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PREFACE

Temperature measurements that were perfomed in Lakes
of Zurich and Lugano in the late seventies disclose long
periodic oscillations whose structure suggests that they
may be interpretable as second class eigenmodes of the
respective basins. Verification by numerical solution
of the topographic wave equation for these realistic ba-
sins is so far lacking, one reason being that FD and FE
solutions exhibit a multitude of modes with varied struc-
tures in narrow frequency bands which make physical in-

terpretation very difficult.

The aim of this study is to transform the topogra-
phic wave equation by the Principle of Weighted Residu-
als into a simpler operator equation, which for a large
class of basin geometries can be studied qualitatively
and thus provides physical insight into the secrets of
the behavior of second class motions in closed basins.,
The method may be termed "channel method" and furnishes
the topographic analogon of the Chrystal and Defant equa-
tions that were deduced more than 60 years ago (and have
been extended by us) to explain the gravitational sei-

ches in long lakes.

As the reader can judge himself, a further step to-
wards understanding topographic waves in enclosed basins
has been done, however many new questions have arisen

that now await their proper answer.

K. Hutter
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ABSTRACT

The topographic Rossby wave problem for a rotating elonga-
ted domain is approximately solved. To this end the two-layer
shallow water equations, appropriate for a lowest order baro-
clinic model, are scaled and approximately reduced to a system
of equations which govern topographic waves and their coupling.
It is shown that in the 1limit of a small upper layer depth
compared to the lower layer thickness, the conservation equa-
tion of barotropic potential vorticity still applies and that
the internal baroclinic part of the motion is forced by the

barotropic mass transport stream function.

The conservation of potential vorticity, which can be for-
mulated as a two-dimensional boundary value problem in a na-
tural coordinate system, is reduced to a set of coupled one-
dimensional differential equations. This is achieved with the
help of the method of Weighted Residuals: The mass transport
stream function is expanded along the narrow side of the do-
main into a linear combination of prescribed basis functions.
After a weighted integration over this transverse direction
the problem reduces to a set of coupled two-point boundary va-
lue equations for the coefficient functions of the linear ex-
pansion of the stream function, which are functions of a sin-
gle space coordinate and of time only. Depending on the number
of terms carried through in the shape function expansion dif-
ferent orders of approximation are obtained. 1In view of the
linearity this system admits solutions which have a wavelike
structure both in space and time, such that the emerging sy-

stem 1s purely algebraic.

This algebraic system of equations is used to analyze in-
finite straight channels with variable topography in the trans-
verse direction. The dispersion relation of topographic wave
motion is obtained and scrutinized for various profiles and
several orders of expansion. It is shown that increasing the

order of expansion leads to convergence of solutions, but low



order models are demonstrated to be sufficiently reliable in

extracting the physically relevant properties.

By a linear superposition of channel solutions topographic
wave motion in rectangular basins are analyzed using the width
to length ratio (aspect ratio) as a characteristic parameter .
It is shown that small aspect ratio basin solutions exhibit a
rich modal structure and, therefore, differ substantially from
those of known exact solutions. By contrast, lowest order ex-
pansion models for large aspect ratios show similiarities with
known exact basin solutions, but their higher order models de-

viate, such that convergence properties are poor.

It is argued that these odd features of the large aspect
ratio case can be understood in terms of the inappropriateness
of the bathymetry approximations. Improvements of the model
are discussed and one version is outlined, but explicit re-
sults for this extended case are left for further investiga-

tion.




ZUSAMMENFASSUNG

Das Problem topographischer Rossby-Wellen in langen rotie-
renden Gebieten wird n&herungsweise geldst, indem die Zwei-
schicht-Flachwasser-Gleichungen -geeignet zur Beschreibung
von baroklinen Bewegungen erster Ordnung - skaliert und nach
gewissen Ndherungen reduziert werden zu einem System von Glei-
chungen, die topographische Wellen und ihre Kopplung beschrei-
ben. Es wird gezeigt, dass flir Fdllie, wo die obere Wasser-
schicht viel dlnner ist als die darunterliegende, die Erhal-
tung der barotropen potentiellen Vorticity immer noch gliltig
ist. Der innere barokline Anteil der Bewegung wird dann durch

die barotrope Stromfunktion gesteuert.

Die Erhaltung der potentiellen Vorticity, die als zweidi-
mensionales Randwertproblem in einem natilirlichen Koordinaten-
system formuliert werden kann, wird auf ein System gekoppelter
eindimensionaler Differentialgleichungen reduziert. Dies ge-
schieht mit Hilfe der Methode der gewichteten Residuen: Die
Stromfunktion wird l&dngs der Schmalseite des Gebietes in eine
Linearkombination von vorgeschriebenen Basisfunktionen entwik-
kelt. Nach einer gewichteten Integration iiber diese Richtung
wird das Problem zu einem System von gekoppelten Zweipunkt
Randwertgleichungen in den Koeffizientenfunktionen dieser li-
nearen Entwicklung; diese hdngen nun nur von einer Raumvari-
able und der Zeit ab. Je nach Anzahl Summanden dieser Entwik-
lung erhdlt man verschiedene Ordnungen der N&herungen. Da das
Problem linear ist, erh&lt man daraus ein rein algebraisches
System, wenn angenommen wird, dass die LOsungen in Ort und

Zeit Wellenform besitzen.

Mit Hilfe dieses algebraischen Gleichungssystems werden un-
endlich lange, gerade Kan&dle mit verschiedenen Querschnittpro-
filen untersucht. Die dadurch berechnete Dispersionsrelation
topographischer Wellen wird fir verschiedene Profile und Ord-
nungen der Ndherung geprlift und es wird gezeigt, dass eine Er-

hohung der Ordnung zu konvergierenden L&sungen fiihrt. Schon



Modelle niedrigster Ordnung beschreiben die Bewegung zuverl&s-
sig und schédlen die physikalischen Eigenschaften dieses Wel-

lentypus heraus.

Durch eine Linearkombination von Kanall®sungen k&nnen to-
pographische Wellen in Rechteckbecken beschrieben werden. Das
Verhdltnis Breite zu Lidnge (Formparameter) erweist sich als
charakteristische Grdsse. Becken mit kleinem Formparameter be-
sitzen eine komplizierte Wellenstruktur und unterscheiden sich
deshalb wesentlich von bekannten exakten L&sungen. Demgegen-
liber zeigen Becken mit grossem Formparameter in Modellen nied-
rigster Ordnung klare Aehnlichkeit in der Wellenstruktur mit
den exakten L&sungen. Allerdings verschwindet diese Aehnlich-
keit in Modellen hdherer Ordnung; die Konvergenzeigenschaften

sind mager.

Dies kann damit zusammenh&ngen, dass im Fall der kleinen
Formparameter die Beckentopographie ungeniigend modelliert wur-
de. Verschiedene Verbesserungsvorschlige werden gegeben, de-
ren explizite Resultate jedoch weiteren Untersuchungen {iber-

lassen sind.



RESUME

Le probléme des ondes topographiques de Rossby pour un do-
maine allongé en rotation est résolu approximativement. Pour
ce faire, 1'"équation pour eau peu profonde & deux couches,
appropriée pour décrire des mouvements baroclines du premier
ordre, est &talonnée et approximativement réduite & un sys-
té&me d'équations qui gouvernent les ondes topographiques et
leurs noeuds. Il est montré que pour le cas oll la couche d'eau
supérieure est beaucoup plus mince que l'inférieure, 1l'équa-
tion de conservation du vortex barotropique potentiel est
toujours valable et que la composante baroclinique interne de
la vitesse est gouvernée par la fonction de courant barotro-
pique.

La conservation du vortex barotropique potentiel, qui peut
étre formulée comme un probléme & deux dimensions de valeurs
au bord dans un systéme de coordonnées naturelles, est réduite
& un systéme couplé d'équations différentielles & une dimen-
sion. On applique pour cela la méthode des résidus pondérés:
la fonction de courant est développée linéairement dans une
base donnée le long du petit c6té du domaine. Apré&s une intég-
ration pondérée sur la direction transversale, le probléme se
réduit & un systéme couplé d'équations & valeurs au bord sur
un intervalle pour les fonctions-coefficients du développe-
ment ci-dessus; celles-ci ne dépendent maintenant plus que
d'une variable spatiale et du temps. Selon le nombre de termes
du développement, on obtient divers ordres d'approximations.
Le probléme é&tant linéaire, on peu se ramener & un systéme
algébrique linéaire sous 1l'hypoth&se que la solution, dans

l'espace et le temps, a une forme d'onde.

A 1'aide de ces équations algébriques, on &tudie des ca-
naux de longueur infinie avec divers profils en travers. La
relation de dispersion des ondes topographiques ainsi calcu-
lée est testée pour différent profiles et ordres d'approxima-

tions et il est montré gqu'une augmentation de l'ordre méne a




des solutions convergentes. Mais déja des modé&les de petit
ordre décrivent le mouvement d'une manidre satisfaisante et
mettent les caractéristiques physiques de ce type d'onde en

évidence.

Les ondes topographiques dans un bassin rectangulaire peu-
vent &tre décrites par une combinaison linéaire des solutions
pour canaux. Le rapport largeur sur longueur (paramétre de
forme) se réléve é&tre une grandeur caractéristique. Les bas-
sins & petit param&tre de forme ont une structure d'onde com-
plexe et divergent passablement de la solution exacte connue.
Par contre, les bassins & grand paramétre de forme montrent
dans des modé&les de petit ordre une similitude é&vidente avec
la solution exacte. Cette similitude disparait pourtant dans
des mod&les d'ordre d'approximation supérieur; les propriétés

de convergence sont pauvres.

Ceci peut é&tre di au fait que la topographie des bassins &
petit param@tre de forme a mal été mod&lisée. Des propositi-
ons d'améliorations sont faites, leur résultat explicite é&tant

laissé & des &tudes ultérieures.

(traduction par Bernard Ott)




VARIABLES

C

CI, CII,CIII

Dy

D, Doy

Horizontal slope of the thalweg line in a Cartesian
system, matrix index

Lake width

Lake boundary +n-direction

Lake boundary -n-direction

Differential boundary operator

Matrix index, derivative of the Coriolis parameter

Dispersion relation matrix (elements) for an infi-
nite channel

Complex field
Complex field without IR and J
Exponential thalweg constant

Exponential thalweg constant for three subsequent
lake domains

Kernel vector (components) of C
Kernel matrix elements to a given w

Kernel matrix elements to a given w for three sub-
sequent lake domains

Matrix index

Constant epilimnion depth

Maximum cross section hypolimnion depth
Lake boundary condition matrix (elements)
Differential topographic wave operator
Lake domain

Lake boundary

Kernel vector (components) of D

Kernel vector components of D for three subsequent
lake domains
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Lake boundary and matching condition matrix (ele-
ments)

Kernel vector (components) of E

Side wall parameter

Elliptical coordinate

Coriolis parameter, f = 1.033'10_4s_l,time scaling
Gravitational constant, g = 9.81 m 572

Vector of gravitational acceleration
Density-reduced gravity

Basis vectors of the natural coordinate system
Total depth of the lake

Topography depth

Basin depth

Basin depth, hypolimnion depth

Scaled basin topography, cross sectional depth
Non-dimensional depth

Thalweg depth

Thalweg depth for three subsequent lake domains
Cross sectional depth

Integral function

Imaginary unity, i2 = -1

Orthogonal metric in the natural coordinate system
Orthogonal metric in a general coordinate system
Imaginary field

Curvature

Constant matrix (element) components of I

Direction perpendicular to the boundary, wave num-
ber in the s-direction or x-direction

Wavenumbers to a given w
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k%,k%ﬁk%ll Wavenumbers to a given w for three subsequent lake
domains

E Unit vector perpendicular to the boundary

T Length scale, length of the lake

L Wave operator

L Direction along the boundary,
wavenumber in the y-direction

g Unit vector along the boundary

az arcelement vector

M Order of the approximation of the weighting func-
tion

gu,Méa Matrix (element) components of M

%Pﬂ“g@ Differential matrix operator (elements)

@Z Scaled differential matrix operator

mp,m, Mass

N Order of the approximation of the stream function,
order of the model

n Natural coordinate

i Unit vector in n-direction

0,07 ,89 Angular velocity

193 Vector of angular velocity of earth rotation

Wy Wpaeesly (dimensionless) frequency of wave motion

Wy, Vertical component of relative vorticity

Py, Basis function of the stream function

P; P& Symmetric and skew-symmetric part of Py

P Pressure

6¢D,6¢g Weighting function (component) defined in D

6¢BD’6¢%D Weighting function (component) defined on 30D

[0} Cylindric coordinate
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Barotropic or mass transport stream function

Vector (components) of the stream function

Stream function components for three subsequent
lake domains

Symmetric and skew-symmetric part of the stream
function

Scale of the stream function
Nondimensional stream function
Stream function for three subsequent lake domains

Vector and components of the symmetric part of
the stream function

Vector and components of the skew-symmetric part
of the stream function

Basis function of the weighting function
Symmetric and skew-symmetric part of Qg
Topography parameter

Radius of curvature

Internal Rossby radius

Real field

Cylindric coordinate, aspect ratio
Radius

Position vector

Density

Epilimnion density

Hypolimnion density

Stratification parameter

Natural coordinate

Location of thalweg intersection
Temperature

Periods of topographic wave motion
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X,
X1r Xy, X

g

Time
Nondimensional time
Wind stress vector

Wind stress components in a Cartesian coordinate
system

Wind stress components in a natural coordinate
system

Dimensionless wind stress vector

Wind stress scale

Velocity vector

Velocity components in x,y-direction, respectively
Velocity vector and components in the epilimnion
Velocity vector and components in the hypolimnion
Barotropic part of the velocity field

see u

Components of the wind stress

Cartesian coordinates

Nondimensional Cartesian coordinates

Cartesian thalweg parameter representation
Coordinates in a general coordinate system
Elliptic coordinate

see X

see x

Vertical unit vector

Elevation of the thermocline

Surface elevation

Horizontal Nabla operator
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1, InTRODUCTION

This report is concerned with an approximate solution tech-
nique of topographic Rossby waves in channels and enclosed wa-
ter basins. This particular wave phenomenon will in this first
section, be embedded in the context of geophysical fluid dyna-

mics.

1.1 Waves in waters

Before discussing the variety of wave types which may arise
in waters such as the open ocean, channels, lakes, etc., we
shall not try to define the physical meaning of the notion
"wave" but rather quote a beautiful statement of Einstein, that
expresses the essentials of what is meant by waves more accu-
rately than we could have done.

"Irgend ein Klatsch, der, sagen wir, in Washington auf-

gebracht wird, gelangt sehr rasch nach New York, wenn

auch nicht eine einzige von den an der Weitergabe be-
teiligten Personen tatsdchlich von der einen Stadt in
die andere reist. Wir haben es vielmehr gewissermassen
mit zwei ganz verschiedenen Bewegungen zu tun, der des
Gerlichtes selbst, das von Washington nach New York

dringt, und der jener Personen, die das Gerlicht verbrei-
ten."

Among the great variety of types of waves which occur in
nature we are interested here in water waves. To no surprise,
waves in waters themselves exhibit a multitude of different
types. In natural waters, which are always stratified, i.e.
the density is a function of space and time p=p(r,t), to each
wave type there exists an internal and an external form. In-
ternal wave motions are primarily felt within the medium leav-
ing the water surface almost at rest and occur only in strati-
fied waters. By contrast, what we see when standing at a lake
shore or at the beach is all external wave patterns, motions

which perturb the surface of the water.

There are basically two qualities which govern wave motion

in waters. On the one hand, these are the mechanical, chemical
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and electromagnetic properties of water, on the other hand
there are the specific qualities of the "container" which is
occupied by the medium. For instance, acoustic waves are due
to the mechanical properties, namely the compressibility of
water and are not influenced or modified by the "state" of the
container. What we mean by this is, that the dispersion rela-
tion of acoustic waves is not modified when the container is
rotating or has a complicated topography. Another example of
waves governed by the property of the water would be the elec-
tromagnetic waves, light, of which the dispersion relation re-

mains unaffected by a possible rotation of the container.

Seiche motions are governed by the shape of the container,
i.e. the position of the boundaries determines both, frequency
and wavelength (in a closed basin) of the seiche. Kelvin and
Poincaré waves owe their existence to the rotation of the
container and the Coriolis force which can be felt in such a
noninertial frame. Topographic waves, finally, are governed
mainly by the container, in that they require for their occur-
rence a container with nontrivial topography and rotation.
Both gualities are natural features of lake basins, in that

they exhibit a topography on the rotating earth.

It is interesting to notice that the larger the "scale" of
the driving mechanism of the wave is the lower will, in gene-
ral, be its frequency. Whereas a typical acoustic wave has a
frequency of 102 s_l, external seiches have about 1073 s~1 and
internal (topographic) waves in a lake even 1075 s~1. This is
also a sign for the fact that waves in waters occupy a broad

frequency spectrum which spans over more than 10 log cycles.

This brief survey, however, does not suffice to understand
and explain fluid wave motion. A step towards this is provided
by considering the set of equations which governs any fluid

motion and is obtained by applying the laws of

- conservation of momentum,
- conservation of mass,

- conservation of energy.
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These three fundamental laws and the equation of state lead to

the set of equations, quoting Pedlosky (1979),

Ju

§+ (ugrad) u + 29><1_,_1 = g-0x(fxr) “%—gradp,
ap
— + div(pu) = 0
at = ’ (1.1)
p=p(p,T),
ap

in which the chemical and viscous aspects of the problem have
been ignored. The system (l.1l) describes adiabatic fluid mo-
tion in a system subject to steady rotation; in other words,
(L.1) contains all aspects of geophysical fluid dynamics. Ma-
thematically, (l.l) consists of five non-linear partial diffe-
rential equation with associated boundary conditions (depend-
ing on the specific problem) and an equation of state. These

six equations determine the six unknown fields

u(r,t) the velocity field (3 dimensions),
plr,t) the density field,

plr,t) the pressure field,

T(xr,t) the temperature field,

which are all functions of space and time. The given fields

are
the angular velocity,

)
g(r) the gravity field,

and, furthermore the boundary conditions which are imposed on
(1.1). These represent constraints on the motion, in that, for
instance, boundary conditions select edlgengrequencies , seiches
and other wave types in closed basins. Also, equations (1.1)
pertain to a broad spectrum of wave motion: aecoustic waves,
capillary waves, inertial waves, gravity waves or seiches, Kel-
vin waves, Poincaré waves, shelf waves, topographic waves, etc.
Not only water motion on the earth but equally atmospheric mo-
tion can be explained with (1.1). These are buoyancy waves,

Fohn waves, frontal motions, Rossby waves, etc.
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In parallel with the generality of equations (l.1) goes the
difficulty to solve them. A general solution of (1.l), which
would embrace all aspects of fluid motion in a given configu-
ration (e.g. channel, lake basin, atmosphere, etc.) is not yet
found and is not worth searching for. The only way out of this
dilemma is to introduce more or less reasonable neglections
and approximations which (i) simplify the system (1.1),

(1i) filter out all those effects which are not of interest but
(iii) retain the characteristics of the motion of interest. This
approximation procedure has cast light in various different
domains of the spectrum. These, however, lie apart and form
distinct regimes with distinct behaviour. Connections to other
mechanisms or other regimes can sometimes be obtained by adopt-

ing perturbation analysis.

