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PREFACE

Temperature measurements that were perfomed in Lakes
of Zurich and Lugano in the late seventies disclose long
periodic oscillations whose structure suggests that they
may be interpretable as second class eigenmodes of the
respective basins. Verification by numerical solution
of the topographic wave equation for these reali-stic ba-
sins is so far lacking, one reason being that FD and FE

solutions exhibit a muftitude of modes with varied struc-
tures in narrow frequency bands which make physical in-
terpretation very difficult.

The aim of this study is to transform the topogra-
phic wave equation by the Principle of Weighted Residu-
als j-nto a simpler operator equation, which for a large
cfass of basin geometries can be studied qualitatively
and thus provides physical insight into the secrets of
the behavior of second class motions in closed basins.
The method may be termed "channel methodrr and furnishes
the topographic analogon of the Chrystal and Defant equa-
tions that were ded.uced more than 60 years ago (and have

been extended by us) to explain the gravitational- sei-
ches in long lakes.

As the read.er can judge himself, a further step to-
wards understanding topographic waves in enclosed basins

has been done, however many new questions have arisen
that now await their proper ans-w-er.

K. Hutter
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ABSTRACT

The topographic nossby wave problem for a rotating elonga-

ted domain is approximately solved. To this end the two-layer
shallow water equations, appropriate for a lowest order baro-

clinic mod.e1, are scaled and approximately reduced to a system

of equations which govern topographic waves and ttreir coupling.

It is shown that in the limit of a sma1l upper layer depth

compared to the lower layer thickness, the conservation equa-

tion of barotropic potential vorticity still applies and that

the internal baroclinic part of Lhe motion is forced by the
barotropic mass transport stream funclion.

The conservation of potential vorticity, which can be for-

mulated as a tvro-dimensional boundary value problem in a na-

tural coordinate system, is reduced to a set of coupled one-

dimensional differential equations. This is achieved with the

help of the method of Weighted Residuals: The mass transport
stream function is expanded along the narrow side of the do-

main into a linear combination of prescribed basis functions.
After a weighted integration over this transverse direction
the problem reduces to a set of coupled two-point boundary va-
lue equations for the coefficient functions of the linear ex-
pansion of the stream function. which are functions of a sin-
g1e space coordinate and of time onIy, Depending on the number

of terms carried through in the shape function expansion dif-
ferent orders of approximation are obtained. In view of the
linearity this system admits solutions which have a wavelike

structure both in space and time, such that the emerging sy-
stem is purely algebraic.

This algebraic system of equations is used to analyze in-
finite straight channels with variable topography in the trans-
verse direction. The dispersion relation of topographic wave

motion is obtained and scrutj-nized for various profiles and

several orders of expansion. It is shown that increasing the

order of expansion leads to convergence of solutlons, but low
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order models are demonstrated to be sufficientfy reliable in
extracting the physically relevant properties.

By a linear superposition of channel solutions topographic
wave motion in rectangular basins are analyzed using the width
to length ratio (aspect ratio) as a characteristic parameter.
It is shown that smal-I aspect ratio basin solutions exhibit a

rich modal structure and, therefore, differ substantially from
those of known exact sol-utions. By contrast, lowest order ex-
pansion models for large aspect ratios show similiarities with
known exact basin solutions, but their higher order models de-
viate, such that convergence properties are poor.

It is argued that these odd features of the large aspect
ratio case can be understood in terms of the inappropriateness
of the bathl'rnetry approxj-mations. Improvements of the model
are discussed and one versj_on is outlined, but explicit re-
sults for this extended case are left for further j-nvestiga-
tion.
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ZUSAMMENFASSUNG

Das Problem topographischer Rossby-Wel-len in langen rotie-
rend.en Gebieten wird näherungsweise gelöst, indem die Zwei-
schicht-Ffachwasser-Gleichungen -geeignet zur Beschreibung
von baroklinen Bewegungen erster Ordnung - skal-iert und nach
gewissen Näherungen reduziert werden zu einem System von Glei-
chungen, die topographische We1len und ihre Kopplung beschrei-
ben. Es v/ird gezeigt, dass für Fälie, wo die obere Wasser-

schicht viel dünner ist a1s die darunterliegende, die Erhal-
tung der barotropen potentiellen Vorticity immer noch gültig
ist. Der innere barokline Anteil der Bewegiung wird dann durch
die barotrope Stromfunktion gesteuert.

Die Erhaltung der potentiellen Vorticity, die als zweidi-
mensionales Randwertproblem j-n einem natürlichen Koordinaten-
system formuliert werd.en kann, wird auf ein System gekoppelter
eindimensionaler Differentialgleichungen reduziert. Dies ge-
schieht mit Hilfe der Methode der gewichteten Residuen: Die
Stromfunktion wird längs der Schmalseite des Gebietes in ej-ne

Linearkombination von vorgeschriebenen Basisfunktionen entwik-
kelt, Nach einer gewichteten Integration über diese Richtung
wird das Problem zu einem System von gekoppelten Zweipunkt
Randwertgleichungen j-n den Koeffizientenfunktionen dieser 1i-
nearen Entwicklung; diese hängen nun nur von einer Raumvari-
able und der Zeit ab. Je nach Anzahl Sununanden dieser Entwik-
lung erhält man verschiedene Ordnungen der Näherungen. Da das

Problem l-inear ist, erhält man daraus ein rein algebraisches
System, wenn angenommen wird, dass die Lösungen in Ort und

Zeit Wellenform besitzen.

Mit Hilfe dieses al-gebraischen Gleichungssystems werden urF

endlich lange, gerade Kanäle mit verschied.enen Ouerschnittpro-
filen untersucht. Die dadurch berechnete Dispersionsrelation
topographischer Wellen wird für verschj-edene Profile und Ord-
nungen der Näherung geprüft und es wird gezeigt, dass eine Er-
höhung der Ordnung zu konvergierend.en Lösungen führt. Schon
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Modelle niedrigster Ordnung beschreiben die Bewegung zuverläs-
sig und schälen die physikalischen Eigenschaften dieses Wel-
lentypus heraus.

Durch eine Linearkombination von Kanallösungen können to-
pographische Wellen in Rechteckbecken beschrieben werden. Das
Verhältnis Breite zu Länge (Formparameter) erwe.ist sich als
charakteristische Grösse. Becken mit kleinem Formparameter be-
sitzen eine komplizierte Wellenstruktur und unterscheiden sich
deshal-b wesentlich von bekannten exakten Lösungen. Demgegen-
über zeigen Becken mit grossem Formparameter in Modellen nied-
rigster Ordnung klare Aehnlichkeit in der lüellenstruktur mit
den exakten Lösungen. Allerdings verschwindet. diese Aehnlich-
keit in Modellen höherer Ordnung; die Konvergenzeigenschaften
sind mager.

Dies kann damit zusammenhängen, dass im Fall- der kleinen
Formparameter die Beckentopographie ungenügend inod.elliert vrur-
de. Verschiedene Verbesserungsvorschläge werden gegeben, de-
ren explizite Resultate jedoch weiteren Untersuchungen über-
lassen sind,



RESUME

Le problöme des ondes topographiques de Rossby pour un do-
maine a11ong6 en rotation est r6solu approximativement. Pour

ce faire, 1'6quation pour eau peu profonde ä deux couches,

appropride pour decrire des mouvements baroclines du premier
ordre, est 6ta1onn6e et approximatj-vement r6duite ä un sys-
täme d'6quations qui gouvernent les ondes topographiques et
leurs noeuds. flest montrö que pour l-e cas orl la couche d'eau
sup6rieure est beaucoup plus mince que I'inf6rieure, 1'6qua-
tion de conservation du vortex barotropique potentiel est
toujours valable et que la composante baroclinique interne de

la vitesse est gouvernee par Ia fonction de courant barotro-

La conservation du vortex barotropique potentiel, qui peut
6tre formul6e conme un probläme ä deux dimensions de valeurs
au bord dans un systäme de coordonnöes naturelles,est r6duite
ä un systöme coupl6 d'6quations diff6rentiell-es ä une dimen-
sion. On applique pour cela la m6thode des r6sidus pond6r6s:
la fonction de courant est developp6e fin6airement dans une

base donn6e le long du petit cöt6 du domaine. Aprös une int6g-
ration pond6r6e sur la direction transversale, le probläme se

r6duit ä un slzstöme coupld d'6quations ä valeurs au bord sur
un intervalle pour les fonctions-coefficients du d6veloppe-
ment ci-dessus; celles-ci ne dependent maintenant plus que

d'une varj-able spatiale et du temps. Selon le nombre de termes
du d6veloppement, on obtient divers ordres d'approximatj-ons.
Le problöme 6tant lin6aire, on peu se ramener ä un systöme

alg6brique lin6aire sous 1'hypothöse que la solution, dans

I'espace et 1e temps, a une forme d'onde.

A 1'aide de ces 6quations algöbriques, on 6tudie des ca-
naux de longueur infinie avec divers profils en travers. La

relation de dispersion des ondes topographiques ainsi calcu-
l-6e est test6e pour diff6rent profiles et ordres d'approxirna-
tions et il est montr6 qutune augmentation de 1'ordre möne a
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des solutions convergentes. Mais d6jä des modö1es de petit
ordre d6crivent le mouvement dr une maniäre satisfaisante et
mettent les caracteristiques physiques d.e ce type dtonde en
6vidence,

Les ondes topographiques dans un bassin rectangulaire peu-
vent 6tre d6crites par une combinaj_son 1in€aire des solutions
pour canaux. Le rapport largieur sur longueur (paramätre de

forme) se r61öve Ctre une girandeur caract6ristique. Les bas-
sins ä petit paramätre de forme ont une structure d'onde com-
plexe et divergent passablement de 1a solution exacte connue.
Par contre, l-es bassins ä grand paramötre de forme montrent
dans des modäles de petit ordre une simifitude 6vidente avec
la solution exacte. Cette similitude disparait pourtant d.ans

des modöIes d'ord.re d'approximation sup6rieur; les propri6t6s
de convergence sont pauvres.

Ceci peut 6tre dü au fait que 1a topographie des bassins ä

petit paramötre de forme a mal 6t6 modälis6e, Des propositi-
ons d'am6liorations sont faites, leur r6sultat explicj_te 6tant
Iaiss6 ä des 6tudes ultdrieures-

(traduction par Bernard Ott)
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1, INTRODUcTION

This report is concerned
nique of topographic Rossby

ter basins. This particular
section, be embedded in the
mics.

1.1 Waves in waters

with an approximate solution tech-
waves in channels and enclosed wa-
wave phenomenon \,vill in this first
context of geophysical fluid dyna-

Before discussi-ng the variety of wave types which may arise
in waters such as the open ocean, channels, lakes, etc., vre

sha1l not try to define the physical meaning of the notion
"waverr but rather quote a beautifuf statement of Einstein, that
expresses the essentials of what is meant by waves more accu-
rately than we could have done.

'rIrgencl ein Klatsch, der, sagen wi,r, in lvashington auf-
gebracht wird, gelangt sehr rasch nach New York, wenn
auch nicht eine einzige von den an der trüeitergabe be-
teiligten Personen tatsächlich von der einen Stadt in
die andere reist. Wir haben es vielmehr gewissermassen
mit zwei ganz verschiedenen Bewegungen zu tun, der d.es
Gerüchtes selbst, das von Washlngton nach New York
dringt, und der jener Personen, die das Gerücht verbrei-
ten. rl

Among the great variety of types of waves which occur in
nature we are interested here in water waves. To no surprise,
waves in vraters themselves exhibit a multitude of different
types. In natural waters, which are always stratified, i.e.
the density is a function of space and time p=p(J,t), to each
wave type there exists an internal and an exlernal- form. fn-
ternal wave motions are primarily felt within the medium leav-
ing the water surface almost at rest and occur only in strati-
fied waters. By contrast, what we see when standing at a lake
shore or at the beach is al1 external wave patterns, motj-ons

which perturb the surface of the water,

There are basically two qualities which govern wave motion
in waters. On the one hand., these are the mechanical, chemical
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and electromagnetic properties of water, on the other hand

there are the specific qualities of the I'container'r which is
occupied by the medlum. For instance, acoustic waves are due

to the mechanical properties, namely the compressibility of
water and are not influenced or modified by the 'rstate" of the
container. What we mean by this is, that the dispersion rela-
tlon of acoustic waves is not modified when the container is
rotating or has a complicated topography. Another example of
waves governed by the property of the waler v/ould be the elec-
tromagnetic waves, light, of which the dispersion relation re-
mains unaffected by a possible rotation of the container.

Seiche motions are governed by the shape of the container,
i.e. the position of the boundaries determines both, frequency
and wavelength (in a closed basin) of the seiche. Kelvin and

Poincarö waves owe their existence to the rotation of the
contai-ner and the Coriolis force which can be felt in such a

noninertial frame. Topographic waves, finally, are governed
mainly by the container, in that they require for their occur-
rence a container with nontrivial topography and rotation.
Both qualities are natural features of lake basins, in that
they exhibit a topography on the rotating earth.

It is interesting to notice that the larger the rrscalefl of
the driving mechanism of the wave is the lower wil1, in gene-
ral, be its frequency. Whereas a typical acoustic wave has a
frequency of 102 s-I, external seiches have about l0-3 s-l and

internal (topographic) waves in a lake even 10-5 =-1. Thi" i"
also a sign for the fact that waves in waters occupy a broad
frequency spectrum which spans over more than 10 log cycles.

This brief survey, however, does not suffice to understand
and explain fluld wave motion. A step towards this is provided
by considering the set of equations which governs any fluid
motion and is obtained by applying the laws of

- conservation of momentum,

- conservation of mass,

- conservation of energy.
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These three fundamental laws and the equation of state lead
the set of equations, quoting Pedlosky (L979),

bo

Au
-:+(uqrad)u+2flxu)L

= 9-Ax(0xr)

oiv(pg) = 0'

p=p(p,r) ,

(gsraa) P = 0'

L
p grad p 

'
äolr
dc

äp

-*dt

(r.r)

in which the chemical and viscous aspects of the problem have

been ignored. The syslem (I.1) describes adiabatic fluid mo-

t.ion in a system subject to steady rotation; in other words,
(1,1) contains all aspects of geophysical fluid dynamlcs. Ma-

thematically, (1.1) consists of five non-linear partial diffe-
rential equation with associated boundary conditions (depend-

ing on the specific problem) and an equation of state. These

six equations determine the six unknown fields

g(f,t) the velocity field (3 dimensions).
p(r,t) the density field,

P(E't) the Pressure field,
T(r,t) the temperature field,

which are all functions of space and time. The given fields
are

the angular velocity,
Lhe gravity field,

q (!)
g (r)

and, furthermore the boundary conditions which are imposed on

(I.f). These represent constraints on the motion, in that, for
instance, boundary conditions select oLgen[.ttequencic-4 , seiches
and other wave types j-n closed basins. Also, equations (I.l)
pertain to a broad spectrum of wave motion: acoustic waves/

capillary waves, inertial waves, gravity waves or seiches, KeI-
vin waves, Poincar6 waves, shelf waves, topographic waves, etc.
Not only water motion on the earth but equally atmospheric mo-

tion can be explained with (1,I). These are buoyancy waves,

Föhn waves, frontal motions, Rossby waves, etc.
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In parallel with the generality of equations (f.t) goes the

difficulty to solve them. A general solution of (1.1)' \'/hich

would embrace aI1 aspects of ftuid motion in a given configu-

ration (e.g. channel, lake basin, atmosphere, etc.) is not yet

found and is not worth searching for' The only way out of this
dilemma is to introduce more or less reasonable neglections
and approximations which (i) sinplify the system (1.1),
(ii) filter out a1l- those effects which are not of interest but

(iii) retain the characteristics of the motion of interest- This

approximation procedure has cast light in various different

domains of the spectrum. These, however, lie apart and form

distinct regimes with distinct behaviour. connections to other

mechanisms or other regimes can sometimes be obtained by adopt-

ing perturbation analysis.

1.2 Topographic Rossby waves

The subject of this work is to investigate a specific hrave

type of geophysical fluid dynamics. Here vre try to explain the

mechanisms of topographic v/aves by means of a mechanical ana-

logy. The mechanism of topographic wave motion is the conser-

vation of angular momentum. This is represented by the conser-

vation equation r u_*f
f t-it = o, (r.2)

where uiz is the vertical component of relative vorticity, f
the Coriolis parameter, H the basin depth .r.a $ the derivati-
ve with respect to time following the fluid motion. A simple

derivation of (1.2) is given in Appendix D using a mechanical

rigid body analogy. Equation (I.2) represents the conservation
of barotropic potential vorticity on which Bal-l (1965) based

his sludies of topographic waves. The simple derivation in Ap-

pendix D demonstrates that the restoring mechanism of second

class wave motion (topographic Rossby waves) consists in the

conservation law of angular momentum. Equation (I-2) shows,

that an increase of f in a container of constant depth requi-
res a decrease of relative vorticity. This is the situation
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where planetary Rossby waves in the atmosphere or ocean are
observed. The mentioned container represents the atmosphere
and an increasing f corresponds to a south-north motion (B-
effect) . On the other hand, an increase of the basin depth,
e.g. in a lake, forces a correspondinq increase of relative
vorticity. This is the case for topographic wave motlon. In a

large ocean basin or in an atmosphere with strong orography
both effects may work and then lead, in an ocean, to shelf
waves. In this report, however, f wifl be assumed to remain
constant, which is sufficiently obeyed for small fakes (north-
south scale smaller than 100 km) distant from the equator.

There are tv/o necessary conditions for the occurrence of
topographic waves: a rotating itcontainerrt and a container-
depth with topography variatlons. Unless both conditions are
fulfilled, topographic or second class wave motion is not pos-
sible, as demonstrated in Appendix A.

