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Topographic Rossby waves in elongated basins on the /-plane are studied by
transforming the linear boundary-value problem for the mass transport stream
function into a class of two-point boundary-value problems of which the independent
spatial variable is the (curved) basin axis. The procedure for deriving the substitute
problems is the Method' of Wei,ghted, Resid,uals. What emerges is a vector differential
equation and associated boundary conditions, its dimension indicating the order of
the approximate model. It is shown that each substitute problem in the class entails
the qualitative features typical oftopographic waves, and increasing the order ofthe
model corresponds to higher-order approximations. Equations are explicitly
presented for cross-sectional distributions of the lake topography which has a
power-law representation and permits the analysis of weak and strong topographies.

Straight channels in which the depth profile does not change with position along
the axis are studied in detail. The dispersion relation is discussed and dispersion
curves are shown for the three lowest-order models. Convergence properties are
thereby uncovered and phase speed and group velocity properties are found as they
depend on wavenumber and topography. X'urther, for the lowest two modes,
cross-channel stream-function distributions are presented. Apart from further con-
vergence properties these distributions show that for U-shaped channels wave
activity is nearer to the shore than for V-shaped channels, important information
in the design of mooring systems.

An analysis of topographic Rossby wave reflection follows, which emphasizes the
importance of the depth profile in the reflecting zone. Based on these results some
lake solutions &re presented.

1. Introduction
Recent years have witnessed an increased impetus in topographic wave studies in

lakes. These studies arose from detailed measurements of lake currents and temper-
ature and long periodic features discerned from them. Our own observations of
thermocline oscillations in the Swiss Lakes of Lugano andZ:urich show long periodic
components (74 h and 100 h periods) that were believed to be interpretable as
topographic wave motions (Hutter, Salvade & Schwab 1983). This is a surprise for
such small-scale lakes but the observed periods could not be explained by an internal
seiche mode (first-class waves) as the periods lie significantly above those of the
internal seiches. A simple elliptical model was constructed (Mysak et al. lg85) lhat
permitted interpretation of the observations in a qualitative sense. This model was
'tuned' to approximate the Lake Lugano geometry and bathymetry. Spectral
distributions, coherences and phase differences of temperature-time series for Lake
Lugano observations at the 74 h period were shown to be essentially compatible with
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the topographic wave results of the elliptic model (Mysak et al. lg85). A similarly
convincing proof was established for the Lake Zurich observations of internal
oscillations with a period of approximately 100 h (K. Hutter, unpublished work).

On the other hand, recent finite-element calculations (Trösch 1984) and the
required basin shape of the Mysak model indicate that topographic wave motion in
these lakes may be more complex than described by the several models used so far.

Second-class motions in enclosed basins were analysed by Lamb (1932) (circular
basin with parabolic bottom), Ball (1965) (elliptical basin with parabolic bottom),
Saylor, Huang & Reid (1980) (fundamental-mode results for a circular basin with a
radial profile described by an arbitrary power law) and Mysak et al. (1985) (elliptical
basins whose depth contours follow confocal ellipses). Because the topographic wave
operator is non-separable in general the set of analytic solutions is scarce and
approximate solution techniques must be used. Such methods were first applied when
Chrystal (lgD4, 1905) and Defant (1918) presented a set of differential equations for
gravity waves in long channel-like fluid basins. The gist of their analysis was to ignore
locally the fluid motion transverse to the basin axis and the result was a set of
equations involving only one single independent spatial variable, the arc length along
the axis. It is known that extending this so-called'Defant model'to include the
effects of the rotation of the Earth in any systematic fashion is notoriously difficult
(Raggio & Hutter 1982). Because second-class motions are rotation induced, concep-
tual difficulties with such a model are akin to those encountered in first-class
motions on a rotating basin but, given the previous experience, are easily overcome.

The basic idea is to express the transverse distribution of the mass transport field
in a local curvilinear coordinate system in terms of a preselected function set and to
eliminate this dependence by a'smearing operation'. By this process, the original
(spatially two-dimensional) boundary-value problem is replaced by another formu-
lation in a domain of reduced dimension. Here, the reduced problem is a two-point
boundary-value problem to be solved along the lake axis and subject to boundary
conditions at the long ends of the basin. The rationale we use for the 'smearing
operation' and for the deduction of the model equations is lhe Method of Weighted
Res'id,uals (MWR), which is explained in detail by Raggio & Hutter (1982). In $2 we
list the governing equations and $3 contains the derivation of the approximate
models using the MWR,. Sections 4 and 5 present the first applications to channels
and simple lakes respectively.

2. Governing equations
The conservation laws of mass and angular momentum of a homogeneous fluid in

a rotating basin under no external forces can be expressed by stating that the
potential vorticity II of each fluid particle be conserved (Pedlosky 1979). If we let
the vertical component of the relative vorticity be (, then the absolute vorticity is
(+f and the potential vorticity is ((+I)lE where the Coriolis parameter is/and the
total depth of the liquid E. In short.

g:+(H):o et)d, dr\ä) "'

For this to hold, processes need to be adiabatic and barotropic.
In an approximate use of (2.1) small surface elevations are ignored and E is

replaced by H, the equilibrium depth of the liquid. In this rigid-lid assumption the
mass balance equation suggests a mass transport stream function fr in terms of which
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Freunn 1. Elongated lake and transverse section in a natural (s,n,z)-coordinate system. The
thalweg axis (z : 0) may be a centre of symmetry (not necessarily) and have curvature -K(s).

the depth-averaged velocity field z is given by

1u: E?xyt), e.2)

where V is the horizontal gradient operator and 2 the vertical unit vector. Substituting
(2.2) into (2.1), linearizing and extracting a harmonic time dependence e-i,, yields
the boundary-value problem

z
n

in 9,
(2.3)

,lr :0 onö9,
where 9 is the lake domain with the boundary 09, through which no mass flux is
assumed. This equation, derived for a homogeneous barotropic fluid, is approximately
valid also in a two-layer baroclinic model provided that the upper layer is much
thinner than the lower layer. This property evolves from the fact that the effect of
the elevation of the interface on the barotropic processes is weak (Mvsak et at. lgg1).
Rossby waves owe their existence to the term f/H in (2.8), i.e. to v/ (planetary
waves) or to V/1 (topographic waves). For lakes with a north to south length of less
than 100 km the Coriolis parameter f ^uy be assumed constant and only depth
variations are important.