1.2 Topographic Rossby waves

The subject of this work is to investigate a specific wave
type of geophysical fluid dynamics. Here we try to explain the
mechanisms of topographic waves by means of a mechanical ana-
logy. The mechanism of topographic wave motion is the conser-
vation of angular momentum. This is represented by the conser-
vation equation q W,+f
ac TH

=0, (1.2)

where w, is the vertical component of relative vorticity, £
the Coriolis parameter, H the basin depth and é%’the derivati-
ve with respect to time following the fluid motion. A simple
derivation of (1.2) is given in Appendix D using a mechanical
rigid body analogy. Equation (1.2) represents the conservation
of barotropic potential vorticity on which Ball (1965) based
his studies of topographic waves. The simple derivation in Ap-
pendix D demonstrates that the restoring mechanism of second
class wave motion (topographic Rossby waves) consists in the
conservation law of angular momentum. Equation (1.2) shows,
that an increase of f in a container of constant depth requi-

res a decrease of relative vorticity. This is the situation
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where planetary Rossby waves in the atmosphere or ocean are
observed. The mentioned container represents the atmosphere
and an increasing f corresponds to a south-north motion (R-
effect). On the other hand, an increase of the basin depth,
e.g. in a lake, forces a corresponding increase of relative
vorticity. This is the case for topographic wave motion. In a
large ocean basin or in an atmosphere with strong orography
both effects may work and then lead, in an ocean, to shelf
waves. In this report, however, f will be assumed to remain
constant, which is sufficiently obeyed for small lakes (north-

south scale smaller than 100 km) distant from the equator.

There are two necessary conditions for the occurrence of
topographic waves: a rotating "container" and a container-
depth with topography variations. Unless both conditions are
fulfilled, topographic or second class wave motion is not pos-

sible, as demonstrated in Appendix A.

1.3 Present works and experimental evidence

The study of second class waves in fluids -motions which
are due to the rotation of the "container® - started a long
time after that of first class motion which is due to gravity.
The first trace of reference is probably the work of Poincaré
(1910) . He demonstrated the existence of long periodic oscil-
lations in a rotating circular basin with a parabolic depth
profile. A first explicit solution was given years later by
Lamb (1932), again for the same configuration. Subsequently,
after a long pause, Ball (1965) revived the issue with an exact
solution for an elliptic basin with parabolic profile. This mo-
del allowed an examination of the effect of the basin shape on
the eigenperiods of topographic wave motion tﬁrough the ex-
centricity of the ellipse. Saylor et al. (1980) presented for
the first time observations and deduced a refined theoretical
model. Instead of selecting different basin shapes, as Ball
(1965) did, they investigated circular basins with radial pro-

files parameterized by a power law, which here will be applied
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with changes, as well. Gratton (1983) presented a study of to-
pographic waves in straight channels. He found that the baro-
clinic feed-back to the barotropic motion is small for strati-
fied lakes which have a small ratio of epilimnion to hypolim-
nion depth. We analyze the same situation and this is why ba-

rotropic calculations are justified.

A further step in the field of theoretical approach was made
by Mysak (1983, 1984) when he investigated topographic wave mo-
tion in elliptic basins using an elliptic coordinate system.

To obtain a differential equation with constant coefficients
he introduced a piecewise exponential depth profile akin to

calculations performed for shelf waves (LeBlond & Mysak, 1978).

Csanady (1976), applying precursors of Hamblin (1972) and
Simons (1975) explained observations of coastal motion in Lake
Ontario by second class waves. Saylor et al. (1980) interpre-
ted observed long-periodic oscillations (in the order of days)

in Lake Michigan as topographic waves.

Recently, thermocline oscillations in the Swiss Lakes of
Lugano and Zirich were interpreted as topographic wave motion.
This is a surprise for such small scale lakes but the observed
periods could not be explained by an internal seiche mode
(first class waves), as the periods lie significantly above
those of the fundamental internal seiches. Spectras of the
temperature data indicate for Lake of Lugano a significant
peak at about 70-80 h, see Mysak et al. (1983, 1984) and mea-
surements of phase differences between spectra of isotherm
depth pairs show a counterclockwise rotation around the basin

which is also reminiscent of topographic waves.

It was only recently, that the data of the 1978 campaign
of Lake of Zirich were explored with respect to long periodic
wave motion. Temperature measurements and the isotherm depth
spectras indicate a clear signal at 100-110 h which, again,
can not be explained by an internal seiche motion. The fact

that phase differences of isotherm depth pairs show anticlock-
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wise motion around the basin can again be taken as a sign that
the associated motion is probably a topographic Rossby wave
(K. Hutter, personal communication). In short, experimental
evidence for topographic waves is striking but theoretical mo-

dels -even as approximations - are largely lacking.

1.4 Aim of this work

Up to now there exists a rather limited quantity of exact
solutions of the topographic wave problems. Analytical proce-
dures are found only for very special basin shapes and topo-
graphies, such as the parabolic circles or ellipses of Lamb
(1932) and Ball (1965) or the elliptic basin with exponential
depth profile, Mysak (1983, 1984). All these models could de-
scribe the periods of observed wave motion provided that a
set of parameters was well chosen. It turned out, however,
that the configurations, determined by the fitted parameters,
did not show much similarity with the natural basins or profi-
les. For instance, in order to explain a topographic mode in
Lake of Lugano Mysak et al. (1984) were forced to choose a ba-
sin shape which was much fatter and did not resemble the shape
of Lake of Lugano. They were not able to obtain the required
value of the period when selecting realistic length to width
ratios. Therefore, at the moment there is certainly a lack of
adequate theoretical models which could satisfactorily explain

topographic waves in #realistic basins.

By contrast, Finite Difference and Finite Element techni-
ques are effective tools in explaining wave motions under very
specific aspects. However, they are not likely to enlarge our
knowledge from a physical point of view. Furthermore, they re-
guire immense computational effort for a problem which, in its
basics,still lacks a thorough understanding. Questions concern-
ing the spectrum and the modal structure or behaviour in cur-

ved and more complicated basins are still unanswered.

This is why this report proposes a method that treats the
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problem from another point of view. It is not tried to find
more exact solutions or other numerical techniques. We rather
simplify the problem by making assumptions which are apt to
the specific problem of second class waves. We attempt to show
a way which can combine the preciseness of an exact model with.
the facility of the basin modelling supplied by a FD- or FE-
method. A test of such a model is likely to bring about also
the important properties of e.g. a lake basin under the aspect
of long-periodic wave motion. Furthermore, we hope to obtain
an answer about the quality and strength of such a method and
a hint towards specific improvements of assumptions, which are

invoked in the course of developments.
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Z. BASIC EQUATIONS

In this section we shall list those equations, that will
eventually be used in our further developments. No details
will be given as the essentials were already presented by My-
sak (1984).

2.1 Two layer model

Vertical temperature profiles in stratified lakes can be
subdivided roughly into three parts (Hutter, 1984a):

Epllimnion: layer with an average surface temperature of
about 18°C and several meters depth,

Metalimaion: layer containing the thermocline and experienc-
ing strong temperature gradients,

Hypolimnion: layer with a lower temperature of about 6°C and
several tens of meters depth.

This typical stratification can mainly be found during sum-
mer periods, when the surface layer is heated by solar irra-
diation. In a first approximation this situation is simplified
by introducing a two layer system of which the interface repre-

sents the position of the thermocline (Figure 1). Subsequently,

Figure 1

Upper and lower bound tempera-
ture profiles as measured in
Lake of Zurich during August/
September 1978. The dotted 1li-
nes are extrapcolations. Also
shown are the two layer appro-
ximations with density discon-
tinuity at 12 m depth and upper
and lower layer temperatures
18°C and 6°c, respectively.

(From Hutter, 1984a)
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the depth of the upper layer will be assumed much smaller than

that of the lower layer.

Motions occur in both layers and are subject to a coupling
by the thermocline. As we shall show later on, this coupling
mechanism is weak in the sense that it is mainly one-way, i.e.
the motion of the thermocline is driven by the barotropic
transport. If the velocity fields in the two layers are unidi-
rectional the motion is called barotropic. If they are in op-

posite directions it is baroclinic.

The configuration of the lake and the notation is summari-
zed in Figure 2. Important in the depicted geometry are the
vertical side walls that extend beyond the thermocline well
into the hypolimnion. Application must, therefore, be limited

to lakes with steep shores.

1 z
4 B(s)
§1 B (Sl;,_~t__ \75 % (S),,n
S D
C, = @ R | &-Hys)
7 o Hls.n)
Hyls.n) @ s
N DZ(S) ’d HO(S)

Figure 2

Side view of a cross section of the two layer lake
in its natural coordinate system (s,n,z). Upper and
lower layer variables are denoted by an index 1 or 2
respectively. The lake is within a rotating system
of spatially constant angular velocity V2 f.
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Lake topography varies in space only in the lower layer,
i.e. the upper layer is confined by two vertical side walls,
which must exceed the depth of the thermocline, i.e. eHpy(s) > D1
for all s. We accept the varying of the side walls with s be-

cause of analytical simplicity.

2.2 Governing equations

Basic idea in obtaining a description of the physical beha-
viour of our system is to formulate conservation equations for
the fundamental physical processes, i.e. momentum, mass and
energy. Since thermodynamic effects are of no concern in this
study a closed system concept can be formulated, that is based
on momentum and mass conservation for both layers. The full
system is non-linear because of the advection terms, but they
can be neglected by the argument of small Rossby numbers (geo-
strophic assumption). Furthermore, small elevations zi -in com-
parison to the depth of the upper layer will be considered.
This approximation may be doubious in certain cases but is made
for simplicity. Further, turbulence will be ignored but wind
stress, distributed over the thin upper layer, and acting as

a driving force will be considered.

Thus the equations of motion in components of a Cartesian

system take on the form (Mysak, 1984, p. 87)

U, - fvy = -gigy, + 1%/(py D)
(2.1)
vigtfuy = g+ w™/(p; Dy),
Dy (ug, + Vly) = Tyt " Lips (2:2)
Uoe = fv2 = =d clx - g (sz_ Clx)
— (2.3)
V2t+fu2 = ‘gily—’J'(Czy-ﬁ
(HyUy) e + (Hyvy)y, = - Lpe (2.4)

Py -p
202<£. Everything that

follows can be directly derived from equations (2.1) - (2.4).

where g' is the reduced gravity g'=g-




2.3 Approximations

Equations (2.1) - (2.4) contain many aspects of motions in a
lake. Here we are only interested in long-periodic oscillations,
which can be isolated by performing the appropriate approxima-

tions.

2.3.1 Rigid lid approximation

It is known that to every wave type of the above system
there exists an internal and an external variant. The periods
of the latter are generally much smaller than those of the for-
mer and, by applying the rigid lid approximation, the external
modes are impeded. This means, that compared to the interface
elevation any surface elevation can be neglected, i.e. the un-
derlined terms in (2.2) and (2.3) are ignored. With this, it
follows from the mass conservations (2.2) and (2.4) that the
quasi nondivergent velocity field can be replaced by the
stream function ¥, through which the components of the inte-

grated transport are given by
- wy = Dyu; +Hy uy, Y, = Dyvy + Hyv,. (2.5)

U is called the barotropic or mass transport stream function.
Equations (2.1) - (2.4) can be transformed into a compact system
in the variables ¥ and £, = g. The result -quoting Mysak (1984)-

reads, assuming a constant Coriolis parameter f:

VeV Y + E(VYXTH -2 = -g'D, (VExVH D)-2
i (2.6)
1 7 — i
+ [Pl e 4,
2 D £D
2 H 1 1 o
HV'g, = ————— Lg. + =V .-VH - (VgxVH) - 2
t g'DyHy ~ 7t T H, t H, 2
1 .
= — H]- 2.
g,H2[V(Lw)xv ]2 2.7)
H .
- ——— £(VXLT)-% ,
519 Dy ( )2

where the operator L = att+-f2 has been introduced.
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Mysak gives a detailed discussion of the physics of equa-

tions (2.6) and

absence of stratification

(2.7), which is now briefly summarized.

(g' =

In the

0) and wind forcing (1 = 0) (2.6)

reduces to an equation that describes motions under conserva-

tion of potential vorticity

fication (g' # 0) in a lake with topography (VH #0)

barotropic part of (2.6)

first term on the rhs of (2.6)
roclinic effects on barotropic
(2.7)

This

first term on the rhs of

on the baroclinic motion.

(Hutter,

to baroclinic processes.

1984a, p. 26 ff). Strati-
couples the
Thus, the

represents the influence of ba-
motion. By the same argument the
describes the barotropic effects

means that there is in general

a two-way coupling, the strength of which will be estimated be-
low. We further recognize that, provided there is a constant
depth within the lake and no wind forcing, equation (2.7) re-
veals internal gravity and Kelvin waves which propagate with

the speed cj = (g'DlHQ/H)Uz.

By deriving (2.6) and (2.7) from (2.1)-(2.4) two relations

are obtained for the velocity fields as functions of ¥ and z.

These are

_17 . . s Hy ‘
Lgy = =& Lng(Lw) +Hyg' (Vi -£2xVg) + DlDl(:t £2x0) |, (2.8))
T ‘ p
Lu, = —E[EXV(LW - D;g'(V c,-fzxve) - E(It—fz xT)], (2.8)2

which are additively composed of three parts, i.e. a barotropic,
a baroclinic and a wind forced component (see also § 2.5). The

first are the same (and unidirectional) in both layers, and
the second are in opposite directions and add up to vanishing
total transport, reminiscent of barotropic and baroclinic be-

haviour, respectively.

2.3.2 Low frequency approximation

In equation (2.7)

order time derivative.

we realize that ¢ appears with a third

This means that (2.7) can contain three

wave types. In fact a more precise analysis shows that there

are two (internal) gravity waves and one topographic wave of
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which the latter has the longest period. Because we want to
study here topographic waves, we will search for solutions of
(2.6), (2.7) with low frequency w. For w << £ we may therefore
neglect w in comparison to f. Thus L reduces to L = £2. Such an
approximation, however, requires that periods are substantially
greater than about 17 hours (the period corresponding to f).
Parenthetically, we might also mention that this approximation
holds only for lakes in which the internal seiche period (of a
gravity or Kelvin wave) is considerably smaller than the pe-
riod of topographic waves. Since the former increases with the
lake dimension, the frequencies of gravity waves in larger la-
kes become of comparable order to those of topographic waves.
For the lakes of Zurich and Lugano the approximation, however,

is appropriate, see Table 1.

Lake Surface | Period of internal Period of internal
length gravity waves topographic waves
[km] [hl [hl
Lugano | 17.2% < 28 1) 74 2)
Zurich 28 1) < 45 1) 100 2)
Geneva 72 3) 78 4) 72 - 96 2)
1) Hutter, 1983 3) Graf, 1983,
2) mysak, 1983 4) Biuerle, 1984
Table 1

Table 1 showing that the gap between the eigen-
periods of internal gravity and topographic waves
depends on the lake dimension. The periods of the
topographic waves are taken from an elliptical
model.

2.4 Scaling

It is a general method in geophysics to simplify the often
very complicated equations by estimating the importance of the
individual terms. As a side result this process yields the im-
portant dimensionless parameters that govern the solutions of

the equations (e.g. Reynolds number, Rossby number, etc.). By
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scaling we mean a procedure that replaces any parameter ¢ of
a set of equations by a product of its mean or characteristic

value ¢4 and a dimensionless parameter (primed) which then is

of order unity
b: = 950" . (2.9)

2.4.1 Wind forcing mechanism

The true forcing mechanism in equations (2.6) and (2.7) is
the wind. To estimate its relative importance consider the
identity

Vx(tH )+ 1% ixVH L = mhuxo)+ (vE Y x1

+ D}—Illx vHTL, 210
The first term on the right can be neglected in comparison to
the others, because the atmospheric length scale is in general
much larger than the lake dimensions. Such a statement is tan-
tamount to ignoring spatial variations of wind stress over the
lake's domain. Further, comparing the last two terms it is seen
that they differ by an order Dj/H which in view of our basic
assumption is small (cf. Table 2). Consequently only the last
term of (2.10) survives. In a way this is a strange result:
only a lake with variable topography can be affected by the
wind. This leads to the conclusion that the assumption on at-
mospheric length scales may be doubtful. Indeed, a varying to-
pography in the vicinity of the lake may play a significant
role as it can modify regional winds with atmospheric length
scales to local winds with smaller length scales. An example
is the topography around Lake of Lugano; but experimental evi-
dence for the wind stress curl to be significant is so far

lacking.

2.4.2 Gratton's scaling

Gratton (1983) considers lake stratifications with Dy <<D,,i.e
a thin upper layer is based upon a deep hypolimnion. For this
case he found that the baroclinic effect on the barotropic mo-

tion is of order Dj/D, smaller than the barotropic effect on
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the baroclinic motion. So, to order D3j/Dy the coupling becomes
one-way. We omit the demonstration of the arguments here but
suggest Mysak (1984, p. 92 ff) for further reading. The scaling

is based on the substitutions following (2.9)

’4"==U201P', C:=§0€'I I::TOE'I
(x,v): = L(x', y'), tr = £ Loy, (2.11)
H: = (Dy +Dy)h*, Hy: = Dyhy,

where the primed variables are non-dimensional; L is a typical
length scale of the considered waves (e.g. half the lake length)
Higher wave modes, where cross variations are important, may
require a (x,y)-scaling which is different for each spatial

direction.