1.3 Present works and experimental evidence

The study of second class \^/aves in fluids -motions v/hich
are due to the rotation of the rrcontainerii - started a long
time after that of first class motion which is due to gravity.
The first trace of reference is probably the work of poincar6
(f910). He demonstrated the existence of 1on9 periodic oscil-
lations in a rotating circular basin with a parabolic depth
profile. A first explicit solution was given years later by
Lanb (1932), again for the same configuration. Subsequently,
after a long pause, Ball (1965) revived the issue wj-th an exact
solution for an elliptic basin with parabofic profile. This mo-
del allowed an examinatlon of the effect of the basin shape on

the eigenperiods of topographic wave motion through the ex-
centricity of the ellipse. Saylor et al. (I980) presented for
the first tlme observations and deduced a refi-ned theoretical
model. Instead of selecting different basin shapes, as Ball
(f965) did, they investigated circular basins with radial pro-
files parameterized by a power 1aw, which here will be applied
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with changes, as vr'ell. Gratton (f983) presented a study of to-
pographic waves in straight channels, He found that the baro-
clinic feed-back to the barotropic motion is small for strati-
fied lakes which have a smal1 ratio of epilimnion to hypolim-
nion depth. We analyze the same s.ituation and this is why ba-
rotropic calculatj-ons are justified.

A further step in the field of theoretj-cal approach was made

by Mysak (1983, 1984) when he investigated topographic \^7ave mo-

tion in elliptic basins using an elliptic coordinate system.
To obtain a differential equation with constant coefficients
he introduced a piecewise exponentlal depth profile akin to
calculations performed for shelf waves (LeBlond a Mysak, I978).

Csanady (L976), applying precursors of Hamblin (1972) and

Simons (1975) explained observations of coastal motion in Lake

Ontario b1z second class waves. Saylor et al. (1980) interPre-
ted observed long-periodic oscillatj-ons (in the order of days)
in Lake Michigan as topographic waves.

Recently, thermocline oscillations in the Swiss Lakes of
Lugano and Zürich were interpreted as topographic \,rave motion.
This is a surprise for such smal-l scale lakes but the observed
periods could not be explained by an internal seiche mode

(first class waves), as the periods lie significantly above

those of the fundamental internal seiches. Spectras of the
temperature data indicate for Lake of Lugano a significant
peak at about 70-80 h, see Mysak et al. (1983,1984) and mea-

surements of phase differences between spectra of isotherm
depth pairs show a counterclockwise rotation around the basin
which is also reminiscent of topographic waves.

It was only recently, that the data of the 1978 campaign
of Lake of Zürich were expJ-ored with respect to long periodic
wave motion, Temperature measurements and the isotherm depth
spectras indicate a clear signal at I00-110 h which, again,
can not be explained by an internal seiche motion. The fact
that phase differences of isotherm depth pairs show anticlock-
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wise motj-on around the basin can again be taken as a sign that
the associated motion is probably a topographic Rossby wave
(K. Hutter, personal comrnunication) . In short, experimental
evidence for topographic waves is striking but theoretical mo-

dels -even as approximations - are largely lacking.

1.4 Aim of this work

Up to novz there exists a rather limited quantity of exact
solutions of the topographic wave problems. Analytical proce-
dures are found only for very special basin shapes and topo-
graphies, such as the parabolic circles or ellipses of Lamb

(L932) and BaIl- (1965) or the elliptic basin with exponential
depth profile, Mysak (1983, 1984). All these models could de-
scribe the periods of observed wave motion provided that a

set of parameters was well chosen. It turned out, however,
that the confiqurations, d.etermined by the fitted parameters,
did not show much similarity with the natural basins or profi-
les. For instance, j-n order to explain a topographic mode in
Lake of Lugano Mysak et al. (1984) were forced to choose a ba-
sin shape which was much fatter and did not resembl-e the shape

of Lake of Lugano. They were not able to obtain the required
value of the period when selecting realistic length to width
ratios. Therefore, at the moment there is certainly a lack of
adequate theoretical models which could satisfactorily explain
topographic waves in tLeanL6tj,c basins.

By contrast, Finite Dj-fference and Finite Element techni-
ques are effective tools in explaining wave motions under very
specific aspects. HovTever, they are not' likely to enlarse our
knowledge from a y:hq.tiecL point of view. Furthermore, they re-
quire immense computational effort for a problem which, in its
basics, still lacks a thorough understanding. Questions concern-
ing the spectrum and the modal structure or behaviour in cur-
ved and more compli-cated basins are still unanswered.

This is why this report proposes a method that treats the
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problem from another point of view. ft is not tried to find
more exact sol-utions or other numerical t.echniques. tr{e rather
simplify the problem by making assumptions which are apt to
the specific probJ-em of second class waves. I^te attempt to show

a way which can combine the preciseness of an exact model with
the facility of the basin modelling supplied by a FD- or EE-
method. A test of such a model is 1ikely to bring about also
the important properties of e.g. a lake basin under the aspect
of long-periodic wave motj-on. Furthermore, we hope to obtain
an answer about the quality and strength of such a method and
a hint towards specific improvements of assumptions, which are
invoked in the course of developments.
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sak (1984).

2.1 Two layer model
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2, enstc EoUATIoNS

shall list those equations, that will
our further developments. No details

essentials were already presented by My-

Vertical temperature profiles in stratified lakes can be

subdivj-ded roughly into three parts (Hutter, 1984a):

Eyti-.timwLon: layer wlth an average surface temperature of
about f8oC and several meters depth,

Mett||nruLon: layer containing the thermocline and experienc-
ing strong temperature gradients,

Hqpct.Li-mwLttn: layer with a lower temperature of about 6oC and
several tens of meters depth.

This typical stratification can mainly be found during surn-

mer periods, when the surface layer is heated by solar irra-
diation. In a first approximation this situation is simplified
by introducing a two layer system of which the interface repre:
sents the position of the thermocl-ine (Figure I). Subsequently,

Upper and lower bound tempera-
ture profiles as measured in
Lake of Zurich during August/
September 1978. The dotted 1i-
nes are extrapolations. Also
shown are the two layer appro-
ximations with density discon-
tinuity at 12 m depth and upper
and lower layer temperatures
18oC and 6oC, respectively.
(From Hutter, 1984a)

0

m

5

Y

EXTRAPOLATION
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the depth of the upper layer wilf be assumed much smaller than
that of the lower layer.

Motions occur in both layers and are subject to a coupling
by the thermocl.ine. As we sha11 show later on, this coupling
mechanism is weak in the sense that.it is mainly one-way, i.e.
the motion of the thermocline is driven by the barotropic
transport. If the velocity fields in the two layers are unidi-
rectional the motion is call-ed barotropic. If they are in op-
posj-te directions it is baroclinic.

The configurat.ion of the lake and the notation is summari-
zed in Figure 2. Important in the depicted geometry are the
vertical side walls that extend beyond the thermocline well
into the hypolimnion. Application must, therefore, be limited
to lakes with steep shores.

(1

e,

Figure 2

Side view of a cross secti-on of the two layer lake
in its natural coordinate system (s,n,z), Upper and
lower layer variables are denoted by an index I or 2
respect.ively. The lake is within a rotating syst.em
of spatially constant angular velocity V2 f.

e-Ho(s)

H(s,n)
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Lake topography varies in space only in the lower layer,
i,e. the upper layer is confined by two vertical side wa1ls,
which must exceed the depth of the thermocline, i.e. eHg(s) > Dl
for afl s. tr\ie accept the varyinq of the side walls with s be-
cause of analytical simplicity.

2.2 Governing equations

Basic idea in obtaining a description of the physical beha-
viour of our system is to formulate conservation equations for
the fundamental physical processes, i.e. momentum, mass and
energy. Since thermodynamic effects are of no concern in this
study a closed system concept can be formulated, that is based
on momentum and mass conservation for both layers. The full
system is non-linear because of the advection terms, but they
can be neglected by the argument of smal1 Rossby numbers (geo-
strophic assumption). Furthermore, small elevations 4i in com-
parison to the depth of the upper layer will be considered.
This approximation may be doubious in certain cases but is made

for simplicity. Further, turbulence witl be ignored. but wind
stress, distributed over the thin upper 1ayer, and actlng as
a drivinq force wl11 be considered.

Thus the equations of motion in components of a Carteslan
system take on the form (Mysak, 1984, p. 87)

rr - frz :'lt -'1 Y

v1t + ful

Dl (ulx + vly)

4rx + rx/(prD1)

6ry + rYl (pr Dr) ,

e2t ett I

(2.L)

(2.2\

(2. 3)

u-,- fv^ = -cIf. --tt-z-'LxY\92X

vrr + f u, = -9 et,, - j' (e.,,-

(,. 
__)

cry)

(H2 u2)x + (H2v2\o

where g' is the reduced gravity
follows can be directly derived

= -1>.t, Q.4)

0r -0r
S' = g. +. Everything that

tr2
from equations (2.1) - (2.4).
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2. 3 Approximations

Equations (2.1) - (2.4) contain many aspects of motions in a

lake. Here we are only interested in long-periodic oscil-1ations,
which can be isolated by performing the approprS-ate approxima-
tions -

2,3.1 Rigid lid approximation

It is known that to every wave type of the above system
there exists an lnternal and an external variant. The periods
of the latter are generally much smaller than those of the for-
mer and, by applying the rigid. lid approximation, the external
modes are impeded. This means, that compared to the interface
el-evation any surface elevation can be neglected, i.e, the un-
derlined terms in (2.2) and, (2.3) are ignored. With this, it
follows from the mass conservations (2.2) and. (2.4) that the
quasi nondivergent velocity field can be replaced by the
stream function ü, through which the components of the inte-
grated transport are given by

-Vy = Dtul+H2u2t 1ir" = Dl vt + H2v2. Q.5\

{ is ca]led the barotroplc
Equations (2.L') - (2.4) can
in the variables if and 62 =

reads, assuming a constant

where the operator

or mass transport stream function.
be transformed into a compact system

6. The resul-t -quoting Mysak (1984)-
Coriolis parameter f:

v.(H-r v Vr) + f (VY ) vH-r) -A = -gt Dl (V6 *VH-1).2

+-llvx(tH-r)+
PIL

-- -2 rf2 Dr,r'1t- s,DtH, tet*i i ljr
V 4n.W - -;i tv qxvn).2'n2

lr
I v(Lü)xvHl'2q'H2L r -

_+E r(vx Lr).?

L:a*+f2

H4tx VH
lJ1 -

(2 -6)

(2.'7)

has been introduced.
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Mysak gives a detailed discussion of the physics of egua-
tions (2.6) and (2.7), which is now briefly summarized. In the
absence of stratification (g' : 0) and wind forcing (I = q) (2.6)

reduces to an equation that describes motions under conserva-
tion of potential vorticity (Hutter, 1984a, p. 26ff). Strati-
fication (S' I 0) in a lake with topography (VH l0) couptes the
barotropic part of (2.6) to baroclinic processes. Thus, the
first term on the rhs of (2.6) represents the influence of ba-
roclinic effects on barotropic motion. By the same argunent the
first term on the rhs of (2.7) describes the barotroplc effects
on the baroclinic motion. This means that there is in general
a two-way coupling, the strength of which wil-I be estimated be-
low. tr^tre further recognize that, provided there is a constant
depth within the lake and no wind forcing, equation (2.7) re-
veals internal gravity and Kefvin waves which propagate with
the speed ci = (g' DyH2 /H)V2 .

By deriving (2.6) and (2.7)
are obtained for the velocity
These are

from (2 .L) - (2. 4) two relations
fields as functions of r! and (.

Lu- =-r

Lvt =

II
EL
1l
HL

2x v(rrp) + H2s,(v Lt- f ?, v 4) + fl,=.- ra ^.)], (2.8)r

2^v(L,r) - Drs'(v et-f? v6) - *,rL- tz, Uf, Q.Ltz

which are adclitively composed of three parts, i.e. a barotropic,
a baroclinic and a wind forced component (see also S 2.5). The
first are the same (and unidirectional) in both layers, and
the second are in opposite directions and add up to vanishing
total transport, reminiscent of barotropic and baroc.l.inic be-
haviour, respectively.

2.3.2 Low frequency approximation

In equation (2.'7) we realize that f appears with a third
order time derivative. This means that (2.7) can contaln three
wave types. In fact a more precise analysis shows that there
are two (internal-) gravity waves and one topographic wave of
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vrhich the latter has the longest perlod. Because we want to
study here topographic waves, we wil-l search for solutions of
(2.6), (2.7) with low frequency o. For ol << f we may therefore
neglect o in comparison to f. Thus I reduces to L: f2- Such an

approximation, however, requires that periods are substantially
greater than about 17 hours (the period corresponding to f).
Parenthetically, we miqht also mention that this approximation
holds only for lakes in which the internal seiche period (of a

gravity or Kelvin wave) is considerably sraaller than the pe-

riod of topographic waves. Since the former increases with the

lake dimenslon, the frequencies of gravity waves in larger la-
kes become of comparable order to those of topographic waves.

For the lakes of Zurich and Lugano the approximation, hovtever'

is appropriate, see Table 1.

Lake Surface
1 ength

lkml

Period of internal
gravity waves

tht

Period of internal
topographic waves

thl

luoano | 17 .21)

Zurich I 28 1)

e.n"uu | 72 3)

7) uutter, TgB
2) agsak, tgB

<zer)
<451)

78 4)

'/ Gra
4) eäu

, 1983,
tlet f984

74

100

96

2)

2)

2)

Table I
Table 1 showing that the gap between the eigen-
periods of internal gravity and topographic waves
depends on the lake dimension. The periods of the
topographic waves are taken from an elliptical
model.

2.4 Scaling

IL is a general method in geophysics to simplify the often
very complicated equations by estimating the importance of the
individual terms. As a side resuft this process yields the im-
portant dimensionless parameters that qovern the solutions of
the equatior5 (e.g. Reynolds number, Rossby number, etc.). By
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scaling we mean a procedure that replaces any parameter 0 of
a set of equations by a product of its mean or characteristic
value 00 and a dimensionless parameter (primed) which then is
of order unity

Q:: Qo'0' (2.9)

2,4.1 Wind forcing mechanism

The true
the wind. To

iclentity
V

forcing mechanism in equations (2.6) and (2.7) is
estimate its relative importance consider the

-rHx(TH.')+ 
-rt' D1 - VH-r = ll' (V\-r)+ (VH')rt

!I - --r+ _-TXvH r.
e1

(2. r0)

The first term on the right can be neglected in comparison to
the others, because the atmospheric length scale is in general
much larger than the lake dimensions. Such a statement is tan-
tamount to ignoring spatial- variations of wind stress over the
l-akers clomain. Further, comparing the last two terms it is seen
that they differ by an order DI/H which in vievr of our basic
assumption is smal-l (cf. Table 2) . Consequently only the last
terril of (2.I0) survives. In a way this is a strange result:
only a lake with variable topogiraphy can be affected by the
wind. This leads to the conclusion that the assumption on at-
mospheric length scales may be doubtful-. Indeed, a varying to-
pography in the vicinity of the lake may play a significant
role as it can modify regional winds with atmospheric length
scales to local winds with smafler length scal-es. An example
is the topography around Lake of Luganoi but experimental- evi-
dence for the wind stress curl to be sig:nificant is so far
lacking.

2.4.2 craLLon's scaling

cratton (f983) considers lake stratifications with D1<<D21i.e.
a thin upper layer is based upon a <ieep hypolii,rnion. For thj-s
case he found that the baroclinic effect on the barotropic mo-
tion is of order D1/D2 smaller than the barotropic effect on
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the baroclinic motion. So, to order D1/D2 the coupling becomes
one-way. We omit the demonstration of the arguments here but
suggest Mysak (1984, p. 92ff) for further reading. The scaling
is based on the substitutions followinS Q.9)

ü: : tl,O ü', e z = COl', r: = 16 rr ,

(x,y) : = L(x', y') , tz = f-l . t', (2.1f)

H: = (Dl +D2)h' , H2t = D2h2,

where the primed variables are non-dimensional; L is a typical
l-ength scale of tlre consj-dered waves (e.9. half the lake length).
Higher wave modes, where cross variations are i-mportant, may

require a (x,y)-scaling which is different for each spatial
direction.

In the emergingi equations terms of oider D1/D2 are now j-gi-

nored in comparison to those of order unity. Then (2.6), (2.7)
transform to the non-dimensional equations (primes dropped)

V. (h-r Vlpr) + (Vr, xvh-r). 2 = (h rx Vh-r) .a ,

(V2_s-r;6t = _ (vrlxvh-r).!',

where S denotes a stratification parameter

Ri?s = (t')-,
with the internal Rossby radius

c 9'Dt Dc

-

..'i-a.
f- (Dr +D2)

(2.L2)

(2.13)

(2.r4)

(2.ls)

2.4.3 Scales in some Swiss lakes

Let us investigate now of which order these parameters are
in nature. Table 2 collects the results partly quoted in the
literature, Colunn 4 of this table demonstrates that negl-ect-
ing terms of order D1/D2 in comparison to unity is certainly
justified for Lake of Lugano and is stil-l reasonable for all
other lakes. Gratton's scale analysis also permits estimation
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Table 2 Properties of Swiss lakes.

of the thermocline elevation amplitude (column 9) which l-s only
a fraction of the epilimnion depth (column 1) and thus provides
some a posteriori proof of the suitability of the linearized
equations..

2.4.4 ttceonetric optics" approximation

In equation (2.I3) the stratification parameter S-r, whj-ch

is large in gieneral, occurs together with V2 which, in view of
the scaling, is only of order unity. Because (2.13) has the
form of a forced Helmholtz equation, neglection of V2 in com-

parison to S-1 amounts to the qeometric optics approxi-mation
(ray theory) - To simplify the analysis of the baroclinic re-
sponse we shall henceforth only deal with this approximation.