Since the topography H of lhe lake basin varies with respect to both dimensions,
(2'3) is an inherently two-dimensional problem, which can be solved by separation
of variables in only a few particular cases (Lamb 1932; Saylor et al. 1g80; Mysak eü

al.1985).
Real lakes often have an elongated, narrow shape and likewise, the trace of their

thalweg may, on occasion, be substantially curved. This is so for many alpine lakes
and suggests that we should try to employ this essentially one-dimensional feature.
The use of a natural coordinate system, as shown in figure 1, is then appropriate;
the curved s-axis follows the thalweg of the elongated lake and the z-direction is
chosen to be straight and orthogonal to the s-direction. In such a curvilinear

-^r.(ry)+z.(v,y"v fi): o
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coordinate system the horizontal gradient operator takes the form

":Lr(*grg4, r:r-K(s)n, (2.4)

where K denotes the curvature of the s-axis, see Pearson (1974). In this natural
coordinate system the boundary-value problem (2.3) reads

Dü :0 inO,

B{:0 onöO. (2.5)

with the definition of the differential and boundary operators D and B, respectively

D:_ /ö 10 arq)*gr1)s_qr1\glt" ('* m u+ a"E a")*a \z/ o'-a" \d u' I rr.ul

B=1. l

o : af f isthe non-dimensional frequency. Even in the simple case, when topographic
w&rres in a straight (J: 1) infinite channel with an arbitrary cross-section are

investigated, (2.5) confronts us with serious mathematical difficulties. Approximate
solution techniques are required when more complicated topographies are to be

studied. Analytical solutions can be constructed for piecewise exponential shelves

(Mysak 1980) and weak parabolic depth profiles (Gratton 1983), but numerical
(finite-element, finite-difference) methods are otherwise required. In the next section

we present a semi-analytical approach that provides better physical insight than
purely numerical methods generally do.

3. Method of Weighted Residuals
3.1. Integrateil representation of the equat'ions

Because in most cases problem (2.5) is not separable, we operate with a generalized

method of separation - the Method of Weighted Residuals (MWR,), see X'inlayson
(1972), Hutter & Raggio (1982) and Raggio & Hutter (1982).

Let {P"(s, zr,)} be a convenient set of basis functions indexed by a, in terms of which
the mass transport stream function t@,n) is expanded

tß,n) : är*U,n){,(s) = Poto. (3.1)

Each basis function is weighted by a residue function ry'"(s) which is assumed not to
depend on the transverse coordinate n. All functional dependence on n is now
incorporated in the preselected basis functions Po, a general form of separation.
Expansion (3.1) represents the exact solution for a separable problem provided the
basis functions Po(s, n) are appropriately selected. For non-separable systems as (2.5)

generally is, and for an arbitrary set {P"} with -l/ < oo, expansion (3.1) is merely an
approximation. Clearly, fast convergence is anticipated so that truncation of (3.1)
for very small -lt may furnish a sufficiently accurate solution.

The integration of (2.5) with an arbitrary weighting function \Q@,n) over the lake
domain and along the shoreline, respectively, leads to the integral formulation of
(2'5) 

I prrltsda:,, 6 @,/,)töd,:'. (8.2)
Je Jös

If (3.2) holds for any weighting function this is equivalent to (2.5) owing to the
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fundamental lemma of the calculus of variation (Courant & Hilbert 1967). Expanding
both the strea,m function (3.1) and the weighting function in terms of the sets {P"}
and {Qo}. viz.

LQ@,n) : ä, Qorr,n) sQu@) = QpköB.
lt:t

and inserting these expansions into (3.2) yields

lr
)r(o r"t")Qoryoaa:0. \*F P,{r")QutLodt: o. (3.3a. b)

The integration over the lake domain g can be split up into two integrations over
either coordinates using do : J dnds for the area element in the natural coordinate
frame. x'urther, the trivial form ofthe boundary operator B : 1 suggests the special
choices

Po(s, Bt) : g, Qpß, Br) : 0, for all a, p (3.4)

such that the only contribution to (3.30) arises from the ends ofthe lake.
Since the weighting functions are arbitrary, (3.9) can be replaced by

ln:B+

J,:,- 1

(D P",lr)JQpdn:0

/"(s)|":o,z : o

The residue functions ry'" depend only on s and are therefore extracted from the
integration by carefully accounting for the effect of the d.ifferential operator D on
/r"(s). This procedure is performed in detail by Stocker & Hutter (1985). What results
is the system

**0": ,^l q.f :r. .... 
^, {o 

.: 
: 
,, 

(8 6),lr":OJ [s:0,1,.
with the matrix operator elements

M p" : - *l*;"#. (# + Mil- MhL) *g. (# - ryL- t7)l
-(Mho,+Mo&,*-(# +ry:--ilpi") ,*,f : r,...,.r/). (3.7)

The matrix elements ilIforepresent quadrature formulae in the transverse d.irection,
explicitly:

: 
Iu-'t-'qQpan,

: ln-r,fteBdn, nß&: In-,"r-,r,Yun,

: [t- u&euur, wBl*: [u-r"ffian,
: Iu-,t-'**un, wf": [u-t*#un,
: Iu-*Yu,, wi": lu- u&ffa,,

d,/3:1, 1r (3.5)

(3.8)

ilro&

nr&

MrÄ

lvlaÄ

r4a&
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s-: -|B(s) n B+ : lB(s)J

eio(s)

q :0'5;
q: l'0;
4 :2'0;

-,q+@.
Freunn 2. Cross-sectional depth profile of a symmetric channel.

whereby the integration is meant to extend from B-(s) to B+(s). For prescribed sets

{Q} and {Qp} tne individual components M'!"arc known functions of s, which depend
on the topography of the lake, on the curvature of its axis and on the shape of the
shoreline.

