal case of r =0.

(6.6)

6.2 DI rsion relation

Fi4une 6.1 shows the dispersion'relation (6.5) of a third ord.er model
for the first two roode units. For K = O the slzmmetry with respect to
the vertical is visible whereas for ri > 0 lt is broken. For a given
frequency all wavenumbers are shlfted to the right which implies that
curvature shortens 

"ure" 
ior k > 0 whereas they become longer for k < 0.

Recalling that the solution ü is proportj-onal to ei(ks-tlt) and U is
rlght bounded, it follows that the waves travetl-ing along the inner
(outer) shore line are longer (shorter) lhan in the case r = O*/. Iur-
ther, the critj-cal polnt (kfi,ofi) in the domain k > 0 is transl-ated to
lower frequencies and larger wavenumbers, and the opposite is true for
(k6,o[) in the domain k< 0. Consequently, there exists a frequency

* ) The süe is true when K < 0 or the cootdinate sgsten js chosen such ti:at s pojnts
into xhe opposite direction. Jt js a consequence of the geneta! propertg (6.6).
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0.2745 0.2799 0.2947

0.2745 0.2708 0.2669

0 0.0091 0.0278

Table 5. I

Freguencies ofi for k ? 0
where äo/äk = 0 for differ-
ent values of curvature r
and topography q. The para-
metersareN=3,e=0.05,
first mode unit.

Table 5.2

wavenumbers k$ correspond-
lng to, Ta.bLe. 6,1 .

0.4

0.3

o.2

0.1

0.2

0
-20 -10 30

Pigure 6.1 Dispersion relation of a third order model for various va-
lues of curvature. The parameters are N=3, q= 0.5, e =0.05.

range ofi . o. oö, where only waves with k<0 can propagate. These are
trapped along the inner shore 1ine. If there existed eigenfrequencies
in this range. for a closed basin, their modal structure would exhlbit a

particular pattern with wave motion prinarily at the inner shore line.
This 1s discussed in section 7.5. TabLe 6.1 lists the boundaries of these
frequency ranges. For lncreasing curvature the values of 06 and oö tie
farther and farther aparti this effect is weak for steep topographies.

r=0 r=0.2 r=0.5

2A10

oö

-+u0

Aü

og

oö

Ao

0.2081 0.211I 0.2t88

0.2081 0.2059 0.2033

0 0.0052 0.01 55

r=0 r=0.2 r=0.5

2.0

kö
r-+oo

!ü_ij.l
kö

kö

kä-lkol

- l4.9

t4.9

0

l2.l - 7.83
'I 7.8 21 .9

5.7 l4.l

5.0

17 .7

tl .7

U

14.6 - 9.83

20 .7 25. I

6.1 15.3

---/rift- lst

}t:0.0
.}t 

=0.2'(=0.5

0
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Note, that from an observationä1 point of vie$r the difference is very
sma1l, e.S. T6: 57h and Tö = e3h for q=2 and <=0.2, a difference
that is unlikely to be detectable by field observatlons.

On the other hand, for increasing r and q the difference of the wave-
numbers increases. These propertles are also displayed in Figute 6.2.
TrrTo mode units of the dispersion relation are given for different val-
ues of topography and curvature parameter, The results support lhe
findings listed ln Tablet 6.1 and 6.2.

0

-30 -20

Figure 6.2 Curvature
relation.

and topography effect on the dispersion

-2'o -:l'5

Figure 6.3

-r.0 -0.5 0

Dispersion relation as a
), = 2r/k. Short vraves are

0.5 1.0 1.5

function of the $ravelength
not influenced by curvature.

- 
11= 0.0 N:3

---- lt= 0'2 E= 0'05
-'-'- X=€.5

{---t

N-=71--'u:-'t'' 67----,-'
l/7/ -a4-/-;5----_

1/.' -::r,r""

::;F
':_-.1\>_

-'----

.nd N= 3' o=o'5
e = 0.05
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_._\L===

---.- :r( 
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In Figuie6,3 t.}ile frequency o(l) ts plotted as a functlon of the hrave-
length ), =2r/k. As surmlsed above, short wavelengths are hardty influen-
ced by K, rrthereas long waves experience strong curvature effects.

6.3 Curvature and vortlcity

So far we abstained from giving a physical exDlanation of the curvature
effect and only listed and discussed the various al-terations that arose
in the dispersj-on relation because of the presence of curvature. In or-
der to underst.and the physical mechanism vrhich produces the aslnunetry
of o (k) we no\^r work out the characteristic difference betr.reen the equa-
tions formulated l-n the natural coordinate system änd in the Cartesian
system. It i,/as shown in section 2.2 that topographlc waves evolve by
conserving potznti.ol vodS.Lc,i-tt1, This quantity contalns three contributLons:
the curl of the velocity field representing Line tle.ttLive vontL:,UA, the
Earthrs rotatlon as an additional vorticity and the bottom topography.
ft is the rel-atlve vorticlty which is primarily influenced by curva-
ture. We give a rough analysis.

Consider a weakly curved domain; introduce a polar coordinate system
with its origin in the centre of curvature and assume that the curved
channel is well described by this coordinate system in the nelghbour-
hood of 0 = 0. The difference between the polar and the Cartesian system

emerges when one calculates the relative vorticity of the horizontal
velocity fieId. Far äway from the centre, i.e. for large radii of cur-
vature, one has the following correspondences (see Fi4uhe 6.4)

2.(vxg) = + -+ +F * *," -
dy

2.(vxu) = -l-g*9Y.dy dx

Vpup

IA
r 00

aa
äx' är

L=r
POLAR CARTESIAN

Figure 6.4 Coordinate sysuems and posltion of the components of
the velocl-ty fie1d. The systems are,located in the
centre of curvature.
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obviously, the term ft" i" the main perturbing guantity. To lor.test or-
der tt enbodies the effect of curvature and physically, it represents
vorticity due to a cj-rcular motion around the centre of curvature. For
a weakly curved basln vre may thus use the natural coordinate systems,

but pretend that it is Cartesian and account for the curvature effects
by addlng the additional vorticity oK

K at|loK = Ku = -ä5t, (6.7)

instead of
yields

(2.18). with the use of (2.20) and upon linearizlng this

where (2.20) was used. The conservatlon law of potential vorticity tak-
ing lnto account the effect of curvature to lowest order thus takes the
form 

6,ulr+to1+f.
- 

r-r = 0, (6.8)dt' H '

(6.e)

for K + 0 equation (2.221 Ls recovered.. gere aII operators are meant to
be Cartesi-an.

The siml>le conflguratlon of a trench, dlscussed in section 3.5d) helps
to explain the effect of the additional vortlcity trr*. Based on Figune

3.6 with s=r we assume

t = ü(y)ei(kx-ot), ö = 6/r,

and study the trench profile

H (Y)

b

.insert it ln (6.9) and obtain

t"-(b+x) ,1,' * (+ - k2)ü = o,

with ( )'= d/dy. The stream function r, satisfies the no-f1ux conditlon
at y =0 and y =r, vLz.

*,o'# - * #, + a.(vexvrf,r) = o;

ü(0) = ü(r) = 0.

Equation (6.10) allows the solutions
!*! 

"t!(y) = e' (Asintry + Bcostry),

rj kb ,2 (b+K)2a.=-T-x.--T_,
:

and the dispersion relatlon follows from imposing (6.ff)

bv= ee',
f _ I= -ln-,rL

(6.10)

( 6. 11)
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tanrÄ = 0,

kb

and the critical polnt (kO,oO) is given by

iko,oo) = l\[trl3;ll7- lY a *';' ' ,19;EF ] 
,u.'n,

or explicitly

Its asltmtotic behaviour is

K<0

Figure 6.5

pz* .(b+5)2 + (T)2

o + cp''k = 
@:,*', 

'-
4-* (-FJ

bo- F

ask+0,

ask+or

( 5.12)

(6.13)

-k >0

!'or K = 0, the equations glven in sectlon 3.5d) are recovered.

.hl
t<.0 -N'>f.

K>0 }t> 0

Two trench profiles, a) and b) ean model the effect of cur-
vature in the natural coordinate system c) . Curvature is
introduced in the Carteslan coordj.nate system by a "first
order perturbation" of the Tw-eguation. The effects on the
dispersion relations are lndicated (dashed for K = 0 or r = 0,
solid for K I 0) below.
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F,i4tLtLe 6-5 displays the tr.ro trench profiles in the respectlve cartesian
coordinate systen as a rough model for the parabolic channel lFigune 6.5c)
and schenatlc graphs of the dispersion relatlon (dashed for K = 0) . In-
spection of (6.L3) demonstrates that the phase velocl-ty cph increases
(decreases) with growlng lXl when K< 0 (K > 0), and the critical point
(k9,o6) is shifted tovrards smaller (larger) wavenumbers and higher
(smaI1er) frequencies when. K < 0 (K > 0). Furthermore r.re learn that short
waves are not influenced by curvature. These results are qualitatively
the same as those obtained j.n the previous subsection. The trenches
wlth K < 0 and K > 0 describe those parts of e.g. a parabolJ.c channel
lF.<Sune 6.5c1, where hraves propagate with k< 0 and k> 0, respectively.
The qualitative alterations of the dispersion rela.tion are in accord
wlth the respectlve changes for K < 0 and K > 0 in the trench profiles.
Differences are the intersectlons of the dispersion relation in Figuhe

6.5c which are not sho$rn b!' the simple trench model. The reason is a

constant slope parameter b for the trench profiles, which varies across
the parabolic channel.
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/, Topographic waves in rectangular basins

As rrle learnt in chapter 3 there exlst a number of analytical models for
TWrs ln enclosed dömaj-ns, Typical properties of Tw-motion in these fini-
te domains were found; among these were the conspicuous structure of the
lowest modes (linear and quadratic BaIl-mode), the counterclockwise phase
propagation, the rotation of the velocity vectors, to naJne a few. In
speclal cases these models allowed satisfactory interpretation of long-
periodic phenomena in lakes..Horr/ever, only a restricted number of para-
meters was offered to model a particular basin geometry. -lqoreover, ob-
servational results ln Lake of it g.tro and Lake of Zurich are still await-
ing interpretation by models whlch account more accurately for their
elongated shape, topography and, perhaps, include curvature effects. par-
ticularly, the study of TW's in the Northern Lake of Lugano ralsed fur-
ther questions regarding the appli.cability of the analytical models to
this basin. On the one hand, the etliptical model of Mysak et aI. (1985)

could explain the 74h-trace j-n the measurementsi it was interpreted as a
(l,I)-Tw-mode with a gLoba.L vrave pattern. The choice of bathymetric pa-
ramet.ers by Johnson (1987a), however, is more convincing, According to
his model lhe 74h-slgnal must be explained with a mode r/rith a high azi-
muthal wavenumber exhibiting a rich structure al-ong the thah,reg. On the

t=0

t=I/4

b)d)

o
/e)

_@
o

----ä-

ß

o PORLEZZAFigure 7. I

Are the results obtained by an
exact model, a), and by applying
a finite element technlque bo a
reaLlstic bathymetry, b), contra-
dictory? See also FLgunu 1,9 a-nd
1.t0. MELIDE
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other hand, Trösch (1984) 6pp11ed a finite element method of the elonga-
ted basin and found a completely different wave behavior ln the 65-100h

lnterval! Rather than a global pattern he observed Local wave rnotion for
which wave activity was trapped to the three bays of.Lake of Lugano,

leaving the other parts of the lake calm*/. FiguLeT.l illustrates this
apparent controver.sy. So we must ask the question: are exact models ap-
plicable to real basins and how can the finite element results be phgti-

cal-1"11 intergreted ?