2.5 Scaled equations

Incorporating all above approximations the dimensionless
field equations take on the form

V.(h-r V{t) + (V1r xvh-1) - Z = (h r ( vh-r) 'i ,

"-r 
6t (V{, xvh-r) 'a .

(2.l6)

(2.r7)

Having solved this system for r! and 6 enables us to calculate
the veLöcit1" fields from (2.8) which now reduce.to
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16(V61 -2xv4+rr-
l^ue = -i ZYVV.rl -

dt ^("--r+ = -k'r-+['T on
L d{

i, is the unit vector along

(2.2L)

äD and E perpendi-

2rr)1 ,- -l
(2 .18) 1

(2.L8) 
2

In this approximation the velocity field of the lower layer is
merely barotropic, however, in the upper layer there are three
components, viz. the barotropic, the baroclinic and the wind

forced parts.

Mathematically, (2.:-.6) is a linear, inhomogeneous partial-
differential equation for r.p in two dimensions. We first try to
solve the homogeneous part of it and then study the modifica-
tion due to simple wind forcings. Having determined U as the

solution of (2.16) the thermocline elevation can be calculated

from (2.17) and, in alast step' the velocity fields from (2.18).

2.6 Boundary conditions

Integraiion of the differential equatj-ons (2.L6) and (2.17)

requires prescription of boundary conditlons. Let 0 be the lake
domain and ät its boundary. Because of the vertical walls one

boundary condition is no mass flux through the boundary

(Dr9r+Hz-).!=0, (2.19)

where ! is the unit vector perpendicular to the boundary.
Using (2.5) and the fact that i ^2 Ls a unit vector along ä?

(2.l-9) reduces to
ri,=O on A0. Q.20)

In the same way we find a boundary condition for 6 by recogniz-
ing that gi (i for upper and lower layer) must be tangentlal
Lo a0, gi. ! = 0. This again implies (2.19), but also (gr-gz)'E = o,

from which we find that to ord,er D1/D2

a0
a

dK

must hold., where
cular to 30.
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2.7 I'Iatural coordinates

ft is convenient to describe a long but otherwj,se arbitra_
rily shaped lake in a natural curvilinear coordinate system.
Thj-s means that we choose an orthogonal network which spans
the lake domain in a natural way. The basis for this coordi_
nate system is an axis, which follows more or less the thalweg
of the lake. The arc length s along the axis forms the first
coordinate of this system.

Figure 3

The position of the right
handed natura] coord.inate
system (s,n,z) in the lake
bas in -

i points to the positive
center of curvature along

In view of the restriction to elongated narrow lakes it is
possible to choose a straight linear n-axisi so the system is
curved only in the s-direction. In order to define the lake
domain uniquely ln terms of the coordinates the radius of cur-
vature R(s) must exceed half the width of the take B(s),

R(s) > {et"t (2.22)
I

Somötimes R(s) may be too small to fulfil (2.22); then a clif-
ferent choice of the l-ake axis may yield better conditions.

2.7.1 Conversion of basis vectors

Let. the fake axis be given by
a parameter representation (i,(s),
i(s)) within a Cartesian system
as shown in Figure 4. The coor-
dinates of an arbitrary point p

are then given by
I x

v

=i(s)-nsirrcr.
= i(=) + n coscr

(s) ,

(s) , Q'23) Figure 4

P(x,y )
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provided the n-axis is chosen to be straight. The set of ba-
sis vectors 9s. 9n and, g" at the point P can be expressed in
the form

.dx dy
!s = (ds 

' ä:-,0),

.dx dva:lZZn\
:n 'dn' dn ' 

v"

olz = ( 0 
' 

0,1),

\"7hich is easily simplif ied to the forrn

This form is typical of an

orthogonal metric.

2.7.2 Conversion of the V-operator

() )L\

9= = (*r-nKcosr:l , i'-nKcoso, 0),

9n= ( -sinc 7 coso. ,0), (2-25)

lz ( 0 , 0 ,1),

using (2.23) and the fact that the curvature equals 
^ 

= *.

An important quantity for
the eharacterization of a

coordinate system is the anc

element d.t. lvith the aid of
Figure 5 it follov/s that d.Q,

takes on the form

dr, = (J ds, dn, dz) ,
T - 1 _ 7-

(2.26')

Figure 5

Arc element i.n a natural
coordinate system.

Let the arc element of an orthogonal metric be given by

d! : (J1 dx1, J2 dx2, J3 dx3 ) , Q.27)

see Table 3. Gradient, divergence and curl- are then given by (see

Pearson,1974)

sradu = (+ #,+ #'i t,, e.2s\

.. t / a ) A .\divv = J;*E(r*r,"rJ3vr) + ;;(JtJrvz)+ fr(.rt.]zvz\) , 
(2.2e)
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curr v = =-+-[", *(J1 v?) - J, .](.r"rr'.Lr2r3 L ' Ax2'-3 'Jl "L Ax3\'2'2t t

_ a ,,,-, _ ö

', o*r,,tvl - Jz ax, (J:v3) ;

0AlJ: ar1 
(lz v2) - J, 

* 
('r1vr).i '

(2.30)

vI, v2, v3 are components of the vector v in the xyr x2r x3 di-
rections, respectively, Choosing the above coordinate system
requires the identifications

Jr = 1 -Kn, J2 = r, (2.3r)

System Coordinates J1 J2 J3

Cartes ian

cyl i ndri c

e1 l'iptic
natural

(x, y, z) I

(r, Q, z) I

(E, n, z) J

(s, n, z) J

I

r
J

I

I

1

1 , where ,.t - a (Sh2 E +.in2 ,11/2

1 ,whereJ=l-K(s).n

Table 3 Listinqi the
used in fake

coordinate systems that are often
hydrodynamics.

2.8 Equations in natural coordinates

!üith the aid of (2.2'7), (2.28), (2.29) Lhe equations (2.L6),
(2.17) take on the form

I
J

=h

-la"6r=

where we have also used

. --l A'tr. ^ -_ l düt 
.*t; f r*J*(i, J;,

--. -' ävt aü öh-r dü ah-l 
.l

^rl--T---dn ös dn an dsl

^. -l ^, -l 
idn- oV dn,l

än -5n as l'

, ah-l _ " 1 äh-1"l
's än 't J ä. l'

(2.32)

(2 .33)
IIa,P

=l.-LJLdS

(2.26\ .
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5, Nrrsoo oF t^tEIGHTED RESTDUALS

3.1 Breakdown of simple separation

The number of known exact solutions of the topographlc wave

operator for enclosed basins is relatively small (Lamb, 1932;
8a11, 1965; Saylor et aI., 1980; Mysak, 1983, 1984). The rea-
son is that the homogeneous part of (2.L6) does not permit se-
parable sol-utions for an arbitrary topography. Let us d.emon-

strate this in a coordinate system (xy, x2,x3) where the arc
element d! is given by (2.27). We select the separations

rl(x1, x2, t) = "t" 
. rf1(x1) -,12.ix2),

h-1 (x1, x2) = n-l (xr) .hrr (xil,

Jr(xt' xz) 
= a1 (x1 ) - a2 (x2),

J2lxI, x)

and then obtain, with the aid of (2.28) and (2.29), for the
homogeneous part of (2.16)

=a+(h.ra.r 
aül)* h2a2 

=a- rn;rarPla1 Ü1 äx, "'l -I öxt ' ' V2 ä*2 ' - o^2

, I azf hz äQr ähz-r hr a4z ar,r-tl ^ 
(3'r)

- i, rrl,r, Tx1 a.x, - W a", &<t J -"'

Lamb, Saylor and Mysak selected a wavelike structure

Ü26) = ej-ax2,

and a topography that varied only in the x1-direction. Thus

(3.1) reduces to

hr a ,,-r --r ätr,
a, tt'r T-- (nr ar a"r )

-i..x" a icrxr. a a2. ahir - 
(3'2)

+ a2 e ä>9(a2 
roe -) -; ;i nt -a*f = u,

which is separable provided a2/a1 ls only a function of x1.
Thus, Saylor and Mysak who used cylindric and elliptic coor-
dinate systems, respectively, were able to find separable so-
l-utions of (:.2\. In this study \"re do not want to be restric-
ted to topographies that vary only in one direction. Further,



vre make use of
does not allow
applj-cation of
(1972), on the
tion (2.16).
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a natural coordinate system which in general
separation. The next sections demonsträte the
the method of Weighted Residuals, see Finlayson
topographic wave problem represented by equa-

3.2 General-ized ansatz of separation

Just having shown that simple separation fails, we now try
to use the impossible anyhow, yet in approximate fashlon. ble

do no longer require strict separability but rather prescribe
the functional dependence in one direction. This functional
dependence shall be described by a well-chosen set of linear
independent basis functions that may already fulfil the boun-
dary conditions. It is obvlous that our problem then reduces
to a problem in only one dimension, since its behaviour in the
other j-s already chosen.

At this point., it seems appropriate to motivate the use of
the coordinate system (s, n, z) . ft naturally selects the smal_l

direction n; it is this direction for which the basis func-
tlons are selected, because the true behaviour can most 1ike1y
best be approximated in this direction, see however l-ater de-
velopments.

Let {Po(s, n)} be a convenient set of known basis functions
indexed by o,, and 1et rl(s, n,t) be decomposed into these basis
functions as follows:

ü(s,n,t) = P0(s,n) 'rpo(s,t) (3. 3)

Each basis function is wej-ghted by a function rl.,o(s,t) that is
assumed not to depend on n. In other words, all n-dependence
has been thrown into the known prescribed system {eo}, which
preferabty is chosen from a complete set. If N < *, (3.3) is
an approximat.ion in so far as there exists a certain fimita-
tion in the variation of rj.r, i.e. the set {Po} looses its com-
pleteness. ft is hoped that truncating (3.3) for very smal1 N

will already provide the essentials of the physicaf behaviour.

N

L
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3.3 Integrated representation of the equations

Let lD and lB be a linear differential operator and a boun-
dary operator, respectively, e.g. for t = 0 in (2.L6)
rD = V.n-tO*-2,. 1Vn-11 xV and lB=1. Equation (2.16) wirh
its boundary condition (2.20) reads then

lDtl = 0,

lBü = 0,

in 0,

on AD,

(3'4)

(3. s)

a weighted in-

( 3.6)

oofip at = o, (3.s)

and lower indices is
independent of n. Se-

which already fulfil

(3. e)

Here 6 öp and 6 Q3p are weighting functions defined over D and ä0,

respectively, and 6 is a symbol to remind the reader that in
the space of generalized functions the functions are arbitrary.
(3.6) follows directly from (3.4) anil (3.5). Conversely, (3.4',
(3,5) fotlow from (3.6) only if (3.6) holds for any function
60. This is a consequence of the fundamental lemma of Calculus
of Variation (see Courant a Hilbert, L967).

I{e now insert (3.3) for p and a similar expressi-on for 6S,
M.

60 = L OU (s, n) ö qß (s, 11 , (3.?)
ß=1

into (3.6) and obtain an expression of the form

A weak form of (3.4), (3.5) can be obtained by

tegration over the respective domains

J,t v, 6orda + f (8,1,)d oatcie = o.

DA0

f to eoUll ou oofi aa + f (B P*uq) es

DA0

in which sunmation over iclentical upper
understood. The underlined functions are
lecting M=N<- and sets {eo} and {Qß}
the boundary conditions

Po] = o, oel = o,
I ät laD

the second integral i^ (3.8) vanishes automatically, except



perhaps \^7here the
note these points
points, see Figure
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intersects the boundary ä0. We de-
and s = L and call them the end

lake axis
by s=0

6-

0-/^,4
d B (P^ ü*) 0" 60in ds. +

p ov

0'

which vanishes for all OOSO only if we impose on rlo the boun-
dary condition r1ü = I at s =0 and s =L. If it is further re-
cognized that

da= Jdnds,

in vj-ew of Figure 5, equation (3.8) will take on

tt^R
J tJ tn Poü*) Qg J dn) ö0i ds = 0'
SN

s=L

s=0
Figure 6

Configuration of an elongated lake.

So the only possible contribution of the second integration
in (3.8) could be

(3.10)

the form

(3.11)

(3.13)

L'
t^,R
) B (P^ ü*) Oo 6 Qin ds,p uv

L-

The inner most integral of (3.11) can be expressed as a matrix
element operator MIßo on rfo so that (3.11) becomes

(3.12)

which must hold for any öQff. Invoking the fundamental lemma of
the Calculus of Variations, (3.12) reduces to the two-point
boundary value problem

Mßo,Jro(s,t) =0, 0, ß=1,...,N, 0<s<L,
V0(s,t)=0, s:orl,.

So, our .inherent tv,/o dimensional problen (2.16) has been redu-
ced to a finite set of coupled spatially one-climensional iinear

J Meo ,l,o öö$ ds = o,
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differential equations (3.13)1 with boundary conditions (3.13)2.

This procedure will now be applied Lo (2.32) 
' by first assum-

ing homogeneity, i.e. no wlnd stress, I = 9, and then calcu-
lating the matrix elements lvllgo for a given lake topography.

3.4 Matrix elements

SubstitutinS (3.3) into the homogeneous system (2.32) (with
no wind forcing) and performing (3.6), thereby incorporating
(3.7) , we obtain

. = ll Lfr'f fite, vir +

0,u
(1)

3 rr-l ,r 3tp^ ,tol
dndnuc

(2) (3,14)

'3!]- ^'-r I a- -än frteo ,t,"1 - ä *tn" ,1,") I ou öo; dnds,

--1, --ö-
where use of the summation convention has been made. Each term
in this expression will be evaluated separately and boundaries
for the integration in the transverse direction will be deno-
ted by B-(s) and B+(s) as shown in Figure 2. In the following
deductions use will- be made of Leibnitz I integration rule

s* (s) e+ (s) B+ (s)

IS"*= l,3,u",*- [u99u"JdsJds)ds
B- (s) B- (s) B- (s)

e+(s)

= -L [ ."*- ru"rl .S * ,o"rl .aB- -n"u_l=,, - *- .- ",1"* äs .'",1"_ n.

B+

I
u

(3.ls)

^cF 
=dn,

vrhere F anci G are arbitrary, differentiable functions of s

and n.
With these preliminaries the terms (l) to (4) can now be eva-

luated. The rule of transformation is to remove differentia-
tions of the topography h as far as possible, which can be

achieved by integration by parts:



TULT (L) :

Te,rLm (2) .

Ta^rn (3\ :

Ta,r,rn (4) |

(2) =

(3) :

(4) =

.",,-1"
I *( " fr teo u,!r) ou a"

* f + S re* ,i,!r eu dn - I L"' *,"* ulr p a"

*[ of f + *Q3 dn + ; f -ro 
ouan]

- ,,,o I !-r äPo ä8ß o- äü? r r,-l - äoß ,.-';J-t as as ot- a" J .r Po ä. dt

"[a 16-1dP61^ . rh-läPo äQß.1
*.La= j J a=eson-JJ as * o"_l

. *l i+' * 06dn +.* f *po es dn

rh-l* äae-l a"l rh-1 - ^ ^^- l= PoTädnl + a-+ I ? n"Qsdn'

- ac -

. 
^ 

l- . r ,.1
J än lt-) ' 'r ;;(eo üt lJ o*an

- [r.'-r "3tn^,r,?r.3an) dTt dn

.d r.-r - äPo äQ3
-q:ih'J;=:dn'LJdndn

(3. 16 )

(3. 17)

- r--1
I +- + (P^, {r0) o^ dn)dltdsu'p

- t * (* leo ,1,0) as)'h-1 a.' (3.18)

0, r --r ä.äP0 3ü0 r -i Ä-ü" 
-J 

o' ä"(C eg) dn - a. J h'an(po eß) dn,

-jr# f; rno v*) eu a"

- * I n-t fiteo ,i,"les dn + i tt * ($reo,t"rou) a'.

:.,0 . - 
^P^ o J f ._, äP,r ^- ä ,J 

h-'f osdn - v* * J rr-' ;f euan (3.re)

N( -.; äP^ Ärl.0r , AP^+ ü* J h-r ä(1;_ es) dn+ ä I n' -fosa".
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Parenthetically we may remark that the process of this eva-
luation is more complex when the basis functions are not re-
stricted by the condition that they vanish along the shore,
because further integration by parts is necessary in that case.
Insering (3.16) - (3.19) into (3.14) yle1ds the required form
(3.12) of (3.14), namely

s=L f r2,0 --1o= J a" ooß I;jtlSroauan]
. äüt I t h-l äPo. ^ u-I r h-l äQa 1. asLJJ u=!egd.'.*jlnoos*-,J " 

nr#u'i

. ,.nt ä 16-1 8Ps^ . ,6-r äPo äQp - , , - äP^ aOß --rtLasJ J #osan-J " #ffan-jh'r"##u".i
dL'o' 'äP^ äoo ' 

(3'20)
* I l- [ r.'-t 19 o, an - [ r.,-r p- "]ß a'ldsLrdnp)udnJ

, äP^ äOa r , äP^ äQe A r -, äP^ -l* ü'LJ h-' a# ffan- Jr'# #u"- #Jn-'T*oßdnj.j.

. s+ (s)
The inner most integrals are understbod as J Since (3.20)
must hold for any öQ8, it follows that B-(s)

(3.21)
ldgoi!0:0, rl,, ß=1r2,...,N, 0<s<L'

rl,0=0, s=Orl,,

where the l-inear matrix operator MIgo is given by

Mßo = 
'Ag ;fu

* (nä3.3r" r33 - r3ä, r*9.