Equations (3.6) form a system of coupled one-dimensional differential equations
that replace the single two-dimensional boundary-value problem (2.5). These two
formulations a,re presumed to be equivalent provided (i) the set of basis functions
is complete in [B-,.B+] and (ii) N: oo. The selected order N of the system sets a
natural bound to the variability of the approximate solution as well as to its quality.
At a first glance the MWR seems to leave us with a more complicated task.
X'inite-difference calculations, however, have indicated numerical difficulties such as

slow convergence, particularly for complicated topographies and for large wave-
numbers (Bäuerle 1986). This semi-analytical procedure may thus well prove
advantageous in achieving a better physical understanding.

3.2. Symmetrizat'ion

More insight into the structure of the operator (3.7) is gained when the physical
configuration exhibits symmetry with respect to the axis n: 0, as in figure 2. Such
a symmetry may exist for channels and it often applies approximately for elongated,
narrow lakes. The symmetrization is also motivated by the fact that solutions of the
eigenvalue problem (2.3), found for circular and elliptic basins, indicate that the
phase rotates counterclockwise and the stream function continuously changes its
symmetry with respect to the symmetry axis of the lake. As a consequence a choice
of only symmetric or only skew-symmetric basis functions will be a dubious
approximation. Although the MWR need not be subject to this restriction we shall,
for the purpose of studying channels and basins which have a symmetry axis,
formulate problem (3.6) in a symmetrized version. To this end, the functions Po, QB,
.,I and J-r are symmetrized by introducing the decompositions

f(s,n):f (s, n)+f (s,n)

f (s,n) : f (s, -n),
f (s,n): -f (s, -n).

(3.e)

I

T

&o(s)

I

l
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Here / stands for any of the above functions and the axis n : 0 is the centre of
symmetry. This decomposition is applied to the matrix elements Mf" rn (3.8); the
important result here is

Mopo" : Mhy+ + Mf;- + MhT* + Wf*+- (a, 13 
: 1,...,N)

: 
!u-'1t-')*1efi dn+ [u-'1t-'1*qev an

+ [n-'g-y-p;ai an+ ln-,{"r-\-H eV dn,

Ivl'pt": M'f"-*+Mzo+

: [n-'ffia;u"*
with analogous expressions for M'zp!"and Mop!*resVeclively. It has been assumed above
that H-: 0 (symmetric depth profile) and the integration is from B- : -|B(s) to
B* : ,tS("). Because the basis functions Po and Qp a" decomposed according to (3.9)
the expansion (3.1)of the solution {(s,n) must be replaced by

t@, n) : 4.(6, n) rlrj (s) + P"(s, n) rlr; (s),

where the * superscripts on to indicate merely affiliation to the individual Pj .In
vector notation the stream function reads

w : (!{ , ...,tk; ,lr, , .. .,,1ril : (v*; v-),
and the matrices (3.10) take the form

IWo:l*o** Moo-+1 ß':l -: . M:.f 
erc.LIwo+- I4"*-)' L' LtuIro*- o r

With this notation the differential equations (3.6) read

(-'[M]l il-1.["1 
n,"](fl) : o, (3 11)

with the matrix operators M and N, the particular form of which is unimportant in
the ensuing arguments.

The coupling of the solution vectors ry+ and y- is induced by the off-diagonal
operators M-+, M+- and N-+, N+- respectively. The former are due to curvature and
vanish when 1{: 0. The latter originate from the vector product in equation (2.3)
and express the effect of the Coriolis force. The restriction to only symmetric basis
functions reduces (3.11) to two decoupled sets of equations. This obviously corres-
ponds to the claim that both terms of the sum of equation (2.3) be individually
zero. On imposing the boundary condition this implies Vt =0.It suggests that the
approximate system (3.11) requires a set of basis functions containing both
symmetric and antisymmetric functions if qualitatively correct results are to emerge.

(3.10)

!u-'ffava",
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4. Channel models
4.1. Basic concept

The suitability of the approximate model equations (3.6) deduced with the MWR is
now tested using a straight, infinite and symmetric channel with a topography of the
form

/ l2nlq\H(s,n): ft,o(s)(l *r-lu(r)l /, (4.1)

where e is a sidewall and q a topography parameter, see figure 2, which provides the
possibility of modelling both concave (q > 1) and convex (q < t) transverse depth
profiles. The sidewall parameter e has been introduced in order that all matrix
elements (3.8) take finite values. The complete sets of basis functions {{} and {Qp}
will be chosen to be identical (Galerkin procedure) with the symmetric and skew-
symmetric parts reading

1@,n): cos(tr(or- rffi)
hß,n): *m(n"jar,J

(a : L,. .. ,1/) (4.2)

(4.3)

(4.6)

lJerc, \ and \ arise in pairs; -l/ thus characterizes a model consisting of 2N basis

functions. These satisfy the boundary conditions (3.4) along the shoreline

n: -läB(s). Substituting (4.1) and (4.2) into (3.8) and assuming B(s) to be constant
it is seen that