In the emerging equations terms of order D1/Dy are now ig-
nored in comparison to those of order unity. Then (2.6), (2.7)

transform to the non-dimensional equations (primes dropped)
Voo™t vp) (W xVhh) -z = (TxVhTh) -z, (2.12)
(V2-s Yz = - (WxvhH-z, (2.13)
where S denotes a stratification parameter
Ri 2
S = (3 (2.14)
with the internal Rossby radius
2 g' Dy Dy

Bl =l et (2.15)
b (D, +Dy)

2.4.3 Scales in some Swiss lakes

Let us investigate now of which order these parameters are
in nature. Table 2 collects the results partly quoted in the
literature. Column 4 of this table demonstrates that neglect-
ing terms of order D;/Dy in comparison to unity is certainly
justified for Lake of Lugano and is still reasonable for all

other lakes. Gratton's scale analysis also permits estimation



Lake D1 mean max Dy P2 - P R; half g1 )
D2 D2 prean 07 ! length
2

[m] [m] [m] [km] | [km] [m]

1)
Lugano | 107 183" | 278% | 0.055| 1.91-10"3" | 4.05 | 8.6 | 4.5]|1.8”

1)
zurich | 127 52 | 124? | 0.231| 1.75-10°37 | 4.13| 14 | 11.5 | 2.9”
5

4)
Geneva | 15%| 153% | 310”7 | 0.098| 1.41-1073" | 4.24| 36 | 72.1]6.9

1) putter, 1984c, p. 78 4) Bduerle, 1984
2) Hutter, 1983, p. 108 5) computed after Mysak, 1984, p. 94
3) Graf, 1983, p. 64

Table 2 Properties of Swiss lakes.

of the thermocline elevation amplitude (column 9) which is only
a fraction of the epilimnion depth (columnl) and thus provides
some a posteriori proof of the suitability of the linearized

equations.

2.4.4 "Geometric optics" approximation

In equation (2.13) the stratification parameter S~1, which
is large in general, occurs together with V2 which, in view of
the scaling, is only of order unity. Because (2.13) has the
form of a forced Helmholtz equation, neglection of 72 in com-
parison to S~ amounts to the geometric optics approximation
(ray theory). To simplify the analysis of the baroclinic re-

sponse we shall henceforth only deal with this approximation.

2.5 Scaled equations

Incorporating all above approximations the dimensionless

field equations take on the form
Vo(h™l ye) + (WxVhTh .z = (htx vhh) -3, (2.16)

stz = (Wxwl) -z (2.17)

Having solved this system for ¢ and ¢ enables us to calculate

the velocity fields from (2.8) which now reduce to
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3
u = %[_E_wi+h(vgt—2><vz+It—_2_x_T_)J, (2.18)1

iy

- L
u, = 5

X VY. (2.18),

In this approximation the velocity field of the lower layer is
merely barotropic, however, in the upper layer there are three
components, viz. the barotropic, the baroclinic and the wind

forced parts.

Mathematically, (2.16) is a linear, inhomogeneous partial
differential equation for ¥ in two dimensions. We first try to
solve the homogeneous part of it and then study the modifica-
tion due to simple wind forcings. Having determined ¥ as the
solution of (2.16) the thermocline elevation can be calculated

from (2.17) and, in a last step, the velocity fields from (2.18).

2.6 Boundary conditions

Integration of the differential equations (2.16) and (2.17)
requires prescription of boundary conditions. Let D be the lake
domain and 30D its boundary. Because of the vertical walls one

boundary condition is no mass flux through the boundary
(D; u; +Hy, u,) +k =0, (2.19)

where E is the unit vector perpendicular to the boundary.
Using (2.5) and the fact that E><g is a unit vector along 30D
(2.19) reduces to

y=0 on 3D. (2.20)
In the same way we find a boundary condition for ¢ by recogniz-
ing that uy (i for upper and lower layer) must be tangential
to by Ei'ﬁ = 0. This again implies (2.19), but also (gl—gy-g =0,

from which we find that to order Dl/Dz

o
1=

-1 on 3D (2.21)

39
T £ e
must hold, where Q is the unit vector along 30D and E perpendi-

cular to 23D.



2.7 Natural coordinates

It is convenient to describe a long but otherwise arbitra-
rily shaped lake in a natural curvilinear coordinate system.
This means that we choose an orthogonal network which spans
the lake domain in a natural way. The basis for this coordi-
nate system is an axis, which follows more or less the thalweg
of the lake. The arc length s along the axis forms the first

coordinate of this system.

Figure 3

The position of the right
handed natural coordinate
system (s,n,z) in the lake
basin.

i points to the positive
center of curvature along S.

In view of the restriction to elongated narrow lakes it is
possible to choose a straight linear n-axis; so the system is
curved only in the s~direction. In order to define the lake
domain uniquely in terms of the coordinates the radius of cur-

vature R(s) must exceed half the width of the lake B(s),

R(s) > % B(s). (2.22)

Sometimes R(s) may be too small to fulfil (2.22); then a dif-

ferent choice of the lake axis may yield better conditions.

2.7.1 Conversion of basis vectors

Let the lake axis be given by
a parameter representation (X(s),
¥(s)) within a Cartesian system
as shown in Figure 4. The coor-
dinates of an arbitrary point P
are then given by

x = x(s) - n sina(s),

y = y(s) +n cosoa(s), i35
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provided the n-axis is chosen to be straight. The set of ba-

sis vectors gg, gn and gz at the point P can be expressed in

the form
dx ay
gs = (d—sl a‘s—ro)l
dx dy 2.24
n = (Fn @O o
gz = (0, 0,1,
which is easily simplified to the form
gs = (%' -nKcosao, y' -nKcosa, 0),
Gyl = ( - sina ’ cos o , 0), (2.25)
gz ( O 14 O Il)l
using (2.23) and the fact that the curvature equals K= g%.

An important quantity for
the characterization of a
coordinate system is the arc
element df. With the aid of
Figure 5 it follows that df

takes on the form

df

(J ds, dn, dz),

2,26
1 ~En, i )

Figure 5

This form 1e typagal of & Arc element in a natural

orthogonal metric. coordinate system.

2.7.2 Conversion of the V-operator

Let the arc element of an orthogonal metric be given by
df = (Jy dx1, Jp dx,, J3 dx3), (2.27)

see Table 3. Gradient, divergence and curl are then given by (see

Pearson, 1974)

gradu = (5= == — 5—i = =) (2.28)

5
;U172 vy) . (2.29)
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_ 1, . 3 d
cmly-—JNé%LJl&;%wﬁ Jlk;%vﬂ;

9
J, g{‘; (Jl Vl) - J2 Fre (J3V3) ; (2.30)

0
J ——(J2v2)— J3

(J v)],
3 axl 1 lJ

3%,
Vyr Vo, V5 are components of the vector v in the xj, X5, x3 di-
rections, respectively. Choosing the above coordinate system

requires the identifications

J; =1-Kn, J,=1, J5=1. (2.31)
System Coordinates J7 J2 J3
Cartesian (%s Vs Z) 1 1 1
cylindric (rs ¢, 2) 1 r 1
]
elliptic (£, n, z) J J 1 , where J=a(sh?E +sin?n)’2
natural (s, n, z) J 1 1 , where J=1-K(s)'n

Table 3 Listing the coordinate systems that are often
used in lake hydrodynamics.

2.8 Equations in natural coordinates

With the aid of (2.27), (2.28), (2.29) the equations (2.16),
(2.17) take on the form

AT A W e, o8 B
J s = J Js

5 s o O es (2.32)
N I 1 8n71]
l's o nJg 3 |
1, - 1[23 3t 3 3n71)
5 kg™ g }L 35 “en  3n a8 |’ e B

where we have also used (2.26).
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3. METHOD OF WEIGHTED RESIDUALS

3.1 Breakdown of simple separation

The number of known exact solutions of the topographic wave
operator for enclosed basins is relatively small (Lamb, 1932;
Ball, 1965; Saylor et al., 1980; Mysak, 1983, 1984). The rea-
son is that the homogeneous part of (2.16) does not permit se-
parable solutions for an arbitrary topography. Let us demon-
strate this in a coordinate system (x3, Xy, X3) where the arc

element d% is given by (2.27). We select the separations

U(xy, Xy, £) = g s Py (xg) " Up(x2),
ht (1, x9) = h7l(xy) ~h3t (%),
J1(x1, x2) e B
= a; (xq7) "ap (%
Jy (X1, X)) 1L 2 !

and then obtain, with the aid of (2.28) and (2.29), for the

homogeneous part of (2.16)

h e h, a e
Lod 1 My P S
ay Yy 9%y 1 L 9xy Yy 09Xy %y
= =1, (3.1)
+i2[33_wl_3h2 I R R N
iw ap | ¥y ¥x;  9x, Uy 0%y 0¥y |

Lamb, Saylor and Mysak selected a wavelike structure
w2 (XZ) = gl0 x2,
and a topography that varied only in the xj-direction. Thus

(3.1) reduces to

h 3y
1 3 -1 - 1
v L A )
1V 9 X B
7 -ioxy j_(a iaeiaxz) _ o _az ahl—l . v
& € Ix, 72 w o a; toex

which is separable provided ap/aj is only a function of xj.
Thus, Saylor and Mysak who used cylindric and elliptic coor-
dinate systems, respectively, were able to find separable so-
lutions of (3.2). In this study we do not want to be restric-

ted to topographies that vary only in one direction. Further,
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we make use of a natural coordinate system which in general
does not allow separation. The next sections demonstrate the
application of the method of Weighted Residuals, see Finlayson
(1972), on the topographic wave problem represented by equa-
tion (2.16).

3.2 Generalized ansatz of separation

Just having shown that simple separation fails, we now try
to use the impossible anyhow, yet in approximate fashion. We
do no longer require strict separability but rather prescribe
the functional dependence in one direction. This functional
dependence shall be described by a well-chosen set of linear
independent basis functions that may already fulfil the boun-
dary conditions. It is obvious that our problem then reduces
to a problem in only one dimension, since its behaviour in the

other is already chosen.

At this point, it seems appropriate to motivate the use of
the coordinate system (s, n, z). It naturally selects the small
direction n; it is this direction for which the basis func-
tions are selected, because the true behaviour can most likely
best be approximated in this direction, see however later de-
velopments.

Let {Pu(s, n)} be a convenient set of known basis functions
indexed by o, and let ¥(s, n, t) be decomposed into these basis
functions as follows: .

p(s,n,t) = ) Pyls,n)-3%(s, t). (3.3)

a=1

Each basis function is weighted by a function ¥%(s,t) that is
assumed not to depend on n. In other words, all n-dependence
has been thrown into the known prescribed system {P,}, which
preferably is chosen from a complete set. If N < o, (3.3) is
an approximation in so far as there exists a certain limita-
tion in the variation of ¢, i.e. the set {Pa} looses its com-
pleteness. It is hoped that truncating (3.3) for very small N

will already provide the essentials of the physical behaviour.
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3.3 Integrated representation of the equations

Let D and B be a linear differential operator and a boun-
dary operator, respectively, e.g. for 1 =0 in (2.16)
D=v.nly -'£%~§-(Vh_l)xv and B = 1. Equation (2.16) with
its boundary condition (2.20) reads then

DYy =0, in D, (3.4)

By = 0, on 3D, (3.5)

A weak form of (3.4), (3.5) can be obtained by a weighted in-

tegration over the respective domains

J(]Dw)é%da+ §>(m¢)a¢avdz=o. (3.6)
D 30

Here §¢p and S¢yp are weighting functions defined over D and 37,
respectively, and § is a symbol to remind the reader that in
the space of generalized functions the functions are arbitrary.
(3.6) follows directly from (3.4) and (3.5). Conversely, (3.4),
(3.5) follow from (3.6) only if (3.6) holds for any function
§¢. This is a consequence of the fundamental lemma of Calculus

of Variation (see Courant & Hilbert, 1967).

We now insert (3.3) for ¢ and a similar expression for §¢,

;)
66 = ) (s, m8ef(s, v, (3.7)
B=1

into (3.6) and obtain an expression of the form

] 8 o 8 =
| @, 9% g 80p da + § B ryYY g o5y dr = 0, (3.8)
D ED)

in which summation over identical upper and lower indices is
understood. The underlined functions are independent of n. Se-
lecting M =N < » and sets {P,} and {QB} which already fulfil
the boundary conditions

Py

= Or QB = O/ (3-9)
oD oD

the second integral in (3.8) vanishes automatically, except
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perhaps where the lake axis intersects the boundary 90D. We de-
note these points by s=0 and s =1L and call them the end

points, see Figure 6.

Figure 6

Configuration of an elongated lake.

So the »nly possible contribution of the second integration

in (3.8) could be
4

0~ L
(ﬁ B (By V™) Qg 5¢§D as + }6 B (P, ¥*) Qg 6¢g’p ak,
0" L

which vanishes for all 6¢gp only if we impose on ¥% the boun-
dary condition * =0 at s=0 and s=L. If it is further re-
cognized that

da = J dn ds, (3.10)

in view of Figure 5, equation (3.8) will take on the form

[ (J (D 2, ¥%) 0 T dn) 8¢5 ds = 0. (3.11)
=3 n
The inner most integral of (3.11) can be expressed as a matrix

element operator Mgy on wa so that (3.11) becomes

[ Mgy v* 805 as = o, (3.12)
S
which must hold for any 5¢%. Invoking the fundamental lemma of
the Calculus of Variations, (3.12) reduces to the two-point

boundary value problem

Mge V% (s, £)
wOC(S, t) =0, s =0, L.

I
o
~
Q
<

g=1,...,N, 0<s<L,
(3.13)

So, our inherent two dimensional problem (2.16) has been redu-

ced to a finite set of coupled spatially one-dimensional linear
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differential equations (3.13); with boundary conditions (3.13),.
This procedure will now be applied to (2.32), by first assum-
ing homogeneity, i.e. no wind stress, T = 0, and then calcu-

lating the matrix elements wﬁu for a given lake topography.

3.4 Matrix elements

Substituting (3.3) into the homogeneous system (2.32) (with

no wind forcing) and performing (3.6), thereby incorporating

(3.7), we obtain

=1
. 2h 3 oy 4 Ll gLp P
0= JJ [35( J as(Pa v on b Bn(Pa be)
D

VT v
(1) (2) (3.14)
sh~l 3 oy, _ 9t 3 o oq 8
# S oetm, I - S ol )} Qg 69y cnds,
hd Y
(3) 4)

where use of the summation convention has been made. Each term

in this expression will be evaluated separately and boundaries
for the integration in the transverse direction will be deno-
ted by BT (s) and B+(s) as shown in Figure 2. In the following

deductions use will be made of Leibnitz' integration rule

BT (s) B (s) B¥ (s)
[ oF o » 3G
J aSGdII~ J' —BE(FG)dn_ Fggdn
B™ (s) B (s) B” (s)
(3.15)
BT (s) &
+ i
= = J Fean- (F6)| - B + (ro)l ‘B—B——J r & an,
|5+ 9 | - 9s " os
B™ (s)

where F and G are arbitrary,
and n.

differentiable functions of s

With these preliminaries the terms (1) to (4) can now be eva-
luated. The rule of transformation is to remove differentia-

tions of the topography h as far as possible, which can be
achieved by integration by parts:
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Term (1): 5
= (8 (h - 38 o
W = jas( 5 55 (Po ¥1)) Qg an
_ 8 (hl oo o bt 8 . 0%
= SSJ T 5s (Fo ¥) Qg dn J T 5s'Fa ¥e) 35 @
-1 9p WY -l
_ 9 | o (h ™ °a t(h
- BS{Wt T s B 55 ) 7 Pu Qgdn)
-1 3P, 90 3 1 3Q
h o =B W h B
ey W [ R B Ean
_ o[ 2 (hit g _ (hl %a g
= “t[asJ 7 5 %0 - | s 38 0
ayy n-1 8Py 5  h”
* s JJ 3s QBd +§—EJPOLQBdn
o
nl o L e o .
ST rse ) S5 [T ragpan,
Tem (2):
@ = [ 2w 5 2@ )] 0,an
) 5n on o YR <R
_ 3 00
= - [0l a2 e, ) =L an (3.17)
9P, 30
= _ g0 [ 1 5 Zo B
- ve | B on on O
Term (3):
_ (a7l o o
3 = [ 5= 2= (p, v") Qg an
3 /5 o 1
= - | 5 (55, v @) h7 T an (3.18)
__Oﬁf—lﬁapot _5@,‘ -1 9
= =i [ el dn = Jh = (P, Qg) dn,
Team (4): L
@ =-{8" 2 (s %0, an
)35 T e B
e - 2 -1 3 o (-1 8 (08 )
= - = [t 2@ ¥ an+ [ n SS(BH(OCIP)Qan
_ aw@ 1 oPy, o ot 1 oPy,
= -5 [P e g nt rogan Gy
a 1 9 9Py au -1 9Py
i [t et og an s S5 [t 2o an
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Parenthetically we may remark that the process of this eva-
luation is more complex when the basis functions are not re-
stricted by the condition that they vanish along the shore,
because further integration by parts is necessary in that case.
Insering (3.16) - (3.19) into (3.14) yields the required form
(3.12) of (3.14), namely

s=L o
32y -1
- 8 t [ (h-=
0= ] ds 6¢ ]: =2 L) 7 Fals an]
s=0
WE T ol 9Py nl nl_ 9Qg
Sl T meet; [F B Qgan-| TPorgs—dnJ
5 h1 3Py hl 9Py 8Q6 POc SQB -
oo b i . - W ) & 1y .2 28
+wt£BsJ J s B J J 9s o J on  on J
sy® 1 P 05 - (3.20)
o[- (nt o = -1 it -3
* e [ J m %dn Jh Po om0

. 3, 30 P
o SL e BB g Ll S R __B-J -1 7
v H e Jh = Bt mI RS dn:l K

B (s)
The inner most integrals are understood as f . Since (3.20)

5
must hold for any 6¢§, it follows that e

Mgy wW=0, a,8=12...,N 0<s<IL,

(3.21)
Y =0, s=0,1L,
where the linear matrix operator me is given by
_ 00 33
Moo = Mo o
2
10 9 ,,00 01 o
* (Mgo *+ 35 My = Mao) 555
9 10 L. 22, 9
+ (55 MBO(. - MBOC - MBOL) -S_E (3.22)

20 02, 9
+ (- MBQ - MBOL) B_S-

21 12 9 .20
ol (MBOL = MBOL s B_S-MBOC)'



with
M0 = j nt 57 By Qg dn,
Még = J( plg-t % Qg dn, Mgé = ( nl gt e %QS—B dn,
Mg = [ nt %%QB an, Mg = | n7l B, %%@ dn, (3.23)
Méé = J( nht gt % %9} dn, Méé = ( ht Bfr? %%B' dn,

The individual components ME& in (3.22) are known functions of
s and depend on the topography of the lake, h, on the metric
of the natural coordinate system, J(s, n), on the shape of the
lake shore, Bi(m, and on the sets of basis functions {Pa(s,n)}

and {QB(s,n) ¥s

3.5 Incorporation of the wind

If, instead of searching for the free modes, we want to
consider the response of the lake to external wind forcing,
the homogeneous two-point boundary value problem must be re-

placed by the inhomogeneous set

Mg, ¥* =Wg, B=12...,N, 0<s<L
(3.24)
‘4106:0, s=0,L

where for prescribed wind T, WB is a known vector. Applying to
the rhs of (2.32) the procedure that is described in section

3.3 yields . .
3h~ 1 9h”
W = [ gn(rg = -5, B-)ggan, (3.25)

which can be calculated for a given lake and wind field.