+ tfr ufil - *äl - rä3'# ß.22)

* (- Ma3 -'?3,f;

* tufr] -'ä3 - *'ä3,,



$/ith

I 1 _l
N4XX = I h-' J'P^ en dn,p

l0
Ma^ =

20
Mßo =

01
..60

o2
Mßo =

äP^
j n-'" ' ;j Qg ar',

, aP^

J n-'-Tf Qs dn,

(.,äP^äOa
i h-' J-'_j :s dn,.l ds ds

r , äP^ äQe
I h-' :- =l dn,J .Js dn

. 1 -r äQa
i h-t J - p 

--a dn.i u i.ls

(1äQa
I h-' P^ -j dn, (3.23)
J üdN

äP^ äOo
I h - .J 

- - 
dfl.

ldndn

r _, äPo äQß
lh--=:dn.I dn ,.Js

*43 =

'a* =

ll
Mßo

Mßo

The individual components ltrgro in (3 . 22) are
s and depend on the topography of the lake,
of the natural coordinate system, J(s, n), on

+lake shore, B-(s), and on the sets of basis
and {eU(s, n) }.

3.5 Incorporation of the wind

known functions of
h, on the metric
the shape of the

functions {eo(s, n) }

(3.24)

Applying to
in secti-on

(3.2s)

field.

If, instead of searching for the free modes, \^re want to
consider the response of the lake to external wind forcing,
the homogeneous two-point boundary value problem must be re-
placed by the inhomogeneous set

where for
the rhs of
3. 3 yields

which can

MIp^ Ü0=!Vq, ß=I,2,...'Itr, 0<scLDq ' p'

ü0:0, s=o,L

prescribed wind 1, WU is a knohrn vector.
(2.32) the procedure that is described

__ I _- dn -L dnws = J Jh(rs an - tn J -äs ) Qß dn,

be calculated for a given lake and wind
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4, Rppt-tcATIoN T0 spEctAL TopoGRApHIEs

4.1 Basic Assumptions

Consider now a straight lake with symmetric cross sections,
thus K(s) = 9,

h(s'n) = h(s, -n) .

WiLh the aid of Figure 2 it follovzs that

(4. r)

(4.2)

The effects, of the topography of the lake on the waves will be

incorporated by choosj-ng a profile of the form (cf. Saylor et
a1 ., 1980)

le*(=)l= le-tsll : ]etsv.

h(s,n) = h6(s).h1(s,n,9,e),

r r- rQ
h1(s,n,e,e) = 1+.-l"itIl ,

where the topography parameter q and the sidewall parameter e -
have been introduced. Their effects on the topography are
shovzn in Figure 7. Usually the side\,r'a1ls of the basin are cho-

(4.3)

ocq<1 '
a=l
.q>l
q*-

Figure 7

Cross sections of
the lake basin.

e.\(s)

sen to be of constant depth, but here we prefer an expression
of the form (4.3) because of analytical simplicity. We require
e > Oy/D2 (cf. Figure 2) which yields for e the val_ues listed
in Table 4. There are two reasons why the introduction of si-de-
wa11s is necessary. Physically we require vertical boundaries,
otherwise all waves impinging on the shore would break. That
means that nonlinear effects would be important. Mathematically
e I 0 prevents some of the matrix elements (3.23) fron becoming

U.

-] at.t

z

s ]et't

N ,'/
,/,,,



La ke D1 [mi Drt"* [m]
D1

e= 

-

D2mean

Lugano

Züri ch

Geneva

t0

17

l5

t83

5?

'I 53

0. 055

0.231

0.098

non-integrable. It
ly the results will

-49

will have to be

depend on this

Tabfe 4

Ivlagnitudes for the
sidewall parameter e,
calculated from Tabfe 2-

tested later on how strong-
sidewall parameter e.

4.2 Symmetrization

That th.e lake bathymetry has
cross sections suggests to split
into two parts, viz. a sl4nmetric
part ü_, whereby n = 0. is meant

with ü+(s,n,t)
rl_ (s, n, t)

been restricted to syrunetric
the motion, described by il.i,

part U+ and a skew-s)rmmetric

to be the center of symmetry:

ü(s,n,t) = V+(s,n,t) + ry_(s,n,l) ,

r!.r(s,-nrt) ,

-t- ( s, -n, t).

(4.4)

(4.s)

(4.7)

The separations (4.4) and (4.5) require that the set of basis
functions {Po(s,n)} and {Qg(s,n)} will have to be split accor-
dingly lnto these two parts, since only the basis functions
contain an n-dependence (cf. (3.3), (3.7)). As a result, the
matrix elements (3.23) wi1] be split into parts that act only
on synunetric or skew-symmetric stream functlons {. Let us de-
monstrate this by using

eo(s,n) = ej(s.n) + Po-(s,n) ,

Qß(s,n) = O[(s,n) + Qß(s,n) ,

(cr,ß=I,...,'o) (4.6)

as basis functions. Then :"t u!! we obtain

= i n-t 1ej + eor rof

=Jn-teio[a"+j
(-1 -+*Jn-P0Qädn+

,,0 0
"ßo + qß) dn

n-r pJ oE dn

l1
j h-' P; Qg dn,
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where the last two sunrmands vanish because the integration of
a skew-symmetric function over a symrnetric domain always va-
nishes. Simil-ar properties hold for the other matrices.

It is now advantageous to introduce the separations into
symmetri-c and skew-symmetric functions for the solution func-
tions rfo. rn other word.s, the vector rf will now have the form

!, = (ü1, V?, ..., d , ,l'!, VL, ..., d ) .
+-Y-, 

--l--,

symetric skew-symetric
components components

(4.8)

(4.10)

This is tantamount to spl-itting the solution space of V into
the direct sum of symmetric and skew-symnetric subspaces, and

it corresponds to the recognj-tion that Pä, P; and Qfi, Qf con-
tribute to dlfferent submatrices i-n the matrices lllj . ror in-
stance, in the notation of (4.8) the matrix operat;r U00 c.r,
be written in the quasi diagonal form

(4. e)

where Moo++ and Moo-- are given by

*33.* : J i,-i e[ efi an,

la33-- = I n-t n; as dn.

Matrix operators that take on this form can not couple the
slmmetric and skew-symmetric part of the motion. Considering,
on the other hand, the matrj-x element fq,79, orpu

,tnä: = I "-'+ af dn + i r,-1 S o5 a"

* / n-' * r; an + f n '+ o[ dn, 
(4'rr)

shows that here the last two summand.s vanish because the deri-
vative in the n-direction changes the syrnmetry. Thus, matrix

[y00++ 0 I
uoo =L-. 

rroo--j,
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an odd n'ümber of derivatives an

form
an-f-0 M'"-l

2a+- ^ ,, (4.I2)
ui

by

elements (3.23) that contain
the n-direction take on the

T
I

M20 =1- | r',1L-

where the elements are qiven

^_+?n+- ( -i dP*Mää = Jh 
- nf Qs an,

,"20 -+ _ r ,_-r aP; ^+ -._-rvlßcr = J n - An 9ß on.

Matrix operators of the type (4.I2) couple synmetric and skew-
symmetrlc motion, which is necessary for wave solutions to
exlst. To make this explicit, note that (3.21) can be written
as

N!++ 0 I0 [4'L
+i - \

o M--l ln,1*- o i/
L- -)

("
'r, 

'l

ü_i
-l

(4.13)

(4. r4)

through a har-
assumption of
to the system

(4.1s)

where the operator ä,/ät has been replaced by iir-r

monic t.ime dependence .icot o1 the solution. The

e.g. a purely symmetric motion, i.e. ü_ = 0, leads

ior Mä; VI = 0,
o', P:Ir.. . ,N

*ä; {,i = 0,

which, in terms of (2.16), corresponds to

irrl V' (h-1 Vrir+) = 0 on D

(vrP* x vh-1)'2 = o on o (4.16)

Ü*= 0 on äD

A non-trivial {* satisfying this set of equatiöns permits only
o =0, as proved in Appendix B, which shows that there exists
no wave in this case. An analoqous conclusion prevails when

!+ =0 and i!_ l0 is assumed.. Proper topographic waves must the-
refore have both non-trivial rl* and !.r_ functions.

Thus, we have demonstrated, that -within our approximate
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formalism - the behaviour of topographic waves is well incor-
porated. Indeed, corresponding to the results of Ball (1965)

and Mysak (1983), v/e obtain the correct features of these wa-

ves. {-functions which are solutions of (3.21) are necessari-1y
a mixture of symmetric and skew-symmetric components. At cer-
tain times plots of the streaml-ines are skew-synmetric, at
others they are sFünetric and in between they are a comblnation
of the two (cf. Figure 8).

l=0

,=*'

T = ]43 h T = 97.7 h

F igure 8

Showing the syrrunetric and skew-syfiunetric aspect of the
motion of topographic waves (from BalI, f965). For t =0
the motion is purely skew-symmetric in the n-direction
and for L = U4 T, where T is the period of the motion,
it is purely symmetric. At intermediate times there is
a mixture of both aspects. This feature can be seen both
in the ground rnode (left) and a higher mode (right). No-
te that the modal structure of the higher mode (right)
changes in time

We regard this as one of the essential features of topo-
graphic waves, and the fact that the equations (4.14) quali-
tatively exhibit these properties may serve as a partial cor-
roboration of the appropriateness of the approximate model.

, t-
ö

tn



4.3 Basis Functions

The above procedure requires a set of basis functions that
fulfil]s the boundary conditions (3.9). Further, we split the
set lnto a symmetric and skew-symmetric part, and for simpli-
city also choose {es} and {Qg} trom the same set (Galerkin
procedure). The simplest choice is then to take trigonometric
functions, sin and cos, which form a complete set and in the
form

- 53 -

rj(s,n) = *"(nt"- jl fr), Po(s,n) = sin(n,' #),
af,(s,n) = "o=(n(s-*, #), afts,nl = "t"('efr),

(cr'ß=1'2""'*'

they satisfy the boundary conditions (cf. Figure 9).

4.4 Calculation of the matrix elements

With (4.3) and (4.17) the matix elements
culated. Simplifications are obtained with

2n
B(s),

_2dx=-:::-.-;-dn.rJ(s)

(4.L7)

Figure 9

Basis
functions.

(3.23) can be cal-
the substitution

(4. r8)

(3.23),Straightforward calculation, using the definition
(4.f ), (4.2), (4.3), (4.6) and (4.L'7), yields
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t::. = " 41 lh-r cosn<o-]lx cosr ro-]l x ax,

00-- -1 t -ltä; = eho' I h'sinnox sinrßx dx,

43.- = znß hil J r.-1 
"o" "t"-r5 x cosr ßx dx,

*:3-. = -2n ((s-ä, 
".t I ir-r sin nox si-nn(ß-]l * a*,

*ä3.. = nro -lr t * nöt J" r''-r sinn(o - jt * 
"o= 

r 19 - ]y x ax,

Ml.--=-noPr.,^1 f *h-r cosnax sinn ßxdx, 
(4'20\

IjddSU)

4j** = nto -fl * + .1" 
n-t cosr(cr-]l* "t"n(ß-*) * a*,

t8l = - "ß * ^;t J - h-l sinrcix cos n px dx' 
v''LJ

2Or- I -1 f.-l 1.
%; = -2r (ct-il no- J h-r sinr(o- j)x sinn ßx dx,

)i-! -1 t r 'r (4 '22)
fSä = 2no ho' I h-r cos 'rox cosTr(ß -f) x dx,

(4.le)

(4.23)

4l* = n2 {o - )r)t e - }t e-1 tS t' no' I x2 n-1 sin n l" - }l x sin nl s - }1 x ax,

räl- = n2 oß B-l t$l2 i6r | *z n-t cos rox cosrßx dx, 
(4'24J

ri].. = 4'n2 (a-]rte- jl"-r n-t Jr,-r =i,.,nto-]lx sinn(s-j)xax,

))-- . (4 '25)
tui- = 4.n2 a1e-] h;r j rt-l .o= nclx clcs ri gx d.x,

rä3.- = ,n'(o-|lerr * not J" tt si-nntcr-!)x cos sßx dx,

43-. = 2n2u(B- j,"-t # n;t i * tt cosro,x srn n(6- j1x ax, 
(4 '26)
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)1+- a It;j.- = 2tr2 1a-jl o "-t *trt .f " tt sinn(o-])" .o" nBx dx,

t'ul-.= 2r2a(ß-],tt*qt /xh-r cosnc*x sj-nr(ß-|)" a*,

(0'ß=r,-'.'N)

(4.2'7)

(4.31)

cont. +

where the index I at h-l has been dropped and the integration
I

,i is meant. For a prescribed topography, i.e. for selected e
0

and q, the integrals in (4,19)-(4.27) can be worked out once
and for all. The matrix elements are composed only of five
different integrals which must be cal-culated on a computer or
pocket calculator. To this end. we deflne the functions

according to
r0-

where h 1s

The matrix
are

Ll -

'2

13-

li -

given by

elements

,.00++
60

*90-- =^-60

10++
lvt^

iJ0

#0-- _
b0

ri(a,b,e,e ),

1(.-1
J h - sinrax sinr bx dx,
0

I
(-1
I h-' cos rax cos r bx dx,
)

0

1

I " rt-r cos rax sinr bx dx ,
)
0

I
f x2 h-r cosrax cosr bx dx,
)
0

I

l* n-' sinn(a-!r)x sinntu-]lxa*,
0

(4 .3)2

on = I + € - x-.

(4.19) - (4.27) expressed in

B hol h(c, - *, u- i, ,

e hf,l ro(o, ß),

nt" - *)* not t, rc - j, " - lt,
-"" * hor 12 (cr, ß)

(4.28)

(4.29\

(4.30)

terms of these



,01++..ßcr

ro1--
ßq

.I

n{3-})

^aB
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* n;t ,r<"-|,0-lt

ir[l r, {ß, o) ,

43.- = - 2n (a -*l 6t toto - |, ß),

rä-. = 2nc, h[l rt(*,ß - +),

'u:3.- 
= znß hfr r1(cr.- t,ur,

r:3-. = -ztr rc-lt n;I roto,o -]1,

4l* : ,2to- lt(ß-+) e-lrffr2 h;l 14(0,ß),

4i =',2oss-Itff12 i';1 r3(o,ß),

GA.. = 4n21a-]',t<s-ls-l til :'o{o-}, B-Lr),

)') -- t -1 -ll,t;; = Atr'aB B ' h;' rt (o, ß) ,

12
ß0.

+- = 2n2 1s - ]l u u-t iffl no t r2t9, a- l) ,

43-. = 2n2a(B-*,"-t rffl r'or r2k\, s-+),

41.- = 43.-,

4l* : 'ffi-* , {c[,ß= 1,...,N)

having omitted the parameters e and q as arguments of 11. The

numerical evaluation of the constant part was performed on a

computer using the IMSl-library subroutines. The results, with
a relative accuracy of 10-6, for selected E and q up to order
4 are listed in Appendix E.
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5, cHnruruel MoDELs

5. I Basic equations

The restricted mode1, which has been presented in chapter
4, is now applied in a first step to straight channels, which
have in their cross direction a topoqraphy of the form (4.3),
see Figure 10. Such channels have afso been considered by Grat-
ton (1983) , but using a different method.

Figure I0

Infini-te channel
\^/ith different
topographies in
the cross direc-
tion -

The channel is assumed not to have a mean flow along the
s-direction. The considerations regarding the temporal se-
quence of the symmetric and skew-symnetric parts of the solu-
tion (4,8) lead straightforwardly to a harrnonic time dependen-
ce of the form

! = (9*(s) sinot; ifr-(s) cosot), (s.1)

with strictly real ui. There is a phase slni_fL of r/2 -corre-
sponding to V4 T- between both components, which is in accor-
dance with the results found by Ball (1965), see Figure B, and
Mysak (1983, l-984). Introducing the definitions

roo"ßo

"10'.ßo

"ol''ßo

e n;] x9ou bcl' ,

AB - -r --10
äs "o "ßq '

AB

äs
hö1 cont- +01

"ßo'
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'ä: = no' *i3,

'^:3 = n;' *33 ,

."1I --1 , ä8,2 . -r -.11,u,ßo = lJ (ä=, n0- Kg*,

,?:" = e-r no' 
"31 ,

with consta"t rfil the matrix operator U ß.22) may be written
as

IlT = R r,:1 *00 9'

. e "-rt 
t5lo - Eor) * f, ta nitl too)#;

- G,H horl 5ro- e-1 rffl2 
^ot 

r*- e-l ir;r \t'){, (s.2)

+ rror t _ \ro _ ror, *
^. -1dn^- rn

v f'Lv

With a constant width B(s), which after all was also the
choice of Lamb (1932) and Mysak (1983, 1984) in their coordi-
nate systens, (5.2) reduces to

ü = 
"no 

q = e2 Eoo ^+ * 82 ho qg"'{ uoo ;f- äsz ät " ds - dsdE
, (5.3)

-J2 L+ e(-x20-n021 l - "n^ 
a-ho' 

*zo.-n dc ds w ds

Because (3.21) is a homogeneous system the operator MI can be

multiplied by any non-zero function without changing the solu-
ti-on rfo. rherefore tll is a differential operator vrith constant
coefficj-ents only if 

_l
ä hn'

vroä=constant=r;.

For such a case the profil-e hg(s) must take on the form
cc

ho(s) - e L". (5.4)

c = 0 yields constant depth in the s-direction and c I 0 exhi-



-59-

bits the same features as these already considered by Mysak
(1984, p.102). However, when c lO, in order to obtain reaso-
nable lake topographies, the lake must be subdivided into at
least three adjoining parts as shovm in Figure 11.

rII

Figure ll

Depth profiles yield-
ing piecewise constant
coefficients for the
operator lft (5. 3 ) .

(s.5)

- 

c<0
--- c =0

c=0

r,r1e2 *oo4* 4 -

- "(E'o-* 
* 

^02-+

r,r1s2 
^oo-- 

4 -- dsz

)nr- n?r-
+ B(K-'' + K"-'

- 

s>0
^n

Obviously when c I 0 the solutions to each subsection must
fulfil matching conalitions, which complicates cal-cul-atj-ons
considerably. llc therefore choose c : 0, a depth profile which
is constant in the s-direction for a1l sE(O,L).