IIhl": B h;r l{!fr, lqt'" : n-'h;t I3f"

ilI'p:": h;t I(f", Mli": n;t Kop!",

while the elements with the superscripts 10, 01, ll, 12 and 2I all vanish.
The dimension-free matrix elements Krf" depend on e and q and can be calculated

numerically, see Stocker & Hutter (1985). The (non-symmetrized) matrix operator
(3.7) takes the form

K: Bhou : -io[a'.600 {-s'(ut'*)*'*4-o']

- B(I?o + Ir,'l *q+r (a;' *) o'. (4.4)

This operator has constant coefficients whenever the depth-profile is constant or
exponential with respect to the basin axis. For an infinite channel, however, we prefer
Do(t) : constant. A carrier-wave ansatz

w : (w+ ; w-) : "itcslL(cr,...,cN) 
cN+r,...,c2u) : eiktlLc, (4.5)

with a dimensionless complex-valued wavenumber lc, Im(k) + O is meaningful in
semi-infinite and finite channels, and a length Z is then appropriate. With (4.4) and
(a.5) the symmetrized form of (3.6) reduces to a system of algebraic equations

I

I

C

Cc:0,
(a((rk\zlKoo++ + tr32++) - (rk) 14zo-+ + Ip,-*)\
\ - 1rt)(tr30+- + trp2+-) o((rk)2 Kto-- I lpz--)/'
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in which the aspect ratio parameter r: B/Lhas been introduced. C is a (2Nx 2N)-
matrix and depends on d and ft. Equation (4.6) admits a non-trivial solution vector
c if and only if

detC(a,k):O. (4.7)

This characteristic equation forms the dispersion relation a(k) for topographic
Rossby waves in a straight infinite channel. This is a polynomial equation of order
2N in (rk)z with real coefficients. n'or each frequency an -l[th order model, therefore,
yields 4-öy' wavenumbers counting complex conjugates and pairs having opposite
signs. So the model furnishes waves travelling in both directions of the channel.

LeL lc, (y:1,...,4N) be a root of (a.7) corresponding to a frequency a and let
cr(co) be the associated eigenvector, (component) of (a.6). A general channel solution
t(s,n,t) can then be written as

4N /N 2N \
{(t.n,t): s-i"jt 

,Zr"t*r't'dr("E,4tr. ")"*r+ *:**, 
F-r.r(s, ")r,r), (4.8)

in which solutions belonging to individual k occttr in a linear combination by an
arbitrary complex vector d, (dy\.Representation (4.8) is an approximate solution in
a straight infinite channel, X'or this particular configuration problem (2.b) is
separable, the coefficients of the separated differential equation, however, are
non-constant, and for very special topographies exact solutions can be obtained, see
later and Gratton (1983). The MWR, probably offers more freedom in modelling the
channel topography, because improved accuracy can be obtained by higher-order
models and convergence is expected.

4.2. Di,spers,ion relation
Solutions of @.7) may be plotted schematically for a first-order model l/: 1 in a
(Re(fr), Im(k), a)-coordinate system, see figure 3. This is a model which uses one
symmetric and one skew-symmetric basis function of the form (4.2) and is of lowest
possible order. Its graph is symmetric with respect to both axes Re(k) : 0 and
Im(/c) : 0. Three regimes 1,2,3 can be distinguished where the wavenumbers k take
real, complex and purely imaginary values respectively. Table 1 gives the periods at
which the individual regimes join for different topography and sidewall parameters.
In regime 1 all wavenumbers h are real and, therefore, represent physically possible
channel solutions. Typically for Rossby waves, for each frequency there exists a long
and a short wave. It is worth noting that Re(k) can have both signs. This is in
contrast to planetary Rossby waves which are due to the p-effect (Holton 1979) or
Rossby waves on the continental shelf (Le Blond & Mysak 1978), the reason being
lhat'here H' /flchanges sign in the channel. So, such configurations enable topographic
Rossby waves to propagate in both directions. In either case, as an effect of the
Coriolis force, the structure of the wave on the northern hemisphere is right-bound
with respect to the direction of phase propagation. The dispersion relation (4.7)
contains only even powers of o such that either sign is mathematically reasonable.
It turns out, however, that negative signs of a result in a set of left-bound waves
which propagate on the southern hemisphere where the Coriolis parameter / takes
negative values. So, the sign of the timescaling factor / (Coriolis parameter)
determines the sign of the non-dimensional frequency c. The structure of the stream
function depends upon the frequency range. Small frequencies favour periodic
patterns along the channel. A critical wavenumber can be found at which no energy
is transported along the channel. This corresponds roughly to wavelengths ofabout

l5 rLM 170
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Frounn 3. Schematic plot of the complex dispersion relation a(k) for an infinite channel with
e :0.05 and q:0.5 in a first-order model. In regime 1, & is real;in regime 2, it is complex with
the constant modulus lftl ; and in regime 3, fr is purely imaginary, taking asymptotic values /c, and
It, for large o.

Tr[h] Trlhl tkl

q e:0.05 e:0.10 e:0.05 e:0.10 e:0.05 e:0.10
0.5 52.8 58.3 10.5 11.8 6.6 5.9
1.0 60.5 64.3 13.2 14.4 6.9 6.2
2.0 83.0 88.2 22.0 22.6 6.8 6.3
5.0 174 199' 58.2 61.8 6.1 5.8

Tenr-n 1. Periods and corresponding wavenumbers in a first-order model, which separate the
regimes, depending on topography and sidewall parameters q and € respectively. The period ? is
calculated using ? : t6.9hla corresponding to 45o latitude. At T, no wave energy is transported.

half the channel width and the associated periods are listed in table 1. Waves with
intermediate frequencies of order t have a mixed periodic-rxponential structure and
do not represent possible solutions in an infinite channel. At frequencies a ) orthe
solutions grow or decay exponentia,lly. X'or later use, the union of the three regimes
of the dispersion rclation in figure 3 will be called a mode unit.