These open guestions have motivated us to try to use the channel method

developed in the previous chapter for the construction of a model of
TWrs in rectangular basins. hlhat follows is based on Stocker & Hutter
(1985, 1986, 1987a,b) '

7.I Crude lake model

we call a lake model "crude" if in the natural coordinates (s,n) its toPo-

graphy varies only in the transverse dLrection n. For such a model lt
is straightforward to extend the results obtained for infinlte channels,

we use the depth profile (5'I) wlth ho(s) = const. As there exlst 4N in-
dependent channel solutions of the forn (5.5) in a Nth order model, these

can be superposed to a lake solution. A crude lake modeL is obtained by

inserting ve^l,Lee.L walls at.two positions s =0 and s =L. At these points
the stream function V must vanish. So, in vier.r of (4.9) hte have po = g

(o.=!t2,...,2N) for s =0 and s =L and hence

4N

N cordl = 0,
Y=l
4N

X .t^t.o., d.r = o

Y=I

Recall from chapter 5 that the coefficients coy are functions of s. This
homogeneous system has a non-trivial solution provided that its determi-
nant is zero. This,selects the eigenfrequencies of the system which de-

pend on the bathymetry given by r, q and e. Periodic lake solutions have

been seen to exist only for 0 < o < oo, vthere oo denotes the maximum of
the real branch of the first-mode unit. Consequently, frequencies de-

crease appreciably when the topography parameter q increases. This ef-
fect is demonstrated ln Ta6Le 7.1 whj.ch compares the firs! eigenfrequen-

cies for nodels of different order. For a parabolic depth profile a

*) LacaL T|-notion ,as aiso observed in the nunericaJ- nodel of Lakes ontario and

Superjor bg Rao e Schwab (J976)'

,1,'=',...,2N).

( 7. la)

( 7.Ib)
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q=0.5

q=2.0

q=5.0

N=l N=2 N=3

0.3t 4 0.335 0.337
0,292 0.316 0.317
0.?64 0.293 0.295

0.198 0.260 0.274
0.186 0.?54 0.271
0.169 0.?46 0.267

0.087 0. I 67 0.208
0.081 0.163 0.206
0.073 0. I 58 0.202

Tabl-e 7. I
First eigenfrequencles o for r =
0.5 and e =0.05 in a simple lake
mode1. There is a1v/ays a pair of
eigenfrequencies differj.ng from
each other by less than I t and
the table shows only one of them.
N = I,2,3 indi-cates the order of
the model.

Table 7.2
The first eigenfrequency in a
second -order model for various
aspect ratios r and topography
parameters .gr E = 0.05. Quest,ion
narks indicate computational dif-
ficultles.

thlrd-order nodel offers adeguate estimates of the eigenfreguencies. A

parameter study also reveals that the topography parameter q j-nfluences

the ej-genfrequencies much more than do r or even a, see Tabte7.2.

caleulations further showed that for small aspect ratios system (7.I)
is very difficult to handle. The smaller r is, the larger $1111 be all
ifmtt)i, and terms of (7.Ib) becone dominant; the smallest inaccuracies
in the eigenvector dy are fatal because of their amplification in the
terms proportional to eikY. A remediable approach mlght be a superposi-
tion of two semi--channel solutiöns vrhich are displaced with respect to
each other by a length L.

Figune 7.2 shows a series of isolines of the strean function of a lake
solution in a basin with a sidg ratio 2:1. The influence of the vertlcal
wal-1s is obviousinthat wave crests approaching them die out, The funda-
mental mode does not resemble Ball-type behavlori lather, the wave pa!-
terns exhibit local strueture. As the eigenfreguencies decrease the Io-
cal character becomes stronger, but there is still a right-bounded phase
propagation. Figu,tte 7.3 presents some specific lake soLutions for other
aspect ratios and for N =2 and N =3 models. The mode ln FiAwLe.7.3a is
similar to a compound channel solutlon, r"rave patterns along the tlro op-
posite shores seem not to interact, whereas for a higher noö,e lF,@u,te7.3bl

flow across the channel is observed, Figune 7,3e displays the stream func-
tion pattern of a very complex solution with strong Ioca1 structure.

r=0.5 r=0.4 r=0.3 r=0.2

0 . 335 0. 337 0. 339
0.303 '0.304 0.304
0.260 0.260 0.261
0.167 0.167 0.167

0.341
0. 305 ?

0.261
0. 168 ?
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Figure 7.2
Lake solution in a.2:I basin
plotted for three different
times through a quarter of a
period T, uslng N= 2, q= 0.5,
o = 0.335. Wave activity is
strongest 1n the middle of
the basin and damped at both
ends

Fiqure 7.3
Stream funetion of three examples
of solutions i-n a crude lake model.
The parameters are

qeo

L- U

a)
b)
c)

0. 4 2.O 0.05
o.4 2.O 0,05
o.3 0-5 0.05

0. 260
o.244
0. 120

Note that the basin center may not be an exact center of point s)anmetry.
Thi-s is due to numerical inaccuracies and the different properties of
the lake boundaries at s=0 and s=L. The dependence on the wavenumber

ky enters the boundary conditions (7.Ia and l:) differently. To no sur-
1lrise, the asyrunetry is particularly visible in Figune 7,3c. Choosing the
coordinate s synmetrically would elj.ninate this imbalance.

These and many more results that were obtained are rather dj-stressing
and show no ielation to the solutions of exact models. Vely slmple mode

structures with a global phase propagation could not be found. This, how-

ever, is not surprislng. The rectanEular basin with vertical end-wal1s
has lines of constant f/H (isotrophes, isobaths) which are not continu-
ous: they start at one wall and reach the opposite wa1l in a straight
line. It is known that the phase propagation tends to foll-ow these lines
and therefore, global phase motion around the basin (as in the linear
Ball-mode) may not be expected here. Hence, there j-s a need for an impro-
ved lake model which has eontinttoul depth lines.

2/,-tMü;;
'(,!w(gj0
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Parenthetically we also rernark that, in order to preserve |-he a.-Lgebna,Le

procedure (7.1) for the determination of the eigenfrequencLes, a modi-
fied lake basin can be studied" This consists of three sections each of
lrhich exhibits an exponential depth profile of the forrn exp(-cs), see
Figurtz 7,4. Three finite lake solutions can be patched together at the
slope discontinuities s =s-l, s =s2 and a system much like (7.1), but
three times larger must be solved. We have done this for several confj--
gurations shown in Figune 7.4, however the results are no more encourag-
ing. A likely reason ls that, even though the isobaths now are continu-
ous they are not differentiable at the intersection points s1 and s2.
I^Ie therefore are urged to relax the assumption \,zh = constant and allow
for an arbitrary h(s,n) leading to smooth isobaths..In this case, the

a__matrix operator IK thön no longer has constant coefficients.

- 

c<0
--- cg0

Figure 7.4
Variety of basin topographies in the parameter space (st,s2) which can
be treated after the refinement of the topography assumptions. In 'Lhis
section only solutions to topographies marked with {< r.Jere calculated.

7,2 Lake model with non-conFtant thalweg

o,) Nuneticat neLh.od,

Consider a rectangie of width B and length L which has the depth profile

h(s,n) = ho(s)(1.'-i+lq), 0sssL. -*"s". *", (7.2)

v/ith conslant t and 0 < q . -. This bath).metry possesses a finite shore
depth eh6(s)' vrhich is necessary to have (Ah,/An)/h bounded everyvrhere. It
was demonstrated in ehapter 5 hov, the boundary value problem (2.24) was

transformed to a nev/ one-d.ir'zn^i0ndL problem for the coefficient functions
üä(s). The result was lKt(s) = 0, O < s < L,

t(s) = 0, s=0.L, 
(7'3)



Here and henceforth h=ho, and it has been assumed that the operator IK

has coefficients which depend on the variable s through an arbitrary
thalhreg depth h(s). Furthermore, the symnetrized form of IK is obtained
by using (5.3) to express the 5's in sl'mmetrized form. For the numerical
solution we transform (7.3) Lo a )LeaJL, (.Utt-onden system. Introduclng

in which

Y

wrtn() =d/ds
dropping primes

explicitly

The matri-ces C and D take
real and irnaginary parts)

-II4-

g - (,ri,...,üfi, {,;,..., u;) = (V+; ü-) 
"

{ = - ro fez roo 4 -"r(h-r +) Koo + - Krrf
-L-dsZ-ds'-qS

- B(K20 * 5or) * + B(h-r *, ^ro.

{Lt = A(s)Y, ocs<1,os-
PY = 0, s=0,1.

(7 ,4)

1 7.6a)

( 7. 6b)

(7.8)

(7.e)

= (ne,r1 F.e U-. Re ri,l n",i,; rm V1 rn 9; rm,i,1 rnt ll-), (7.5)

and substitüting st = s/L, d/dst= Ld/ds we obtain after

This system has dimension 8N; B is a consta.nt diagonal matrix with
Bii=I for .i=1'...,2N and i=4N+1,...,6t{ and else Bii=0. The ma-

trix i, can be split up into a part v/hieh is independent of s and another
part proportional to the slope parameter S

.,dhS(s) = h-' ä;, (7.7)

4(s) = c +s(s) .9 .

the form (the subscripts R and I stand for

r^
IURi-

!- |

L:I

with the (4N x 4N)-submatrices

I o rl
^ _t I:*-f L,uoo,-1o22 nl'

I ^TI| 
I\

'fz -

Pn -!r
9r 9n

.l- o ol
' 9r = äL-:1'oo1-r 6zo o j'-r-

. = tlo 0 I
!r - ; 

L o !txoo1-t{5ro* rorl.l'

D=

_lUp = I

L

00

OI

and the aspect ratio r = B/L. The matrices (7.9) are independent of s

and need be calculated only once during the integration for se[0,I].
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Figure 7.5

Thalweg profll-es (6.10)
for different val"ues of
the exponent p, For p>l
slopes at the lake ends
are zexo, a) , when p < I
they are infinite, b),

Solutions of the TPBVP

IFigu^z 6,5)

here with p= 2. n and

is never zero and the
dinal variation of the
ends of the lake. The

(7. t0) ; one obtains
pn sinP-r (ns) cos (ns)

S (s) = ( 7. rr)
4 + sinP (ns)

For p > I and n > 0, S(s) vanishes at the lake ends, which is a numerical
advantage, when 0<p<1 the slope parameter is no! finite at s = 0,I.
In order to keep S(s) finite everywhere (7.10) could be replaced by

fn+bs, 0Ss<G,
I

h(s) =.1 sirrP(ns), e SsSI-3,
I

,In+b(]-s), I-3sss]-,

in vrhich, for a given shore-slope b, n and 3 can be calculated such

that h and h' are continuous at s = 3. wittr this choice (7.7) is finite
everywhere and for all p > 0. The lake model now consists of two-sid.e-
wall parameters e and n (or alternatj-vely e and the shore-sIope b) and a

l-ongitudinal- and transverse topography parameter p and q, respectively.

Equation (7.6a) aI1ows the

! (s)
(7.r2')

(7.6) were constructed numerically for the profile

h(s) = 1+slnP(ns), (7.I0)

p are parameters; rl > 0 guarantees that the depth
exponent p could be varied such that the longitu-
depth is more or less concentrated at the long
slope parameter S(s) is easily calculated from

formal integration

= exP( J ltcl aGl ytol,
0

= E(s) Y(0).



and the s)nuneirization has been dropped for convenience of ensuing ar-
guments. Formally, !(s) in (7,12) is a matrix valued functlon. At the
basin end, !t can be wlj-tten as

(7.6b) inplies

Note that 9(r) is
the Elj are (2)i x

Y: (o) =

-116-

Y(o) = (0, 
'iR(o) ; o, ür (o)),

Y(r) = (0, ri,n(1); 0, ür(1)) ,

o via (7.12)

1 vector of

+r<j<4N.
+ r s J < 8N,

( 7.13a)

( 7. r3b)

(7 . t4)

and (7.9) and

the form

(7.ls)

I tjtr .,..t-*'E(r)l - | '-tt. ls=t LEnr -.

a function of the frequ
2N)-matrices. For each i

(0,,0,...,0,1,0,0,...,0)

Er+ I.I
-l
-t244 J

ency
nitia

2N

6N
(j-r) (8N-j )

the corresoonding vector !1 (1) is computed using a discrelized form of
(7.6), see below. From (7.12) and (7.13) it then easily follows that the

solution !i(l) corlesponding to the j-th initial vector Y1(0) is thej-th
column of the matrix !(1). (7.13b) eventually requj-res

lEu eral lü*tollI ll l=0,
[P:z Era ] [Üi to)]

which allows derivation of the equation which determines the eigendnequeneg

in this lake basin. It takes the form

(7.16)

It remains to select the integratien routine for the 4N initial-value
problems (7.6a) with (7.15). This choice depends on how the matrix A(s)
is available. Here 1 can be computed for aI1 s [0,1] and the fourth
order Runge-Ku-fJa scheme (or higher order multi-step schemes may be ap-
propriate. This is a well known single-step fon^/ard integration techni-
que*J. we discretize the integratj-on interval [0,1] into M equidistant
increments of length d = I,/M, the !r+r at the position si+r within the
interval is then given by

r- - 'l
I Lr2 !r4 |

detl I = 0.
lc c II ult !12 I

* ) The fundanental sjng"le-step forward integrator
teads rltial = lli+dA(si)Qj and xhe locaf ertor
sLow.Lq converqing.

js trre Euler-cauchg schene. Ix
is otdet d2 ad is xhetefote onJ.g
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25: +{a) '
v.