The operator then reads

E = "'roo #; - r" +.- B(r2o * to'r * .

With a harmonic time dependence of the form (5.1-) the boun-
dary-value-problem (3.2f ) becomes

dI a." t-

= (,f,1t=1, ...,,t1t"l)

x22**) ,lt.
- :+

t) --K'- ) ü_

.d) a" t* -- u'

U <S <L

0 (s <L
(5.6)

rl . (s)
_+

ü-(s) : (v1t"l, ...,,tlt"l) = 0,

s = 0,1-

s = O,L
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in which the Ers are constant (NxN)-matrices, of which the
values depend on the choice of the basis functions Po and Qg

and the topography in the n-direction. Equations (5.6)r,2 forrn

a system of ordinary second order linear differential equa-
tions, which can be transformed into a system of algebraic
equations by writing 

. k

t = (1*,1-) = u't= {"r,...,cN; cN+1 ....,c2N) , $.7)

where k and co are complex constants. Equations (5.6)r and
(5.6)2 can then be written in the compact algebraic form

Cß0(t.o,k)co = 0, o'3=1"..,2N, (5.8)

where the matrix efements Cgq are given by

cg6x = r,r (t'r.12 *ffi** - 
^33-.) 

, o,ß=1,...,u

.- = i/rrr\ (K?0-* +K92-+ ). 3=1""'rr
"tjo r \!'J:/ \ "ß,o_N "ß,o_N, r ct=N+I,...,2N

(s.9)
.. - -.r-'.t(x?0*- +K92+- )- cr'=r,"',N
-6o' - r \ri'/ \r.ß_N,0 , '.ß_",or' ß=N+1,...,2N

csq = ,", (r.r.l2 
^31;;._, 

. K'zß1;;"_r) , o,ß=N+r,...,2N

whereby the aspect ratj-o t : B/L has been introduced. A non-
trivial ü requires

det C(cu,k) = 9. (5.10)

This is the dispersion relation för o(k). Remember that k is
allowed to be complex, whereas ot is considered to be real.
Should k, as determined by (5,f0) be real, then rf is purely
harmonic both in space and time and (5.7) corresponds to a har-
monic wave travelling in the s-direction. For complex k, rlr

stil1 oscillates in s but is attenuated or amplified depending
on v/hether Im(} s) > O or < 0. Purely imaginary k yields a {'L
with no oscil-Iations along the s-direction. For infinite chan-
neJ-s only the first of these solutions j-s reasonable, but the
other solutions are equally meaningful in channels of finite
extent and will also be analyzed. At the moment .the boundary
condit.ions (5.6): and (5.6)a will not be satisfied because
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infinite channels are considered (cratton, 1983). For such a

case o(k) is a continuous function of k. Fulfilling boundary
conditions in a further step only breaks this continuity of
the dispersion relation, selects isolated points on this curve
and yields the eigenfrequencies for an intersected, finite
channel, i.e. a lake.

It is demonstrated later on that, by selecting u, the wave-

number k falls into different regimes, a real regj-me, a com-

plex regime and an imaginary regime, each of which corresponds
to different frequency lntervals. Equations (5.8)-(5.10) re-
quire further remarks:

l) The dispersion relation o(k) depends only on r.k, therefore
the horizontal dimensions are only important through their
aspect ratio. ltithout loss of generality, the aspect ratio
for channels may be set to unity, r: = l.

2) (5.10) yields a polynomial of order 4N in the complex va-
riable k with real coefficients depending on o-i. Therefore,
by invoking the Fundamental Theorem of Algebraf there are
4N roots for a given u,

3) The structure of Cgo, leads to a polynomial in only even

powers of k.

4) By these arguments

both tk and their

Taking the limit or

ally be independent
wavenumbers.

we find that the 4N roots consist of
complex conjugates.

5)

of
the dispersion relation will eventu-
id, therefore there exist asymptotic

The dispersion relation o(k), obtained from (5.10), enables
us to build up channel solutions. To demonstrate this, let

{kY}' \€at \=1,'..,4N, (5.11)

be the set of roots of (5.f0) to a given frequency o. Sincek"
satisfies (5.10), there exists for each y = 1,...,4N a non-tri-
vial solution vector of (5.8),
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o = 1, ..., 2N,
Y=1,.'.'4N,

cr=1r...r N,

0, =N+1,..., 2N ,

"oy dy, 0. =rr..., N,

"oy dy, cr,=N+lr..., 2N,

(5.6\,2.

no sm over Y
Y=r,...,4N.

(5.12)

coY € c,

which fulfils

"ßo(',kr) 
c*.r = o, ß =r,"', 2N'

Therefore, for selected o and y, the channel solution qr =

(rl.; ü) of (5.6), e reads
_+

kv
i ---L sL

-CXY - '
kv

i--l s
L

"0,Y-l

However, since equation (5.6)1,2 forrn a Iinear system, a gene-

ral channel solution can be obtained by an arbitrary linear
combination of solutions corresponding to different wavenum-

bers k". with arbitrary

dy€C , y=I,...,4N,

the superpositions
.kYra: s

L

t--
Y

k,
: l^

- \-- L

Y

solution of

From equations (5.12) the approximate solution {(s,n,t) of
the form (3,3) of equation (2.L6) can now readily be construc-
ted. Using (3.3), (4.8), (5.10) and (5.12) yields

r N aN i!'s r
Ü(s,n,t) = sin". I f eits,nl .f " "-.ouu., IL ^-- .= 'r

u-r t -r
kw (5.r3)

r 2N 4N i:=rs - -l

+cosr,ltIr_ P^,,,(s,n).f ." "oYdYlt / u-r! )'"1-t y=l

where, in an infinite channel, dy€C j-s arbitrary.



-63-

5.2 Dispersion rel-ation

The dispersion relation, which is obtained by fulfilling
(5.10) can be plotted in a coordinate system (Re(k), fm(k),o).
The resulting curves ür(k) are then symmetric to both Re(k) =0
and rm(k)=0. Figure 12 displays a schematic plot of the disper-
sion relation for an infinite channel in a first order model.
For graphical transparency e= 0.05 and q = 0.5 have been chosen.

V
,/l

I

i
I

ult
I /ii

it:-F
l;"1

I

2

I

.r'
1

Sr

R+
Figure 12

Schematic
o(k), k€ 0
and q=0
k is real,
me3 kis

'/i)
l,/

I

plot of the complex dispersion re.lation
for an infinite channel with r = 0.05

.5 in a first order model. fn regime 1
i-n regime 2 it is complex and in regi-

purely imaginary.
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Three regimes I - 3 can be distinguished which are separated
at the periods listed in Table 5. In these three regimes the
wave numbers k belong to different mathematical fields (see

Table 6) each of which determines the structure of the solution
(5.7) in the s-directj-on. In the first regime, where 0< o < ol

Table 5

Periods, which separate the regimes, depending on to-
pography- and sidewall-parameters qand e, respective-
Iy. The period T is calculated from the dimensionless
or using the scaling (2.f]) and J f. =L/I6.9 h accord-
ing to 45o latitudä. 2tt

q T1 thl
e = 0.05 | e = 0.10

I2

e = 0.05

hl

0..l0

0.5

1.0

2.0

5.0

52.8

60.5

83. 0

174

58.3

64.3

199

10.5

13.?

22.0

58.2

ll.B
14 .4

2?.6

61 .8

q 2 3

0.5.l.5

2.0
5.0

4IR 4E 4JI

Table 6

Fields to which wavenumbers belong in the different re-
gimes 1,2r3 ot a first order model. IR and C are the
real and complex fields and ,J= iIR; further d=C\(IRuü).
The figure 4 indicates that four roots belong to that
field.

or T > T1, k must be a real- nu:nber, since rp - exp(if s) accord-
ing to (5.7) , the spatial behaviour in tle s-direction is pu-
rely periodic. Typically of Rossby-waves there are always two
wavenumbers for a given frequency, i.e. both large and smal1

wavelengths occur.

In the second regime, üJl < o < 0J2 or T2 < T < TI, k must
take on complex values in ord.er to fulfj-l (5.10). Therefore,
solutions are products of both exponentj-al and periodic depen-
dence. Because of the exponenti-al growth or decay of the solu-
tions, they have no physical meaning i-n an infinite channel.
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However, in lakes, which are of finite extent also in the s-
direction, they may well be considered, ft is characteristic,
of a first order model that in regiime 2 and for all studied.
topographies the modufus of k does not depend on i!. This can
easily be shown from (5.10) using (5.9) and Vieta,s theorem
for a quadratic polynomial. Therefore, the dispersion curve
o (k) is located on the mantle surface of a circular cylinder
of which the radius, however, depends on both, e and q, see
Table 7. In the third regime, i.e. for ot > co2 or T < T2, k must
be imaginary. Thereforef the sofutions exhibit pure exponenti-
al character. Again i-n the channel these types of solutions
can not make physical sense. Moreover, as 0J + @, the vTavenum-

bers take on the asymptotic values k1 and k2 listed in Table
7. In a first order model the dispersion curves r;r(k) allow for

lkl

a = 0.05

inZ
e =0..1 0

5.9

6.2

6.3
Äa

ikr

e = 0.05

6.6

6.9

6.8

6..l

EÄ

5.6

5.2

4.4

AO

5.0

4.8
t1

Table 7

Characteristic wave numbers lfi, t, and k2, of tile first
order modeJ- as defined in Figure 12 tabulated for va-
lues of q and e.

each üJ 4 wavenumbers k, except when c,..i = üJI and u = u2, where
two distinct regimes merge together forming double roots. At
these critical frequencies the solutlons, satisfying (5,6) are
not onfy of the form exptifs), see (5.7), but also

(+ s) exp (if =) , (5.14)

so that again 4N linear independent solutions exist, although
there are only 2N different roots k. For later use, the union
of the three regimes I,2,3 of the dispersion relation in Fj_-

gure 12 will be called a node uwi't.

-i k2 in 3

e =0.05 I e =0.'l0
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The second order model is more complicated. According to
(5.11), to each frequency there are now 8 wavenumbers k, for
which (5.10) is satisfied. In Figiure 13 its dispersion rela-
tion o(k), k€C is shown. Except for distortions of the cylin-
der it consists of two nttdz uwLt-t pfaced into each other. Thus,

there are now two branches wi-th real, complex and imaginary
kts, respectively. Because the transitions from real to com-

-+
Figure I3
Schematic plot of the dispersion relation ol (k) , k € C
for an infinite channel with e =0.05 and q=0..5 in a
second order mode1.
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plex and from complex to imaginary k's on the t\n/o mode units
take place at different frequencies, five distinctive regimes
1 - 5 must be consid.ered, which are separated at the periods
listed in Table 8.

q T1 lhJ

e=0.05 e=0. I 0

T2 th1

e=0 . 05 e=0. I 0

T3 thi

e=0. 05 e=0 . 1 0

Tq lh1

e=0.05 e=0. 1 0

0.5

1.0

2.0

5.0

94.5 109

126 132

245 269

I 400. -t 800

49. B 54.6

s5.0 60.0

64 .5 69. 0

470 530

10.7 1?.1

17.3 tB.6

45. B 47 .0

tot 109

B.B il.9
8.9 il.5

.l0.0 il.8
l5.B 17.3

Table 8 Periods, which separate five distinct regimes in
the second order model.

The relative size of the mode units, whether the belly-
shaped surfaces intersect and change their spatial position
within the (k,rr.r)-coordinate system depends crucially upon the
topography. This wlll- be discussed in a further section. The

cylindrical surface of the first order degenerates to a smal-
Ier be11y-shaped surface, i.e. the modulus of k in the complex
branch now depends on the. frequency. Moreover, the second mode

unit forms an outer shell, which here has the form of a cone.
Again, the shape and position of these surfaces are strongl-y
governed by the topography of the channel and much less by the
sidewall-parameter. The structure of the 5 regimes depends on
the topography, but the solutions can take on the three types:
periodic, periodic-exponential or exponential dependence in
the s-direction, however, for the situatlon of Figure 13 they
occur in different combinations, see Table 9:

q 1 2 3 4 5

?:3 t
2.0 )

5.0

8IR

8rR

4R, 4ö

4rR, 4ö

8ö

4 rR, 4,J

4t, 4J

4ö, 4,r

8JI

BJI

Table 9 The fields to which
the 5 regimes of a
rious profiles.

the wavenumbers belong in
second order model for va-
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Channel solutions which are

regime 1 and 2, and 3 only for
indicale, how the graph of the
order model will qualitatively

physically meanJ-ngful occur in
q = 5.0. Figures 12 and 13 also
dispersion relation of a Nth

look like.

Figure 14 displays the modulus lkl as a function of u,r for
a third order model. In the (k,o)-space three mode unj-ts are

now placed within each other, and each mode unit has a real,
a complex and an imaginary branch, which are represented in
Figure 14 by the three distictly different types of dispersion
curves. In the situation of Figure 14, 7 regimes may be diffe-
rentiated -

2.O

1.5

I
öt,o

o.5

0

Figure l4

Modulus lkl of the
third order disper-
sion relation for
m infinite channel
with e=0.05 an4
q = 0.5.

Summarizing the main points, we remark:

The dispersion relation resulting from a Nth order model

can be separated into 2N +l consecutive regimes, in which
individual wavenumbers belong to ß., ö or ü, respectlvely.

Solutions for channels, which are physically meaningful'
can only be constructed from wavenumbers k such that k € IR.

Therefore, there exist naximum frequencies, for which chan-
nel solutions may occur (see Tables 5,9). At these maxima

energy cannot propagate; for smaller k's group and phase

velocitles are unidirectional, for larger k's they are
anti-parallel.

9=0'5
r = 0.05

srr',roDE uNrr lzNDuooe uutt lsRot4ooe uNtt
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Solutions in domains, which are of flnite extent al-so

in the s-direction (fakes), can be constructed from any

wavenumber k. Their spatial dependence is either periodic
when k€IR, periodic-exponential for k€ö or exponential
when k€ JI-

From this point of view, lake solutions occur for a1l-

0 < o < m. However it must be remembered, that in section
2.3.2 a low-frequency approximation rr.r2 << f2 was made. The-

refore, using the scaling (2.If), the dimensionless fre-
quency o must ful-fil the inequality

0 < o< I (5.ls)

The real branches of each mode unit exhibit qualitatively
the same structure as Rossby waves in the atmosphere (Hofton,
1979). The atmospherical Rossby r,Taves are governed by the ro-
tation f and its latitudinal variation p. Thi-s $-effect plays
the very same role as the topography variations in channels
and lakes. Therefore, in the literature topographic VTaves are
often referred to as topographic Rossby waves to strengthen
this alliance. In Appendix C this interrelationshlp between

these two wave phenomena is worked out in greater detall.

5. 3 Convergence

Since the method presented in section 3.2 is an approxima-

tion, of which the quality depends on the order N, the conver-
gence of the dispersion curves o(k) when increasing the order
has to be considered. Yet, the notion rrconvergencerr is only
meaningful when it is tested for physically reasonable solu-
tions. Therefore, in infinite channels only bränches with a

vanishing imaginary part of k will be of interest. To test the
quality of convergence up to the Nth mode unit at least the
model-s of order N +2 must be considered. Therefore, here only
the quality of the first mode is discussed. We regard a model

as appropriate or accurate for a certain mode, if the disper-
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sion curve for that mode is "sufficiently unchanged" by in-
creasing the order of the model. In Figure 15 real branches

for the 1st, 2nd and 3rd mode unit are shown using various to-
pography-parameters .

a)

b)

c)

q=2.0
€ = 0.t0

N=3

N:2

rN.l

-Nn - -.

Uj-_
0

Figure l5
Convergence of the different modes, increasing the order of
the model from N =1 (-.-), N =2 (--) to N =3 (-) for con-
vex (q = 0.5) and concave (S=2.0) topography and tv/o side-
wall parameters.

JO'

03

.l,0,

0.1

I
OJ

201510

,"-\;;-----=

q= 2.0
E = 0.05

N=3

--\------_
LH=z

--.5N=1

N:3

N:3
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All three cases show conslderable convergence for the first
(upper) mode unlt. For al1 e and q by increasing N the correc-
tions become smaller, However, convergence is not uniform in k.
The k-intervall, where convergence seems to be achieved, de-
pends on the topography. Whereas for convex profiles, Figure
l5a, reasonable convergence in the third order model is obser-
ved in the interval 0 < k < 20, concave topographies, Figure 15b,
show good convergence only for wavenumbers k < 10. This suggesls,
that the more concave the topography is, the higher the order
of the model has to be chosen, to obtain satisfactory resufts.
Figure l5c indicates, that the quality of convergence is fair*
ly unaffected by the sidewal-1 parameter e.

5.4 Topography effects

Topography can appreciably influence the solutions in a

channel. Figure 16 shows the influence of the variation of the
topography parameter q on the reaf branch of the dispers.ion
relation in a first and second order mode1. Basically, the qua-
litative behaviour is the same for all three orders of the mo-
del. Considering waves viith a fixed wavelength or wavenumber
the frequency is decreasing when proceeding from convex (q< l)
to concave (q > 1) profiles. This effect could afready be ex-

05't0 1520k+
Figure 16

Effect of topography on the dispersion
for various profiles, 
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pected from the fact, that an extremly concave profile exhi-
bits hardly any topographic variatlons and therefore, the sy-
stem can no longer support topograpiric waves (see Appendix A).
On the other hand, given a frequency, the effect of making the
topography more concave consists in the fact that longer waves

become shorter and shorter waves become longer. Iiowever, for
N =2 the behaviour is different when q increases from 0.5 to
1.0 in a domain k> 12. Dispersion curves belonglng to diffe-
rent qrs may then intersect, a feature that can al-so be obser-
ved for II =3 when wavenumbers are sufficiently large, see Fi-

Figure 17

Topography effects in
a third order model on
the first (-)
and second (---)
mode unit of the dis-
persion relation.