Let us proceed to the second-order model; it furnishes 8 wavenumbers to each
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Frcunn 4. Schematic plot of the complex dispersion relation o(k) for an infinite channel with
e : 0.05 and q : 0.5 in a second-order model. Fiye regimes with respect to a can be
differentiated.

frequency and its dispersion relation consists of two interlocking mode units, see

figure 4. Thus there are now two branches with real, complex and imaginary lt,
respectively. The relative size of the mode units and their spatial position within the
(k, a)-coordinate system depend crucially upon the topography. The cylindrical
surface of the first-order model degenerates to a smaller bell-shaped surface, i.e, lkl
now depends on the frequency. The second mode unit forms an outer shell, which
here has the form of a cone. Physically possible solutions for the infinite channel exist
in regime 1 for both mode units and in regime 2 only for the first mode unit. The
qualitative shape of the dispersion relation for an .ly'th-order model can be guessed
from figures 3 and 4. The modulus lfrl is plotted for a third-order model in figure 5,
demonstrating clearly the addition of the next mode unit.

The MWR is an approximate approach and therefore convergence properties are
expected. These are studied for the real branches of the dispersion relation. Figure
6 summarizes the results. The dispersion relation for -fy' : 3 differs only slightly from
that of the second-order model, The corrections of the second mode unit when

15,2
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05101520
lkl-

Frsunn 5. Modulus lfrl of the third-order dispersion relation for an infinite channel, Q:0.5;
e : 0.05.
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k
order of the model from N : 1

concave (q : 2.01 toPograPhY,

k
X'reunn 6. Convergence ofthe dispersion relation when increasing the
(-.-), N :2 (---) to -0{: 3 (-) for (a) convex (q : 0.5) and (b)

e : 0.05.

increasing the order are also shown; however, for a statement on convergence a

4th-order model would be needed. Convergence is not uniform in k, being better for
small k than for large b; furthermore, it is better for convex (q:0.5, figure 6a) than
for concave (q: 2.0, figure 6b) topographies, which is unfortunate as the latter are

more realistic. Further calculations have shown that the sidewall parameter e does

not influence convergence appreciably.
The quality of the MWR,-approximation is more obvious when the dispersion

relation is compared with that of an exact solution as in figure 7. The simple
configuration of a straight channel leads to separable equations; these-are easy to
integiate provided the depth profile is piecewise exponential as indicated in the inset

of figure 7. The dispersion relation o(k)evolves from the matching conditions of the
stream function within the channel. As figure 7 (a) demonstrates, the approximate
d,ispersion curves calculated by the MWR, applied to the same depth profile converge

N:3

(a)

lst

N:2

2rd,

:t
JV:

N:2
n[:3

(ö)

lst

2nd

tr= 3

\-------\N:2
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Freunn 7. Comparison of the dispersion relation a(k) of exact solutions in a piecewise
exponential channel (see inset) with the MWR solutions for N : l, 2, 3 and the two first
modes.

fast to the exact dispersion relation for the first mode. N : 2 already represents a
satisfactory approximation within a few per cent. Convergence of the second mode
is slower, as stated earlier. For steeper depth profiles, figure 7 (b), convergence is
significantly slower and higher-order models may be required. But it also appears
that the selected set of basis functions is not best for such configurations, as wave
activity is concentrated at the shore.
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Frsunn 8. Effect of topography on the dispersion relation in a channel, 
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Frcunn 9. Effect of the sidewall parameter e on (a) convex (q : 0.5) and (Ö) concave (q: 2.0)
profiles in a second-order model.

Figure 8 shows the influence of the variation of the topography parameter q in a
first- and third-order model. Comparison of figures 8(a) (l/:1) and 8(b) (lt/:3)
indicates clearly how sensitively the dispersion relation reacts to the topography.
Generally, an increase of q shifts the dispersion relation to smaller frequencies; thus
periods at the same wavenumber become longer. This could already be inferred from
the fact that topographic gradients tend towards the boundary as q increases and
the system will become weaker in its support of topographic Rossby waves.

X'inally, figure 9 displays the dispersion relation of a second-order model for two
different values of the sidewall parameter e and for both convex and concave depth
profiles. The latter are less affected by e than the former because all convex profiles
of the form (4.1) join the sidewall horizontally. The sidewall effect consists of a
decrease of the frequency with growing e, which might be expected since topography
variations are reduced thereby.

The question of whether lco at which öol\k:0 exists for all topographies or
wanders off to infinity is of some practical significance. If situations with fro : e6

existed, closed basin solutions could not be constructed. Figure 10 displays fr; against
the topography parameter q for a few values of e. Whereas for convex profiles fro
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X'rounn 10. Plot of the critical wavenumber /cs, where the group velocity is zero, as a function
of topography and sidewall parameter for the first mode in a third-order model.

hardly depends on the sidewall parameter e this is not so for concave profiles: a
decrease of e conspicuously increases the values of fu,. Alternatively, for large
topography parameters fro is fairly independent of q.It is evident that models with
very small sidewall parameters have very large critical wavenumbers a,nd it appears
that the dispersion relation becomes single valued with respect to o. Such a
conclusion is not appropriate, as can be demonstrated following Huthnance (1975)
with modifications.

4.3. Channel solut'ions

Equation (4.8) represents a general solution in a straight, infinite channel with
arbitrary cross-section. y'r is a complex-valued function and so both real and
imaginary parts are physically reasonable solutions. However, as c&n be easily
shown, they differ only by a spatial or temporal phase shift. Rather than considering
general solutions such as (4.8), we only investigate solutions to particular
wavenumbers.