- 48 -

4, APPLICATION TO SPECIAL TOPOGRAPHIES

4.1 Basic Assumptions

Consider now a straight lake with symmetric cross sections,

thus

K(s) = 0,
(4.1)
h(s,n) = h(s, -n) .
With the aid of Figure 2 it follows that
Bt (s)| = |B7(s)]| = -%—B(s). (4.2)

The effects of the topography of the lake on the waves will be
incorporated by choosing a profile of the form (cf. Saylor et

al., 1980)
h(s,n) = hg(s)-hj(s,n,qg,€),

q (4.3)

4

2n
B(s)

hy(s,n,g,e) = 1l+¢ —l

where the topography parameter g and the sidewall parameter ¢
have been introduced. Their effects on the topography are

shown in Figure 7. Usually the sidewalls of the basin are cho-

z

_____ 0<qg<1

n q=]
———= qg>1
_———— q >
Figure 7
Cross sections of
the lake basin.

sen to be of constant depth, but here we prefer an expression
of the form (4.3) because of analytical simplicity. We require
€ > D1/Dp (cf.Figure 2) which yields for & the values listed

in Table 4. There are two reasons why the introduction of side-
walls is necessary. Physically we require vertical boundaries,
otherwise all waves impinging on the shore would break. That
means that nonlinear effects would be important. Mathematically

e #0 prevents some of the matrix elements (3.23) from becoming
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mean Dl
Lake Dy[m] Dy [m] g & b mean
Table 4
LG 10 183 bJ055 Magnitudes for the
Zirich 12 52 0.231 sidewall parameter g,
Caiiava 15 153 0.098 calculated from Table 2.

non—-integrable. It will have to be tested later on how strong-

ly the results will depend on this sidewall parameter €.

4.2 Symmetrization

That the lake bathymetry has been restricted to symmetric
cross sections suggests to split the motion, described by ¥,
into two parts, viz. a symmetric part ¥, and a skew-symmetric

part Y_, whereby n=0 1is meant to be the center of symmetry:

Y(s,n,t) = ’4)+(S,n,t) + V_(s,n,t), (4.4)

with

w+(slnlt) w+(5,—n,t),

(4.5)

]

y_(s,n,t) -y_{s,-n,t).

The separations (4.4) and (4.5) require that the set of basis
functions {P,(s,n)} and {QB(s,n)} will have to be split accor-
dingly into these two parts, since only the basis functions
contain an n-dependence (cf. (3.3), (3.7)). As a result, the
matrix elements (3.23) will be split into parts that act only
on symmetric or skew-symmetric stream functions y. Let us de-

monstrate this by using

Py(s,n) = Pr(s,n)+ P3(s,n),
(@,B=1,...,N) (4.6)
Qgls,m) = Qf(s,n)+ Qz(s,n),

as basis functions. Then for M%g we obtain

00 _ [ y=1,p+ -y (ot =
u® = | n7le} + 2] (0f + 0pan
= [ nl el of an + [ n7l B} 0F an (4.7)

+ [ nlp;ofan+ [0l P Qp dn,
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where the last two summands vanish because the integration of
a skew-symmetric function over a symmetric domain always va-

nishes. Similar properties hold for the other matrices.

It is now advantageous to introduce the separations into
symmetric and skew-symmetric functions for the solution func-

tions Y%. In other words, the vector Yy will now have the form

o= WE W e Wa 5 0 waen B2 (4.8)
. ~ < y ,
symmetric skew-symmetric
components components

This is tantamount to splitting the solution space of ¥ into
the direct sum of symmetric and skew-symmetric subspaces, and
it corresponds to the recognition that Pg, P& and Qg, Qé con-

tribute to different submatrices in the matrices M%&. For in-

stance, in the notation of (4.8) the matrix operator MOO can
be written in the quasi diagonal form
MOO++ 0
MO0 = . . (4.9)
o m90--
where M00++ and MOO'" are given by
00++ _ -1 5t At
Mgg*t = [ n71 #Y of an,
(4.10)
00-- _ -1 = o
u30-- = J n~l Py o7 an.

Matrix operators that take on this form can not couple the
symmetric and skew-symmetric part of the motion. Considering,

on the other hand, the matrix element MZO, or

Bo
+ -
3P 3P,
20 _ -1 o = —l_C{, o4
MB@ - J h on QB dn +>J h on QB -
(4.11)
ot P
21 By 3 -1 %Py
+[0—tof an + [ 07 % op an,

shows that here the last two summands vanish because the deri-

vative in the n-direction changes the symmetry. Thus, matrix
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elements (3.23) that contain an odd number of derivatives 1in

the n-~direction take on the form
M20 = , (4.12)

where the elements are given by

+
3P
204 _ [ . -1 o -
MBu = J h o QB dn ,

(4.13)

o _5 98P
20 (h]_ o

+
MBOL ) on Qﬁ il

Matrix operators of the type (4.12) couple symmetric and skew-
symmetric motion, which is necessary for wave solutions to
exist. To make this explicit, note that (3.21) can be written

as
-+3 T
|

?M++ 0 fo wu™] W+ﬂ
(iw * +§ %>j - =0, (4.14)
Lo o [/ e

where the operator 3/3t has been replaced by iw through a har-

monic time dependence eltt of the solution. The assumption of

e.g. a purely symmetric motion, i.e. Y_ =0, leads to the system
i e (o QN
iw MBa w+ 0y
o,8=1,...,N (4..1.5)
= 0
Mg kU+ = 0,
which, in terms of (2.16), corresponds to
; P -
iw V- (h V¢+) =0 on D
(vy, x va™hy -z = 0 on D (4.16)
Yy, =0 on 3D

A non-trivial w+ satisfying this set of equations permits only
w =0, as proved in Appendix B, which shows that there exists
no wave in this case. An analogous conclusion prevails when
9+ =0 and ?_ #0 is assumed. Proper topographic waves must the-

refore have both non-trivial v, and Yy_ functions.

Thus, we have demonstrated, that -within our approximate
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formalism -~ the behaviour of topographic waves is well incor-
porated. Indeed, corresponding to the results of Ball (1965)
and Mysak (1983), we obtain the correct features of these wa-
ves. Yy-functions which are solutions of (3.21) are necessarily
a mixture of symmetric and skew-symmetric components. At cer-
tain times plots of the streamlines are skew-symmetric, at
others they are symmetric and in between they are a combination

of the two (cf. Figure 8).

Tn

oLl
e

T =143 h T=97.7h

Figure 8

Showing the symmetric and skew-symmetric aspect of the
motion of topographic waves (from Ball, 1965). For t =0
the motion is purely skew-symmetric in the n-direction
and for t = ¥4 T, where T is the period of the motion,
it is purely symmetric. At intermediate times there is
a mixture of both aspects. This feature can be seen both
in the ground mode (left) and a higher mode (right). No-
te that the modal structure of the higher mode (right)
changes in time

We regard this as one of the essential features of topo-
graphic waves, and the fact that the equations (4.14) quali-
tatively exhibit these properties may serve as a partial cor-

roboration of the appropriateness of the approximate model.



4.3 Basis Functions

The above procedure requires a set of basis functions that
fulfills the boundary conditions (3.9). Further, we split the
set into a symmetric and skew-symmetric part, and for simpli-
city also choose {Py} and {Qg} from the same set (Galerkin
procedure). The simplest choice is then to take trigonometric

functions, sin and cos, which form a complete set and in the

form
+ _ __]; 2n — i ~2n
Pu(s'n) = cos<ﬂ(u 2) §T53>' Pa(s,n) = sin Gcné?EB),
(4.17)
1 _ " _i 2n - I 2n
Qg(s,n) = cos(n(s 2) ﬁ?gﬁ), QB(s,n) 51n<WB é?éi)'
(@,B=1,2,...,N)
they satisfy the boundary conditions (cf. Figure 9).
Pg.a=1
~;—B(s) %B(S)
s n
Figure 9
Basis
P:,a=2 functions.

4,4 Calculation of the matrix elements

With (4.3) and (4.17) the matix elements (3.23) can be cal-

culated. Simplifications are obtained with the substitution

_ 2n
1% B(s)’
5 (4.18)
dx = B(s) dn.

Straightforward calculation, using the definition (3.23),

(4.1), (4.2), (4.3), (4.6) and (4.17), yields




MZO b=

20-+
M 80,

02+-
o

02~+
Bo

1++
e

11--
Bo

M22++
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-1 1 _L 1
= B hy Jh cos T (o 2)x cosT (B 2)x dx ,
(4.19)
=pnt [ nl s inmBx d
= 0| sinmax sin mBx dx ,
- _L1,8 .1 -1 g -1 -+
(o Z)BShO th sinm(o Z)XCOS’IT(S 2)x dx,
(4.20)
cpe Bl [yl .
o s hO jx h cosmax sinm Bx dx,
T I I RO B U |
(B 7) = h; th cos T (o, 2)x sin ™ (B 2)X ax,
(4.21)
—WBa—Bh—l Ixh_1 sinTax cos T Bx dx,
3s 0
- 2w (oc—%) hot J nt sinw(oc—%)x sinm fx dx ,
(4.22)
L [y _A
2ma hO )h cos Tax cosm(f 2)xdx,
-1 [ .-1 1
2mR hO J h cos Tr(oc—7) X cosTm Bx dx ,
(4.23)

I O R G ; 1
—2m (6 -3) hg fh sin mox sinm(g-3) x dx,

20 -Le-L 512 1 (2L stnrio-Lyx sinm(e-L
™ (o 2,(8 2)B (as) hO X“h * sin m(a 2)x sin m(B 2)de,
(4.24)
= -1 f -
Tr2 aB B 1 (%2—)2 hol J x2 h 1 cos max cosmRx dx,
2 -Lyg_Lygt ~1J-1 ; _1 - L
41° (o 2)(B 2)}3 hy h™ sinm(a 2)xs:|.n1r(6 2)xdx,

(4.25)
4TT2068 Bt hal J hl cos max  cos mex dse,
2 (q-Lygpl B -1 AL o 1
21 (o 2)BB 5 Do jxh sin 7(a 2)x cos aBx dx,
1 9B 1 (4,26)
2 ¢a 1.1 3B -1 -1 . JA
2140 (B 2)B s Bo th cosmox sin (R 2)x dx,
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o = gn? (oa—»l—) g 571 Byl J(x n! sinm(o - L)x cos mBx dx,
Bau 2 s 0 2
(4.27)
21-+ 2 1,.-1 9B -1 J -1 : i
MBa = 27 u(8—<§)B EE—hO X h cosmoax sinm(R 2)x dx,
(a,B=1,...,N)

where the index 1 at h™! has been dropped and the integration
f}is meant. For a prescribed topography, i.e. for selected ¢
gnd g, the integrals in (4.19)-(4.27) can be worked out once
and for all. The matrix elements are composed only of five
different integrals which must be calculated on a computer or

pocket calculator. To this end we define the functions

Ii(alblqlg)l (4.28)
according to

Iy = jh_l sin Tax sinm bx dx,
0

1
I = J hl cos max cos T bx dx,
0
1
I; = [ xhl cosmax sinmbx dx, (4.29)
0
1
I3 = f %% Wl cosmax cosT bx dx,
o]
1

_ o 1 ; I
Iy = [ x2 h™ sin ﬂ(a—~~2—)x sinm(b 2)xdx,
0

where h is given by (4.3))
h=1+¢-xT, (4.30)

The matrix elements (4.19)-(4.27) expressed in terms of these

are
00++ =1 1 1
May = Bhg Ijla-35, B-3),
00-- -
Mgy~ = B hsl 14(a, B),
(4.31)
10++ _ 1,988 -1 1 1
MBOC = W(@ 2)5§'h0 Iz(g Eru aqr
0~ 9B | -~
Mé()( = =T gg— hol IZ ((X, 6) cont.

->



Ol++
MBa

01--
Bat

20+~
Bou

20-+
MBO&

02+-
Bau

02-+
Ba

114+
MBOC

Vi

B

2++
Méd

22--
B

24—
e

2-+
e

21+-

having omitted the parameters € and g
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1 9B e & 1
W(B_E)B_shol e-5,8-3),
9B , -
-mB s hol I, (B, &)y
1 - 1
-2n(a=3) gt Ipa-35 8),

- 1
2ma hol Iy(a.8 ""f)'

N

218 hgl I)(a-3

1, . -1 I
=27 (8—3) hO IO(O.,B—E),

=1

9B.2 | —

2= 6-3) B2 ngt 140,8),
a8 (25? ngl 13008,

= 1
10 -2)(8-2) 8L B3l 1o -5, 8-,
anfop B 0Tt T (a,8),
2i?(@- 318 7L (BB ngl 1,08, 0= 3),

= = 1
2r2a (8 - 3) B (2D Hg! 1, (0 8-,
12+-
MBOL '
w2, (@,B= 1,...,N)
Bo

as arguments of Ij. The

numerical evaluation of the constant part was performed on a

computer using the IMSL-library subroutines.

The results, with

a relative accuracy of 10"6, for selected € and g up to order

4 are listed in Appendix E.
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5. CHANNEL MODELS

5.1 Basic equations

The restricted model, which has been presented in chapter
4, 1is now applied in a first step to straight channels, which
have in their cross direction a topography of the form (4.3),
see Figure 10. Such channels have also been considered by Grat-

ton (1983), but using a different method.

Figure 10

Infinite channel
with different
topographies in
the cross direc-
tion.

The channel is assumed not to have a mean flow along the
s-direction. The considerations regarding the temporal se-
quence of the symmetric and skew-symmetric parts of the solu-
tion (4.8) lead straightforwardly to a harmonic time dependen-

ce of the form

Y o= (w+(s) sinwt; Y_(s) cosuwt), (5.1)
with strictly real w. There is a phase shift of w/2 -corre-
sponding to ¥4 T- between both components, which is in accor-

dance with the results found by Ball (1965), see Figure 8, and
Mysak (1983, 1984). Introducing the definitions

00 _ -1 00
MB& = B hO KBG‘
10 _ 3B -1 10
MBa B §§-h0 KBa'
MOl = 2B n-l KOl cont. *

Ba 9s 0 Ba '
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Mg = B3l Ko
Mgq = B Kgq s
G- @l
Méi = B! 3t Kéi ,
with constant Kég the matrix operator M (3.22) may be written
as i = 5 hal I_(OO ?33;
e - s e ) 5

5 98,1, 10 -1 8B,2 -1 11 -1 .1 22\ 3 . 5
+ (B K -B () H K - B h01_<>5t (5.2)
1 20 .02, 9
+ hO (- K —I;( )E
-1
_ Bho 20
3s =

With a constant width B(s), which after all was also the
choice of Lamb (1932) and Mysak (1983, 1984) in their coordi-

nate systems, (5.2) reduces to

- 3 shol 2
B 200 3 2 0”00 3
=Tl =8 1" — o ho 55~ ¥ 3w -
_l »
23 20 02, 3 shg™ 20
el LG G ST BN o

Because (3.21) is a homogeneous system the operator M can be
multiplied by any non-zero function without changing the solu-
tion y*. Therefore @ is a differential operator with constant
coefficients only if 5

c

ohp _ _
hqg 7S = constant = : -

For such a case the profile ho(s) must take on the form
— s

<
ho(s) ~ e T °. (5.4)

c =0 yields constant depth in the s-direction and c # 0 exhi-
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bits the same features as these already considered by Mysak
(1984, p. 102). However, when ¢ # 0, in order to obtain reaso-
nable lake topographies, the lake must be subdivided into at

least three adjoining parts as shown in Figure 11.

0 S S L
1 2 - S
eh n
Figure 11
h
_ L Depth profiles yield-
e i1 SLE ing piecewise constant
e R R . v, et i coefficients for the
c<0 c>0 operator M (5.3).
c=0
——=c¢c=0 _ =0

Obviously when c # 0 the solutions to each subsection must
fulfil matching conditions, which complicates calculations
considerably. We therefore choose ¢ =0, a depth profile which

is constant in the s-direction for all s&(0,L).
The operator then reads

. 3

=2’ S — -2 -+ 2. (5.5)
- - st - 8t =

With a harmonic time dependence of the form (5.1) the boun-

dary-value-problem (3.21) becomes

2
2 00++ 4% = _22++
uiBs E ds? & ) Y+
0<s<L
20-+ 02-+. 4 . _
SEET T g b = 0
(@2 00" a2 22—
= gs2  =© hes (5.6)
0<s<L
204+~ 02+-, d _
+ B(K + K ) as Y4 0,
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in which the K's are constant (NxN)-matrices, of which the
values depend on the choice of the basis functions P, and QB
and the topography in the n-direction. Equations(5.6)l'2 form
a system of ordinary second order linear differential equa-
tions, which can be transformed into a system of algebraic

equations by writing
ifs

b= ) =e (Clree-rCNi ON+Lr == 1C2N) / (5.7)

where k and c, are complex constants. Equations (5.6); and

(5.6), can then be written in the compact algebraic form
Cgy (w,k)eg = 0, o,B=1,...,2N, (5.8)

where the matrix elements Cgg are given by

2 _00++ 22++

CBO, = w((rk) KBOL + KSOL ), GiB=1;...s8

g 20-+ 02-+ B=l,.u:sN
Cpg = 1ixk) (Ks,a—N B,a—N)’ «=N+1,...,2N

(5.9)

e = § 20+~ 02+- a=l,...,N
Cgy = l(rk)(KB—N,u #+ KB—N,a i B=N+41,...,2N

_ 2 _00-- 22-- -
CB& = u)((rk) KB—N,a—N + B—N,a—N> ; O,B=N+1,...,2N

whereby the aspect ratio r = B/L has been introduced. A non-
trivial y requires

- det C(w,k) = 0. (5.10)
This is the dispersion relation for w(k). Remember that k is
allowed to be complex, whereas w is considered to be real.
Should k, as determined by (5.10) be real, then ¢ is purely
harmonic both in space and time and (5.7) corresponds to a har-
monic wave travelling in the s-direction. For complex k, ¥
still oscillates in s but is attenuated or amplified depending
on whether Im(%% s) >0 or < 0. Purely imaginary k yields a ¥
with no oscillations along the s-direction. For infinite chan-
nels only the first of these solutions is reasonable, but the
other solutions are equally meaningful in channels of finite
extent and will also be analyzed. At the moment the boundary

conditions (5.6)3 and (5.6)4 will not be satisfied because
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infinite channels are considered (Gratton, 1983). For such a
case w(k) is a continuous function of k. Fulfilling boundary
conditions in a further step only breaks this continuity of
the dispersion relation, selects isclated points on this curve
and yields the eigenfrequencies for an intersected, finite

channel, i.e. a lake.