ätu ty,+K1d./2|,
d,z2) (Yi + K2 d/21 '
d) (!i + K.r d) .

.of order d5. when |(s) is onl-y de-
of Adams or other multistep methods

and Yako!,iitz (f 978) .

+2K2+

A(s; )

A(s. +

$(si+
A(st +

With this scheme the local error is
fined at discrete points the method

may be preferable, see Szidarovszky

The actual computation uses shooting, the shooting parameter being the
frequency o änd the penatty function being the determinant (7.15).

b t 4 -ryT! -t Jpg -9{ -+9p991sp69 -ry*y94

AII exact models permitted expli-cit determination of ej-genfreguencies
and solutions when two mode numbers were given. There exists, however,

no simple rul-e to predict mode numbers for a given frequency interval
and thus to d.iscover all eigenmodes in thj-s interval, Furthermore, by

increasing the order N of the expansion (4.3) more transverse variabi-
lity is introduced and, if possible, addilional- eigenfrequencies and mo-

des are added to the spectrum.

we investigate the spectrum of topographic waves in a second and a

third order nodel. The basin is rectangufar with an aspect ratio r =0.5,
a parabollc cross section (q=2.0) and a thalweg varying as a (sin)2.
Figunet 7.6 and 7.7 display a seleclion of modes from the spectrum of a se-
cond and a third order model, respectively. It is apparent that in the
period intervaL from 35 h to'140 h (corresponding to 45o latitude) a

large variety of cluaLi.ta,tLva.Lu d)-fferent ej,genmodes can be detected. Ac-
cording to the complexity of their modal structure we distinguish lhzee

ttlpo-t o( eigennodu.

Type 1 j-s the well known modal pattern described by all exact models of
topographic waves in enclosed basins. It j-s akin to Ball's solutions
(BaIl, 1955) and therefore called Bau-t!/pe. Both,the llnear (o = 0.f55)
and the quadratic (o = 0.213) Ball-mode occur in the spectrun and addi-
tional eigerunodes are identified as type l. All exact models for whlch
solutions have been constructed so far, have shown qualitatively simi-
lar solutions. Generally, typg 1 modes consist of a few large-scale
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Selection through the spectrum conlaining eigenmodes of a second or-
der model. The contour lines of ü are plotted for time t - 0 (left) and
t = 1f4 g (right). Three types of solutions can be distinguished and cuts
of the vertical lines indicate further modes not shown here, The pararne-
ters arer N =2, r =0.5, a =2,0, e =0.05, n =0.01.
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Same as Figure 7.6 for a third order model
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vortices moving counterclockwise around the basin, and the water in the
whole basin underlies'this wave motion. The rectangular basln, however,
appears to sustain also t!.ro new types, which so far were unnoticed in
other models.

Type 2, with only a few candidates in this frequency lnterval, can be
caaled ba"!!-tApe. Wave motion is mostly trapped to the long ends of the
Iake; very weak activity is experienced in the lake center and along its
long si-des. The pattern shows one or more mid-sca1e gyres which do not
propagate along the entlre isobaths (lines of const.ant f/H) but are ra-
ther trapped in the bays. This type arises above the cut-off frequency
oo of any mode unit, see FigulLe 7.8, and thus embraces contributlons with
complex wavenumbers. The anplitudes of these modes are exponentially
evanescent in space !.rhich makes it understood why bay-type solutions do

exist for encl-osed basins. The fact that there are eigenmodes with fre-
guencies o > oo is a new resul,t. These modes were neither detected by the
analytic models nor by the crude lake model presented in the previ-ous
sec tion *./ 

-

Figure 7. B

schematic plot o! one mode unit 
Oo

of lhe dispersion relation of
topographic waves in a channel
with parabolic transverse depth
profile, A Nth order model con-
sists of N mode units.

ko lkl ->

Type 3, eventualLy, appears most frequently in the spectrum, In con-
trast to type 2, all.wave activity is norr trapped along the l-ong bound-
aries of the basin and consists of a large number of sma11-scale vorti-
ces. Along the long sides two only weakly interacting beat patterns are
observed. The transverse structure of these modes is simple and suggests,
in the considered frequency range, a "radial" wavenumber of I. The pat-
tern is very similar to that found in straight infinite channeJ-s; type3
is thus named ehanne,L tqpe,.

The nodal structure of the different types can be explained with the

t
a

*) Their detetninaxion is
der to obtain patXetns
up to a reJ-ative ettot

verg difficuit even wjtä high-accuracA integrators. In or-
with i{(s,n)l = Wf f","l i ti:e eigeafrequehcg need be knom
of .IO-7 -

COMPLEX BRANCH

TYPE 2

TYPEII REAL BRANCH
I
I
!
I
!
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help of the dispersion relation in F.LguLe 7.9. Type I enjoys the property
that increasing o brings about more conplex structure since it consists
primarily of modes 

'/ith wavenumbers k<k6. For k<k6 zo/äk> 0 and so the
wavelengths of the contributing modes d.ecrease with gror^,ing o. Type 3,
the channel-type, on the other hand., reveals the opposi-,e property: the
scale of the wave pattern gradualty decreases with d.ecreasing frequency.
Type 3 solutions are mostly made up of mod.es with k>k9. In this range,
ao/ak< 0 and consequently the vravelengths decrease with decreasing o,
c.f. FlguleÄ 7.6 and 7.7.

Tyoes I and 3 exhibit properties identicar to those of the sorutions
obtained by Johnson (1987b), see section 3.6. There, the dispersion re-
ration determines the modat behaviour of the solutions in the same rray.
o(k) has a relative maximum.g (kO,og) which naturally divides the
range of wavenumbers, i.e. the azimuthal mod.e number into t\,/o parls.
The properties of the two ranges k < k9 and k > kg are d.escribed above
and accordingly in sectj-on 3.6. Therefore, Ball-type and channel_type
modes are mathematicarry crosely related sorutions. Both configurations,
Johnsons eLongated basin and the rectangular basin, sustain these ei_-
genmodes. Explicitly. both Balr-mod.es and. channel-modes can be tabelled
with a pair of modenumhrers (m,n) *J. The frequency range shown ln Figuzu
7'6 andT-7 }i-es above the cut-off frequency o1 of the second. mod.e unit,
Modes \.{ith (m,I) and m <mo are of the Ba1t-type and those with (m,1)
and m >mO are chanel-type; mO is an integer closest to kg. Higher radi_
al mod.enumbers only occur bel-ow oI,a2t..., successively and j-t is only
the azimuthar number which determines afflliati-on to the respecti.ve
types.

The fact that topographic waves in a rectangular basin occur as bay_
trapped nodes casts light on the resurts of Trösch (19g4) , These seemed.
to entirely contradict the applicability of analytic models to real ba-
si-ns as anticipated in Figune- 7.1. Each mode is trapped to one of the
bays and does not seem to influence the rest of the basin. The fe$, trap-
ped vorti"ces exhibit roughly the scale of the bay. The rectangurar ba-
sin,. yet a much simpler configuration than Lake of Lugano, reveals equal_
1y bay-type modes toge'th.l \rrt]^ the known Ball-type solutions which in
the interested period range were not found by Trösch (r9g4). This model,
therefore, rinks these two different approaches and demonstrates that
the propagation of topographic waves in encrosed basins cannot merely be

*) n is the ,'azinuthalt, modenunbet comting the nodes
as n denotes the "radiaJ" nodenunber associated to
nodes .

aJong the thaJweg line, where-
the nunber of the transverse
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described by those analytj.cally determined modes of exact models that
were so far constructed. It remains to be proved or disproved that type-2
modes also exist in ä11ipses $rith parabolic or exponential bottom pro-
files and that these modes have a period of the same order of magnitude

as those above. The model of Johnson (f987b) should be scrutinized by
this direction first, Above th.e highest cut-off frequency the disper*
sion relation (3.47) gives an infinite number of complex wavenumbers k

which describe exponentially evanescent modes for E * - or E + -@. re-
spectively. Are there particular frequencies allowing a superpositlon q

such that r! vanj-shes for 16l+- and ü is smooth at E:0? Many further
questions need to be answered to fully understand the behaviour of TWrs

in enclosed basins. Two facts have, howevern transpired: Fi-rstly, the
smootheness of tn" isobaths is essential in enabling global Tw-features
and, secondly, careful numerical solution procedures are needed to find
bay-type modes.

c) 99rv%s9ry99 -*y4 -ps+y*4 -4gpgry4gtsg

The quality of apDroximation strongly depends on the type of lvave con-
sidered. Ball-type modes have large-scaie vortiees, and a good repre-
sentation of these modes with comparatively few basis functions is ex-
pected. Hi-gh orders of expansj-ons are therefore not needed and fas! con-
vergence is observed. By contrast channel-type solutions consist of
sma11-scale modes with large wavenumbers. As was shown in section 5.3
convergence is slow for large wavenumbers and this must equally be ex-
pected for tyDe 3 modes.

Tctb!-z 7.3 collects results of a convergence test for the same configura-
tion as in Figuhe 7.6 and7.7, fype I shows convergence for both, eigen-
frequency and stream function;. similar but considerably slower conver-
gence is found for types 2 and 3. For type 2 it is.particularly diffi-
cult to determine the correct distribution of the stream function along
the axis, as snal-l changes in the eigenvalue o result in relatively
iarge changes of the eigenfunction. Thus, high resolution and small step
sizes in the numerical integration procedure are needed. Sj-nce for ODE

high accuracy integrators exist, the channel method allows for some com-
promise, and this at least explains the superiority of the method in
comparison to some other numerical proced.ures.

Ta.bLe 7.4 collects the dependence of o on the aspect ratio and transverse
topography for the sol-ulions that correspond to BaIl's quadratic mode.
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N=l N=2 N=3

r=0.5 r;0.4 r=0.3

Table 7.3

Convergence properties of the
elgenfrequencies 1n a 2:1 ba-
sin with
q = 2.0,
e = 0.05,
n = 0.0I.
Stars lndicate plotted modes
fn F'tAUnQÄ 7.6 anl 7.7.

Table 7.4

Togography q and aspect ratio
r influencing the eigenfre-
quency of the quadratic Ball--
rnode. The paraneters are N=2,
e=0.05,n=0.01,

a = 1.0

q=2.0
q = 5.0

0.267 0.250 0.2.l9

0.zil 0..l 95 0..l 70

0.1 40 0.1 23 ?

As expected from the behavior of the dispersj-on relation in a straight
infinite channel the slope of the transverse topography has a dominant

influence on the values öf the eigenfrequency. Steeper profiles (q =

5.0) Iower the eigenfrequenc.ies. An equal but rdeaker effect on BaIl-
type modes is experienced when the aspect ratio is decreasing. TabLz7.4

d.emonstrates that'these modes are nuch more governed by the transverse
depth pröfile than by the aspect ratio. All thls is in line with re-
sults obtained from the crude lake model.

Tabt-u 7.5 and 7.6 investigate the influence of the two bagh)rmetric para-
meters q and r on the three types of basin solutions. Again the topo-
graphy effect 1s seen to be more influential. By going from a triangu-
1ar depth profile (S=1.0) tor ä very steep U-shaped profile (S=5.0)
the elgenfrequencies dimlnish by up to a factor of 2. As far as the to-
pography effect is concerned, Ball and channel types react the same way.

whereas the frequency of the bay type increases with q.

Ta.b!.e 7.6 demonstrates that basi.ns r^rith a smaller aspect ratio sustain
Ball-type waves wlth decreased eigenfrequencies. This decrease is over-
proportionat as it is enhanced for smaller aspect ratios. By contrast,
bay- and channel-type solutions show an opposite behaviour. Decreasing

the aspect ralio lncreases the elgenfrequency; this time the response

is under proportional and for bay-type solutions the dependence of o

and r is very small.



q = 1.0

q=2.0
q=5.0

0.200 0.299 0.250

0.153 0.395 0.232

0.097 0-4t 5 0. 1 53
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Table 7.5

Topography effect on the fre-
quency of the three wave ty-
pes, The parameters are as
ln Table 7.4.