Figure 11 exhibits the quality of the approximate solutions. Calculations have
revealed that for a convex topography solutions converge rapidly for a wide range
of wavenumbers, a result which is in accord with the observations a,boye. For a
concave topography (q:5.0, figure 11) the third-order solution is an acceptable
approximation when lc:2 (figure lta); however, as figure 6 has already suggested,
convergence for higher wavenumbers is slower (figure 11ö). Convergence is obviously
also influenced by the choice of basis functions and it seems that the trigonometric
functions &re an appropriate set for small wavenumbers. It was a straightforward
choice and made for analytical and computational simplicity. There may, however,
be other complete sets, fulfilling the boundary conditions, which provide better
results in some special cases. With the (sin, cos)-set the exact transverse functional
dependence is well modelled for fundamental modes, with not too large wa,venumbers
and small topography parameters.

Figure 12 analyses the effect of the cross-channel topography on the stream
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X'reunn 11. Convergence properties of the stream function of the first mode scaled to a maximum
value 1.0. The view is in the positive s-direction into which the phase propagates in a right-bound
way. The sidewall parameter e : 0.05 is selected, q: 5, (a) k :2; (b) k : 10.
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Frcunn 12. Transverse topography dependence of the stream function for the wavenumber
k : 2 and the first two modes. I[ : 3, (a) first mode; (b) second mode.

function using q as a parameter. In view of the previous results, a third-order model
is anticipated to be sufficiently accurate. The effect for small wavenumbers (k: 2)
and the first mode (figure l2a) is compa,ratiyely weak: wave activity is slightly
shifted towards the right boundary for increasing topography parameters. Larger
wavenumbers enhance this effect.

For the second-mode solutions an increase of the topography parameter again
causes a shift of the y'r-surface towards the right boundary, see figure I2b. The
right-most crest, howeyer, is weakened and for larger topography parameters the
main activity is in the middle crest.

Evidently, the transverse structure of topographic Rossby waves also depends
strongly on the wayenumber ä. This effect is comparable in magnitude with that of
the topography. X'igure 13 demonstrates this for both types of topographies and the
first two modes.

An increase of fr generally shifts the stream function towards the right shoreline.
The effect is large (small) for profiles with large (small)q particularly for the first-mode
unit. Topography and wavenumber effect, therefore, act in the same way. These
properties have not been clearly demonstrated in previous work. Suffice it to state
that they have important practical bearings when mooring sites are projected.

4.4. Veloci,ty prof,les

The general channel solution (4.8) which satisfies the homogeneous system (3.6) is
determined up to a constant factor. In order to compare different velocity profiles
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Frcunn 13. Wavenumber effect on the stream function for (a) convex (q : 0.5) and (b) concave
(q : 5.0) topography, e : 0.05 and the first two modes of a third-order model.

this constant should be fixed by using a further criterion. It seems reasonable to scale
the occurring warre patterns by normalizing the free constant such that the global
kinetic energy content is constant. (There is no potential energy for topographic
Rossby waved in a rigid-lid formulation.) Ilere, the problem is posed in terms of the
barotropic mass transport stream function and a solution yields information about
a depth-averaged velocity field. This allows the calculation of only a lower li,mit of
the kinetic energy content.

The kinetic energy per unit mass that is contained in an infinitesimal volume is

dZflto: t@2+u2)Jdndsdz, (4.9)

in which the velocity components 'u,, u ca"tt be expressed in terms of the stream
function wilh (2.2), and for straight channels J -- I.

A minimum average energy density is obtained by integrating (4.9) across the
channel axis and over the vertical, then operating with

ri^ !.1' at, ri- ] i'a,
T-at JO I+6uJO

and dividing by the cross-sectional area. It then reads

1.0

0.50.5

0 0

0 -0.5 -1.0 -0.5 - 1.0

1

L,Y @'vlT co" * \- * c,vl' + 411' co, + \' * cn l2),Eorn (4.10)
1l+€_-q+r

where y :2n/B and' : d/dy. When the stream function is scaled by ll(Eurn)tr sash
wave contains the same kinetic energy. This enables comparison of the strength and
structure of a wave pattern as a response to a given energy input.

Figure 14 displays the amplitude distributions of the along-shore and cross-channel
velocity profiles for the first mode at lc : 10 and e : 0.5 for four different topography
parameters q. Sign changes correspond to a phase shift of 180o. Evidently, the
?/-component indicates a strong right-bounded coastal jet which is well known in
forced circulation models (Simons 1980). Its strength depends upon the parameters
q and e. An increase of q lowers the absolute value of the velocity components
considerably.

We have also observed, and figure 14 provides partial corroboration, that
convergence ofat least z is slower than that for the stream function. The reason is,

of course, differentiation. Deviations of the computed velocity profiles from what
they should be occur at the left shoreline (figures l4a and lia).
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Frcunn 14. Transverse topographv dependence of the depth-averaged velocity components (a) z
(along-channel) and (ö) o (across-channel) for lt : 3, k : 10, e : 0.05 and the first mode. All profiles
are scaled such that the kinetic energy contents are comparable.
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Freunn 15. Wavenumber effect of the depüh-averaged velocity components for q : 2.0, e : 0.05
and the first two modes of a third-order model, (a) z-component; (Ö) o-component.
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X'rcunn 16. Effect of the sidewall parameter e on t'he a-component (along-channel) at k : 10 and
with q : 2.0. Because the profiles differ from each other only at the right shore this domain is
enlarged. ff: 3, first mode.

Figure 15 illustrates the wayenumber effect for the ca,se q : 2 (parabolic) and
e : 0.05. With growing wavenumber, activity in the ?r-component shifts to the right
shore and, correspondingly, activity diminishes on the left part of the channel.
Alternatively, cross-channel components grow with increasing k. Therefore long
w&ves exhibit particle motion which is mostly along the channel axis. Shorter waves
with wavelengths smaller than about a channel width have velocities of comparable
order in both directions. These properties also hold for the second mode.