It is demonstrated later on that, by selecting w, the wave-
number k falls into different regimes, a real regime, a com-
plex regime and an imaginary regime, each of which corresponds
to different frequency intervals. Equations (5.8)-(5.10) re-

quire further remarks:

1) The dispersion relation w(k) depends only on r-k, therefore
the horizontal dimensions are only important through their
aspect ratio. Without loss of generality, the aspect ratio

for channels may be set to unity, r: = 1.

2) (5.10) yields a polynomial of order 4N in the complex va-
riable k with real coefficients depending on w. Therefore,
by invoking the Pundamental Theorem of Algebra, there are

4N roots for a given w.

3) The structure of Cgq leads to a polynomial in only even

powers of k.

4) By these arguments we find that the 4N roots consist of

both *k and their complex conjugates.

5) Taking the limit ww » « the dispersion relation will eventu-
ally be independent of w, therefore there exist asymptotic

wavenumbers.

The dispersion relation w(k), obtained from (5.10), enables

us to build up channel solutions. To demonstrate this, let

{k kY ec, y=1,...,4N, (5.11)

Y}’
be the set of roots of (5.10) to a given frequency w. Since ky
satisfies (5.10), there exists for each vy =1,..., 4N a non-tri-

vial solution vector of (5.8),



oa=1, .; 2N,
oy € Cr Yy=1,..., 4N,
which fulfils
CBu(w,kY) ch =0, B =ly: swy 2Ny

Therefore, for selected w and y, the channel solution y =

(P, 5 ¥) of (5.6); , reads

wi(w,y) = cyy © . 0= Ly asw Ny
no sum over Y
k
i.%s Y =1,..., 4N.

0-N
| (w,y) = Cuy e 3 o =N+1,..., 2N,

L.
However, since equation (5-6)1J form a linear system, a gene-
ral channel solution can be obtained by an arbitrary linear

combination of solutions corresponding to different wavenum-

bers ky. With arbitrary

dYECC, Yy=1,..., 4N,
the superpositions
k
i‘—IYTs
wi = z: e Cqy dyr =l ., N,
! ( )
512
0-N i§¥s
Yo = Z: e Coy dy, o =N+1, , 2N,
Y

form a general solution of (5.6)12.

From equations (5.12) the approximate solution Y(s,n,t) of
the form (3.3) of equation (2.16) can now readily be construc-

ted. Using (3.3), (4.8), (5.10) and (5.12) yields

N " 4N i%¥s
U(s,n,t) = sin wt[ z: Py(s,n)- 2: e CUYdY]

a=1 y=1 -

+13)
k
2N AN i-é?s c a
+ cos wt { Z Poc—N(s’n) . Z e ay Y]
a=N+1 Y=1

where, in an infinite channel, dY(EG is arbitrary.
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5.2 Dispersion relation

The dispersion relation, which is obtained by fulfilling
(5.10) can be plotted in a coordinate system (Re(k), Im(k),w).
The resulting curves w(k) are then symmetric to both Re(k) =0
and Im(k)=0. Figure 12 displays a schematic plot of the disper-
sion relation for an infinite channel in a first order model.

For graphical transparency e£=0.05 and g= 0.5 have been chosen.

Figure 12

Schematic plot of the complex dispersion relation
w(k), k€C for an infinite channel with € = 0.05
and g = 0.5 in a first order model. In regime 1
k is real, in regime 2 it is complex and in regi-
me 3 k is purely imaginary.
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Three regimes 1 -3 can be distinguished which are separated
at the periods listed in Table 5. In these three regimes the
wave numbers k belong to different mathematical fields (see
Table &) each of which determines the structure of the solution

(5.7) in the s-direction. In the first regime, where 0< w < w;

q T][h] Tolhl
e = 0.05 e =0.10 e =0.05¢e=0.10
0.5 52.8 58.3 10.5 11.8
1.0 60.5 64.3 13.2 14.4
2.0 83.0 88.2 22.0 22.6
5.0 174 199 58.2 61.8
Table 5

Periods, which separate the regimes, depending on to-
pography- and sidewall-parameters g and €, respective-
ly. The period T is calculated from the dimensionless
w using the scaling (2.11l) and 5%—f =1/16.9 h accord-
ing to 45° latitude.

4 IR 4 C 4 T

N — O
(@ Ne, |

Table 6

Fields to which wavenumbers belong in the different re-
gimes 1, 2,3 of a first order model. IR and C are the
real and complex fields and J= iIR; further C=C\(IRUJ).
The figure 4 indicates that four roots belong to that
field.
or T>Tq, Kk must be a real number, since y ~exp(i§ s) accord-
ing to (5.7), the spatial behaviour in the s-direction is pu-
rely periodic. Typically of Rossby-waves there are always two
wavenumbers for a given frequency, i.e. both large and small

wavelengths occur.

In the second regime, W] <w<wy or Top < T < Ty, k must
take on complex values in order to fulfil (5.10). Therefore,
solutions are products of both exponential and periodic depen-
dence. Because of the exponential growth or decay of the solu-

tions, they have no physical meaning in an infinite channel.
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However, in lakes, which are of finite extent also in the s-
direction, they may well be considered. It is characteristic,
of a first order model that in regime 2 and for all studied
topographies the modulus of k does not depend on w. This can
easily be shown from (5.10) using (5.9) and Vieta's theorem
for a guadratic polynomial. Therefore, the dispersion curve
w(k) is located on the mantle surface of a circular cylinder
of which the radius, however, depends on both, ¢ and g, see
Table 7. In the third regime, i.e. for w > wpy or T < Ty, k must
be imaginary. Therefore, the solutions exhibit pure exponenti-
al character. Again in the channel these types of solutions
can not make physical sense. Moreover, as w - «, the wavenum-
bers take on the asymptotic values kq and kp listed in Table

7. In a first order model the dispersion curves w(k) allow for

q [k| in 2 -iky in 3 -ikp in 3

€=0.05| €=0.70 | £€=0.05| €=0.10 | £=0.05 | £=0.10
0.5 6.6 5.9 5.5 4.9 8.0 7.3
1.0 6.9 6.2 5.6 5.0 8.6 7.8
2.0 6.8 6.3 5.2 4.8 8.9 8.2
5.0 6.1 5.8 4.4 4.1 8.5 8.0
Table 7

Characteristic wave numbers}k‘,kl and kyp, of the first
order model as defined in Figure 12 tabulated for va-
lues of g and €.

each w 4 wavenumbers k, except when w = w] and w = w), where
two distinct regimes merge together forming double roots. At
these critical frequencies the solutions, satisfying (5.6) are

not only of the form exp(i~%—s), see (5.7), but also

f

s) exp(its), (5.14)

so that again 4N linear independent solutions exist, although
there are only 2N different roots k. For later use, the union
of the three regimes 1, 2,3 of the dispersion relation in Fi-

gure 12 will be called a mode unit.
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The second order model is more complicated. According to

(5.11), to each frequency there are now 8 wavenumbers k, for

which (5.10) is satisfied. In Figure 13 its dispersion rela-

tion w(k), k€ C is shown. Except for distortions of the cylin-
der it consists of two mode units placed into each other. Thus,
there are now two branches with real, complex and imaginary

k's, respectively. Because the transitions from real to com-

Figure 13

Schematic plot of the dispersion relation w(k), kE€C
for an infinite channel with € =0.05 and g =0.5 in a
second order model.
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plex and from complex to imaginary k's on the two mode units
take place at different frequencies, five distinctive regimes
1 -5 must be considered, which are separated at the periods

listed in Table 8.

q Ty [h] To [h] T3 [h] T [h]

e=0.05 =0.10 | e=0.05 ¢=0.10| e=0.05 £=0.10 | e=0.05 €=0.10

0.5 94.5 109 49.8 54.6 10.7 121 8.8 11.9
1.0 126 132 55.0 60.0 123 18.6 8.9 15
2.0 245 269 64.5 69.0 45.8 47.0 10.0 11.8
5.0 | ~1400 ~1800 470 530 101 109 15.8 17.3
Table 8 Periods, which separate five distinct regimes in

the second order model.

The relative size of the mode units, whether the belly-
shaped surfaces intersect and change their spatial position
within the (k,w)-coordinate system depends crucially upon the
topography. This will be discussed in a further section. The
cylindrical surface of the first order degenerates to a smal-
ler belly-shaped surface, i.e. the modulus of k in the complex
branch now depends on the frequency. Moreover, the second mode
unit forms an outer shell, which here has the form of a cone.
Again, the shape and position of these surfaces are strongly
governed by the topography of the channel and much less by the
sidewall-parameter. The structure of the 5 regimes depends on
the topography, but the solutions can take on the three types:
periodic, periodic-exponential or exponential dependence in
the s-direction, however, for the situation of Figure 13 they

occur in different combinations, see Table 9:

q 1 2 ) 4 5

0.5 N 5 N

1.0 8 IR 4IR, 4C 8¢ 4C, 4T 87

2.0

5.0 8 IR 41R, 4C 41R, 47T 4C, 4T 8y
Table 9 The fields to which the wavenumbers belong in

the 5 regimes of a second order model for va-
rious profiles.
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Channel solutions which are physically meaningful occur in
regime 1 and 2, and 3 only for q =5.0. Figures 12 and 13 also
indicate, how the graph of the dispersion relation of a Nth

order model will gualitatively look like.

Figure 14 displays the modulus ﬁk[ as a function of w for
a third order model. In the (k,w)-space three mode units are
now placed within each other, and each mode unit has a real,
a complex and an imaginary branch, which are represented in
Figure 14 by the three distictly different types of dispersion

curves. In the situation of Figure 14, 7 regimes may be diffe-

rentiated.
20
q=05
€=0.05
1.5+
f 15TMODE UNIT | 2NPMODE UNIT | 3RPMODE UNIT Figure 14
u)LO-

Modulus |k| of the
third order disper-
sion relation for
an infinite channel
with € = 0.05 and

| am— g = 0.5.
0+ — . :

15 20

0.5

10
ki ==

Summarizing the main points, we remark:

- The dispersion relation resulting from a Nth order model
can be separated into 2N +1 consecutive regimes, in which

individual wavenumbers belong to IR, € or J, respectively.

- Solutions for channels, which are physically meaningful,
can only be constructed from wavenumbers k such that k € IR.
Therefore, there exist maximum freguencies, for which chan-
nel solutions may occur (see Tables 5,9). At these maxima
energy cannot propagate; for smaller k's group and phase
velocities are unidirectional, for larger k's they are

anti-parallel.
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- Solutions in domains, which are of finite extent also
in the s-direction (lakes), can be constructed from any
wavenumber k. Their spatial dependence is either periodic
when k € IR, periodic-exponential for kel or exponential

when k€ J.

- From this point of view, lake solutions occur for all
0 < w < », However it must be remembered, that in section
2.3.2 a low-frequency approximation w2 << f2 was made. The-
refore, using the scaling (2.11), the dimensionless fre-

quency w must fulfil the inequality

0 < w < 1. 5..15)

The real branches of each mode unit exhibit qualitatively
the same structure as Rossby waves in the atmosphere (Holton,
1979). The atmospherical Rossby waves are governed by the ro-
tation £ and its latitudinal variation B. This B-effect plays
the very same role as the topography variations in channels
and lakes. Therefore, in the literature topographic waves are
often referred to as topographic Rossby waves to strengthen
this alliance. In Appendix C this interrelationship between

these two wave phenomena is worked out in greater detail.

5.3 Convergence

Since the method presented in section 3.2 is an approxima-
tion, of which the quality depends on the order N, the conver-
gence of the dispersion curves w(k) when increasing the order
has to be considered. Yet, the notion "convergence" is only
meaningful when it is tested for physically reasonable solu-
tions. Therefore, in infinite channels only branches with a
vanishing imaginary part of k will be of interest. To test the
quality of convergence up to the Nth mode unit at least the
models of order N +2 must be considered. Therefore, here only
the quality of the first mode is discussed. We regard a model

as appropriate or accurate for a certain mode, if the disper-
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sion curve for that mode is "sufficiently unchanged" by in-
creasing the order of the model. In Figure 15 real branches
for the 15%t, 2nd and 3¥9 mode unit are shown using various to-

pography-parameters.

04

0.3

b)

Figure 15

Convergence of the different modes, increasing the order of
the model from N=1 (—-—), N=2 (——-) to N=3 (—) for con-
vex (q = 0.5) and concave (g =2.0) topography and two side-
wall parameters.
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All three cases show considerable convergence for the first
(upper) mode unit. For all e and g by increasing N the correc-
tions become smaller. However, convergence is not uniform in k.
The k-intervall, where convergence seems to be achieved, de-
pends on the topography. Whereas for convex profiles, Figure
15a, reasonable convergence in the third order model is obser-
ved in the interval 0 <k <20, concave topographies, Figure 15b,
show good convergence only for wavenumbers k < 10. This suggests,
that the more concave the topography is, the higher the order
of the model has to be chosen, to obtain satisfactory results.
Figure 15c indicates, that the quality of convergence is fair-

ly unaffected by the sidewall parameter e.

5.4 Topography effects

Topography can appreciably influence the solutions in a
channel. Figure 16 shows the influence of the variation of the
topography parameter g on the real branch of the dispersion
relation in a first and second order model. Basically, the qua-
litative behaviour is the same for all three orders of the mo-
del. Considering waves with a fixed wavelength or wavenumber
the frequency is decreasing when proceeding from convex (q< 1)

to concave (g > 1) profiles. This effect could already be ex-

04 04
N=1
€= 005
037 0.3
J)QZ— (L02a
014 014
0 T A ] T O
0 5 uo 15 20 0
Figure 16

Effect of topography on the dispersion relation in a channel
for various profiles, — first mode unit, —-— second mode
wnit.
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pected from the fact, that an extremly concave profile exhi-
bits hardly any topographic variations and therefore, the sy-
stem can no longer support topographic waves (see Appendix A).
On the other hand, given a frequency, the effect of making the
topography more concave consists in the fact that longer waves
become shorter and shorter waves become longer. However, for
N =2 the behaviour is different when g increases from 0.5 to
1.0 in a domain k > 12. Dispersion curves belonging to diffe-
rent g's may then intersect, a feature that can also be obser-
ved for N =3 when wavenumbers are sufficiently large, see Fi-

gure 17.
04

~q=05

Figure 17

Topography effects in
a third order model on
the first (—)

and second (—-—)

mode unit of the dis-
persion relation.

5.5 Influence of the sidewall

In section 4.1 a sidewall-parameter € was introduced, which
guarantees that all matrix elements (3.23) can be calculated.
Figure 18 shows this effect on the dispersion relation of phy-
sical solutions in channels of differeht topographies. Gene-
rally an increase of the sidewall relative to the depth of the
channel causes a decrease of the frequencies for both types of
profiles, This is understandable from the fact that a deep
sidewall relative to the total height hg (see Figure 7) decrea-
ses a possible topography variation. Therefore -Dby the very
same mechanism as described in section 5.4 - smaller frequen-
cies are favoured.

Further, Figure 18 reveals, that for convex topographies



T

"0

K

20

Figure 18

Effect of the sidewall parameter € on convex (g =0.5)
and concave (q =2.0) profiles in a second order model.

(g< 1) the sidewall effect is more pronounced. This is so, be-
cause all convex profiles join horizontally at the sidewall,

whereas the more concave the profile is, the steeper it joins
at the sidewall. An increase in € then, cannot appreciably af-

fect the dispersion relation.

5.6 Channel solutions

Solutions in a channel are given by the stream function
P(s,n,t) in equation (5.13). Since ¥ is complex both real and
imaginary parts of Y are solutions. However, Re(V¥) and Im(Yy)
differ only by a spatial shift along the channel axis, provi-
ded the basis functions do not depend on s. Assuming B(s) to
be constant as done in section 5.1, the Pé 's are independent

of s and using the identities

Im(z) = Re(-iz), z€C,

we obtaln from (5.13)
Im (¥ (s,n,t)) = Re (e Z ¥ (s,n,t))

= Re(‘w“(s- ;Ti,n,t)) :

Therefore, the complete information about the solution ¥ is
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already obtained when considering Re(y) only. In ensuing dis-

cussions bird-eye view of the functions Re(y) will be shown.

Before discussing the solutions in details, however, a quali-
tative argument is shown by which the stream function is rela-
ted to the barotropic velocity field, see Figure 19. To this
end recall that it has been demonstrated in section 2.5, that

the barotropic part of the velocity field ubt is given by

bt = %(gxw). (5.16)

It follows from this, that the deeper the channels are, the
weaker the velocities will be. Further, convex stream function
surfaces are connected with anti-cyclonic velocity cells (Fi-
gure 19), and the steeper the y-surfaces are the stronger the
velocities in these cells. Therefore, by looking at the stream
function the different velocity cells and their rotational
sense can readily be deduced by estimating the convexity of

the Y-surface.

Since dy in (5.13) is arbitrary, the choices dY: = diY,
i=1,...,4N give the solutions to all individual wavenumbers
However, by geometrical arguments it is sufficient to look at

only one wavenumber in each mode unit.

Figure 19

Explaining the anticyclo-
nic barotropic velocity
field on a convex stream
function surface.

Figure 20 displays a sequence of snapshots of Re(y) for a
channel solution in a first-order model, starting at t =0 with
waves which show skew-symmetry with respect to n =0 and pro-

ceeding in steps of T/16, where T is the period. Skew-symmetry
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of the surface is replaced by symmetry after a gquarter period.
In between, superpositions of these two aspects can be obser-
ved. Looking more closely at the individual wave ridges and
their phase motion, it becomes clear that for n < 0, the phase
progresses in the positive s-direction, while for n > 0 the
phase progresses in the opposite direction. When the crests of
the two domains cross, they merge into a single ridge which

then forms the symmetric aspect of the y-surface (Figure 20 ff).