Table 7.6

Aspect ratio effect on the
three types. The parameters
are as !\ Tdblle 7.4.

at T-e-9eu-tupg

The occurrence of bay-trapped modes in enclosed basins r"ras unexpected
and raises further questions concerning the properties of sorutions of
of the eigenvalue problem 12.22).

when the asoect ratio of the basin is decreased the bay vort.i.ces of
these modes l-i-e farther and farther apart and vle wonder vrhether these
isolated gyres become uncoupled. There are t$ro polnts to be remarked in
this context. Firstly, basins with no synmetry seem to sustaln decoupled
bay modes as Ln Figuaz 7.1b. secondry. wlth our procedure it is very dif-
ficult to determine the parity*/ of these solutions with respect to the
J-ong axis of the basln. rn this regard very fine resolution is needed
to obtain reliable solutions. The basic probrem is to bring numerical
information through the "dead" zone in the center of the domain. Thls
suggests to consider again semi-infinite channers and to ask lhe ques-
tion of a possible extstence of, bag-Ltapped. nodu, A partial answer is
given in the folLowing chapter.

7.3 Current patterns

In the precedlng sections know].edge of conspicuous propertj.es of topo-
graphic waves in channels and lake basins !.ras acquired with the resurt
that, in an enclosed domain, three gualltatively dlfferent types of
waves are observed. of these, eigenfrequencles and evorution of the

*) ü(s,n) has positive ox neqative paritg with lespect to s when Q(s,n) = {(J-s,n)
or V(s,n) = -ü(l-s,n), respecxivelv.

r=0.5
r = 0.4

r=0.3

0.1 53 0.263

0.t39 0.267

0. I l8 0.269
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stream function srere investigated. In practlce, further propertLes are
of egual importancei e.g. r^rhat is the path of a particle, tracer or pol-
lutant which is affected by a particular Tw-mode?

Consider the evolutlon of the transport vector 2 x Vrp and of the velocity
f le1d (! xV.lt) /H aL dixed positions r,rithin the basin. An outstanding pro-
perty of topographic waves is the fact that the fieLd vector rotates
either cyclonicaJ-Iy or antlcyclonlcally at a f.!xed position. Established
statistical tnethods exist that perrnit calculation of the.orientations of
the rotation and of associated eigenfreguencies from periodograms of
time series of velocity or transport field comPonents. These so called
hßto"Lq 6pee.ür4 are described in Gonella(1972). The method has been success-
fully applied.by Saylor et aI, (1980) and Horn et al. (1985) Ln order to
detect dominant rotational senses in velocity time series in Lake Michi-
gan and the Lake of Zurich, xespectively.

In the present study all fields have harmonic tlme dependence, and hence

the tip of a field vector will describe an ellipse. This ellipse is cal-
led trfunApont oLl,Lpae (for the transport vector ! x VY) or cuuLen* e,Ui$e
(for the velocity vector (! xVtf)/H). Under certain assumptions the cur-
r.ent ellipses can be associated with the particle paths. This problem

is examined ln subsectlon a); subsection b) presents transport ellipses
of a few selected soLutions belonql-ng to the lndlvldual mode types änd

particle paths are studied in subsection c).

a) !b9 -49s -s { -s!!%4 _e44+p^_%

A current ellipse is defined as the trace of the tip of the velocity
vector (! x Vr11,/H at a f ixed posltion. ?he following analysis shor"rs that,
apart fron a scalar factor, in a linear theory the current ellipse re-
presents the particle path or.path-1ine.

The path-line in a tirne-dependent velocity field g.(I,t) is given by the
differential equation

+ = " (x(t),t),
OE

which determines implicitly the path-line x(t)
consider the corresponding integral equation

t

(7.L7)

Alternatively, we can

I(t) =Jg(5t€t,€)a€+xto). (7.18)
0

The velocity field that is used in equations (7.17) and (7.18) is refer-
red to as the Eu-Lwi-an velocity fleld. Equivalentl-y, one could r.rrlte
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(7.18) ln terms of t,]rle L.o4nan4.ia.n velocity field u1 (I(O),t), i.ä. the ve-
loctty at tlme t of the particl-e which was at I(0) at time t=0. r"hklng
use of the correspondence

9r,(1ror ,t) = g(l(t),t),
and j-nserting the integral equation (7.18), the Lagrangian field reads

,t
ur(Itor,t) = g (lg"tl(o),€)de+ x(o),t).

0

For short times or smalL velocl-tLes the lntegral 1n the functl_on argu-
ment 1s snall- in comparison to I(0). Taylor expansion about x(0) thus
yields t

uL(T(Q,t) = t(I(0),t).1(/u1(xr0r,it a€).v] l(:(0),r) + ...,
o (2. 19)

and the Lagrangian field in the integral ean be approximated to lohrest
order by the Eulerlan field at the fixed position x(0). We may also
write (7.19) as

9r(1tol ,t) = u(xtol ,t) + 9s({(0) ,t), Q.2o)

where t "

es(5tor 't) = lIl g(lror 'i) a€J'v] r(rtor 't) (7 '21')L'ö - -

is called lhe StoheÄ d.tuLdt va,I-oc,i.Lg, see LeBlond & Mysak (1980). This term
is non-Ilnear in the velocity field and represents the influence of ad-
vection. The particle-path then becomes

tt
I(t) = x(0) + / u(1rOt,r) dr + i gr(ltol,r) dr, (7.221

00
correct to o(u2). Let us carculate the net displacement x(T)-x(o) after
one period. In this study we assume a periodlc veloclty fleld of the
form

g(I,t) = ne(e=i't gtTl)

= Re 9. cos üJt + fm U sin urt,

whlch when inserted into (7.22j yields

.TT
I(T) -1(0) = ReV J""'ot+rmuJsinurtdt.0 0

T

. J(*Re usin,t-*rmucosr,rt+f rm u).
0

. (V ne g cos rrrt + VIm U sin ort) dt,

l7 .23)
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where T = 2r/u. The contribution of the Eulerian field averages out; the
Stokes drift, however, causes the net displacement

5(r)- 1(0) = +(ne u vrm u-rm u vRe g). (7.24t

we must emphasize that the velocity field (7.23) is obtalned by solviog
the linearlzed Tw-equatlon (2.22). This linearization vras motivated by
small velocitles u such that the advection term g Vg could be neglected,
To be consistent, (,7.24, ean only serve as a {ilut eÄLünate of the (non-
Iinear) displacement of the particle caused by the topographlc r4rave mo-
tlon. Consistency regulres neglection of gs 1n expression (7.22) so that
the path-line ln a linear theory is glven by

t
\(t) = ä(0) + / g(1tor,t)dt,

0

which ln view of (7.23) becomes

I(t) = f (o)+!g(I(o),t -r/a)+ * t* g. (7 .25)

The path*Iine is therefore basically the scaled trace of the tip of the
Eulerian velocity vector.

6) qy494 -p!4*ry. -e.6 -4e -+Wee -tuee4

The qualitative structure of the stream functj"on does not strongly de-
pend on the values of the geometric and bathl'metrlc parameters. It there-
fore suffices to exanine one particular case. FLgule^ 7.9-7.11 display
eigenmodes of three examples of each type and their transport patterns.
63'positlons within the recteingular basin are evaluated and the trans-
port ellipse is plotted as a dashed (solid) curve if the transport vec-
tor rotates in the (counter) elockwise directlon. The transport field is
only determined to within a constant factor because the Tv't-equatlon is
Iinear and homogeneous (no external forcing) i the same holds true for the
velocity fie1d.

The first Ba1l-modes are characterized by a central area with counter-
clockwise rotation, see Figune 7.9, Its size depends on the mode, and we

note that only the llnear Ball-mode has a non-vanishing current vector
in the centre. This central axea is surrounded by a region of clockwise
and weak rotation. HovJever, only Ball-nodes trlth no "radial" mode are
given here, others emerge at much smaller frequencies, i.e, below the
cutoff frequencies of the next mode units, cf. Figuhu 3.5 and3.13, and
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Ball -|vlodes
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Figure7.9 6=o'153

Stream funetion and tlansport ellipses for three Ball*modes. The sma1l
frames show contours of the stream function for t=0 (bottom), t=l/8,
L=l/4 (top). Transport ellipses are dashed (sotid) for (counter) clock-
wise rotating transport vectors. l indicate nooring sites on the linear
arrays A and B, respectively. The parameters are N=2, r=0.5, e=0.05,
n =0.01-, M = l-00.
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Bay - liodes

f= 0.395

C = 0.297

fr = 0.263

Flgure 7.10
Same as Figune7,9 for three bay-modes.
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Channel - lvlodes

6 = O.25t

t=Q.2t8

f = 0.215

Figure 7.l-I
Same as Fiiute7,9 for three channel-mod.es.
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would consist of more interlocking areas r^ij-th different senses of rota-
tion.

FLgun-e,7.10 shows a selection of three bay-modes. At the lake ends wave

activity is observed in the form of clockwise rotating currents, For
higher bay-modes these transpoft ellipses degenerate to nearly linear
motion. It follows a zone of strong counterel"ockr^rise rotation. roughly
at the position where the slope of the thalvreg has .a maximum. Beyond it,
closer to the center, wave motion rapidly d.ecreases and dies out.

The stream functions and transport ellipses of three channel-modes are
plotted in FiguLeT.lt. It is typical and could already be inferred from
the stream function p1ots, that there are bands along the long side of
the basin, Close to the shore line clockwise rotation is observed being
strongest in the middle of the lake but weak at the long ends. Parallel
to it follows a band ishere the current vectors rotate counterclockwise.
Along the whole basin in the neighbourhood of the thalvreg line nearly no

wave aetivj-ty is experienced.

Figu"Lz 7.9 {fop) further displ-ays a proposed mooring array by which the mo-
dal type of an eigensolution in the basin ls likeJ.y to be determinedt
this is described in section 7.4.

c) P-949!e-P*4bt

A consistent linear wave theory predicts closed particle paths - the el-
liptic motion of surface particles in a gravj-ty wave are an example.

within this linear approximationr the path-line represents the scaLed

trace of the tip of the Eulerian velocity vector, the current ellipse,
see equation (7,25). F,Lguhe7,9-7.11 qive an inpression of the shape and

orientatj-on of these particle paths. Note, however, that they apply for
transport ellipses and therefore depth-integrated fath-1ines.

The linear theory can be .extended to provide a fj.rst estimate of the
partj.cle path caused by advection; this is a non-Iinear effect. Equation
(7.24) exptesses this Stokes drift - it is a net displacement during one

cycle due to the spatlal variation of the veLocity field. Observationally,
the Stokes drift manifests itself as a mean transport and, if alL other
oerturbations were absent, could be visualized by a tracer.

F,i4unu 7,12-7.14 show the depth-lntegrated Stokes dri.ft and correspond

to F.iquheÄ 7.9-7.11. The latter illustrate particle paths (current elJ-ip-
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B a l l - Modes 
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Same as F.iguJte 7. 12 for three bay-modes. 
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ses) in a linear theory whereas the former provide a first estimate of 

particle motion due to non-linear advection. 

It is a property of the Ball-modes (FigU4e 7.12) that the counterclockwise 

propagating gyres produce a net drift in the clockwise direction. This 

induced circulation is closer to the boundaries the higher the Ball-modes 

are. For the quadratic and the higher Ball-mode a weak cyclonic rotation 

in the lake center is observed. At the lake ends there is no drift. 

The bay-modes in FigU4e 7.13 exhibit significant transportat the lake 

ends; each in a different fashion. The mode with o =0.395 has a pronoun­

ced drift along the short sides of the basin against the direction of 

phase propagation. The lower left and top right corners act as sources; 

the others are sinks of the drift current. The next bay-mode shows a 

pair of lateral gyres and the structure of the stream function of the 

mode with o =0.263 inplies a drift along the ends of the long sides. The 

role of the sources and sinks is now interchanged. 

FigU4e 7.14, finally, shows drift vectors for the channel modes. They 

hardly differ from each other, and the pattern consists of two near-shore 

drifts in opposite direction to phase propagation. The drift is experien­

ced only close to the long sides of the basin and most of the lake has no 

transport at all. Opposite corners again act as sources and sinks, re­

spectively. 