As anticipated when introducing the sidewall parameter e its effect on the
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(

O(b) OC O (]
Frcunn 17 . tfr-contour lines of a reflection of topographic waves at a vertical wall. The insets explain
the composition of the reflection pattern with O, incident wave and Q, reflected wave. The selected
parameters are N: 3, e : 0.05, for (a) q: l.O, n: 0.305 and (b) e: O.5, o :0.202.

depth-averaged velocity profiles is very weak and only recognizable in the u-
component and close to the shoreline. Figure 16 demonstrates this for a channel with
parabolic depth-profile. Velocity profiles differ from each other only very close to the
right boundary. The xr-component of the velocity vector there is directly governed
by e and its absolute value increases as 6 approaches zero.

The above results can be used to answer questions which arise when topographic
wave motion in channels or narrow elongated lakes is to be detected and recorded.
Scrutiny of the wavenumber dependence shows that, in order to record the first mode
on & concalre topography (q : 2.0, q:5.0), the mooring system is best placed within
a domain that is 0.05 A tu 0.1 B (B is the channel width) away from the shore. Then,
both velocity components are of comparable magnitude and a whole range of
wavenumbers can be detected with a velocity vector which turns clockwise. The
second mode can most likely be detected within a domain which is 0.1 B to 0.2 B
away from the shore. For a proper test of the wave structure two moorings at the
same side of the channel are desired.

4.5. Ref.ection of topograpthic waues

A property of the MWR, is that it furnishes solutions with complex wavenumbers ä
in a natural way. This suggests that solutions of the form (4.8) can be found which
represent the situation of reflected topographic Rossby waves in a channel. The idea
is to superpose several waves with the same frequency: an incident and a reflected
wave, both with real lt, and some waves with Im(ü) > 0 which are important only
in a boundary zone where the reflection is induced. The superposition satisfies the
boundary condition {t :0 (no flux) at the reflecting wall.

Consider a semi-infinite channel s ) 0 with a wall at s :0. One particular wave
mode forms the incident wave; its phase and group velocities may both propagate
towards the wall as shown for a first-mode response in figure I7 (a). Alternatively,
group and phase velocities may have different directions as in the second-mode
response of figure 17(b). 'Incident'means that the energy propagates towards the
wall and all the reflected waves need to have opposite energy propagation. Then, the

J
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X'reunp 18. Reflection pattern in a composed channel. X'or 0 < s < so the depth varies exponenüially
along the axis whereas it is constant for s > so. This connects the isobaths of both channel domains
z > 0 and z < 0 and enables wave energy to leak into the opposite domain in the course of
reflection.Theselectedparametersare€:0.05,for(a) N:2,q:Z.O,o:0.260,s0:2'0and(b)
N : 3, q : 0.5, a : O.200,80 : 1.0.

superposition and the determination of the compound solution is unique. We have
found that the largest portion of the reflected energy lies in the mode with the
corresponding wa,yenumber belonging to the same branch of the dispersion relation
(indicated by arrows in the insets of figure 17).

Therefore, the mode with the negative of the incident wavenumber is hardly
excited, and reflection causes primarily a shift of wavenumber rather than a change
of its sign. As a consequence, wave activity remains at the side of the incident wave.
What results is a beat pattern with its first 'calm' area at approximately
2nB/lkrn-koo,l away from the wall. Within such a cell a phase propagation in the
same direction as the incident wave can be observed, and the structure of this cell
depends on the two main wayenumbers frr' and koot. lf these differ markedly from
each other rather local and small-scale patterns emerge. This may hint that elongated
basins scarcely show fundamental topographic waves with basin-wide structure
unless they have a very special bathymetry (Ball 1965;Mysal et al. 1985). X'inite-
element calculations of Trösch (1984) revealed similar results. It is characteristic of
these basin-wide wave structures that the phase rotates counterclockwise around the
basin. X'igure 17 demonstrates that such a rotation does not occur in this simple
configuration.

So, in an elongated basin the depth-profile at the very end is of crucial importance
for the structure ofthe reflection. In the case ofa vertical wall the lines of constant

flH (isobaths) along which the waves can propagate terminate at the channel end
and apparently prevent the wave from changing channel side.

The differential equations (4.4) keep constant coefficients provided lhat ho varies
exponentially along the channel axis. Therefore let the channel be composed of two
sections. Close to the barrier, for 0 < I ( se, the depth increases exponentially with
s: äo(s) J ehoexp((s/so)log(1*tle));for s > so it is constant. The isobaths now no
longer intersect the wall but are c-shaped. Figure 18 shows solutions for such a
configuration; a significant difference to figure 17 is observed. Now, there is wave
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0.337
0.317
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(5.1)

q:2.0

Trsln 2. First eigenfrequencies a, r : 0.5, i.e.2:l basin, and e : 0.05 in a simple lake model. There
is always a pair of eigenfrequencies differing from each other by less than lo/o and the table shows
only one of them.

q

0.5
1.0
2.0
5.0

r:O.5
0.335
0.303
0.260
0.167

r:O.4
0.337
0.304
0.260
0.167

r :0.2
0.341
0.305 ?

0.261
0.168 ?

r :0.3
0.339
0.304
0.261
0.167

(a : 1,...,2i0.

TÄsLn 3. The first eigenfrequency in a second-order model for various aspect ratios r and
topography parameters q, e :0.05. Question marks indicate computational difficulties.

activity also in the opposite halfofthe channel corresponding to the negative ofthe
incident wavenumber. This amounts to a weak leakage of wave energy by reflection
into the other channel domain (figure 18o). However, probably owing to the
non-smoothness of the isobaths, it is compa,ratively weak and most of the reflected
wave activity remains on the incident side.