It follows that these waves are right bounded in the nor-
thern hemisphere, which is a general property of waves gover-
ned by the Coriolis force: Kelvin waves, shelf waves, etc.,

see LeBlond and Mysak (1978).

In terms of the barotropic part of the velocity field the
propagation of the stream function crests corresponds to pro-
pagating cells in which the barotropic motion is either cyclo-
nic or anticyclonic. Such a time sequence is shown in Figure

20b in which lines of constant ¥ are plotted.

In Figures 20b -25b the n-axis has been stretched by a fac-
tor 1.5 to make the transverse structure more visible. The 1li-
nes of constant Y were choosen such that all inner most lines
correspond to 90 ¥ of the maximal y-value in each time step.
Therefore, the lines of different time steps cannot be used
for amplitude comparison. This disadvantage was made allowance
of, to work out the development of the wave structure clearly.
The cells rotate anticlockwise. The structure of the cells at
t =0 1is similar to that of Poincaré wave in a channel (Hutter,
1984b, p. 58). However, Poincaré waves propagate uniformly into
one direction and therefore, are distinctly different from to-
pographic waves. With proceeding time the cells in Figure 20b
split and merge together; this reflects the mechanism of ba-
lance between the symmetric and skew-symmetric aspect. Thus,
these cellular domains are not a persistent property, they are
rather a feature which exhibits continuous transitions between

distinctive cellular patterns.
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A second order model extracts the main characteristics of
the different mode units introduced earlier. Figures 21 and 22
show channel solutions of the first and second mode unit. The
frequencies in the two cases have been chosen such that the
wave patterns have about the same wavenumber. The main diffe-
rence of the two mode units consists in the cross sectional
structure of the yY-surfaces. Considering the wave troughs and
crests in the n~direction and counting them, the first mode
unit shows a 2-1-2 sequence with respect to time. Channel so-
lutions belonging to the second mode unit have a more structu-
red wave pattern, in that they show a 4-3-4 time sequence.
Therefore, each mode unit represents a certain cross sectional
wave structure. This is in accord with results from non-appro-
ximate wave models (see e.g. Pedlosky, 1979, p. 75 f£f), although
our method does not a priori imply this connection between

mode units and cross sectional structure.

Figure 22b illustrates wave structure of the second mode
unit particularly clearly. The 4-3-4 cellular sequence is ob-
vious. Again, the individual cells rotate anticlockwise, and

the wave motion is right bounded.

Comparing Figures 20a and 2la also demonstrates the conver-
gence of the solution as the order of the model 1is increased.
The very small effect consists in a smoothening of the Yy-sur-

face towards the channel boundaries.

Figures 23, 24 and 25 illustrate the channel solutions in
a third order model. Again each mode unit has its own charac-
teristic cross variation. The phase motion is right bounded
and, therefore, opposite in the two channel domains n < 0 and
n > 0, respectively. Comparing Figures 20 and 23 reveal more
properties when increasing the order of the model. The wave
ridges at t=Y4 T in Figures 20a and 23a are flattened on
their top. Figures 20b and 23b show at t =0 that the celles
are slightly shifted towards the center of the channel which
corresponds to a smoothening at the boundaries and a steepen-

ing at the center axis.




Figures 20 - 25

Figures 20a - 25a

Time sequence of the stream function surface in
steps of Y16 T. The channel view corresponds to
Figure 10 and the coordinates here are chosen
- Y2 B <n<¥y2B, 0< s < 6 Lr with an aspect
ratio r = 1. Note the phase motion in the do-
main n > 0 and n < 0, respectively.

Figures 20b - 25b

Time sequence of lines of constant y relative to
90% of the maximum value of each time step. The
cellular structure of cyclonic (+) and anticyc-
lonic (-) vortices is clearly visible.
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5.7 Comparison with Gratton's channel solutions

Gratton (1983) considered straight channels with various
cross topographies. Assuming progressive waves of the form
¢ = d(n) ellwtEks) — the topographic wave operator could be
transformed into an ordinary differential operator on ¢ with
non-constant coefficients depending on the depth function. For
roof-shaped and parabolic cross sections the emerging diffe-
rential equation in ® could be solved and the solutions be ex-
pressed in terms of hypergeometric functions (Kummer functions).
Without going here into details, Gratton obtains solutions
which have & hump close to the right shore (on the northern
hemisphere) when looking in the direction of propagation and
decay exponentially to zero as the other (left) shore is ap-
proached. His formulation yields right bounded waves propagat-
ing in both directions along the channel axis, see Figure 26.
A linear superposition of two waves propagating in the +s and
-s —-direction, respectively, would yield gqualitatively the
same feature as presented in the previous section. This demon-
strates that our approximate model yields reasonable results
for the topographic wave motion in a channel. More signifi-
cantly, our method can treat a variety of different topogra-
phies without becoming any more complicated. This is a consi-

derable advantage, even though it is bought at the expense of

GRITTON (T83)  afileNebomimme s soaem L .

THIS STUDY N _

Figure 26

Topographic waves propagating in an infinite channel
with cross-topography. Both studies exhibit right
bounded waves. Gratton has separate solutions, but
this study is a combination of them.



= 85 =

exactness. Indeed, Gratton can only vary cross topographies,
must treat bathymetries which do not change along the channel
axis and is unable to handle closed channels, i.e. lakes. All
these restrictions can be lifted in our approximate integra-

tion technique.

6. LAKE MODELS

6.1 From channels to lakes

As there exist 4N independent solutions in a channel for a
Nth-order model they may, within the framework of a linear
theory, be superposed, such that the resulting solution also
fulfils boundary conditions on the s-axis, i.e. s =0 and s =L.
These must be satisfied for all w% in equation (5.12) in order

that the combination Y(s,n,t) obeys the relation
Y(s,n,t) =0, s = 0,L (6.1)

for all times. The critical frequencies, at which the diffe-

rent regimes touch (see Table 5), shall be excluded from con-
sideration. For that case the boundary conditions (6.2) would
have to be modified by using the fundamental solutions (5.14).

From equation (5.12) 4N conditions are obtained as follows:

4N
0, _— — =
Ler! - = 0 - Z COCYdY =90, a=1,...,N
s= Y=l
a-N o
v !s:o =0+ ) cgydy =0, o =n+l,...,2N
Y=1
. (6.2)
] =0 > e gy e = 0y BmELicsssl
*ls=1, ) ay Gy ’ reeer
Y=1
a~N <l ik
N oy = 0 - Z: e Y cgy dy =0, a=n+l,...,2N
¥=1
By defining a (4N x 4N)-matrix D@Y(w)’ such that
D@Y Coy + O =dlyws s g 2N 4
— ik - 6.3
Digsg ey oy o,y s XEAWLLLLaN, ( )
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the boundary conditions (6.2) assume the compact form

B By =2 By 0 ¥ Lowin o 1 8 (6.4)

Yooy

Non~-trivial lake solutions require that
det D(w) = 0, (6.5)

which is the equation determining the eigenfrequency in the
lake. Having found an eigenfrequency w with (6.5) the lake
solution can readily be calculated by determining the eigen-
vector dY from (6.4) and evaluating ¢ from (5.13). Both, real
and imaginary parts of Yy are solutions; however, for simplici-
ty only one of them will be considered. Calculations showed
that the eigenfrequency w could be evaluated from (6.5) with
appreciable accuracy. Calculating, in a second step, the eigen-
vector d by a Gauss algorithm (backward substitution from a
left-right decomposition of D) caused serious difficulties in
so far as some of the thus constructed eigenfunctions showed
dissatisfaction of the boundary conditions. This is characte-
ristic of numerically stiff systems and occurs particularly

in cases, when zeros have to be evaluated which are connected
with large derivatives. In these cases the calculation of the
zero of a nonlinear function exhibits good and fast convergen-
ce although the function value at the root may be far from
zero. There was not sufficient time to resolve this problem.
Solutions, which do not satisfy the boundary conditions in the
above sense are not shown here. However, in cases for which
the discrepancies are small, the boundary conditions are arti-

ficially enforced by simply setting § £ 0 at the boundaries.

6.2 The spectrum

Obviously, because a boundary value problem is solved, the
spectrum is discrete. As it turns out from calculations it is
impossible to satisfy the boundary conditions (6.2) unless at
least two wavenumbers are real. Therefore, in a first order

model with only one mode unit lake soluticns have a pure wave-
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like structure in the s-direction. However, in higher order
models lake solutions can be mixtures of all three types
(kY€EIR, ¢, J). The structure of this mixture depends crucial-
ly upon both, the topography and the aspect ratio of the ba-
sin. It follows from the above that there exists an upper cut-
off frequency or lower cut-off period given by the maximum of
the real branch of the dispersion curve (compare Figures 12,
13, 14). This cut-off period increases with increasing topo-~
graphy parameter g, which is in accordance with the considera-
tions in Appendix A. The increase occurs for all aspect ratios
as can be seen from Tables 10 and 11. Enlarging the aspect ra-
tio, on the other hand, shifts the spectrum to higher periods.
Tables 10 and 11 also indicate that the eigenperiods may be
grouped into pairs which lie very close together, sometimes
with differences of less than an hour. This effect is intensi-
fied in the second order model, see Table 11, in that the pai-
red periods differ only in the last digit. Finite difference
solutions of topographic waves in enclosed basins further in-
dicate that eigenperiods may cluster in very narrow frequency

bands (E. B&duerle, personal communication).

q r I I
0.5 | 57.7. 58.8 |, 63.7 641, 7.5 71.9
0.5 | 1.0 57.6  58.1 | 71.5 71.9 | 89.2  91.0
2.0 70.3  73.2 | 109 113 | 155 158
| |
0.5 65.9  66.1 | 72.2  72.7 | 89.6  90.5
1.0 | 1.0 65.7 66.3 | 80.5 80.7 | 99.3 101
2.0 79.0  82.4 1 121 125 1170 174
’ | |
0.5 99.7 100 | 124 125 1 138 140
2.0 | 1.0 90.7  91.7 ! 1M 12 1137 140
2.0 109 114 : 167 174 ; 234 241
0.5 | 209 211 : 261 265 : 294 299
5.0 | 1.0 | 209 211 | 260 265 | 327 339
2.0 | 255 272 | 404 424 | 575 591

Table 10

Six lowest eigenperiods (in hours) of a first order
model with € = 0.05 for four different values of the
topography parameter g and three values of the aspect
ratio r. The vertical dashed lines separate pairs of
periods which lie close together.




q r | !
0.5 50.0 50.5 : 53.5 53.6 ’ 62.5 62.7
0.5 1.0 53.7 53.8 62.9 63.3 74.1 74.7
2.0 63.8 64.6 | 87.6 gs.4 ! 106 108
| |
0.5 59.8 59.9 | 63.1 63.2 | 71.7 71.8
1.0 1.0 57.6 57.6 | 63.5 63.7 | 72.2 72.5
2.0 64.5 64.7 | 84.1 84.4 | 108 109
[ |
0.5 68.7 68.7 | 89.7 89.7 | w2 122
2.0 1.0 66.5 66.5 | 71.9 72.0 | 80.2 80.3
2.0 72.4 72.5 : 91.6 91.7 : 116 117
0.5 107 107 I 156 157 422 423
5.0 1.0 171 112 I 124 124 I 139 140
2.0 112 112 I 140 140 | 176 178

Table 11

Six lowest eigenperiods (in hours) of a second order
model (45°latitude) with ¢ = 0.05 for four different
values of the topography parameter g and three values
of the aspect ratio r. The vertical dashed lines se-
parate pairs of periods which lie close together.

The form (Rossby character) of the dispersion relation w(k)
also implies that modes with higher periods have higher modal
structure in the s-direction, because to a given period the
two wavenumbers are far apart; so, in a particular solution
there is always a contribution of a high wavenumber k. However,
it is not possible to arrange the eigenfrequencies in a strict
order which would be connectable with the modal structure.

This seems to be intrinsic of second class wave motion, since
already Ball (1965) has not found such a connection even in an

exact, analytical solution, see Figure 8.

6.3 The role of the aspect ratio

In equations (5.9) an aspect ratio parameter r = %—has been
introduced. Up to now we have considered elongated lakes with
a cress-topography and consequently assumed that r << 1, see Fi-
gure 27. In such a situation an expansion procedure correspon-

ded to an approximation in the narrow direction, i.e. along
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the n~coordinate, and "exact" integration along the thalweg

of the lake. However, in view of the simplifications in sec-
tion 4.1 (straight lakes of constant width) situations with

r > 1 can equally be considered. r > 1 means that the lake
width B exceeds its length L, and these two notions loose
their common meaning, see Figure 27. For r >> 1 the lake be-
comes again elongated, but its topography is distinctly diffe-
rent from the small aspect ratio case. Whereas for r < 1 the
topography (4.3) and the approximation (3.3) vary along the
small direction of the lake, r > 1 characterizes a lake whose
thatweg 1is described by the topography (4.3) and whose motions
are approximated in its long direction (Figure 27). The appro-

ximation, the weighted integration along the n-direction, is

r={B—>1

Figure 27

Lake geometry for r <1 and r >1. For r <1 the lake has a
cross topography with a constant thalweg-depth, whereas
for r >1 there is no cross topography but a variable thal-
weg~-depth.

now performed along the thalweg, i.e. the long side of the
lake. Examination of the influence of r, therefore, enables us
to answer the question, what would be the important qualities
of a lake to sustain topographic waves. The cases r < 1 and

r > 1 then characterize situations for which either the cross-

or the thalweg-variation of the lake basin is important.

It was pointed out in section 5.1 that the dispersion rela-
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tion depends on the product r-k implying w = w(r-k). Thus, when
plotted as a function of k only, dispersion relations w(k) with
different aspect ratios emerge from each other by a stretching
transformation along the k-axis. Figure 26 illustrates this ef-
fect qualitatively. Increasing r means that, for fixed w, the
waves have smaller wavenumbers and, therefore, exhibit within
a given distance along the s-direction fewer troughs and fewer
crests. This property provides a hint towards an answer of the

following questions:
04

0.3

Figure 28 f

0)027
Dispersion relation w(k)
for different aspect ra-
tios r, retaining the va-
lues of the other parame-
kel N, E, .

0.4

0 5 10 15 20

i) What is the domain of the aspect ratio, r <1 or r >1, for
which reasonable approximate topographic wave solutions
are obtained, which allow a comparison with earlier stu-

dies, such as Ball (1965) and Mysak (1984)7?

ii) Under which situations must the cases r <1 and r >1 be

applied? Can we by any means decide whether a lake favours

one over the other?

The answer to the first question has already been sketched
above. It follows from the aspect ratio dependence of the dis-
persion relation that the lower the aspect ratio r is the
higher will be the modal structure in the s-direction. This
feature can be seen in Figure 29 for the lowest eigenperiod
in the first order model. On the left, r <1, the two wavenum-
bers which correspond to a given w lie far apart; the stream
function is composed of a long wave and a short wave component.

The structure of the closed basin mode is therefore rich. This




r = 0.5, T=57.7h r=2.0, T=170.3h
Figure 29

Comparison of the modal structure for an aspect ratio r <1 and
r >1, respectively. The parameters are selected N =1, €= 0,05,
g = 0.5, time t = 0.

fact prevents the occurrence of ground modes™) of topographic
waves as presented in Figure 7, section 4.2. On the right

r >1, the two wavenumbers are much smaller such that the stream
function is composed only of "long" wave components; the modal
structure of the basin solution is simple or fundamental. This
type of solution, obtained in a first order model, resembles
globally the structure of exact, fundamental closed basin so-
lutions, such as those of Ball (1965), see Figure 8, and Mysak
(1984) .

Now, because it is our aim to use the channel model as a
suitable approximation of exact solutions, it seems, at first
sight, compelling to conclude that our method can -at least
as far as a first order model is concerned - describe topo-
graphic wave motion approximately only for lakes with r > 1.
Solutions of the case r < 1, for which the model was motivated,
indeed show in a first order model no similiarity with hknown
exact solutions. However, since the number of published analy-

tical solutions is rather poor and therefore, does not allow

*) ground, gravest or fundamenial mode: Mode, whose stream function
has the least possible structure over the lake domain.
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a general and final comparison with the aim to test our model,

it is dangerous to qualify our model at this moment.

In fact, both aspect ratio ranges lead to physically rea-
sonable approximations, but they are distinctly different and
describe two limiting aspects of the exact topographic wave
operator. Evidently, only the large aspect ratio solution r > 1
describes, in a first order model, a global, gravest mode re-
sponse. To obtain it, the long side of the lake is approxima-
ted by the set of basis functions (4.17) and the topography is
accounted for by a variable thalweg depth. For this case, the
thoughts on the motivation of our method in section 3.2 are

inappropriate!

However, no premature inferences should be drawn. For in-
stance, not to consider the case r <1 any longer or stating
that fundamental modes cannot occur for small aspect ratios
are hasty conclusions. Although, under the above made restric-
tions, they do not show similarities with the Ball and Mysak
solutions it may well be possible that, by making other assump-
tions on the basis functions and /or the topography, that r<1

would yield reasonable results as well.

6.4 Restrictions of this model

In the previous section it has been explained that for cer-
tain aspect ratios our mehtod gives topographic wave motion
which is distinctly different from earlier results (Ball, 1965,
etc.). We feel that this difference has its origin in the
amount of restriction imposed on the differential equation
(2.16) by our approximation technique. Evidently, it affects
the quality of the approximation. If the restriction is small,
which can mean that the order N of the model is large or the
basis functions are well chosen, the approximation is expected
to describe the physics of the problem satisfactorily. On the
other hand, i1l chosen basis functions and low order models

are prone to unsatisfactory results. Selecting r <1 and taking
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a low order model appears to be too big a restriction and,
therefore, yields results which do not allow a comparison with
earlier studies. It seems, that together with N =1, the basis
functions (4.17) along the narrow side of the lake, as done

in section 4.3, are ill chosen. A possible reason of this ill
choice may be the fact that smaller aspect ratios r are connec-
ted with larger basis function gradients. To make this clear,

consider a basis function of the form (4.17)

20 = p, (3D, (6.6)

with a constant lake with B. Taking the derivative of (6.6)

with respect to n and recalling r = %? yields

aP 2
TS A {67}

which proves the above statement. Therefore, smoother basis
functions seem to represent a weaker restriction on the sy-
stem.