The Stokes drift has a particular sense of direction which is mainly 

clockwise areund the basin (on the northern hemisphere). Nevertheless, 

the three mode types have different transport properties: Ball-type mo­

des exhibit a circular pattern confined to the centre of the lake. Bay­

and channel-type modes show a straight drift current along the short and 

long sides of the basin. respectively. This again underlines that know­

ledge of the modal type is of particular importance. 

7.4 Detection of topographic waves 

In this section we establish criteria which allow a distinction of the 

three individual mode types. These criteria are deduced from the behavi­

our of the transport field at a fixed position. The eigenfrequency is not 

significant enough to allow distinction between individual types of topo­

graphic waves because, generally, small differences arise which are in 

many cases beyend the resolution of the Observations. Moreover, for 

elongated or large lakes the spectra of secend and first class waves may 
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overlap or, more frequently, the periods of bay-modes may be of the 

same order as those of internal gravity waves. However, provided the 

current structure in the basin is known to a certain extent, it is pos­

sible to identify the modal type. As was demonstrated above, the basic 

problern with which the observer is confronted is the richness of the 

spectrum of topographic wave motion in a particular basin. This is con­

trary to gravity waves (seiches) which exhibit a simple, well-ordered 

spectrum (if one abstains from considering transversal modes) with eigen­

frequencies which lie reasonably far apart. Therefore, a particular fre­

quency can readily be associated with a certain modal behaviour even in 

case of some observational uncertainties. However, as is evident from 

F.i.gwr.u 7. 6 a.nd 7. 7 the eigenfrequencies of TW' s may differ by less than 

1 % which is 'far below the accuracy wi th which an eigenfrequency can be 

detected in nature. The fact, whether a TW occurs as a Ball or as a bay­

type has important implications on the particle transport caused by this 

wave motion. 

In what follows, we refer to F.i.gwr.u 7. 9- 7.11 of the preceding section. A 

proposed mooring array (!) is inserted; it consists of two straight strings 

(A and B) perpendicular to each other. A follows the thalweg line and 

extends over its strengest depth variation, i.e. where the bay-zone joins 

the deeper area of the lake basin. Array B accounts for the transverse 

variation of the topography and is positioned in the centre of the basin 

extending to the shore line. Both arrays consist of 4 (or more) equidi­

stant chains carrying the measuring instruments. In-a-stratified water 

body a current meter is attached to the chain which records the evolution 

of the velocity vector in the epilimnion. It is followed by a thermistor 

chain detecting the position of the thermocline. In the hypolimnion a fur­

ther current meter is positioned. Such a device (A and B) provides 8 time 

series of the velocity vector for both layers and a sequence time se­

ries of isotherm depths (after conversion of temperature time series at 

fixed depths within the metalimnion) . From these data spectra can be cal­

culated; the time series of the velocity vectors further allow determi­

nation of the spectra of the rotational sense of the vector, see Gonella 

(1972). This will eventually lead to a detailed picture of the transport 

structure at these 8 positions•J. Eigenfrequency and associated sense 

and strength of rotation form part of this information. 

•) The transport tield is connected to the observed velocity tield according to equa­
tions ( 2. 32) tor a two-layer ,model. 
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Comparison of the results from array A with these of array B brings 

about the mode type of the observed eigenfrequency. From F.<.gwr.u 7. 9- 7. 11 

we learn that a channel-type is characterized by a very weak or vanish­

ing signal along array A. Similarly, the signals decrease on B when ap­

proaching the centre of the basin. Maximum values are experienced between 

shore and thalweg line. The channel-modes displayed in F.<.gwr.e 7. 11 further 

show (counter) clockwise rotating transport vectors close to the (centre) 

shore. These features beleng to the first mode unit, and hence the rota­

tional sense changes only once on array B. Accordingly, higher transver­

se modes exhibit more changes. 

Bay-modes, on the other hand, give vanishing signals on array B which is 

positioned f~r away from the bays. Array A shows increasing signals to­

wards the shore zone of the bay reaching maximurn values about at the po­

sition of steepest descent of the thalweg and again decreasing after a 

change of rotational sense. Two arrays, A and A', placed at either long 

end of a natural lake basin may record different response properties 

(with respect to eigenfrequency and spatial distribution) imitating in­

consistency. Each bay of a natural basin is, however, able to sustain 

its individual bay-modes•J. Such results are therefore not contradictory 

but rather require a refined interpretation. 

Whereas both, channel- and bay-modes had typically one array recording 

very weak signals, the signal strength is comparable on array A and B 

when a Ball-mode is detected. For the fundamental mode (cr = 0.153) the 

signal weakenes towards the shore lines on both A and B while changing 

once its rotational sense from a counterclockwise to a clockwise rotation. 

Higher Ball-modes exhibit vanishing current vectors towards the centre. 

A general property of TW-modes is that the Eulerian velocity vector com­

pletes a rotation in the course of one period. This clearly distinguishes 

voricity governed TW-motion from gravity dominated motions. As an excep­

tion thereof we must mention Poincare waves which, near a vertical wall 

or in the neighbourhood of a bend of a flat bottomed channel, exhibit 

also rotating velocity vectors, see Taylor (1920), Webb & Pond (1986). 

The spatial and temporal interrelation between the individual mooring 

sites (!) must be discussed as well. This can be readily achieved by cal-

•] This is explained in detail in section 8.3 and evidence is given that a bay-mode 
in an elongated basin can be considered as a local wave phenomenon. 
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culating lines of constant phase and lines of constant amplitude of the 

transport stream function and the velocity vector fields. 

An observed quantity ~ shall be given by 

$ (x,t) = Re (e -iwt ~ (x)), 

where Separation of time and space has been assumed. ~ is a complex scalar or vector 
field, independent of time. The complex field is determined by the two real fields Re~ 
and Im~ or, alternatively, A and 4> according to 

with 

~ = Re ~ + i Im ~, or 

A 

4> ={~+ n, 
4> + 2n, 

Re~ > 0, 

Re~ < 0, 

Re~ > 0, 

~ arctan (Im ~/Re~). 

Im~ > 0, 

Im~ < 0, 

For brevity, lines of ~ = const are called co-phase or co-tidal lines, A const are 
called co-amplitude or co-range lines. 

HgWteo 7. 15 - 7. 17 display co-tidal and co-ampli tude' lines of all impor­

tant fields, i.e. the stream function (scalar) and the transport field 

(in components). The linear Ball-mode (FLgWte 7.75) has the simplest struc­

ture. Co-range lines of the stream function field are mainly circular 

giving rise to a positive amphidromic point in the centre of the lake. 

The co-tidal lines join at this point. The transport field (related to 

V~) has now two amphidromies located at conjugate positions for both com­

ponents; each exhibits a positive sense. Note that the transport field 

is weak towards the lake ends. 

F.<.gu!Le 7.16 gives the quantities for the next higher Ball-mode (quadra­

tic). The co-tidal lines repeat themselves once in the revolution, i.e. 

the co-tidal line pattern exh.i);>i ts central symmetry. This was already 

evident from the stream function pattern as the phase doeo not complete 

an entire revolution around the basin during one cycle. The transport 

field shows now three amphidromic points for each component all of which 

are positive. The patterns of a bay-mode are different, see F.<.gu!Le 7.17. 

Co-phase lines are mainly straight joining at one or two positive am­

phidromic points at the centre of the basin. The v-component of the 

transport has a nodal line across the basin near the lake end. 

In view of the smaller spatial scale of the vortices the channel-modes 
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-~ines of constant phase (solid; co-tidal lines) and lines of constant 
amplitude (dashed; co-range lines) of the stream function, the u-com­
ponent (along thalweg axis) of the transport and the v-component for 
the linear Ball-mode. The parameters are given in F-i.gwr.e 7.9. The num­
bers labelling lines of constant phase correspond to multiples of an 
eighth of a period; those of constant amplitide indicate the fraction 
of the maximum amplitude. 
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Same as F.i.gWte 7. 15 for the quadratic Ball-mode. 
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lf = 0.395 
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(not shown here) have much.more complicated patterns. 

The suggested mooring array (A and Bl is not appropriate to draw con­

clusive inferences regarding the co-tidal line structure of the three 

mode types since, in most cases, both strings A and B coincide with a 

particular phase line. A third string C should be deployed which links 

both far ends of A and Band forms a triangle with·thern. The mooring si­

tes or string C then record the passage of the co-tidal lines. 

In this section we indicated with a first rough method how the indivi­

dual types of TW' s could be discerned. Both, the behaviour of the field 

at fixed positions and their interrelations were important pieces of 

information. Depending on position and modal type the current vector de­

scribes an el1ipse; co-tidal lines exhibit characteristic structures 

and allow the desired distinction. 

7.5 Curved basins 

In this section a first step towards more realistic basin geometries is 

taken, where we investigate the effect of c.on.6tant curvature on the dif­

ferent eigenrnodes of closed basins. The calculation of the matrix ele­

ments Kä~·· which contain the entire bathyrnetric information (including 

curvature) must now be performed including the Jacobian, J= 1-K·n of the 

constant curvature. 

The modified matrix elements are listed in equations (5.13). Curvature 

will be measured by the non-dimensional pararneter 

KB 
K' = -2-' 

for which 0 $. I K I < 1 must hold. Using the modified elernents, the very 

sarne integration procedure is performed as before in order to obtain 

eigenfrequencies and eigenmodes as was described in chapter 7.2. This 

demonstrates that the channel method used here allows a broad variety 

of basin geometries to be analysed without considerable alterations of 

the calculations. 

First effects of the curvature were presented in chapter 6 and the dis­

persion relation a(k) of TW's propagating in a hypothetical channel 

with constant curvature was calculated. The most important findings 

were 

i) The syrnrnetry a(k) = a(-k) is broken and replaced by the relation 

O(K,k) = O(-K,-k); 
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ii) for K > 0 all wavenumbers belanging to a given frequency are shif­

ted to more positive values; 

iii) therefore, TW's propagating along the inner (outer) shore line are 

longer (shorter) than for straight channels; 

iv) there exists a frequency interval [oö,o0J suchthat free TW's are 

sustained only along the inner shore line, compare F.(.gwr.e 6.1. 

It is obvious, that solutions in a curved basin which has lost symmetry 

across n = 0 will lack this symmetry as well. The curved thalweg line 

is not even locally a centre of symmetry. Due to iii) spatial scales 

will be larger along the inner shore line than along the outer, this 

being a consequence of additional vorticity induced by curvature. Ac­

cording to remark (iv), if there exist eigenfrequencies in the critical 

interval [o6,o0], these eigenmodes exhibit an interesting structure. 

For waves propagating along the inner shore the wavenumber is real and 

a spatially periodic pattern with a nurober of nodes evolves; on the op­

posite side k is complex. 

F.(.gwr.u 7.18 a.nd 7.19 show corresponding eigenmodes for different values 

of the curvature erdered according to frequency. Generally, curvature 

does not alter the eigenfrequency very much. Deviations of the eigen­

frequencies for a strongly curved basin (K= 0.5) from the values in the 

straight lake are throughout less than 5%. Eigenfrequencies decrease 

with increasing curvature. There is little hope to detect experimental­

ly any effect of curvature on the eigenfrequency. The stream function 

patterns, on the other hand, show more pronounced modifications. 

The Ball-modes clearly demonstrate the influence of remark (iii) in the 

above list. Although the total nurober of vortices remains constant when 

increasing K from K = 0, the nurober of gyres along the inner shore de­

creases in favour of that along the outer. Along with this, the inner 

vortices become larger. 

As could be expected in advance, the stream function of the bay-modes 

(o= 0.395*) and o = 0.115) is hardly altered in the curved basin. This. 

is rather obvious, because the bay does not "see" much of the curved 

basin. Mainly modes which consist of wave motion over the whole curved 

domain will be influenced by this change of geometry. 