5.5 Influence of the sidewall

In section 4.1 a sidewall-parameter e was introd.uced, which
guarantees that aI1 matrix elements (3.23) can be calculated.
Figure 18 shows this effect on the dispersion relation of phy-
sical sol-utions in channels of different topographies. cene-
rally an increase of the sidewall relative to the depth of the
channel causes a decrease of the frequencies for both types of
profiles. This is understandabl-e from the fact that a deep

sj-dewali relative to the total height hg (see Figure 7) decrea-
ses a possible topography variation. Therefore -by the very
same mechanism as described in section 5.4 - small-er frequen-
cies are favoured.

Further, Figure l8 reveals, that for convex topographies

0/l

0,3

,lo,
-2.0-q=o5 fc=50
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Flgure 18

Effect, of the sidewall parameter e on convex (S =0.5)
and concave (S =2.0) profiles in a second order model.

(q< l) the sidewall effect is more pronounced. This is so, be-
cause all convex profiles join horlzontally at the sidewall,
whereas the more concave the profile ls, the steeper it joins
at the sidewall. An j-ncrease in e then, cannot appreciably af-
fect the dispersion relation.

5.6 Channel solutions

Solutlons in a channel are gj-ven by the stream function
tJ.t (s,n,t) in equation (5.13) . Since V is complex both real and

imaqinary parts of rf are solutions. However, Re(if ) and Im(ü)
differ only by a spatial shift along the channel axis, provi-
ded the basis functions do not depend on s. Assr.ming B(s) to
be constant as done in sectj-on 5.1, the ej's are independent
of s and using the identities

Im(z) = Re(-i z), zea,
.17

we obta.in from (5.13)

r. (1, t=, r,, t))

Therefore, the complete information about the solution rf is
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afready obtained vThen considering Re(ü) only. In ensuing dis-
cussions bird-eye view of the functions Re(V) will be shown.

Before discussing the solutions in details, however, a quali-
tative argument is shown by which the stream function is rela-
ted to the barotropic velocity fietd' see Figure 19' To this
end recall that it has been demonstrated in section 2.5, that
the barotropic part of the velocity field ubt is given by

.. br (2 x vü) (s.16)I
h

It foltows from this/ that the deeper the channels are' the

weaker the veloclties will be. Further, convex stream function
surfaces are connected with anti-cyclonic velocity cells (Fi-

gure 19), and the steeper the Lf-surfaces are the stronger the

velocities in these cells, Thereforer by looking at the stream

function the different velocity cells and their rotational
sense can readily be deduced by estimating the convexity of
the rf -surf ace.

Since dy in (5.13) is arbitrary' the choices dr: = 6i.t,
i :1, ...,4N give the solutions to all individual wavenumbers

However, by geometrical arguments it is sufficient to look at

only one wavenumber in each mode unit.

f'igure 19

Explaining the anticyclo-
nic barotropic velocity
field on a convex sLream
functlon surface.

Figure 20 displays a sequence of snapshots of Re({) for a

channel solution in a first-order model, starting at t =0 r^7ith

waves whlch show skew-symmetry with respect to n =0 and pro-
ceeding in steps of 'l/16, where T is the period. Skew-symrnetry
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of the surface is replaced by symrnetry after a quarter period.
In between, superpositions of lhese Lwo aspects can be obser-
ved. Looking more closely at the individual wave ridges and
their phase motion, it becomes clear that for n < O, the phase
progresses in the positive s-dlreclion, while for n > 0 the
phase progresses in the opposite direction. When the crests of
the two domains cross, they merge into a single ridge which
then forms the symmetric aspect of the {-surface (Figure 20 tf).

ft foflows that these waves are right bounded j-n the nor-
thern hemisphere, which is a general property of waves gover-
ned by the Coriolis force: Kelvj-n r^/aves, shelf waves, etc.,
see LeBlond and Mysak (1978) .

In terms of the barotropic part of the vel-ocity fiel-d the
propagation of the stream function crests correspond.s to pro-
pagating cells in which the barotropic motion ls either cyclo-
nic or anticyclonic. Such a time sequence is shown in Figure
20b in which lines of constant i].r are pfotted.

In Figures 20b -25b the n-axis has been stretched by a fac-
tor 1.5 to make the transverse structure more visibl-e. The li-
nes of constant l1r were choosen such that a1l inner most lines
correspond to 90 ? of the maximal rf-value in each lime step.
Therefore, the lines of different time steps cannot be used
for amplitude comparj-son. This disadvantage was made allowance
of, to work out the development of lhe wave structure clearly.
The cel.ls rotate anticlockwise. The structure of the cells at
t:0 is simlfar to that of Poincar6 wave in a channel (Hutter,
1984b, p. 58). However, Poincar6 waves propag:ate uniformty into
one direction and therefore, are distinctly different from to-
pographic v/aves. With proceeding time the cell_s in Figure 20b
spfit and merge together; this reflects the mechanism of ba-
lance between the symrnetric and ske\^z-symmetrlc aspect. Thus,
these cellular domains are not a persistent propert)', they are
rather a feature which exhibits continuous transitions between
distinclive cellul-ar patterns.
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A second order model extracts the main characteristics of
the different mode unit.s introduced earlj-er. Figures 2L and, 22

show channel solutions of the first and second mode unit. The

frequencies in the lwo cases have been chosen such that the
wave patterns have about the same wavenumber. The main diffe-
rence of the two mode units consists i-n the cross sectional
structure of the rf-surfaces. Considerlng the wave troughs and

crests in the n-direction ancl counting them, the first mode

unit shows a 2-I-2 sequence wlth respect to time. Channel so-
lutions belonging to the second mode unit have a more structu-
red wave pattern, in that they show a 4-3-4 time sequence.

Therefore, each mode unit represents a certain cross sectional
wave structure. This is in accord with results from non-appro-
ximate wave models (see e.9. Pedlosky, L9'79, p.75 ff), although
our method does not a prlori j-mply this connection between
mode uni-ts and cross sectional structure.

Figure 22b illustrates wave structure of the second mode

unit particularly clearly. The 4-3-4 cellular sequence is ob-
vious. Again, the indivj-dual cells rotate anticlockwise, and

the wave motlon is right bounded,

Comparing Figures 20a and 2la also demonstrates the conver-
gence of the sol-ution as the order of the model is increased.
The very sma1l effect consists in a smoothening of the V-sur-
face towards the channel boundaries.

Figures 23, 24 and 25 iflustrate the channel solutions in
a thlrd order modef. Again each mode unit has its o$Jn charac-
teristic cross variation. The phase motion is right bounded

and, therefore, opposite in the two channel domains n < 0 and

D > 0, respectively. Comparing Figures 20 and 23 reveal rnore
properties when increasing the order of the model. The wave

ridges at I = r74 T in Figures 20a and 23a are flattened on

their top. Figures 20b and 23b show at t =0 that the celles
are slightly shifted towards the center of the channel which
corresponds to a smoothening at the boundaries ahd a steepen-
ing at the center axis.
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Fisures 2A - 25

Figures 20a - 25a

Time sequence of the stream function surface in
steps of Vf6 T. The channel view corresponds to
Figure 10 and the coordinates here are chosen
-V2 B < n < U2 B, 0 < s ! 6 Lr with an aspect
ratio r = I. Note the phase motion in the do-
main n > 0 and o < 0, respectively.

Figures 20b - 25b

Time sequence of lines of constant p relaLive to
90? of the maximum value of each time step. The
cellular structure of cyclonic (+) and anticyc-
lonic (-) vortices is clearly visj-ble.
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5.7 Comparison with Grattonrs channel solutions

cratton (I983) considered straight channels with various
cross topographies. Assuming progressive waves of the form

O = 0t") ei(urttks), the topographic !,r'ave operator could be

transformed into an ordinary differential operator on $ with
non-constant coefficients depending on the depth function. For

roof-shaped and parabolic cross sectlons the emerging diffe-
rential equation in 6 could be solved and the sofutions be ex-
pressed in terms of hypergeometric functions (Kummer functions)
Without going here into details, Gratton obtains solutions
v/hich have a hump close to the right shore (on the northern
hemisphere) when looking in the direction of propagation and

decay exponentially to zero as the other (left) shore is ap-
proached. His formulation yields right bounded waves propagat-
ing in both directions along the channel axis, see Figure 26.

A linear superposition of two waves propagating in the +s and

-s -dlrection, respectively, would yield qualitatively the
same feature as presented in the previous section. This demon-

strates that our approximate model yields reasonable results
for the topographic wave motion in a channel. l4ore signifi-
cantly, our method can treat a variety of different topogra-
phies without becomlng any more complicated. This is a consi-
derable advantage, even though it is bought at the expense of

GRATTON (r983)

THIS STUDY

Figure 26

Topographic waves propagating fu an infinite channel
vlith cross-topography. Both studies exhibit right
bounded waves. Gratton has separate solutions, but
this study is a combination of them.
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exactness. fndeed, Gratton can only vary cross topographies,
must treat bathymetries which do not change along the channel
axis and is unable to handle closed channels, i.e. lakes. All
these restrictions can be lj-fted in our approximate integra-
tion technique.

6, ure MoDELs

6,1 From channels to lakes

As there exist 4N independent solutions in a channef for a

Nth-order rtodel they may, within the framework of a linear
theory, be superposed, such that the resulting solution also
fulfils boundary conditions on the s-axis, i.e. s =0 and s =L.
These must be satj-sfied for all {r$ in equation (5.12) in order
that the combination {(s,n,t) obeys the relation

ü(s,n,t; = 9, s = 0,1, (6. r)

for all times, The critical frequencies, at v/hich the diffe-
rent regimes touch (see Table 5), shall be excl-uded from con-
sideration. For that case the boundary cond.itions (6.2) would
have to be modified by using the fundamental solutions (5.14).
From equation (5.12) 4N cond.itj-ons are obtained as follows:

alüt
'ls=0

.(x-Nlvt- ls=0

crl

'1, i

o-r.r I

'fl

4N

= 0 + f .oudr = 0, 0=1,...,N
!:1

4N

= 0 r t: c.u d, = 0, g(=n+I,...r2N
/_ ur r

Y=r

4N

= 0 * f "to"y 
cov dr = 0, 0=I,...,.N

L-qII
I=I

4N

= 0 + f .t*Ycord., = 0, 0=n+1,...,2N

(6.2)

(6.3)

By defining a (4Nx4N)-matrix Dcxy(o), such that

"0'y - 'cy,

Doy = eikY 
"o-2*,y ,

cr=I,...,2N,

cx=2N+lr...r4N

Y=1,...,4N,
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the boundary conditions (6.2)

Ddy d] = 0,

assume the compact form

0.Y=l'... '4N . (6.4)

Non-trivial lake solutions require lhat

det D(tr; = g, (6.5)

which is the equation determining the eigenfrequency in the
1ake. Having found an eigenfrequency 0r with (6.5) the lake
soLution can readily be calculated by determining the eigen-
vector d"y from (6"4) and evaluating Q from (5.f3). Both, real
and imaginary parts of r.f,r are solutions; however, for simplici-
ty only one of them will be considered. Calculations showed

that the eigenfrequency r.o could be evaluated from (6.5) with
appreciable accuracy. Calculating, in a second step, the eigen-
vector d" by a causs algorj-thm (backward substitution from a

left-right decomposition of D) caused serious difficulties in
so far as some of the thus constructed eigenfunctions showed

dissatisfaction of the boundary conditions. This is characte-
ristic of numerically stiff systems and occurs particularly
in cases, when zeros have to be evaluated which are connected
with largie derivat.ives. In these cases the calculation of the
zero of a nonlinear function exhibits good and fast convergen-
ce although the function value at the root may be far from
zero. There was not sufficient time lo resolve this problem.

Solutions, which do not satisfy the boundary conditions in the
above sense are not shown here. However, in cases for which
the discrepancies are small, the boundary conditions are arti-
ficially enforced. by simply setting ü = 0 at the boundaries.

6.2 The spectrum

Obviously, because a boundary value problem is solved, the
spectrum is discrete. As it turns out from calculations it is
impossible lo satisfy the boundary conditions (6.2) unless at
least two wavenumbers are real. Therefore, in a first order
model with only one mode unit lake soluticns have a pure wave-
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like structure in the s-direction. However, in higher order
model-s lake solutions can be mixtures of all three types
(ky€IR, ö, g). The structure of this mixture depends crucial--
ly upon both, the topography and the aspect ratio of the ba-
sin. ft follows from the above that there exists an upper cut-
off frequency or lower cut-off period given by the rnaximum of
the real branch of the dispersion curve (compare Figures 12,
13, 14). This cut-off period increases with increasing topo-
graphy parameter q, which is in accordance with the considera-
tions in Appendix A. The increase occurs for all aspect ratj-os
as can be seen from Tables 10 and 1I. Enlarging the aspect ra-
tio, on the other hand, shifts the spectrum to higher periods.
Tables 10 and 1I also indicate that the eigenperiods may be

grouped into pairs which lie very close together, sometimes
with differences of less than an hour. This effect is intensl-
fied in the second order model, see Table 1I, in that the pai-
red periods differ only in the last digit. Finite difference
solutions of topographic waves in enclosed basins further in-
dicate that eigenperiods may cluster in very narrow frequency
bands (E. Bäuerle, personal communication).

q r

57 .6
70.3

65.9
65.7
79 .0

99.7 100
90.7 91.7
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272
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209
?09
t55

63.7 64. I
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]09 I 13
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167 174
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260 265
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137 140
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294
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I 70 174
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5.0

0.5
1.0
2.0

0.5
1.0
2.0

0.5
1.0
2.0

0.5
1.0
2.0

Table I0
Six lowest eigenperj-ods (in hours) of a first order
model with e = 0.05 for four different vafues of the
topography parameter q and three values of the aspect
ratio r. The vertical- dashed lines separate pairs of
periods which lie close together.
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q r
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53.7 53. B

63.8 64.6

59.8 59.9
57.6 57.6
64.5 64.7

68.7 68.7
66.5 66.5
72.4 72.5
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112 112
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6?.9 63.3
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63 . I 63.2
63.5 63.7
84. 1 84.4

89.7
71 .9
9t .6

I 56 157
124 124
140 ]40

oo 7

72.0
91 .7

62.5 6?.7
74.1 74.7

106 108

71 .7 7t.B
72.2 72.5

tOB 'l09

127 122
80.2 80.3

il6 117

42? 423
139 .]40

176 I 78

1.0

2.0

5.0

0.5
0.5
.1.0

?.0

0.5
1.0
2.0

0.5
1.0
2.0

0.5.l.0
'2.0

Tabfe 1l
Six lowest eigenperiods (in hours) of a second order
model (45olatitude) with e = 0.05 for four different
values of the topography parameter q and three values
of the aspect ratio r. The vertical dashed lines se-
parate pairs of periods which fie close together.

The form (Rossby character) of the dispers.ion relation o(k)
also implies that modes with higher periods have higher modal
structure in the s-direction, because to a given period the
two wavenumbers are far apart; so, in a particular solution
there is always a contribution of a high wavenurnber k. However,

it is not possible to arrang:e the eigenfrequencies in a strict
order which would be connectable with the modal structure.
This seems to be intrinsic of second class wave motion, since
already Ball (1965) has not found such a connection even in an

exact, analytical solution, see Figure 8.

6.3 The role of the aspect ratio

In equatlons (5.9) an aspect ratio parameter r = Ä has been

inLroduceC. Up to now we have considered e.Longa,ted lakes with
a ctLjt\- topography and consequently assumed that r << 1, see Fi-
gure 21. In such a situation an expansion procedure correspon-
ded to an approximation in the narrow direction, i.e- along
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the n-coordinate, and rrexactrr integration along the thalweg
of the lake. However, in view of the si-mplifications in sec-
tion 4.1 (straight l-akes of constant width) situations with
r > I can equally be considered. r > I means that the lake
width B exceeds its l-ength L, and these tv/o noti-ons loose
their common meaning, see Figure 27. For r >> 1 the lake be-
comes again elongateo, but its topography is distinctly diffe-
rent from the small aspect ratio case. Whereas for r < 1 the
topography (4.3) and the approximation (3.3) vary al-ong the
small direction of the 1ake, t ) L characterizes a l-ake whose

tha.tne,g is described by the topography (4.3) and whose motions
are approxiirated in its long direction (Figure 27) - Tine appro-
ximation, the weighted integration along the n-direction, is

Ä

FLgure 27

Lake geometry for r <1 and r >1. For r <1 the lake has a
cross topography with a constant thalweg-depth, whereas
for r > 1 there is no cross topography but a variable thal-
weg-depth.

now performed along the thalweg, i.e. the long side of the
lake. Examination of the influence of r, therefore, enables us
to answer the question, what would be the important qualities
of a lake to sustain topographic waves. The cases r < I and

r > I then characteri-ze situations for which either the cross-
or the thah,/egi-variation of the lake basin is important.

ft was pointed out in section 5.1- that the dispersion rela-
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tion depends on the product r.k implying o = o (r.k). Thus, when

plotted as a function of k only, dispersion relations o.r(k) with
different aspect ratios emerge from each other by a stretching
transformation along the k-axj-s. Figure 26 illustrates this ef-
fect qualitatively, Increasing r means that, for fixed iri, the
waves have smaller wavenumbers and, therefore, exhibit within
a given distance along the s-direction fewer troughs and fewer
crests. This property provj-des a hint towards an answer of the
following questions:

Figure 28

Dispersion relation ol (k)
for different aspect ra-
tios r, retaining the va-
lues of the other parame-
+ör N

i) What is the domain of the aspect ratio, r <1 or r >1, for
which reasonable approximate topographic wave solutions
are obtained, which allow a comparison with earlier stu-
dies, such as Ball (1965) and Mysak (1984)?

ii) Under which situations must the cases r < 1 and r > 1 be
applied? Can we by any means decide whether a l-ake favours
one over the other?