Figure 18(b) shows a reflection pattern of lower frequency, kr' and ko,r, lie farther
apart and therefore more local and complicated structures result. Moreover, at the
beginning of the reflecting shelf (s : so) wave activity is intensified. These specific
results demonstrate that the global wave pattern is very sensitive to the basin shape
and the depth profile at the channel end. Further studies are needed.

5. Lake models
As there exist 4-l[ independent channel solutions of the form (4.8) in an -ltth order

model, these can be superposed to a lake solution. A crude lake model is obtained
by inserting vertical walls at two positions s : 0 and s: L. There, the stream
function ry' must vanish,

4'AI

2 cord,": o
y:I
4N
2 eihrco,il,: g

t=l

This homogeneous system has a non-trivial solution provided that its determinant is
zero. Equations (5.1) select the eigenfrequencies of the system which depend on the
bathymetry given by r, q and e. Periodic lake solutions exist only for 0 < o < co,
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Frcunn 19. Lake solution in a 2'.1basin plotted for three different times through a quarter of a

period ?, using N -- 2, q :0.5, e : 0.05 and o : 0.335. wave activity is strongest in the middle

of the basin and damped at both ends.

where oo denotes the maximum frequency of the real branch of the first-mode unit.
Consequently, frequencies decrease appreciably when the topography parameter q

increases. This effect is demonstrated in Lable 2 which compares the first eigen-

frequencies of different models. X'or a parabolic depth profile a third-order model

offers adequate estimates of the eigenfrequencies. A parameter study reveals that the
topography parameter q influences the eigenfrequencies much more than do r or even

e , see table 3. However, for smäll r, r I 0.2, convergence is more difficult to obtain,
the reason being that large contributions of modes with complex wavenumbers ft,

Im(k) > 0 arise. The results of a series of reflected topographic Rossby waves suggest

that Ball-type solutions, i.e. phase lines rotating around the basin, are not observed.

Figure 19 shows a series of pictures of a lake solution in a 2:1 basin. The influence
of the vertical walls is obvious in that w&rrecrests approaching them die out. As
mentioned, the fundamental mode does not resemble Ball-type behaviour; rather,
the wave pattern exhibits a local structure. As the eigenfrequencies decrease the local
character becomes stronger, but there is still a right-bounded phase propagation.
Figure 20 presents some specific lake solutions for /y': 2 and N: 3 models. Figure

a
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(a)

(b)

Freunn 20. Stream function of three examples of solutions in a 'crude' lake model. The parameters
are

(")

(o)
(ö)
(c)

1/

2
2
J

r
0.4
0.4
0.3

e

0.05
0.05
0.05

C

0.260
0.244
0.120

q

2.0
2.0
0.5

20(a) is similar to a compound channel solution of the form of figure 17(a). Wave
patterns inn> O andn ( 0 seem not to interact, whereas for a higher mode (figure
20b) flow across the channel is observed. Figure 20(c) displays the stream-function
pattern of a very complex solution with strong local structure. It seems that Ball-type
solutions are rather unlikely to exist in natural, not very smoothly shaped basins.

Calculations further showed that for small aspect ratios r the system (5.1) is very
difficult to handle. The smaller r is, the larger are all llm(ft)1, and terms of (5.1b)
become dominant: the smallest inaccuracies in the eigenvector il, are fatal because
of their amplification in the terms proportional to eikv. A remedial me&sure might
be a superposition of two semi-channel solutions displaced with respect to each other
by a length Z.

6. Conclusions
We have demonstrated that the MWR is an effective tool in deducing classes of

approximate one-dimensional models for topographic Rossby waves. This has not
been analysed in detail by finite-element of finite-difference methods, and these latter
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techniques are rather time consuming on a computer and results are more easily
accessible by our reduced models.

By increasing the order.lt of the model, both the dispersion relation and the stream
function demonstrated convergent features. X'or a special channel this was
consolidated by comparison of our approximate solutions with exact analytical
solutions. .lt: 3 proved to furnish a practicable model for all wavenumbers, and for
a low wavenumber domain even the cruder model (N : 2) produced results that were
reasonably close to those of exact solutions. Dispersion relations and stream
functions indicate conspicuous topography and wavenumber dependencies. Addition-
ally, the dispersion relation exhibited domains with complex wavenumbers. These

correspond to non-periodic, exponentially decaying modes. With these modes, the
problem of topographic wave reflection in a semi-infinite channel could be solved.

This analysis demonstrated that the bathymetry at the reflecting wall is of crucial
importance and governs the structure of the global pattern. Wave energy can only
leak into the opposite channel domain when isobaths are continuous, and the amount
of this leakage depends on the order of continuity.

An ltth-order model yields enough solutions to combine them and satisfy no-flux
conditions at two different positions. Analysis of a'crude'lake model showed that
the eigenfrequencies depend strongly on the depth profile of the channel' Wave
patterns in elongated lakes showed a, more complicated and local structure than
expected. Solutions are very sensitive to round-off errors when r is small and a
modified procedure must be found to construct reliable results.

Our model also offers the possibility of solving topographic wave problems in even

more complex domains where ft,'(s) in (4.1) varies with position. In this case the
matrix operator K in (4.4) no longer has constant coefficients and an algebraic
procedure cannot, be applied. The operator K acting on V/ then forms a system of
coupled differential equations which must be solved by a numerical two-point
boundary-value solver. These and other open questions are the subject of further
investigations.

The artwork was done by c. Bucher and x'. Langenegger and M. staub typed
varrous versrons.

Note add,eil i,n proof .In work still under progress and shortly to be submitted we

describe topographic wave motion in closed basins in much greater detail. In
rectangular basins with depth variation along the thalweg we a,lso found solutions
as shown in figures 19 and 20, but equally detected Ball-type modes and modes with
wave activity restricted to the long ends ofthe rectangle.
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