*) The modes o > OÖ for K 

s = 0 and s = L. 
0. 2 and K 0. 5 are obtained by shooting from both 
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X=O )(.:0.2 )(.: 0.5 

'_, 0 

D" = 0.395 

er= o.255 D" = 0.245 

0": 0.248 er= o.246 (f = 0.240 

Figure 7.18 

Camparisen of eigenmodes in straight and curved basins, their 1ines of 
constant depth are shol'm in the top row. The modes are erdered for de­
creasing frequency and the continuation is given in F.<.gWle 7.19. The cut­
off frequency oo sp1its in the case of curvature bui1ding an interva1 
[o~,oöl in which the modes show uncommon patterns. The parameters are 
N=2, r=O.S, q=2, e:=O.OS, n=0.01, M= 100. 

The channe1-modes demonstrate remarkab1e changes. By increasing the cur­

vature the wave motion is significant1y attenuated in the region towards 

the centre of curvature. For K = 0.5 (an extreme case) the eigenmode on1y 

consists of a trai1 of waves trapped to the outer shore line. 

In the critical interval I = [o0,o0] there are indeed eigenfrequencies 
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Figure 7.19 See caption F.{.guJte 7. 18. 

which exhibit the cortjectured structure. Few large scale vortices are 

trapped at the inner boundary of the basin. In F.{.guJte 7.6 one finds a bay­

mode with an eigenfrequency very close to but above ao. This mode is not 

shown in F.{.gUite 7.18 for K = 0 because 1 strictly 1 the modes for K = 0. 2 and 

K =0.5 with aEI have no limit for K} 0 1 and it is not clear whether and 

how a possible eigenmode could be constructed right at a = a0 . Thus 1 solu­

tions for K > 0 wi th a e I are structurally new. In the course of one cycle 

the vortices do not propagate around the basin but rather remain trapped 

in the domain n > 0. This mode 1 however is not a true bay-mode since wave 

motion in n > 0 originates primarily from the Jtea! wavenumbers k < 0. 
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8. Reflections of topographic waves 

In this chapter, which follows Stocker (1987) and Stocker & Hutter (1987b), 

TW's impinging on a vertical wall er shore zone is investigated. The con­

figuration of a semi-infinite channel is especially of interest as a li­

mit of elongated basins, for the distribution mechanism of TW-energy 

within an enclosed basin may be supposed to consist primarilyof a series 

of subsequent reflections at the long ends. This will result in a super­

position pattern which eventually will be observed as a basin mode. Al­

ternatively, if a semi-infinite channel should permit bay-modes trapped 

to the channel end then it is plausible that similar modes in elongated 

rectangles could exist ~ndepend~y at either lake end. 

Scrutinizing the properties of one individual reflection will, however, 

not only shed light on this problern but equally help us to explain most 

of the conspicuous features found in the previous chapter. There, we ob­

served that the crude lake model (vertical walls) did not give rise to 

fundamental modes. The wave structure was rather small-scale and no glo­

bal phase rotation was obtained. Can this result be substantiated by 

the study of TW-reflection? Moreover, in section 7.2, by using merely 

phenomenolog~cai arguments, we distinguished three types of TW's. These 

showed different parameter dependencies; ~onjectures were put forward 

for their phy&~cai explanation. We assert here that the key to these 

answers can also be found by extracting the basic mechanism: the reflec­

tion of TW's in a semi-infinite channel. 

Tc date, little is known about the solution of the TW-equation (2.22) 

in semi-open domains such as gulfs, harbours, etc .• Johnson (1987b) was 

the first to present an exact solution of (2.22) in a semi-infinite 

channel, see section 3.5f. Due to the special configuration, however, 

only the case of perfect transmission could be studied: an incident TW 

of given wavelength and amplitude is completely reflected as a wave of 

identical wavelength and amplitude. 

Most research considering such domains is concerned with first-class 

waves and their behaviour under reflection. Taylor (1920) showed that 

the energy of an incident Kelvin wave propagating towards a vertical 

wall is distributed among a reflected Kelvin wave and a whole spectrum 

of Poincare waves. Provided o < op where Op is the cut-off frequency of 

Poincare waves the latter exhibit a spatially exponential decay and 

therefore are only important in the neighbourhood of the reflecting wall. 
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Brown (1973) also constructed solutions for o > Op using the method of 

collocation. For this case, some of the Poincare modes are oscillatory 

and no longer evanescent; they may also destroy the symmetry of the re­

flection pattern. A summary is given in LeBland & Mysak (1980). Webb & 

Pond (1986) investigated the transmission and reflection of a Kelvin 

wave propagating in a channel when hitting a bend. 

Another important effect which occurs in open domains is called l~bouA 

~uo~nee. Although to our knowledge there exist no studies of this ef­

fect for TW's, considerable knowledge has been acquired for first class 

waves, see the review article by Miles (1974), Miles & Lee (1975) and 

Buchwald & Williams (1975). 

8.1 Reflection at a vertical wall 

A property of our channel technique is the fact that it furnishes solu­

tions with complex wavenumbers in a natural way. This suggests that so­

lutions of the form (5.9) can be found which represent the situation of 

reflected topographic Rossby waves in a channel. The idea is to super­

pose several waves with the same frequency; one incident and some reflec­

ted waves. The incident and at least one reflected wave have real k*), 

and the remaining modes have Im(k) > 0; they are important only in a 

boundary zone where the reflection is induced. The superposition satis­

fies the boundary condition ~ = 0 (no flux) at the reflecting wall. 

Consider a semi-infini te channel s :<: 0 wi th a wall at s = 0. One particu­

lar wave mode forms the incident wave; possible candidates are indicated 

in F-i.guAe 8.1. These modes have their group velocity directed towards the 

wall, and the transverse structure of the incident wave depends on the 

mode unit to which they belong. Reflected modes which take part in the 

superposition must not be among the indicated modes and must satisfy the 

inequality Imk <! 0. (8.1) 

With this the superposition and determination of the compound solution 

is unique and consists of one incident mode and 2N reflected modes. This 

argument relies on the fact that the real branch of the dispersion rela­

tion has domains of k > 0 where aojak < 0 and aojak > 0. It also makes 

use of the existence of a complex branch of the mode units. A series of 

*) This implies that o < Oo, Oo is the cut-off frequency indicated in Figure 8.1, 
above it all wavenumbers are complex. 
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Figure 8.1 

Dispersionrelation a(ikj) of a third 
order model in an infinite channel. 
Possible incident modes wi th group 
velocity into the negative s-direc­
tion are indicated by 

• for cph tt Cgr and ~ for Cph ~t cgr· 

Above the cut- off frequency ao all 
wavenumbers are complex. 

Figure 8.2 Selection of possible incident <•,~> and reflected (o) 
modes in a semi-infinite channel. 

examples of this selection is shown in FlgUAe 8.2. Incident waves are 

marked with full squares, reflected modes are shown with open circles. 

Those on the real branch have the energy propagating away from the bar­

rier s = 0, those on the complex branch arise in pairs, but actually 

represent four complex wavenumbers of which only two have Imk > 0, see 

F.{.gUAe 5. 3. 

Dropping the harmonic time dependence a general wave in a straight, in-

finite channel reads 
(8. 2) 1/1 = L dy eikys LCa.y Pa., 

y a. 

where we have neglected to explicitly distinguish between P~ and Pä with 

a.=l, ... ,N and use for simplicity only Pa. with a.=l, ... ,2N. A solution,re­

presenting wave reflection, is then given by 
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2N 2N 2N 

L 1Pa L dy eikys L Cay Pa' (8.3) 

a=l y=l a=l 

with the unknawn vectar dy. The caefficients Cai are knawn if the fre­

quency o and carresponding wavenumber k1 af the incident wave are pre­

scribed. They are camputed with the methads af chapter 5. Analagausly, 

ta each af the wavenumbers ky(o) af the reflected waves the carrespand­

ing cay can be camputed. Hence ki, ky, cai and cay (a,y = 1,2, ... , 2N) are 

knawn. 

Impasing the na-flux canditian 1Pa = 0 at s = 0 yields the linear system 

2N 

L cay dy = - cai ' 
Y=l 

Cl=l, •.. ,2N, (8.4) 

dy and Cai are vectars of length 2N and cay is a (2N x 2N) -matrix. Due to 

the orthaganality af the set {Pa} and the mades belonging to different 

wavenumbers ky the matrix cay is regular and (8.4) can be inverted. 

FigWte. 8.3a displays tlie wave pattern which results, when a wave belang­

ing ta the first made unit with bath phase and graup velacities directed 

towards the wall is reflected. Alternatively, incident phase and group 

velacities may have different directians as in the secand-made respanse 

af f'-i.gWl.e 8. 3b. We have faund that the largest partian af the reflected 

energy lies in the made with the carrespanding wavenumber belanging ta 

Pigure 8.3 
ljl-cantaur lines af a reflectian af tapagraphic waves at a vertical wall. 
The insets explain the composition of the reflection pattern with e, in­
cident wave and a, reflected wave. The selected parameters are N = 3, 
e; = 0.05, for a) q = 1.0, o= 0.305 and b) q = 0.5, o= 0.202. 
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the same branch of the dispersion relation (indicated by arrows in the 

insets of F-tgMe 8. 3) • 

Therefore, the mode with the negative of the incident wavenumber is hard­

ly excited, and reflection causes primarily a shift of wavenumber rather 

than a change of its sign. As a consequence, wave activity remains at 

the side of the incident wave. What results is a beat pattern with its 

first "calm" area at approximately 2'1TB/ Jkin -kaut! away from the wall. The 

structure depends on the two main wavenumbers kin and kaut· If these dif­

fer markedly from each other rather local and small-scale patterns emerge. 

These results give a better understanding of the basin modes obtained 

when studying a crude lake model. Ceroparing F-tgMe 8.3a and 7.3a clearly in­

dicates that the basin mode is merely the superposition of two nearly in­

dependent reflection patterns which are induced by the two vertical walls. 

Due to the fact that the discontinuous depth lines prevent wave energy 

from changing the side in the channel, there are no simple reflection 

patterns to be expected that occupy the whole channel. Hence, in. a semi­

infinite channel or even a lake basin the along-axis depth profile at 

the very end is of crucial importance for the structure of the reflec­

tion pattern. 

8.2 Reflection at an exponential shore 

We now consider a case which has continuous (though not everywhere dif­

ferentiable depth lines at the end of the channel. In order to keep the 

convenient algebraic procedure (8.3), (8.4) we let the channel be compo­

sed of two sections. Close to the end-wall, for 0 < s < s0, the depth in­

creases exponentially as h(s)=c(l+ fls/so, for s >so it is constant. 

The isobaths no longer intersect the wall but are C:-shaped. Safe a time­

deoendent factor e-iwt the solution then takes the form 

4N 2N 
0 \ ikrs '- ex 

j 
ljl = L dr e Lcar l'a, 

f=l a=l 

2N 2N 
~ ik·s \ '\' 

ljl e 1 L Cai Pa + L dy 

O<s<so, 

(8. 5) 
2N 

ikys '\' p 
e L cay a, so< s, 

a=l Y=l aal 

where ki is the incident wavenUmber, {krl{N is the whole set of wavenum­

bers and {kyliN is the restricted set with Im k ~ 0 and the group velocity 

directed away from- the· end wall, all corresponding to cr. Superscripts 0 

and. oo denote the domains 0 < s < so and so< s, respectively. c~r is the 

(2Nx4N)-matrix corresponding to (5.8) but for the case h'/h=const 'f o. 

r .. 
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The stream function w must be continuous and differentiable at s so 

and vanish at s = 0. Thus, for a = 1, ... , 2N*) 

0 c~r dr = 0, 

1/!01 
a s=so 

1/J~, 

o s=so 
{8. 6) 

a ••. ~a I äS" 
ls=so 

with the 6N unknowns dr and dy must be satisfied. This can be written as 

ex ikrso 
car e 

'k ex ikrso 
J. r car e 

and the vectors dr and dy are determined by inverting {8.7). 

{ 8. 7) 

F.igWte 8. 4 shows solutions w for a composed channel; two significant dif­

ferences tö F.igWte 8.3· are observed. Now, there is wave activity also in 

nO 
s 

a 

b 

Figure 8.4 

Reflection pattern in a composed channel. For 0 < s < s 0 the depth varies 
exponentially along the axis whereas it is constant for s > so. This 
connects the isobaths of both channel domains n > 0 and n < 0 and enables 
wave energy to leak into the opposite domain in the course of reflection. 
The selected parameters are e: = 0.05, for a) N= 2, q = 2.0, a = 0.260, 
so= 2.0 and b) N =3, q = 0.5, a = 0.200, so= 1.0. 