The ansvrer to the first question has already been sketched
above. ft follows from the aspect ratio dependence of the dis-
persion relation that the l_ower the aspect ratio r is the
higher will be the modal structure in the s-diiection. This
feature can be seen in Figure 29 for the lowest eigenperiod
in the first order rnodel. On the left, r <1, the tvro wavenum-
bers which correspond to a glven o 1ie far apart; the stream
function is composed of a long wave and a short wave component.
The slructure of the ciosed basin mode is therefore rich. This

o4

0.3

0.1

,l o'

05101520
k+
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Comparison of the modal structure for an aspect
r >1, respectively. The parameters are selected
q = 0.5, time t = 0.

T = 70.3 h

ratio r <1 and
N =1, e= 0.05,

fact prevents the occurrence of ground modes*) of topographic
waves as presented in Figure 7, section 4.2. On the right
r >1, the two wavenumbers are much smaller such thatthe stream
function is composed only of irlongrt wave components; the modal

structure of the basin solution is simple or fundamental. This
type of solution, obtained in a first order model, resembles
globally the structure of exact, fundamental- closed basin so-
lutions, such as those of Ball (1965), see Figure 8, and Mysak
(re84).

Now, because it is our aj-m to use the channel model as a

suitable approximation of exact solutions, it seems, at first
sight, compelling to conclude that our method can -at least
as far as a first order model is concerned - descrj-be topo-
graphic wave motion approximately only for lakes with r > 1,
Solutions of the case r < 1, for which the model was motivated,
indeed show in a first order model no similiariLy with lznoutn

exact solutions. However, since the number of published analy-
tical solutlons is rather poor and therefore, does not aflow

*) g\ound, grLavQ.6l. or (lundanznta.X- mode:
has the least possibLe structure over

Mode, whose sxream function
the lake domain.

@
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a general and final comparison with the aim to test our model

it is dangerous to qualify our model at this moment.

In fact, both aspect ratio ranges lead to physicall-y rea-
sonable approximations, but they are distinctly different and

describe two limiting aspects of the exact topographic wave

operator. Evidently, only the large aspect ratio solution r > 1

describes, in a first order model, a globa1, gravest mod.e re-
sponse. To obtain it, the long side of the lake is approxj-ma-

ted by the set of basis functions (4.17) and the topography is
accounted for by a variable thalweg depth. Por this case, t.he

thoughts or: the motivation of our method in section 3.2 are
inappropriate I

However, no premature inferences should be drawn. I'or in-
stancer not to consider the case r <l any longer or stating
that fundamental modes cannol occur for small aspect ratios
are hasty conclusions. Al-though, undellhe above made restric-
tions, they do not show simllarities with the Ball and Mysak

sol-utions it may well be possible that, by making other assump-

tions on the basis functions and /or the topography, that r < 1

would yield reasonable results as well.

6.4 Restrictions of this model

In the previous section it has been explained that for cer-
tain aspect ratios our mehtod gives topographic wave motion
which is distinctly different from earlier results (BalI, l-965,
etc.). tr{e feel that this difference has its origin in the
amount of restriction imposed on the differential equation
(2.f6) by our approximation technique. Evidently, it affects
the quality of the approximation. ff the restriction is sma11,

which can mean that the order N of the model is large or the
basis functions are well chosen, the approximation is expected
to describe the physics of the problem satisfactorily. On the
other hand, ill chcsen basis functions and low order models
are prone to unsatisfactory results. Selecting r < I and taking
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a low order model appears to be too big a restriction and,
therefore, yields results which do not a1lov/ a comparison with
earlier studies. It seems, that together v/ith N =fr the basis
functions (4.L7) along the narrow slde of the lake, as done
in section 4.3, are il-l chosen. A possible reason of this i11
choice may be the fact that smaller aspect ratios r are connec-
ted with larger basis function gradients. To make this clear,
consider a basis function of the form (4.17)

Pcr(s,n) = n*(;ä) = P.,(+), (6.6)

with a constant lake with B. Tak.ing the derivative of (6.6)
with respect to n and recalling r = f Vielas

aP^ a
-----: : --1 0rän r L '0.' (6.7)

which proves the above statement. Therefore, smoother basis
functions seem to represent a weaker restriction on the sy-
stem.

There is another important qualitative change of our model
when r >1. This 1s shown in Figure 27. The fact, that for r >l
the thalweg-depth is variable, gives evidence of the relative
importance in a first order modef of the cross-sectional topo-
graphy and the thalweg topography. respectively. It seems,

since r > 1 yields results which can be compared with earlier
studies, that for low order modefs (N =f) the thalweg topogra-
phy is much more important than the shape of the cross sec-
tions. This is i-n agreement with the fact, that a topographic
wave which propagates anticlockwise around the lake (see ana-
l-ytical result in Ball (1965) and Figure 8) must, in an elon-
gated lake, change its direction mainly at the lake ends. This
change 1s made possible by topography gradients and has its
origin in the fact that topographic wave motion follows the
isobaths of the basin in order to conserve potential vorticity.
However, in view of our simplifications ofthe l_ake basin, (5.4)
v/ith c = 0 and consequently * = 0, the isobaths do not form
continuous closed lines around the lake, see Figure 27. This
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serious restrictj-on which affects the very mechanism of topo-
graphic wave motion and its removal- wiIl be further discussed
later on.

To summarize the above considerations, we think that rea-
sonable results with the present restrictions are most likely
obtained in a first order model when sefecting an aspect ratio
domain r > 1.

6.5 Topography and sidewall effects

Solutions in channels (section 5) have shown that a change

in both, topography and sidewall parameter, does not affect
the structure of the waves, but shifts the periods for both
increasing q and e to higher values. Tables l2a and l2b demon-

strate that this feature is afso observed in lake solutions
and that it is qualitatively independent of the choice.of the
aspect ratio. There are two cases, indicated by a question
mark in the tables, which differ from the general behaviour.

r = 0.5 N q=0.5 1.0 2.0 5.0

e

e

0.05
0.t0

0.05
0.10

e
E

I

?

57 .7 65.9 99.7 I 209
65.0 71.4 96.9 ' 223

50.5
56.0

59. B 68.7 107
62.9 71.3 n.c.

r=?.0 N 9=0.5 1.0 2.0 5.0

e = 0.05
e = C.l0

e = 0.05
e = 0.10 2

I
70.3 79.0 I 09 255
Bt.4 88.0 lt9 ?76

63.8 64.5 7?.4 112
75.1 ? 73.1 ]04 n.c.

First eigenperiod (in hours) for a fake listed for four topo-
graphy- and two sidewall-parameters in the first and second.
order model. Two aspect ratios are considered. n.c. indicates
that calcufatlons did not converge and the question mark in-
dicates deviatlng behaviour.

Exami-ning the lake stream functions reveals no visible dif-
ferences except in the case N = 2 and r:2.0, where little wave

a)

b)

Tabfe 12
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intensiflcation in the middle of the lake was observed by in-
creasing q from q = 2.0 to q = 5.0.

6.6 First order lake solutions

In this sectlon l-ake solutions of a first order model (N =f)
are shown. Figure 30a and 30b display snapshots of the stream
funclion of a lake solution during a semicycle (| f) for tfre
small aspect ratj-o case (r =0.5). The timestep isft f. It is
clearly visible that the lake is divided into two similar sub-
cells vihich in their domain turn anticlockwise, seemingly with
no lnteraction. These quasi-independent subcells consist them-
selves of smaller cells with cyclonic or anti-cyclonic veloci-
ty fields. It is remarkable that = = + L is not a center of
symmetry, therefore these two subcells are not identical. As

worked out in section 6.3 there is a rich modal structure of
this topograph.ic wave slnce r <f, Thus a comparison with the
solutions presented by Ball (I965) is not reasonable.

tr^Ie turn nov/ to the large aspect rat.io case, r >1, which ex-
hibits wave patterns resernblj_ng BalIrs analytical sol_utions.
A discussion about the analogies and differences when compar-
ing the solutions will be given in section 6.8. Figures 31-36
show topographic wave motions in a first order model with
e = 0. 05 , q = 2. 0 and r -- 2.0 for the six lowest eigenperiods
which are listed in Table 10. Figure 3I and 32 show the ground
modes for these parameters. As it was expected the modes exhi-
bit a phase propagation typically anticlockwise around the
lake. Again, as observed in the infinite channel, the indivi-
dual cells emerge and split. They are not permanent patterns
in the lake but are rather subject to a continuous change.
This is reminiscent of topographic wave motion and corresponds
to the fact that solutions to a given eigrenperiod cannot be
arranged into a strict order which would be connectable to its
modal structure, as can be done for all separable wave pro-
blems (membranes, kettle-drums, hydrogen atom, etc,).

Figures 3l-36 demonstrate also how the modal structure d.e-
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Fisures 30 - 36

Figures 30a - 36a

Time sequence of the stream function surface in
steps of Vl6T for a first order Lake nodel. The
selected parameters are i-ndicated on the indi-
vidual figures and t,he lake view and the posi-
tion of the coordinate system correspond to Fi-
gtre 27 depending on the aspect ratlo.

Figure 30b - 36b

Time sequence of lines of
90 ? of the maximum value
a first order lake model.

constant ul relative to
of each time step for



,

I

i

l lffid]
lol@ioli@loll

L , _ -_i
a)

^t -t -_nrrr - 1, | - u, ),

@

0 .o 0 @ o)
0 @ 0 o o)



.- / 
--( ),//z-)-",\,

-;--- 
-t-:'/-::4::l

/a-. /\-!-=a///,a-)

s-
,,4-\

/.--J ) )I ( <_ --_-/,,-/ -/\'-j'/-.:

s
(@ /:\((e)
/-':-\I(.-))l\:/' (-\---/

b)

q= 2,4, or = 0,155, T =109h

3/--;4;=))(-==2==-'-./(

1 ; 
--.-:\.

\\\\\---.....-\_\-,'/ 
/

---\:------=



-99-

i , *'
'l l- r

@)l(@

-

a-. / 
--

I 1 /-) )//','----\
\r,=a /,//,/ / (--) ) )

.-- ,)
/ a,----- //-
\ \ 

-?t-;2?==-=>
'__::..:-_:-/ -^ ) )('4

i, ,*,;t rel
a)

N=i, r=2,0,

-r:\
Z-]:\\ r ^\\/f r\\\\\\\-J ) l
\\-v .l \\Y-,/

-

a c---- )_-/
((.'-- ->)--->----:: --'-

S



f!-:)
ta )l

!e(-)
(< >)

tL:))( f-:)l

-s,-,:-::-\-;-_-r.:_>,) )( {_ -_-:a=:--

-_--_= ) )

( 4,_.-=:::_=-=,-

-i
az-.-- --> ) )\!|- ts<

a-.-.--- / .)\'\-.. :=@t
-t
--'j:-:: >-l 

i

?+--lt- _, ja
L-.--

t=LE

==l-_
LS

--

- 5_
'= 16 '

1<5
a(___:_:__

-tll
- .---\( ( <-\l>---
-:-- \
(<--_--_l:>J 

)

t1--+
(-!-/.-

( (,.:-__ /

(a=->D)

-::::-((.-->))

{-r

(
<:
((.--:=)l



- 101 -

a)

N=1, r=2,0. €=0,05,

3t= 8l

. 1_
" L'

o = 2.0,

@ 4.6))
@ lln-l)

((cf))
!-_/ @
@ @

b)

a =0,0972, I=t7t{hFiqure J4



[:]!::llt_->-t it:5
i-..-l

a)

FisureS5 N=1, r=2.0
b)

€=0,05, q=2,0, @=0,012L 1=Z3qn

.-;-<:==-=- -)"--:-:--::-.---\-::-:-:_==:-

--->,
!!-

-:-:_]--



- 103 -

;l

. t_" 4'

Fisure J6

a)

N=1, r=2,0
b)

€ = 0,05, q = 2.0, @= 0,0702, T = 241h

(---l @
(==>)
|i;-) t_L-1,

I

-l
:i

@ (@
@ @(€., @



- 104 -

velops when increasing the period through the spectrum. The

spectrum begins with two eigenperiods (paired) , T = 109 h and

T = 114 h in Table 10, which have a very simple structure and

can therefore be declared as the fundamental modes. The wave

with the lowest period t = 109 hr see Figure 3I, begins with
4 troughs and crests, transforms after a quarter period
(27.3 h) to a structure with only I trough to reach' eventual-
ly, after half a period (54.5 h) again 4 troughs and crests,
however now interchanged. This mode, therefore, shows a 4-I-4
sequence. The next mode in the spectrum with an eigenperiod
Tz = LL4 h shows clearly a 2-2-2 sequence, see Figure 32. At
this point it is not clear, which of both modes should be de-

clared as the fundamental mode because thev have about an

equally simple modal structure.

Proceeding in the spectrum, see Figure 33 ' the next eigen-
period can be found at T = 167 h, cf. Table 10. The modal

structure is now described by a 8-2-8 sequence. It is worth
noting that the wave motion in the fake can be dj,vided into
two subcells separated at s = ! . rtl" subcells do not interact
and turn anticlockwise within their domain independently' see

Figure 33b. The next eigenperiod T = L14hl is paired with the
latter and shows a 4-4-4 sequence which has about the same

modal complexity as the previous mode.

Inspection of Figures 3l-36 provides an answer to the ques-

tion, whether there is a rule concerning the modal structure
when running through the spectrum. Table l3 answers this ques-

tion. There is a simple rule which enables us to continue the
modal sequence for higher periods, the next pair would be

t6-4-16 and 8-8-8. The lower eigenperiod of each pair has a

modal structure which is not balanced, i.e. the number of
troughs and crests changes appreciably within a period. Conse-
quently, merging and splitting cells can be observed. The se-
cond eigenperiod of each pair shows a balanced modal structure,
which increases regularly with increasing periods. With respect
to the s-direction, (for the definition see Figure 27) the flow
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il4
167

174

234

?41

4-1 -4

?-z-2

B-2 -B

4-4-4

12-3-12

6-6-6

?l

32

33

36
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Table 13

Modal sequence for. the lowest six ei-
genperiods jn a first order model_ N=1r
e = 0.05, 9= 2.0, r= 2.0. The figures
indicate the number of crests and
troughs; the first figure gives this
number at t:0, the second. .1 t' = l74T
and the third at y = \2 T. The pair_
ing is not onl-y evident in the period
but also in the modal sequence.

in neighbouring cel1s rotates in the same direction for
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6.7 Second order solutions

This section elaborates on the qualitative changes of the
eigenperiods and their associated basin solutions that arise
when a second order model is considered. It also casts light
on the questions regarding (i) ttre validity of the above mode
assumptions (basis functions, aspect ratio range, topcigraphy),
(ii) the convergence of the solutions and (iii) the important
qual-ities of a lake to sustain topographic wave moti-on. For
the purpose of comparison with the resul-ts in the previous
section the same parameters are selected.

First, the 1ow aspect ratio case, r = 0.5, shal1 be consi-
dered. Figure 37 shows the sol-ution co.rresponding to Figure 30

but now for a second order model. As expected for a low aspect
ratio casef the structure of the wave pattern is rich. One com-
plex and structured. cel1, positioned in the middle of the lake
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Fisures 37 - 43

Figure 37a - 43a

Time sequence of the stream function surface in
steps of V16T for a second order Lake model. The
selected parameters are indicated on the indi-
vidual figures and the lake view and the posi-
tion of the coordinate system correspond to Fi-
gure 27 depending on the aspect ratio.

!'igure 37b - 43b

Time sequence of lines of constant I relative to
90 % of the maximum vafue of each time step for
a second order lake model.
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Figure 43
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rotates anticfockwise. The ends of the lake experience little
wave motion and are calm. These are the locations where the
channel is intersected and no topographic changes occur in the
s-direction. Topographic wave motion is therefore expected to
be weak.

Comparison of Figure 37 with Figure 30 clearly exhibits the
changes that arise when the order of the model is increased
for r < l. The graphs of the p-surface show that increasing N

enhances the wave motion in the center of the lake where the
wave activj-ty is concentrated. Simultaneously, stream function
amplitudes at the lake ends diminish and larger perturbations
move away from the ends of the lake. This suggests that the
structures in the middle of the lake in Figure 30a move to-
wards each other to form, eventually, the intensified crests
in the center of the fake in Figure 37a. This "centering" seems

to be an effect of convergence also because the characteristics
of the wave motion is retained.

Turning to Figures 38-43 demonstrates the serious changes

which the previously reasonable resufts of a first order model

undergo for the large aspect ratlo case r = 2.4. Large modifi-
cations can be observed vrhen comparing Figure 38 viith Figure
31. In a second order model, the pattern which was considered
to be inlrinsic to topographic waves, i.e. the motion rotating
around. the lake basin in Figure 31, breaks down. The four pro-
nounced troughs and crests in Figure 3l at t = 0 now appear at
the fake ends (n - x !U, for the large aspect ratio case)
while the central domain remains calm. This is distinctly dif-
ferent from the low aspect ratio case for which the wave mo-

tion secmed to be enhanced in the lake center. This characte-
ristic feature, namely that for r = 2,0 the wave motion is
torn apart towards the ends of the 1ake, can be observed for
all computed. eigenperiods, cf. Figures 38-43, mainly in the
contour line pictures. The inner parts of the lake experience
for af1 times and topography parameters q very weak perturba-
tions. The crests and troughs exhibit no counterclockwise ro-
tation around. the lake, althouqrh an indication of such a ro-
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tatj-onal sense can still be observed. The crests and troughs
at the left end of the lake move still- in a right bounded way

which can be interpreted as an anticlockwlse rotational motion.
But because the waves are hindered to propagate a4ound the lake
they are formed at the long boundary, grow as they move in a

right bounded way until they fl-atten off at the opposite boun-

dary or even in between the two depending on the global modal

structure of the l-ake solution. This process can clearly be

observed j-n Figures 38 and 39-

The higher modes, Figures 40-43, make this modification
again evldent. The figures (40-43) displaying the ip-surfaces
of the second order model exhibit v,rave patterns rphich arise
frorn those of the first order model (33-36) by a rttransforma-

tionrr, tearing the vTaves apart towards the lakets end and leav-
ing the center of the lake without wave perturbations. Apart
from this serious effect, which destroys the characteristics
of topographic wave motion, the modal structure in the s-direc-
tion remains seemingly unaffected.