There is another important qualitative change of our model
when r >1. This is shown in Figure 27. The fact, that for r >1
the thalweg-depth is variable, gives evidence of the relative
importance in a first order model of the cross-sectional topo-
graphy and the thalweg topography, respectively. It seems,
since r >1 yields results which can be compared with earlier
studies, that for low order models (N =1) the thalweg topogra-
phy is much more important than the shape of the cross sec-
tions. This is in agreement with the fact, that a topographic
wave which propagates anticlockwise around the lake (see ana-
lytical result in Ball (1965) and Figure 8) must, in an elon-
gated lake, change its direction mainly at the lake ends. This
change is made possible by topography gradients and has its
origin in the fact that topographic wave motion follows the
isobaths of the basin in order to conserve potential vorticity.
However, in view of our simplifications of the lake basin, (5.4)
with ¢ =0 and consequently %%—E 0, the isobaths do not form

continuous closed lines around the lake, see Figure 27. This
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serious restriction which affects the very mechanism of topo-
graphic wave motion and its removal will be further discussed
later on.

To summarize the above considerations, we think that rea-
sonable results with the present restrictions are most likely
obtained in a first order model when selecting an aspect ratio

domain r >1.

6.5 Topography and sidewall effects

Solutions in channels (section 5) have shown that a change
in both, topography and sidewall parameter, does not affect
the structure of the waves, but shifts the periods for both
increasing q and € to higher values. Tables 12a and 12b demon-
strate that this feature is also observed in lake solutions
and that it is qualitatively independent of the choice of the
aspect ratio. There are two cases, indicated by a question

mark in the tables, which differ from the general behaviour.

r=20.5 N q=20.5 1.0 2:0 5.0

=005 | | 57.7 65.9  99.7 , 209
e =0.10 65.0 71.4  96.9 ° 223
4) | &= 0,08 5 50.5 59.8  68.7 107
e 0.10 56.0 62.9  71.3  n.c.

r=2.0| N | q=0.5 1.0 2.0 5.0

e = 0.05 1 70.3 79.0 109 255
e =90.10 81.4 38.0 119 276
b) = 0.05 P 63.8 64.5 72.4 112
= 0.10 75.17? 73.1 104 n.c.
Table 12

First eigenperiod (in hours) for a lake listed for four topo-
graphy- and two sidewall-parameters in the first and second
order model. Two aspect ratios are considered. n.c. indicates
that calculations did not converge and the gquestion mark in-
dicates deviating behaviour.

Examining the lake stream functions reveals no visible dif-

ferences except in the case N =2 and r = 2.0, where little wave
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intensification in the middle of the lake was observed by in-

creasing g from g = 2.0 to g = 5.0.

6.6 First order lake solutions

In this section lake solutions of a first order model (N =1)
are shown. Figure 30a and 30b display snapshots of the stream
function of a lake solution during a semicycle (%~T) for the
small aspect ratio case (r =0.5). The timestep is-%g T. It is
clearly visible that the lake is divided into two similar sub-
cells which in their domain turn anticlockwise, seemingly with
no interaction. These gquasi-independent subcells consist them-
selves of smaller cells with cyclonic or anti-cyclonic veloci-
ty fields. It is remarkable that s =-%—L is not a center of
symmetry, therefore these two subcells are not identical. As
worked out in section 6.3 there is a rich modal structure of
this topographic wave since r <1. Thus a comparison with the

solutions presented by Ball (1965) is not reasonable.

We turn now to the large aspect ratio case, r >1, which ex-
hibits wave patterns resembling Ball's analytical solutions.
A discussion about the analogies and differences when compar-
ing the solutions will be given in section 6.8. Figures 31-36
show topographic wave motions in a first order model with
€=0.05, g=2.0 and r =2.0 for the six lowest eigenperiods
which are listed in Table 10. Figure 31 and 32 show the ground
modes for these parameters. As it was expected the modes exhi-
bit a phase propagation typically anticlockwise around the
lake. Again, as observed in the infinite channel, the indivi-
dual cells emerge and split. They are not permanent patterns
in the lake but are rather subject to a continuous change.
This is reminiscent of topographic wave motion and corresponds
to the fact that solutions to a given eigenperiod cannot be
arranged into a strict order which would be connectable to its
modal structure, as can be done for all separable wave pro-

blems (membranes, kettle-drums, hydrogen atom, etc.).

Figures 31-36 demonstrate also how the modal structure de-
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Figures 30 - 36

Figures 30a - 36a

Time sequence of the stream function surface in
steps of Y16T for a first order lake model. The
selected parameters are indicated on the indi-
vidual figures and the lake view and the posi-
tion of the coordinate system correspond to Fi-
gure 27 depending on the aspect ratio.

Figure 30b - 36b

Time sequence of lines of constant | relative to
90 % of the maximum value of each time step for
a first order lake model.
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velops when increasing the period through the spectrum. The
spectrum begins with two eigenperiods (paired), T = 109 h and
T = 114 h in Table 10, which have a very simple structure and
can therefore be declared as the fundamental modes. The wave
with the lowest period T = 109 h, see Figure 31, begins with
4 troughs and crests, transforms after a quarter period

(27.3 h) to a structure with only 1 trough to reach, eventual-
ly, after half a period (54.5 h) again 4 troughs and crests,
however now interchanged. This mode, therefore, shows a 4-1-4
sequence. The next mode in the spectrum with an eigenperiod
Tp = 114 h shows clearly a 2-2-2 sequence, see Figure 32. At
this point it is not clear, which of both modes should be de-
clared as the fundamental mode because they have about an

equally simple modal structure.

Proceeding in the spectrum, see Figure 33, the next eigen-
period can be found at T = 167 h, cf. Table 10. The modal
structure is now described by a 8-2-8 sequence. It is worth
noting that the wave motion in the lake can be divided into
two subcells separated at s = %L. The subcells do not interact
and turn anticlockwise within their domain independently, see
Figure 33b. The next eigenperiod T = 174 h is paired with the
latter and shows a 4-4-4 sequence which has about the same

modal complexity as the previous mode.

Inspection of Figures 31-36 provides an answer to the gues-
tion, whether there is a rule concerning the modal structure
when running through the spectrum. Table 13 answers this ques-
tion. There is a simple rule which enables us to continue the
modal sequence for higher periods, the next pair would be
16-4-16 and 8-8-8. The lower eigenperiod of each pair has a
modal structure which is not balanced, i.e. the number of
troughs and crests changes appreciably within a period. Conse-
quently, merging and splitting cells can be observed. The se-
cond eigenperiod of each pair shows a balanced modal structure,
which increases regularly with increasing periods. With respect

to the s-direction, (for the definition see Figure 27) the flow
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T [h] Modal Fig. Table 13
Heenee Modal sequence for the lowest six ei-
109 4-1-4 31 genperiods in a first order model N=1,
e=0.05, g=2.0, r=2.0. The figures
114 2-2-2 32 indicate the number of crests and
167 8-2-8 33 troughs; the first figure gives this
number at t =0, the second at t = ¥4 T
174 4-4-4 34 and the third at t = ¥y2 T. The pair-

ing is not only evident in the period

£ 12-3-12 - but also in the modal seguence.

241 6-6-6 36

in neighbouring cells rotates in the same direction for

t = T and the first mode of a pair,

1
4
t =0, T and the second mode of a pair,

1
2
and in opposite directions for

t =20, %—T and the first mode of a pair,

t = %—T and the second mode of a pair.

6.7 Second order solutions

This section elaborates on the qualitative changes of the
eigenperiods and their associated basin solutions that arise
when a second order model is considered. It also casts light
on the questions regarding (i) the validity of the above mode
assumptions (basis functions, aspect ratio range, topography),
(ii) the convergence of the solutions and (iii) the important
qualities of a lake to sustain topographic wave motion. For
the purpose of comparison with the results in the previous

section the same parameters are selected.

First, the low aspect ratio case, r = 0.5, shall be consi-
dered. Figure 37 shows the solution corresponding to Figure 30
but now for a second order model. As expected for a low aspect
ratio case, the structure of the wave pattern is rich. One com-

plex and structured cell, positioned in the middle of the lake



- 106 -

Figures 37 - 43

FPigure 37a - 43a

Time sequence of the stream function surface in
steps of Y16 T for a second order lake model. The
selected parameters are indicated on the indi-
vidual figures and the lake view and the posi-
tion of the coordinate system correspond to Fi-
gure 27 depending on the aspect ratio.

Figure 37b - 43b

Time sequence of lines of constant ¥ relative to
90 % of the maximum value of each time step for
a second order lake model.
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rotates anticlockwise. The ends of the lake experience little
wave motion and are calm. These are the locations where the
channel is intersected and no topographic changes occur in the
s—direction. Topographic wave motion is therefore expected to

be weak.

Comparison of Figure 37 with Figure 30 clearly exhibits the
changes that arise when the order of the model is increased
for r < 1. The graphs of the y-surface show that increasing N
enhances the wave motion in the center of the lake where the
wave activity is concentrated. Simultaneously, stream function
amplitudes at the lake ends diminish and larger perturbations
move away from the ends of the lake. This suggests that the
structures in the middle of the lake in Figure 30a move to-
wards each other to form, eventually, the intensified crests
in the center of the lake in Figure 37a. This "centering"” seems
to be an effect of convergence also because the characteristics

of the wave motion is retained.

Turning to Figures 38-43 demonstrates the serious changes
which the previously reasonable results of a first order model
undergo for the large aspect ratio case r = 2.0. Large modifi=-
cations can be observed when comparing Figure 38 with Figure
3l. In a second order model, the pattern which was considered
to be intrinsic to topographic waves, i.e. the motion rotating
around the lake basin in Figure 31, breaks down. The four pro-
nounced troughs and crests in Figure 31 at t = 0 now appear at
the lake ends (n - + %—B, for the large aspect ratio case)
while the central domain remains calm. This is distinctly dif-
ferent from the low aspect ratio case for which the wave mo-
tion seemed to be enhanced in the lake center. This characte-
ristic feature, namely that for r = 2.0 the wave motion is
torn apart towards the ends of the lake, can be observed for
all computed eigenperiods, cf. Figures 38-43, mainly in the
contour line pictures. The inner parts of the lake experience
for all times and topography parameters ¢ very weak perturba-
tions. The crests and troughs exhibit no counterclockwise ro-

tation around the lake, although an indication of such a ro-
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tational sense can still be observed. The crests and troughs
at the left end of the lake move still in a right bounded way
which can be interpreted as an anticlockwise rotational motion.
But because the waves are hindered to propagate airound the lake
they are formed at the long boundary, grow as they move in a
right bounded way until they flatten off at the opposite boun-
dary or even in between the two depending on the global modal
structure of the lake solution. This process can clearly be

observed in Figures 38 and 39.

The higher modes, Figures 40-43, make this modification

again evident. The figures (40-43) displaying the y-surfaces

of the second order model exhibit wave patterns which arise
from those of the first order model (33-36) by a "transforma-
tion", tearing the waves apart towards the lakes end and leav-
ing the center of the lake without wave perturbations. Apart
from this serious effect, which destroys the characteristics

of topographic wave motion, the modal structure in the s-direc-

tion remains seemingly unaffected.

It has been noticed in section 6.2 that the eigenperiods
which lie close to each other move even closer in a second or-
der model, cf. Table 10 and 12. Possibly, this is an effect of
convergence such that in the higher order model the former
pairs merge to form a single isolated eigenperiod. Inspection
of Figures 40b-43b underlines this suggestion. The lake solu-
tions corresponding to paired eigenperiods have globally a
similar modal complexity when one of them is regarded to have

a time lag of a quarter period relative to the other solution.

Aside from all these phenomenological aspects one is still
left with the serious question: Why is it, that this intrinsic
feature of topographic wave motion, i.e. a global rotation

around the lake, breaks down in a second order model?

From a mathematical point of view, a higher order model
should be able to describe the physics of a problem more ap-~

propriately, because more degrees of freedom are available
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and, therefore, the approximate procedure given in equation
(3.3), section 3.2, should represent fewer restrictions. This
relaxation, by which better results would be expected, seems
to be outweighted or rather over compensated by the inaptness
of the above made assumptions concerning the basis functions
and/or the topography of the basin. From a physical point of
view, the breakdown of the global rotation is understandable.
The assumption (5.4) with ¢ = 0, which after all is reasonable
for infinite channels, is too restrictive; for one of the two
mechanisms by which topographic wave motion in lakes is made
possible has been seriously affected. What we mean is that
isobaths end at the boundaries of the basin, so that a conti-

nuous follow-up around the lake is no longer possible.

This defect and the desperating results in Figures 38-43
are, however, not a consequence of the inappropriateness of the
idea of our method introduced in section 3.2 ff. It is probably
rather due to the audacious neglections, which have been made
hitherto when modelling the basin topography. A final estima-
tion of the quality of this approximate procedure, i.e. the
weighted integration along a selected coordinate, can only be
given when more realistic basin topographies are introduced.
The fact, that in a first order model reasonable solutions
were found is a sign of the possibility that good results can
be achieved by the method of Weighted Residuals. A suggestion
how the above made assumptions can be refined without incor-
porating mathematically much more complexity is given in sec-

tion 7

6.8 Comparison with exact solutions

The quality of an approximate method can best be tested
when the results are confronted with exact solutions. For this
purpose we use the work of Ball (1965), who solved the topo-
graphic wave problem for elliptical basins with a paraboloidal
topography. Because his work contains only two fundamental mo-

des which are discussed, this comparison is incomplete.
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Table 14 lists the periods for the two fundamental modes
for various aspect ratios. The topography in our model is pa-
rabolic with respect to the n-direction. The eigenperiods of
Ball are identical for both r and-% . The large aspect ratio
case has been chosen because only in this case our model sup-
plied reasonable results. In agreement with the exact solution,

our method brings out periods which are of the same order of

r Ball solutions N=1, €=0.05, q=2.0
T Ty T Ty

1.0 118 84.5 91.7 90.7

2.0 143 97.7 114 109

5.0 282 178 207 200

Table 14

The two eogenperiods in hours, calculated from the non-dimen-
sional frequencies by the scaling 2w/f = 16.9 h, of the two
fundamental modes, see Figure 8 for different aspect ratios.
The aspect ratio is meant to be the ratio of the major and the
minor axis of Ball's elliptic lake. Those cases are compared
which yield qualitatively similar wave solutions.

magnitude and exhibit the same aspect ratio dependence, i.e.
increasing periods with increasing aspect ratios. For Ty our
model yields values which are about 25 % too small and for Ty
the values exceed the true periods by about 10 %. This is due
to the "pairing" of the eigenfrequencies which draws the ap-
proximate values into the gap between the eigenperiods of the
two exact fundamental modes. It is likely that this pairing
will be cancelled when refined approximations, see section 7,

are used.

Figure 44 displays a comparison of the first eigenmode of
our model with the corresponding Ball solution. The wave pat-
tern starts with 4 troughs and crests in both solutions. After
y8 T two diagonal cells have merged, however, in Ball's solu-
tion it is the cyclonic cell contrary to our model where the
anticyclonic cell intensifies. After a quarter period the

exact solution still exhibits three cells, whereas the anti-



T=297.7h T= 109 h
Figure 44

Comparison of the solution of the first eigenperiod
in a first order model (identical to Figure 31b) with
the "quadratic" mode of Ball.

cyclonic cell in the approximate model continues to increase
until the small cyclonic cells die away. The exact solution
can be characterized by a clear 4-3-4 modal sequence which is
different from the 4-1-4 sequence obtained by our method. The
reason for this lies in the order of the selected model. A
three cell structure with respect to n as observed in Ball's
solution is only possible when selecting N 2 2, cf. P; in Fi-
gure 9.

Figure 45 displays Ball's exact "linear" solution and our
corresponding approximate solution. If a time lag of ¥4 T of
the approximate solution is taken into account the two solu-

tions exhibit the same wave pattern with good agreement.

These comparisons show that, roughly, our simple model ex-
hibits wave structures which can be well compared with exact
solutions. However, there are several pronounced differences
such as the intensification of opposite cells or the observed

time lag. We tried to make other assumptions about the time
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T= 143 h (time lag T=114h

Figure 45 At = lam

Comparison of the solution of the second eigenperiod
in a first order model (identical to Figure 32b) with
the "linear" mode of Ball.

dependence introduced in equation (5.1) or taking the imagina-
ry part of (5.13) insted of the real but the approximate solu-
tions maintained the presented structure (Figures 44, 45). We
are convinced that all the demonstrated discrepancies between
this model and the exact solutions will be considerably dimi-
nished when the refinements suggested in the following sec-

tions are adopted.

7. MODEL IMPROVEMENTS

The previous sections revealed that our model describes
topographic waves satisfactorily in channels, and in lakes pro-
vided that aspect ratios are large and a {{ust order model is
taken. However, contrary to the anticipation that the results
improve when increasing the order of the model, the results
loose their similarity with known exact solutions for both

aspect ratio domains r <1 and r > 1. The fact, that a first
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order model describes -under the assumptions made hitherto

" the physics of the problem more appropriate than a second or-

der model, suggests the conclusion that the constancy of the

topography with respect to s, seems to represent too big a re-
striction on the physics when taking a higher order model, N3 2.
A higher order model, which per se describes the problem more

accurately, requires refined assumptions, i.e. a better choice
of the basis functions (4.17) and/or a more realistic basin

topography.

7.1 Other basis functions

From a mathematical standpoint, the approximate procedure
introduced in section 3.2 with equation (3.3) makes sense only
when the set {Pu(s,n)} forms a completfe set of functions in a
given interwval [B_(s),B+(s)] with respect to n. On the other
hand, physical boundary conditions require that the selected
set fulfils (3.9). Possible sets have to satisfy these two
conditions. Abramowitz and Stegun (1972) give a variety of
sets of functions, e.g. Legendre functions, orthogonal polyno-
mials etc., but few of them fulfil boundary conditions of the
form (3.9).

The choice, which has been made by taking the set of the
trigonometric functions is certainly the simplest and handiest
one. A selection of a set of basis functions is a wmathematical
affair and does not much influence the physical response of
the system. Taking another set does not mean a change let alone
an improvement from a physical point of view. Thus, we think
that this problem plays a minor role within the framework of

this model.

7.2 Refined basin topography

The solutions obtained hitherto suggest that the assump-
tions on the basin topography made in section 5.1 were too re-
strictive. Indeed, since the variation of the topography is
one of the driving mechanisms of topographic wave motion, cf.