*) We now omit the summation signs over r =1,2, ... ,4N and y =1,2, ... ,2N. 
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the opposite half of the channel corresponding to the negative of the in­

cident wavenurnber. This arnounts to a weak tea.kage o6 wave envr.gy by reflec­

tion into the other channel dornain (F~g~e 8.4a). However, probably owing 

to the non-srnootheness of the isobaths at so it is cornparatively weak 

and rnost of the reflected wave·activity rernains on the incident side. 

F.<.g~e 8. 4b shows a reflection pattern of lower frequency, kin and kout lie 

farther apart and therefore rnore local and cornplicated structures result. 

Moreover, at the beginning of the reflecting shelf ( s ·~ s 0) wave ~nteno.<.M­

~on is observed. These specific results dernonstrate that the global 

wave pattern is very sensitive to the basin shape and the depth profile 

at the channel end. However, these results still do not explain the dis­

tinction of TW's into three different basin types as suggested in section 

7.2. We would like to have these explained e.g. as special cases ofthree 

different reflection patterns. 

8.3 Reflection at a sin2-shore 

This section closely follows the analysis in section 7.2. The procedure 

is, however, slightly rnore cornplicated since we rnust construct solutions 

in an open dornain. 

The dornain of interest is a serni-infinite channel with the depth profile 

(7.2) and a thalweg depth 
2 TfS 

{ 

11 + sin z;;-- , 
h (s) = 0 

1 + 11' 

0 < s < so, 
(8.8) 

so < s. 

This profile is srnooth at s 0 and the slope pararneter S ( s) - h-1 dh/ds 

takes the form 

S (s) = 
{ 

TT sin(TTs/so) 

2 so (11 + sin2 ( TTs/2s-o>l 

0' 

The solution ~ in the two dornains is given by 

s 
exp( J ~dil ds) !o('O) 

0 

2N 

!i + L !~ Dy, 
Y=l 

0 < s < so' 
(8.9) 

so < s. 

0 < s < so. 

(8.10) 

so < s, 

where (7.5) and (7.12) hftve been used. !7 is the incident rnode with wave 
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nurober ki and, in real notation, has the form 

(S.ll) 

which is a vector with SN components; one such component, e.g. (Re ~ila 

is given by Re exp(i ki s) Cai Pa. If Dy and t~ are also separated into 

real imaginary parts, they have the form•J 

[Re !> 
-Im 

!'] Re py -Im h 
[DRy] . 'I'~ 

' Dy (8.12) 
-Y 

Im h Re 'h Diy 

Im !eY Re h 
As was the case for the incident wave, ~Y consists of 2N components, 

each of which has the form 

( , 1, ) _ ikys p (,;, ) 'k ikys p 
!Y a= e Cay a• !Y a = l. y e Cay a• a. = 1,2, ... ,2N 

and wavenumbers are restricted such that Im ky :: 0. 

The representation (S.lO) has SN real unknowns, ! 0 (0) =(0, ~g(O); 0, ~~(OJ) 

and Dy. These are determined with the help of the matehing condition at 

s =so, viz. 
!~I : E! <s0 J !0 <0l = !'i + L !~ Dy, 

I s=so y 

or more precisely, 

[ ~12 ~14 
~42 ~44 

(S.l3) 

and the calculation of the ~ij'S is described in the text below (J.l5). 

The computational scheme therefore requires, firstly, numerical integra­

tion by a Runge-Kutta method to obtain the ~ij'S and secondly, an alge­

braic procedure to calculate both !r and, for a preselected incident 

wavenumber.ki, the corresponding !i· 

We learn from (S.lO) that 2N+l·modes are superposed which make up the 

solution 'I'~ far away from the reflecting zone. It is of particular in-

•) The extended formulations (8.12) do not contain more information than the form 
(7.5) and only account for the characteristics of the complex multiplication. 
capital subscripts R and I denote real and imaginary parts, respectively. 



- 154 -

terest to determine the reflection coefficients Ry corresponding to the 

individual modes with wavenumber ky• Usually, these are calculated with 

the help of an energy argument: Ry then is proportional to the averaged 

total energy contained in the mode ky. As section 5.4 has revealed, any 

attempt to draw conclusions concerning the energy content of TW-motion 

is ambiguous when considerations are restricted to a barotropic formula­

tion. This is so, because the averaged velocity field does not account 

for the energy conteht due to vertical velocity variations and therefore 

is always a .towVt bau.nd. Hence, we propese another procedure. 

'rhe measure of "strength" of the contributing modes is selected by scal­

ing the maximum value of the modulus of the stream function !y with the 

maximum value 'of that of the incident mode !i- More precisely, we define 

Ry as 2N 

max I (DRy+ iDryl [ Ccxy Pcx (n) I 
ne [s+, s-J cx=l 

2N 

maxi [ccxi Pcx(n) I 
n cx=l 

(8.14) 

We have calculated the reflection coefficients Ry for a secend and a 

third order model. The former has already revealed remarkable results 

which are demonstrated in F.<.gwr.e. 8.5. It shows Ry of the two possible*J 

reflected modes as functions of the frequency. The reflected modes are 

induced by the incident mode • which has Cgr tt cph towards s = 0. 

When solving ( 8.13) two cases have to be considered. If o > oo there ex­

ist no modes which are periodic in space, i.e. Imk f 0 for all k. Con­

sequently we cannat define an incident mode as in (8.10). Setting !7=0, 

(8.13) allows a non-trivial solution if 

det [~(so),- !yl = 0. (8 .15) 

On the other hand, when o < oo, !7 f 0 and (8.13) .is invertible provided 

the determinant does not vanish. 

Calculations have shown that there are indeed real frequencies o > o 0 
sa tisfying ( 8. 15) • Consequently, there exists a CÜ6CJteA:e. <lpe.c.tltum 6oJt o > o0 • 

and a cont.i.nu.ou.<~ <lpe.c.tltum 6oJt o < o0 • The contour lines of the stream func- · 

tion (8 .10) for different frequencies are also plotted in F.<.gwr.e. 8 •. 5 •. Cer­

respanding to the terminology used in Quantum l-1echanics we call the 

*) A possible reflected mode has cgr 3o/3k directed awag from s = 0, i.e. towards 
s = + oo and Im k = 0. 
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waves which belong to the discrete spectrum bou.nd 6;ta;tu of TW' s in the semi­

inf ini te channel whereas the waves ·for o < oo are 6Jtee <l;ta;(:M of the sy­

stem. This terminology is very appealing and obviously applies here well 

as inspection of the stream functions in F.i.gu.Jte 8.5 reveals. 

The bound states must be identi'fied with the type 2 waves (bay-modes) 

found in the improved lake model in section 7.2. Indeed, the frequencies 

o = 0.395 are the same and when ignoring in the reetangle the stream 

function at the far end s = 1 the mode structures are alike, see F.i.gu.Jte 7.6. 

We therefore conclude that the occurrence of the bay-mode in the reetan­

gular basins for o > o0 is due to two trapped bound states of TW's in 

ei ther lake bays at s = 0 and s = 1. The stream function of this mode con­

sists of 2N modes ky with Im ky > 0 for s > so and is spatially .evanescent. 

The longer a lake basin is, the weaker will be the coupling of the bound 

modes in the respecti ve bays. The two additional bay-modes shown in F.i.gu.Jte· 

7.6 at o = 0.297 and o = 0.263 are also originating from bay-trapped to­

pographic waves not shown in F.i.gu.Jte 8. 5. 

The fact that equation (2.22) has a discrete spectrum above 0 > 00 consisting of bound 
states resolves the seeming controversy formulated in section 7.1. In particular, in 
elongated lakes with very steep transverse topography (q~lO for Northern Lake of Lugano 
as determined by Bäuerle, 1986} this new result is of importance. Let us estimate the 
frequency of the quadratic Ball-mode of the elongated Northern Lake of Lugano. The ba­
sin is 17 km long and has an approximate width of 1.5 km. This gives an aspect ratio 
of r = 1.5/17 ~ 0.088. Using (3.15) and (3.22) yields the estimate 

0 ~ 0.049, T "' 350 h. (8.16) 

Remember that the topography of the lake has a markedly steeper profile than the para­
bolic used in the Ball-model. Due to the conspicuous topography effect, (8 .16) is cer­
tainly an overestimate for o. Periods would therefore have to be expected to be even 
langer. Measurements, however, indicate a distinct signal at areund 74 h, clearly far 
above the cut-off frequency OQ for this basin. One possible new interpretation is thus 
put forward, and it seems reasonable that the 74 h-signal could be the trace of a bay­
~apped topogJtaph.i.c wave of one of the bays at Melide, Lugano or Porlezza, see F.i.gu.Jte 
7.1. Although, the bay-modes have been constructed for a 2:1 basin, these results still 
apply for more elongated lakes. ·For constant so only the topography parameters p and q 
determine the frequency of the bay-mode. Decreasing p and increasing q lowers o con­
siderably. So, a bay-mode with o = 0.395, T = 42.8 h can easily be brought into accor­
dance with the observed 74 hours. A further argument supporting this interpretation is 
the fact that spectral peaks of temperature time series of moorings at the Melide end 
(see F.i.gu.Jte 1.3) have this maximum at periods which are generally slightly larger than 
74 h; alternatively, the corresponding peak for the Porlezza moaring is at a slightly 
smaller period (compare F~gu.Jte<l 1.3 and 1.4. The difference ~ould be interpreted as 
being due to two independent bound modes that are generated by the different topogra­
phies at the two lake ends. The FE-results of Trösch (1984) support this interpreta­
tion, see F.i.gu.Jte 7.1. Mysak et al. (1985), however, also list limited facts which 
conflict with this view. Giving a final answer would require data which would uncover 
the spatial stractu~e much more clearly. 

Starting from oo _apd decreasing cr we observe that the wave pattern un­

dergoes considerable alterations which correspond to changes in the re-
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lative strength of the two reflected modes. More precisely, as R0 de­

creases R• increases. For o < 0.25 R0 oscillates weakly whilst gradual­

ly decreasing andRe ~ 0.98. This can be verified by considering the as­

sociated stream functions. For 0.254 $ o < oo the reflected wave mainly 

consists of the o-mode. What evolves is a be.aJ: pa..ttvr.n at the same chan­

nel-side where the incident mode is located. The increase of R• mani­

fests itself as a growing te.a.ka.ge. of wave activity into the opposite 

channel side, because the •-mode has k = -ki. For Q.l20 $ o $ 0.254 R• 

is dominant, and this is clearly visible in the wave patterns. The dis­

persion relation has ao/ak > 0 for this reflected mode and consequently, 

increasing wavelengths accompany decreasing frequencies. At o = 0.115 a 

remarkable lte60I'!Ilrtee is discovered: Two coinciding peaks give rise to a 

local minimum and maximum for R• and R0 , respectively. Leeking at the 

wave pattern suggests that this again is a bay-trapped mode. Contrary to 

the trapped modes with o > o0 which are true bound states, this mode has 

also a non-vanishing periodic contribution in s >so. The pattern is, 

however, a bay-mode or type-2 wave because the characteristic structure 

is due to the modes with Im ky > 0 belanging to the öeeond mode unit which 

still has a complex branch for o1 < cr < cro (see inset). 

The resonance cr = 0.115 coincides with an eigenfrequency in the closed 

basin as indicated with A. The structure agrees well with that shown in 

F-i.gWLe. 7.6. Below the resonance the component Re dominates R0 again and 

large-scale TW's are observed. There is a further resonance at cr =0.088. 

For cr < cr 1 all modes have Im ky = 0 in this secend order model and no fur­

ther bay-modes can be expected. Instead of this, contributions of the 

real branch belanging to the secend mode unit are possible. F-i.gWte8.6 dis­

plays the reflectiön coefficients for the frequency interval [0.052,cr 1 ]. 

All reflection coefficients change smoothly and, as expected, no reso­

nances occur. For 0. 063 < cr < cr1 RA belonging to the secend mode uni t is 

dominant (see inset for an explanation of the symbolic subscripts) . For 

-- Figure 8. 5 

Reflection coefficients and stream function patterns in sub­
domains of the frequency interval [crl,crol of the two reflec­
ted modes • and o, respectively. The coefficient of the in­
cident mode • is scaled to 1 and both Cgr and Cph are direc­
ted towards the reflecting shore. A indicate lake solutions 
for cr > 0.11 corresponding to F-i.gWLe 7.6. The inset explains 
the position of the modes within the dispersion relation and 
the parameters are N = 2, r = 1, q = 2, E = 0.05, n = 0.01, 
so= 1 (dashed line), M= 50 for cr > 0.2 and M=200 for cr:!O 0.2. 
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lower frequencies the influence of the second mode unit is comparatively 

weak. Comparing Ei.gWr.e 8.5 and F.i.gWr.e 8.6 reveals, that close to the cri­

tical frequencies o 0 and o 1 energy is distributed among several modes, 

whereas for other frequencies most of the reflected energy is contained 

in the •-mode. This is the mode with the negative of the incident wave­

number. 

8.4 Wave reflections and modal types 

So far, we have studied the reflections of TW's, when the incident wave­

mode • belongs to the first mode unit and has Cph tt Cgr towards the re­

flecting zone. We also investigated the situation for an incident mode 

with Cph H Cgr. For this case, the graph of F.i.gWr.e. 8.5, qualitatively 

looks the same except that the curves R0 and Re are interchanged. The 

position of the two conspicuous resonances is unchanged. 

F.i.gWr.e 8.7 collects the results of importance. The incident mode with 

cph H Cgr has its wave crests at the opposite side of the channel.. Ener­

gy is propagating towards s 0 whereas the phase propagates away from it. 

These two cases distinguish two different types of reflection patterns, 

type 1 and type 3. Type 1 has a large scale structure with increasing 

wavelengths for decreasing o. Conversely, type 3 exhibits a small-scale 

pattern which is intensified for decreasing frequencies. The distinction 

of these tyDes and their individual properties agree with the classifi­

cation suggested in section 7.2. There, we only were able to make the 

distinction plausible by phenomenological arguments. We now have disco­

vered a phy~.i.~~ explanation for the occurrence of bay-modes, Ball-modes 

and channel modes in enclosed basins. Comparing F.i.gWr.e 8. 7 wi th F.i.gWr.e 7,. 6 

makes it clear: 

(i) The type 1-modes or Ba..U-modu originate from a sequence of reflec­

tions at the lake ends which are induced by an incident wave with 

Cph tt Cgr. For an appropriately selected frequency, i.e. the eigen­

frequency, the pattern is not evanescent in time and a Ball-mode 

survives. 

-.r--- Figure 8.6 

Reflection coefficients and stream function patterns for 
0.052 < o < ol for the four reflected modes. The coefficient 
R• of the incident mode- is scaled to 1. The parameters are 
as in F.i.gWr.e 8. 5 and the inset explains the modes. 
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(ii) The basin solutions classified as type 2 or bay-modu are due to 

the conspicuous resonances observed in F-i.guJt.e 8. 5. As F,(.guJt.e 8. 7 de­

monstrates the structure in the bay is only weakly influenced by 

the incident mode. 

(iii) Finally, the channel. modu or type 3-waves of F,(.guJt.e 7.6 can be 

explained as the result of a sequence of reflections at the lake 

ends which are ·induced by a mode with cph +t cgr. Contrary to the 

Ball-modes, the spatial scale decreases with decreasing frequency. 

These results justify and strengthen the statements which were made in 

section 7.2. They provide a more precise and broader understanding of 
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---- (]0 ------­

.------r-------------
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TW's in channels and lakes. It is now clear that the models to which 

(some) exact solutions were presented in chapter 3 do not exhibit the 

complete variability of TW's in basins but provide us onlywith Ball-mode 

solutions. These often do not suffice for a reliable interpretation of 

field measurements. As the model of Mysak et al. has shown, the ellipse 

which could model the 74 h-signal had a far too large aspect ratio. This 

discrepancy seems to be removed if the signal is interpreted as a bay­

trapped mode with a frequency that exceeds the cut-off frequency for the 

particular basin. 

On the other hand, what has been conjectured at the end of chapter 6 is 

now made clear in a quantitative manner.The existence of three distinct­

ly different wave types is a natural consequence of the typical disper­

sion relation of to9ographic Rossby waves. The conspicuous eigenmodes in 

the reetangular basin can be understood in terms of Jte6lee-ti.otU of TW' s at 

either shore-zone. Depending on the structure of the incident wave the 

corresponding type is established. All parameter dependencies are expli­

cable with the help of this correspondence. 

In elongated lakes the quantities determining the TW-features may, per­

ha9s be listed as follows: 

Firstly, the btatUveMe depth-pJto6U.e fixes the frequency range, in which 

solutions can be expe·cted. We draw this conclusion from the conspicuous 

topography dependence of the frequency illustra,ted in F.(.gwr.e 5. 8 and Tabtu. 

3.2, 3.4, 3.6, 5.1, 7.1, 7.2, 7.4, 7.5. The larger topography gradients 

for a fixed maximum depth are, the lower will be the frequencies. There­

fore, o is strongly influenced by h-liVhl. Secondly, the form of the lake 

emU is of particular importance as far as the structure of the solution 

is concerned. This determines whether a Ball-, bay- or channel-type wave 

will occur. Thirdl~ it should not be forgotten that TW's are wind-gene­

rated. Depending on the scale of the exciting force the lake basin will 

respond differently. Small-scale driving forces will preferably excite 

bay-modes or ·channel-modes whereas large-scale wind forces may produce 

Ball-modes. 

~ Figure 8.7 

Reflection patterns induced by an incident wave with 
Cph tt Cgr (type 1) and Cph H Cgr (type 3), respectively. 
The mode at the .resonance o = 0.115 consti tutes type 2. 
The parameters are as in f.(.gwr.e 8.5. 
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9. Concluslons 

9.1 A brief surnmary 

This report provides the reader with a state-of-the-art of long periodic 

vorticity waves in channels and enclosed basins. Because a large nurnber 

of intermontane lakes and many other aquatic domains, e.g. fjords, estu­

aries, channels, exhibit an elongated and narrow shape, we studied here 

the application of an economic numerical solution procedure: the Method 

of Weighted Residual~~ It is essentially a projection method and uses a 

truncated shape function expansion of the mass transport stream func­

tion. With it, freely propagating topographic waves in straight channels 

are investiga~ed. This constitutes an important test in face of exact 

solutions which have already been established. Acceptable convergence is 

achieved for a low order of truncation. The generality of this approach 

allows investigation of the effect of curvature on the dispersion rela­

tion of TW's. 

The knwoledge, which is acquired in straight and curved channels is then 

emnloyed to investigate TW-solutions in the simplest possible enclosed 

domain. This is a straight channel with two vertical end walls having no 

along-axis depth variations. Such a domain has straight lines of constant 

f/H (isobaths) which are not closed and inconvincingly models a natural 

bathymetry. Eigenmodes have no similarity to any of the available exact 

models. An important finding is the fact that isobaths must be closed and 

smooth curves as they normally are in reality (on a f-plane) . This neces­

sary condition was implemented in a basin with a parabolic transverse 

and a sin2 along-axis depth profile. The spectrum of such a reetangular 

domain is surprisingly rich: it exhibites solutions with very different 

spatial behaviour but comparable eigenfrequencies. Three types of eigen­

modes could be discerned: Pirstly, modes with a few large scale vortices, 

the Ball-modes, occurred; they are well known from existing exact models. 

Secondly, the channel-mode exhibits a large nurober of small-scale vorti­

ces tranped along the long boundaries of the basin. Mathematically, this 

distinction is not compelling; physically, however, it is helpful. 

The new result, which at first sight is an insolved puzzle, is that the 

spectrum of the TW-operator contains yet another, so far unreported, mode 

type. Whereas the previously mentioned eigenmodes show wave motion af­

fecting the entire basin, this type has wave activity only at the long 

ends of the elongated basin. It is therefore called bay-mode. A further 
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surnrise is that at large frequencies, which exceed the natural bound 

for Ball- and channel-modes, further bay-modes are found. 

The study of TW's in a less restricted domain provides the key to the 

understanding of these three wave types: The reflection of a wave in a 

semi-infinite channel as it approaches from infinity and impinges on a 

shore zone or bay. In the process of reflection the incident energy is 

distributed among possible reflected modes with different wavelengths. 

They form a reflection ~attern which is characteristic of the incident 

mode. Denending on the incident mode, i.e. whether it has a short or 

long wavelength, a Ball-type or channel-type mode evolves. The critical 

wavelength {frequency) is given by the dispersion relation of TW's in 

the straight infinite channel and is the length {frequency) of the wave 

with non-nropagating energy. Further, at distinct frequencies the confi­

guration exhibits a resonant behaviour. A small excitation from infinity 

causes pronounced wave activity in the shore zone. This wave motion re­

mains trapped at the channel end. Moreover, above the critical or cut­

off frequency non-trivial solutions are possible which decay exponenti­

ally towards infinity. These are true bound states of the system and 

coincide with the bay-modes of the closed basin. The semi-infinite chan­

nel, therefore, discloses a spectrum consisting of a continuous and a 

discrete part which join at the cut-off frequency of TW's in a straight, 

infinite channel. This appealing analogy to results in Quantum Mechanics 

was mentioned. The calculus of linear differential Operators might be 

canable to out these preliminary findings on a mathematical basis. 

The existence of bay-trapped modes also has bearings on the interpreta­

tion of Observations. The FE-solutions of Lake of Lugano, for example, 

which seemed to contradict the existing TW-solutions and related inter­

pretations turn out to be most likely the bay-modes of this natural ba­

sin. This lake has a large cut-off period {Ta >lOOh) and TW-motion was 

expected only wi th T >Ta. Bay-modes, however, can also have T < Ta. 

In a further step, our spectral method was also extended to curved bathy­

metries. It can now easily be applied to basins of constant curvature 

which have an arbitrary width, arbitrary transverse depth profile {e.g. 

power-law) and an arbitrary thalweg depth. 

Lastly, because the two-dimensional problern is reduced by the presented 

technique to a system of ordinary differential equations, high-accuracy 

integrators (Runge-Kutta, etc.) can be used to advantage. It was this 
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channel approach which left enough freedom for analytical insight and 

basically brought the deeper physical understanding. 

9.2 An outlook 

A considerable number of questions could be answered, but still many 

await clarification. 

The main open problern is the explicit proof of the existence of bay-trap­

ned modes in an exact model. We must be aware of the fact that this study 

only presents ap~oUmate solutions. Strong arguments were given for the 

reliability of this approach. Nevertheless, we are not dispensed of seek­

ing a convincing proof. A step towards this goal is perhaps the applica­

tion of Johnson's conformal mapping technique by constructing solutions 

which are exponentially evanescent towards infinity. This may only be 

achieved by the superposition of several transverse modes of a particular 

(unknown) frequency. 

An alternative way, equally promising and more general, is to make use 

of the comparatively simple form of the governing equation. The two-di­

mensional boundary value problern (2.24) is linear, homogeneous and regu­

lar provided the basin depth is positive in the domain and on its bound­

ary. The theory of linear differential Operators may thus be applied. 

More direct problems are: 

Topographie wave modes in reetangular basins were only determined for a 

few values of the topographic parameters q, c, n, p. It would in particu­

lar be important to investigate the quantitative influence of variations 

of these parameters on the mode structure and eigenfrequencies. 

The next step is then to study the forcing of topographic waves by the 

wind. How are these forces distributed among the different modes? It is 

probable that neither the low-frequency nor the rigid-lid approximation 

continue to hold in this case. Due to the presence of bay-modes the 

coupling of vorticity waves with gravity waves is possible. Further, den­

sity variations of the water body must be taken into account; the govern­

ing equations of such a barotropic-baroclinic coupling in the case of 

continuous stratification are given in Stocker & Hutter (1987b). 
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It is hoped that this report may motivate data analysts to more criti­

cally interpret observational data. Attention must be focussed on vortex 

motion in characteristic and partly isolated regions of lake basins in 

order to discover independent bay-modes. First attempts towards this 

goal are presented in Stocker & Hutter (l987c). But it also became clear 

that measurements at hand often do not suffice in order to clearly dis­

cern particular TW-modes because important results concerning the ~~ 

structure of the modes are not available. Further, the TW-response in a 

natural basin may be partly hidden behind the more pronounced signals of 

long and short periodic gravity waves. We gave, to some extent, some li­

mits and suggestions for the design of a mooring arrangement. With these, 

the differe~t TW-modes are likely to be detectable. 
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