Appendix B, any model describing these processes is certainly
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expected to be very sensitive to assumptions or rather neglec-
tions in the bathymetry, more precisely h(s,n) may need to
show variations in both directions. It seems, that (4.3) was
generally a good representation of the cross topography of an
elongated lake. Through the parameter g a variety of lake
Cross sections can easily be approximated. However, the simple
assumption about the topography in the s-direction, hqy(s)=con-
stant was certainly not adequate {or a Lake . In channels,
ho(s) =constant is a common and reasonable assumption which
was made also by Gratton (1983) in his work. In lakes and
closed basins, however, this assumption, as the results make
clear, is a restriction which destroys the characteristics of
topographic wave motion. Analytical calculations, Ball (1965)
etc., showed that the fundamental modes follow the isobaths

of the basin and travel around the lake. Assuming hp(s) =con-
stant, %£§~= 0 discontinues the isobaths at s = 0, and s = L
such that a continuous follow-up around the lake is no longer
possible. In a first order model this defect is not felt be-
cause fundamental modes are enforced. Evidently, in a second
or higher order model a mechanism which would facilitate a
turning of the waves at the lake ends is required but absent
in the hp(s) = constant case.

This defect is easily lifted by dropping the assumption
dhg

ds

tion. However, an arbitrary choice of hg(s), such as e.g. a po-

= 0 and allowing variable topographies along the s-direc-

lynomial, turns the operator E@ in equation (5.3) into a dif-
ferential operator, which has coefficients depending on the
variable s. Solving the emerging system of differential equa-
tions then amounts to solving a standard two point boundary
value problem. A possibility to keep the coefficients of @@
constant is sketched in equation (5.4). When selecting for the
three subdomains ho(s)~ e_%s the basin shape is shown in Fi-
gure 1l. Adopting such a profile recovers an operator Eﬁ with
constant coefficients, but equally produces isobaths which
form closed lines (however rectangles) around the lake. Becau-

se of this less restrictive assumption calculations become mo-
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re complicated, but the compact matrix formalism is still use-
ful. As done in section 5.1 and 6.1, we briefly demonstrate

the emerging formalism.

In Figure 11 a continuous basin profile is chosen as fol-

lows w5,

h](j)(S) = €h(1*£)sl, 0<s < sy,
ntt(s) = h(1 <5< (7.1)
0 = h(l+e), 51 £ 85 59,
L-s
L.ILE L-
g (8) = eh(l+e) 52, s, $s <t

The constant c, introduced in (5.4) then reads for the diffe-

rent basin domains I, II, III

c = E£—ln(l+2?),

L (7.2)

cII = 0, cIII = L In (1+ i) .
L-s, €

The matrix elements CBu in (5.9) now contain further components

because terms proportional to %?1 must not be neglected. With
S

the aid of (5.3) the matrix elements become

= 2 _00++ 22++
CBa w((rk) KBOL + KB&
; 00++ ap=1, N
-i(rk) (rc) KBQ ),
o 20-+ 02-+
Cog = & (¥K) (Kﬁ,a—N KB,oc—N) B=1,...,N
20—+ o =N+1 2N
4 K ) PR
o) ¥ ooy (7.3)
- 20+~ 02+~
Cﬁa B l(rk)(K&N,u S%La) o=1l,...,N
_ 20+~ B =N+1,...,2N
(re) Ky o *
- 2 _00-- 22--
Cea = u((rk) Ko w,0-n + ¥y, amn
OB = Nbkly so < 5 2N
i 00==
_l(rk)(rC)KB4Lu—N)'

which is identical to (5.9) when selcting c¢ = 0. The dispersion

relation is obtained from
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det C(w,k,c) = 0, (7.4)

which now, additionally, depends on c. The five points which
are discussed on p. 61 must now be revised under the aspect of

c # 0.

ad 1) The dispersion relation depends on both rk and rc.

ad 2) The coefficients of the emerging polynomial are no
longer real, however, there are still 4N roots for

a given w,

ad 3) Cancelled.
ad 4) Cancelled.
ad 5) Still holds.

Equation (7.4) implies that the dispersion relation depends
on ¢, i.e. on the lake domain with respect to the s-direction.

Therefore, the set

{kY}, kYECI:, Y =1,...,4N ,

equally, depends on the selected domain. Henceforth, this will
be indicated by a Roman superscript I, II,III. The solutions
can now readily be constructed following the procedure given

in section 5.1 for the three lake domains:

L
i N an By
Y (s,n,t) = sin wt[ Z P;(s,n)- E e L céY d(}]
0=1 v=1 ..
2N Ky !
i-s
+coswt!: 2 (s n) - 2 =] Yd\I{],
o=N+1
II
N aN Y
Y T (s,n,t) = sin wt[ E P (s,n) Z e L ;I dIIW
a=1 Y=1 Yo
IT
ky s;. $<s<s
ol N A=-s o 11 ' 2
+cos Wt 2 Py (s/m)° 2 e COW d\{ J B
a=N+1 y=1
ETT
111 T & L S
V" (s,n,t) = sin th E (s,n) - Z e Céil d\fn]
o R 22 sy Ss <L
oN A
III IIT
+cos wt{ E OL—N (s,n) - 2 e OLY d }

0=N+1 Y=1




The three vectors

p, It Iz
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al, gII, 4™ must now be chosen such that

is a lake solution, which satisfies the boundary

conditions at s =0 and s =L. Because the lake is subdivided

into three domains matching conditions at s =s; and s =sj

must be fulfilled. The matching conditions are that y must be

smooth, i.e. continuous and differentiable at the matching

points. The condi

0|

L

I

S1

o4
awII {

9s |52

1110

VoL

where a=1,...,2N

tions then read, cf. section 6.1,

I oI
=0 i Zcow “y 0,
Ky
IIc| L—miS],
= - e = Cop G
B ls, > oy Gy
I
ifg»51 II . II
_Z ay &y = Oy
T
k
awlldi k% T
- o L a
s !52 > ZlL COLY ¥
Ky
T,
Ry ST T & S &
=) ige oy &y = 0
II
ik—Ys
1110 T "2 _II .TI
s2
k%II
i $2  IIr 11T
—Ze L Cocy dy =0,
I
k
IT Y
- ﬂmmﬁ ZikY sy IT dII
ds S5 L oy Y
%11
III
ky i 7s2 111 11T _ 0
_Z:l L ay g Ve
III
ik IIT _ITT
=90 > Ze Y Sy &=

and summation is meant over vy=1,.

-

..,4N. The
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system (7.6) can be written in matrix form
an ey = 0, QY. = Lpsesar 5, LON (7.7)

where E is a (12N x12N)-Matrix which depends on w and the lake
topography parameters g, €, sy, sy and acts on the vector

e = (g% QII,QIII). A non-trivial eigenvector e of (7.7) re-
FEES detE(w) = 0, (7.8)
which is the equation yielding the eigenfrequencies of the
given lake. Although, from a numerical point of view calcula-
tions become more complex, a vast variety of realistic basin
topographies can now be considered. This is shown in Figure
46.

At SZ

R

4

Sl'—>
Figure 46

Variety of basin topographies in the parameter
space (s1,sy) which can be treated after the refi-
nement of the topography assumptions. Up to sec-
tion 6, in this work only solutions to topographies
marked with %k were calculated.

A possible continuation of this work will certainly adopt
this procedure; it allows the modelling of various basin topo-
graphies without having to abandon the compact matrix formula-
tion. It is expected that realistic eigenperiods and solutions

are obtained which can be compared with exact solutions for
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both aspect ratio ranges. If these results are reasonable
this model has made a fair step towards an understanding of

topographic wave motion.

8, CONCLUDING REMARKS

8.1 Channel models

The calculations and solutions of topographic waves showed
that the Method of Weighted Residuals is a strong tool in solv-
ing an inherent two-dimensional boundary value problem. After
having established the matrix formalism and determined the
matrix elements for a given topography the solution of the dif-
ferential equation transforms to a simple problem of Linear
Algebra. For such problems good and efficient computer software
exists which is a further argument for the application-of our
method.

Although this matrix procedure is approximate and computa-
tional efficiency was not evident ab initio satisfactory re-
sults are already obtained for models of very low order. Con-
vergence, discussed in section 5.3 is convincing, the reliabi-
lity and stability of the solutions are clearly exhibited.
Furthermore, the method allows examination of a large variety
of channel topographies which was not possible hitherto. Grat-
ton (1983) who investigated channels with an analytical method
using separation of variables only considered two qualitative-
ly different cross topographies, viz. a weakly linear and
quadratic profile. This is a serious restriction on possible
configurations that could be treated. By contrast, our method
allows for almost any transverse topography, i.e. also more
complicated cross profiles for instance shoulders or islands
etc., could be considered. This only modifies the matrix ele-
ments and does not complicate calculations once those are de-
termined. Presently, only Finite Difference techniques are
able to cope with the generality of application, which our

method offers. These, however, require much more and more
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difficult computer work than the method of Weigthed Residuals.

Moreover, Gratton's study is limited to straight channels
and is, therefore, not able to investigate the effect of cur-
vature on the topographic wave motion. Channels with a constant
curvature could however also easily be analyzed with our model,

since this again only modifies the matrix elements.

All this demonstrates, that our approximate method opens
many possibilities in the investigation of topographic wave

motion under a variety of aspects.

8.2 Lake models

The application of the method to lakes brought out clearly,
that the quality of the results depends crucially upon the as-
sumptions about the basin topography. Bathymetries, which are
unrealistic in that they do not have continuous isobaths,
show reasonable solutions in a first order model with special
aspect ratios. Overly simplified topographies do not pay. A
possible way out of this difficulty is shown in the previous
section where topographies varying in both horizontal dimen-
sions are incorporated without a qualitative increase of com-
plexity. As long as the refined method is not tested, however,
a final qualification of our model for lake application cannot
be given. First order models show reasonable results which can

be associated with exact solutions of e.g. Ball (1965).

Our channel method occupies a place between the exact ana-
lytical models, such as Lamb (1932), Ball (1965) and Mysak
(1983, 1984) on the one hand, and the Finite Difference Me-
thods on the other hand (E. Bduerle, work under progress). Al-
though our method offers greater flexibility to model the lake
basin as the exact models do, it does not require as much com-
puter work as do the FD-calculations. In that sense the method
of Weighted Residuals represents an economic way of solving

the topographic wave problem.
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It is also possible to study boundary effects, such as
noses, bays etc.; but in these cases a compact matrix forma-
lism does no longer suffice. The coefficients of the system
of differential equations (5.2) then depend on the variable s
and a transformation of the form (5.7) into an algebraic sy-
stem can not be performed. Therefore, a coupled two-point
boundary value problem with variable coefficients emerges from

(5.2) which has to be solved by iterative numerical methods.

8.3 Computational peculiarities

The evaluation of the eigenfrequencies of a given lake
could be done with good accuracy by using equation (6.5). The
determinant of D depends strongly upon the frequency and a
slight change of w effects large variations of det D. Adopting
the Regula Falsi, the zero, i.e. the eigenfrequency, can the-
refore be calculated with high accuracy. On the other hand, it
is often very difficult to determine the associated eigenvec-
tor, the kernel vector d because, by the above argument, the
numerical system is very stiff, cf. section 6.1. Inaccuracies
of the eigenvector 4 turn up with dissatisfactions of the
boundary conditions at s = 0 and s = L. A thorough study of

numerical methods could certainly 1lift this problem.
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APPENDIX A: Necessary conditions for
topographic wave motion

Topographic wave motion requires two necessary conditions,
which must be fulfilled:

1. The system, in which topographic waves are sustained, must
be in rotation. Therefore the Coriolis parameter f must
differ from 0, f # 0.

2. The basin must have a gradient of topography, VH # 0. To
prove this statement we start from the homogeneous part of
equation (2.6) and the boundary condition (2.20)

)

(gl g o
V- (H v v

)+ E(Vyx vE Y2 =0, inD
(A.1)
v =0, on 9D.
Unless both conditions above are fulfilled, (A.l) reduces

to

i

0, in D
(A.2)
=0, on 3D .
Assuming a harmonic time dependence of the form exp(iwt)

with w # 0, (A.2) reduces to the potential problem

v2y = 0, in D

v =0, on 30

which, invoking the Maximum Principle, admits only the
trivial solution @ = 0 in D. Therefore, if either f = 0 or
VH = 0, the stream function is trivial and there is no

wave motion governed by equation (A.l) in the system.
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APPENDIX B: Symmetric wave motion

In this appendix a proof will be given, that the governing
equations (2.16) do not allow solutions that retain their sym-
metry for all times. Starting from (4.16) and using the boun-
dary condition (2.20) yields (+ subscript is dropped)

) -1 _

iw Ve (h viy) = 0, on D

Z-(Vyxvh™l) =0, on?D (B.1)

v =0, on oD

where no quantity depends on the vertical coordinate z. It is
claimed, that for w # 0, equations (B.l) permit only the tri-
vial solution. To this end, consider the vector identity

Z.-(Vox vh™l) = - 2.vx h™lyy, (B.2)
which implies the existence of a scalar field ¢(x,y) such that

u= Vob. (B.3)
With the definition

us

n7L vy, (B.4)
then, the system (B.l) reduces to the compact form
iw v2¢ = 0. in D (B.5)

Along the boundary we have from (B.4)
wi=ntoy.z=ntl, (B.6)

where f is the unit vector tangential to the boundary. (B.1)3
states, that ¢y does not change on 30, and therefore, provided
h # 0 on 8D

[e=p

u-2 =0, on 30D, (B.7)

Accordingly, by (B.3), it follows that

- 30
0 = V(b'& = Y on 3D, (B.8)
which implies, that ¢ is a constant along 30. Thus (B.l) takes

on the form
iwv2¢ 0, in D

b = dg on 9D

(B.9)
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which, by ¢: = ¢-¢g, transforms to the boundary value problem
iwv2d = o, in D

5 (B.10)
o = 0. on 8D

Invoking the Maximum Principle, this implies straightforwardly

P = 0y in D (B.11)

if w # 0. Therefore, the stream function Y can only be a con-
stant within the domain, which is the trivial solution for
(B.1). Allowing non-trivial stream functions ¥, on the other
hand, implies w = 0, which shows, that this would not be a so-
lution representing a wave. Thus, any wave solution of (2.16)
or (3.21) must necessarily be a composition of symmetric and

skew-symmetric parts.

APPENDIX C: Topographic waves and Rossby waves

In order to work out the interrelationship between atmosphe-
ric Rossby waves (Pedlosky, 1979, p. 108ff) and topographic

waves in channels and lakes, we start from

+ 2 (VYx v%) =0, (c.1)

which is the nonscaled more general form of the homogeneous

part of (2.16), see Hutter (1984a, p.28).

Va‘at“*‘ :
Governing Equation: V- (——)+ 2+(Vyx V) = 0

Mechanisms: Vf and VH

# @

Topographic Waves Planetary Rossby Waves
in Channels and Lakes in the Atmosphere

vf = 0, VH #0 vf £ 0, VH =0
Figure C1

The different wave phenomena that are gover-
ned by equation (C.1).
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At mid-latitude, calculations are performed on a B-plane.
This means that spherical effects are accounted for with a li-
near increase of the Coriolis parameter f to the north. Select-
ing a coordinate system, whose x-axis points to the east and

y-axis to the north, then

of

vE = (0, 337,0) = (0,8,0). (C.2)

(C.1) is the equation which yields the topographic waves when
assuming Vf = 0 and VH # 0. On the other hand let ¥ have a
wave like structure

i = ei(wt—kx—ly)’ (c.3)

and assume an atmosphere with constant depth H (no orography),

then (C.1l) yields the well-known dispersion relation

RN . T (C.4)

k2 +22
This is the dispersion relation of planetary Rossby waves in
an aptmosphere at rest (Pedlosky, 1979, p.109). Therefore, we
have demonstrated the alliance between those two wave phenome-
na. In an atmosphere with strong orography, e.g. in the Alps,
it might be likely to observe waves which have both, topogra-

phic and Rossby wave character.

APPENDIX D: A mechanical analogy for topographic
wave motion

The mechanism of topographic or second class wave motion
is the conservation of angular momentum, when a. fluid column
changes its position in a basin with topography. To understand
this, consider the simple model sketched in Figure Dl. The wa-
ter column is assumed to be a rigid body rotating around its
vertical axis with an angular velocity which in the two re-

spective positions is Q1 and Q3.

The angular velocity which column 1 will take on when it is

transported to position 2 can be calculated when the conserva-




Figure D1

A mechanical analogy
of the mechanism of
topographic wave mo-
tion.

tion laws of mass and angular momentum are applied. Balance
of mass in the columns requires

2 2
ry Hl =1, Hy, (D.1)

and conservation of angular momentum yields

1 2 1 2
'j'ml ry Ql = 7Z-m2 Ty Qz. (D.2)
Equations (D.1l) and (D.2) are satisfied provided the quantity

%»following the fluid motion remains constant:

-% = constant. (D.3)

Because the vertical component of the absolute vorticity of
rigid body motion is twice the Zoftal angular velocity, (D.3),
on a rotating earth, is identical to

we+E
H

= constant, (D.4)

where w, is the vertical component of relative vorticity and
f the Coriolis parameter. This quantity must therefore be con-
served when one follows the fluid motion, implying that (D.4)

takes on the well-known form

a wy+f

It T =0, (D.5)

which is the conservation law of barotropic potential vortici-

d

ty. The operator Ez»is the convective derivative operator

d _ 8

—_— = v
atc pe toutVe




w IRT =~
in which u is the fluid velocity.

Equation (D.5) can be transformed into an equation for the

barotropic or mass transport stream function y given by

kUy -Hu,

Yy = Hv.
These last equations satisfy the continuity equation under the
rigid 1lid assumption. In terms of Y the vertical component of

the relative vorticity reads
Wy & m— = o0 = V-%—Vw.

In a two-dimensional barotropic model (D.5) then becomes

1 3 1 193y 3 £ 193¢ 3 £

= = V- + — () =0 D.

H 3t H H 9y 9x H H 9x 3y (H) ! B+

here, non-linear terms have been ignored and £ and H have been
assumed to be time-independent. Equation (D.6) can be written

in the compact vector form
- £
VY) + z- (VY x vﬁ-) =0, (D.7)

which describes both planetary Rossby waves and topographic
waves in lake basins, see Appendix C. Equation (D.7) is a spe-
cial case of equation (2.6) containing the rigid 1lid assump-
tion and no wind forcing, from which we started our study.
Therefore, it is demonstrated that the fundamental mechanism
of second class wave motion consists in the conservation of

angular momentum.

APPENDIX E: Numerical calculation of the matrix
elements up to fourth order

In this Appendix the constant part of the matrix elements
(4.31) D%g", i.e. Kéi“ in section 5.1, are listed up to the
fourth order, thus o, B=1,...,4 . They are calculated on a com-

puter using the IMSL-library with a relative accuracy of 1076,
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