It has been noticed in section 6.2 that the eigenperiods
which lie close to each other move even closer in a second or-
der model, cf. Table l-0 and 12. Possib1y, this is an effect of
convergence such that in the higher order model- the former
palrs merge to form a single isolated eigenperiod. Inspection
of Figures 40b-43b underlines this suggestion. The lake solu-
tions corresponding to paired eigenperiods have gIobally a

similar modal complexity when one of them is regarded to have
a time Iag of a quarter period relative to the other solution.

Aside from aIl these phenomenological aspects one is still
left wlth the serious question: Why is it, that this intrinsic
feature of topographic wave motion, i.e. a global rotation
around the lake, breaks down in a Aecond order model-?

From a rnathematical point of view, a higher order model
should be able to describe the physics of a problem more ap-
propriatel-y, because more degrees of freedom are available
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and, therefore, the approximate procedure given in equation
(3.3), sectlon 3.2, should represent fewer restrictions. This
relaxalion, by which better results would be expected, seems

to be outweighted or rather over compensated by the inaptness
of the above made assumptions concerning the basj-s functions
and/or the topography of the basin. From a physical point of
view, the breakdown of the globaf rotation is understandabte.
The assumption (5.4) with c = 0, \ühich after all is reasonable
for infinite channels, is t.oo restrictive; for one of the two
mechanisms by which topographic wave motion in lakes is made

possible has been seriously affected. What we mean is that
isobaths end at the boundaries of the basin, so that a conti-
nuous follow-up around the lake is no longer possible.

This defect and the desperating results in Figures 38-43
are, however, not a consequence of the inappropriateness of the
.Lde,a of our method introduced in section 3.2 ft. ft is probabl-y
rather due to the audacious neglections, which have been made

hitherto when modelling the basin topography. A final estima-
tion of the quality of this approximate procedure, i.e. the
weighted integration along a selected coordinate, can only be

given when more realistic basin topographies are introduced.
The fact, that in a first order model reasonable solutions
were found. is a sign of the possibility that good results can

be achieved by the method of Weighted Residuals. A suggestion
how the above made assumptions can be refined without incor-
porating mathematically much more complexity is given in sec-
tion 7 .

6.8 Comparison with exact solutions

The quality of an approximate method can best be tested
when the results are confronied with exact solutions. For this
purpose we use the work of Ball (1965), who solved the topo-
graphic wave problem for elliptical basins with a paraboloidal
topography, Because his work contalns onfy two fund.amental mo-

des whlch are discussed, this comparison is incomplete.
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Table l-4 lists the periods for the two fundamental modes

for various aspect ratios. The topography j-n our model is pa-
rabolic with respect to the n-direction. The eigenperiods of
Bal-f are identicaL for both r and ] . The large aspect ratio
case has been chosen because only in this case our model sup-
plied reasonable results. fn agreement with the exact solutj-on,
our method brings out periods which are of the same order of

r Ball solutions

Tr rz

N=.l, e=0.05, q=2.0
T1 12

1.0

?.0

5.0

ItB 84.5

143 97 .7

282 I 78

9l .7 90.7

114 109

207 200

Table 14

The two eogenperiods in hours, calculated from the non-dimen-
sional- frequencies by the scal-ing 2T/f = 16.9 h, of the two
fundamental modes, see Figure 8 for different aspect ratios.
The aspect ratio is meant to be the. ratio of the major and the
minor axis of Ball's elliptic lake. Those cases are compared.
which yield qualitatively similar wave solutions.

magnitude and exhibit the same aspect ratio depend.ence, i.e.
increasing periods with increasing aspect ratios. For T1 our
model yields values which are about 25 E too small and for T2

the values exceed the true periods by about 10 *. This j-s due
to the rrpairing,'r of the eigenfrequencies which draws the ap-
proximate vafues into the gap between the eigenperiods of the
two exact funrlamental modes. It is likely that this pairing
will be cancelled when refined approximations, see section 7,
are used.

Figure 44 displays a comparison of the first eigenmode of
our model with the corresponding BaIl solution. The wave pat-
tern starts with 4 troughs and crests in both solutions. After
V8 T two diagonal cells have merged, however, in Ballrs solu-
tion it is the cyclonic cefl contrary to our model where the
anticyclonic cell intensifies. After a quarter period the
exact solution stil1 exhibits three cells, whereas the anti-
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first eigenperiod
to Figure 31b) with

cyclonic cell in the approximate model continues to increase
until the small cyclonic cells die away. The exact solution
can be characterized by a clear 4-3-4 modal sequence which is
different from the 4-l-4 sequence obtained by our method. The

reason for this lies in the order of the selected model. A

three cell structure with respect to n as observed in Ballrs
solution is only possible when selecting N ) 2, cf. P; in Fi-
gure 9.

Figure 45 displays BaIl's exact 'tlinear" solution and our
corresponding approximate solut.ion. If a time lag of V4 T of
the approximate solution is taken into account the two solu-
tions exhibit the same wave pattern with good agreement.

These comparisons show that, roughly, our simple model- ex-
hibits wave structures which can be well compared with exact
solutions. Hovrever, there are several pronounced differences
such as the intensification of opposite ceIls or the observed
time laq. We tried to make other assumptions about the time



- 1t9 -

. t-

t-t=;-lö

,z-:_\((cr)))
':S-/=/

Figure 45

T = 143 h (rime 1as T =ll4 h
Ar = V4r)

Comparison of the solution of the second eigenperiod
1n a first order model (identical to Figure 32b) with
the rrlinear" mode of BaLl.

dependence introduced in equation (5.I) or taking the imagina-
ry part of (5.13) insted of the real but the approximate sofu-
tions maintained the presented structure (Figures 44, 45). We

are convinced that all the demonstrated discrepancies bet\,leen
this model and the exact solutions wiIl be considerably dirni-
nished when the refinements suggested in the following sec-
tions are adopted.

7, Noopt- r MPRovEMENTS

The previous sections revealed that our model describes
topographic vTaves satisfactorily in channefs, and in lakes pro-
vided that aspect ratios are large and a distdt order model- is
taken. However, contrary to the anticipation that the results
j-mprove when increasing the order of the model, the results
loose their similarj-ty with known exact sol-utions for both
aspect ratio domains r < I and r > 1. The fact, that a first

@ /:\{(@))'V-/
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order model describes -under the assumptions made hitherto
the physics of the problem more appropriate than a second. or-
der model, suggests the conclusion lhat the constancy of the
topography with respect to s, seems to represent too big a re-
striclion on the physics when taking a h,LclLLoL order model, N> 2.

A higher order model, which pe-L 
^e 

describes the problem more

accurately, requires refined assumptions, i.e. a better choice
of the basis functions (4.17) and/or a more realistic basin
topography.

7.1 Other basis functions

From a mathematical standpoint, the approximate proced.ure

inlroduced in section 3.2 with equation (3.3) makes sense only
when the set {Po (s,n) } forms a cl'ilpLe{:e set of functions in a

given inlervaf [e-(s),e+(s)] with respect to n. On the other
hand, physical boundary conditions require that the sel.ected
set fulfils (3.9). Possible sets have to satisfy these two

conditions. Abramowitz and Stegun (I972) give a variety of
sets of functions, €,9. Legendre functions, orthogonal polyno-
mials etc., but few of them fulfil boundary conditions of the
form (3. 9) .

The choice, which has been made by taking the set of the
trigonometric functions is certainly the simplest and handiest
one. A selection of a set of basis functions is a ma.t:hema.f,Lca,l-

affair ancl does not much influence the physical response of
the system. Taking another set does not mean a change l-et alone
an improvement from a ph11sica.l, point of view. Thus, we think
that this problem plays a minor role within the framewcrk of
this model.

7.2 Refined basin topography

The solutions obtained hitherto suggest that the assumP-

tions on the basin topography made in section 5.1 were too re-
strictive. Indeed, since the variation of the topography is
one of the driving mechanisms of topographic wave motion, cf.
Appendix B, any model describing these processes is certainly
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expected to be very sensitive to assumptlons or rather neglec_
tions ln the bathymetry, more precisel), h(s,n) may need to
show variations in both directions. ft seems, that (4.3) was
generally a good representation of the cross topography of an
elongated lake. Through the parameter q a variety of lake
cross sections can easj-Iy be approximated. However, the simple
assumption about the topography in the s-direction, h0(s)=con_
stant was certainly not adequate 604 a, n_a"h-e . In channels,
h6(s) =constant is a common and reasonable assumption which
was made also by cratton (f983) in his work. fn lakes and
cLo.ted baslls, however, this assumption, as the results make
c1ear, is a restriction which destroys the characteristics of
topographic wave motion. Analytical calculations, Ball (1965)
etc., showed i:hat the fundamental modes follow the isobaths
of the basin and travel around the 1ake. Assuming hg(s) =con-

ähnstant, ;dS- = 0 discontinues the isobaths at s = 0, and s = L
such that a continuous fol1ow-up around the lake is no longer
possible. fn a first order model this defect is not felt be-
cause fundamental modes are enforced. Evidently, in a second
or higher order model a mechanism which woul-d facilitate a

turning of the waves at the l-ake ends is required but absent
in the hg(s) = constant case.

This defect is easily lifLed by dropping the assumption
lh^"i'i = 0 and aflowing variable topographies along the s-direc-dS

tion. However, an arbitrary choice of h6(s), such as e.g. a po-
Iynomial, turns the operator ifi in equation (5.3) into a dif-
ferential operator, which has coefficients depending on the
variable s. Solving the emerging system of differential equa-
tions then amounts to solving a standard two point boundary
value problem. A possibility to keep the coefficients of lfr
constant is sketched in equation (5.4). When sefecting for the
three subdomains hO(s) - e fi= the basin shape is shown in Fi-
gure 11, Adopting such a profile recovers an operaLor fo with
constant coefficients, buL equal_l_y produces isobaths which
form closed l-ines (however rectangles) around the lake. Becau-
se of this Iess restrictive assumption calculations become mo-
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re complicated, but the compact matrix formalism is still use-
ful. As done in section 5.I and 6.1, we briefly demonstrate
the emerging formalism.

In Figure 11 a continuous basin profile is chosen as fol-
Lows S

.T '1 
=;hn(s) = eh(I+ ^)

^tot,"l = h(l+e),

t']jrt.l < eh(l+*,E,

01sSs1

The constanl c, introduced in (5.4) then reads for the diffe-
rent basin domains I, II, IfI

(7 -2)

sl

s2

!sSs2, (7.1)

1s1L.

I L - ,- Ic = _=_ln(1+=-) 
,5l

II . IIT L ,- Ic = 0t c = L_=, ]n(I--).

The matrix elements Cgs in (5.9_) now contain further components
because terms proportional a" * must not be neglected. With

dS
the aid of (5.3) the matrlx elements become

cßo = ,", (trr1z 
^oo** 

* 
^äi--

- i (rk) r'"1 x!!** ) ,

"ßo 
= i tri.l rx2uool^ K8'z;:^ )

1n-+
+ (rc) K["o_, ,

.ßo = - rrrr<r tx!!l-* + K31i-.)
tn t-_ trc) x[]*.o ,

css = ,6'r.12 n!!r-*_* * n31*.*_*
ct.iJ=N+1,...,2N

- i (rk) ('") K3:;-,,-, ) ,

o,ß=r,...,11

ß =r,...,N
(x =N+1,. ..,2N

q-1r...,1\

ß =N+1, . . ., 2N

(7.3)

which is identical to (5.9) v/hen selcting c = 0. The dispersion
relation is obtained from
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det g (o, k, c) = 0, ('7 .4)

which now, additional-ly, depends on c. The five points which
are discussed on p. 61 must now be revised under the aspect of
c I 0.

ad l) The dispersion relation depends on both rk and rc.

ad 2) The coefficients of the emerging polynomial are no

longer rea1, however, there are stil1 4N roots for
a given (l).

ad 3) Cancelled.
ad 4) Cancelled.
acl 5) siilt trotas.

Equati-on (7.4) implies that the dispersion relation depend.s

on c, i.e. on the lake domain with respect to the s-direction.
Therefore, the set

{kyi, ky € c, Y =1,...,4N,

equally, depends on the selected domain. Henceforth, this will
be indicated by a Roman superscript I, II, III. The solutions
can now readily be constructed following the procedure given
in section 5.1 for the three lake domains:

,Ilp (s,n,t)

,II -!r (s,n,t)

vrrl

= =rrral

*"o= tt I

= =i"..I

*ao" ,t I

Nt
(x=l

2N

x
0,=N+1

N

E
ct=I

2N

x
c[=N+l

.IK.,

nits,n). ä .t*= 
"ä" 

ui 
]Y=t

LT.
4N .'-Y ^

P--*(s,n). > e'L " "j" 4 l,' ,-]
Y -r

,II
K^,

4N.I^
ejts,nr.E e'" ""jiui'J

Y=T IIxv
4t\

P;_N(s,n). t J- " 
"ji ui'] ,

Y=1

0 !s Ss,

s, Ss Ss2 (7.5)

rN
(s,n,t) = sin otl Jl

L o,=1

tr2N
+.o= tot I IL'

Cx=N+

. IIIkv
4Ni,.

ej(s,n)' t e L " crrrd^rrrl
!=roYYj

kJrr s2 Ss Sr-
4N i,'Y s I

- 
P-_N(s,n) . l- e " .ärtt uitt.] .

t t=t
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The three vectors gt, qtt, grrr must now be chosen such that
{ra, V11, ü-L-Lr is a lake solutj-on, which satisfies the boundary
conditions at s =0 and s =L. Because the lake is subdivided
into three domains matching conditions at s =sl and s =s2
must be fulfilled. The matching conditions are that { must be

smooth, i.e. continuous and d.ifferentiable at the matching
points. The conditions then read, cf. section 6.1,

*'"lo = o \- ^r Är
l-'oY 'Y

1_r

\--'r -r
/".rol

1=t

ä!,t"1 - a,i,tt"l
a= Irr- a= l=,

rrcllir 
ils2

T
.k1

sr,Sl/-' II -IIco.y dY = ur

I -Ico.l dy

.T
KV

t- sl

lI.II.oyory = ur

,I
r f iof

.IIKl
i- sl

where o=I,...,2N and summation is meant

-IT-L'+
- r1

.*Y-^
ürrcxl = ürrr0l * f e' t "' .^t^1 e^lt' l=z luz L uY Y

,,IIIKV
irc

r r-;- s2 III -III- Le " "*] q = ur

II

^.rrol ^.rrrol *^lr.*]^-dqr I _ Aü I r \-, "Y 
^' l_ =2 ^rr ^II-ä;1.^- ä= l^ /-'L = "crl"]

. rrr . 
uitt

s- . KY t T, s2 rrr .lrr-LrL . .oY .1 = u'

. rrr cr, Irlrr-nYl
IL

., ITI* f e'kY

r _rcsY dY

(7 .6)

IT]
"*Y

.IIIdY =u'
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can be written in matrix form

a (12N x12N)-Matrix which depends on i,-r

parameters q, e, sI, s2 and acts on the
, 4ttt). A non-trivial eigenvector g of

Eo"' e, = 0r (x,Y =],...,12N,

where E is
topography
a = tÄI xII: \: , :
quires

detE(rrr) = 0, (7.8)

which is the equation yielding the eigenfrequencies of the
given Iake. Although, from a numerical point of view calcula-
tions become more complex, a vast variety of realistic basin
topographies"can now be considered. This is shown in Figure
46.

m*

St* L
Figure 46

Variety of basin topographies in the parameter
space (s1rs2) which can be treated after the refi-
nement of the topography assumptions- Up to sec-
tion 6, in this work only sofuLions to topographies
marked with * were calculated.

A possibJ-e continuation of this work will certainly adopt
this procedure; j-t allows the modelting of various basin topo-
graphies without having to aband.on the compact matrix formula-
tion. ft is expected that realistic eigenperiods and sofuti-ons
are obtained which can be compared with exact solutions for

(7.7)

and the lake
vector

(7 .7 ) re-

ffiMffiffi
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If these results are reasonable
step towards an understanding of

8, colrcrunr NG REMARKS

8.1 Channel models

The calcufations and solutions of topographic waves showed

that the Method of Weighted Residuals is a strong tool in solv-
ing an inheJent two-dimensional bound.ary value problem. After
havj-ng established the matrix formalism and determined the
matrix elements for a given topoqraphy the solution of the dif-
ferential equation transforms to a simple problem of Lj-near

Algebra. For such problems good and efficient computer software
exists which is a further argument for the appllcation of our
method.

Although this matrix procedure is approximate and computa-

tional efficiency was not evident ab initio satisfactory re-
sults are already obtained for models of very low ord.er, Con-

vergence, discussed in section 5.3 is convincing, the reliabi-
lity and stability of the solutions are clearly exhibited.
Furthermore, the method al1ows examination of a largle variety
of channel topographies which was not possible hitherto. Grat-
ton (1983) who investigated channels with an analytical method

using separation of variables only considered two qualitative-
Iy different cross topographiest vj-z. a weakly linear and

quadratic profile. This is a serious restriction on possible
configurations that could be treated. By contrast, our method.

allows for almost anq Lransverse topography' i.e. also more

complicated cross profiles for instance shoulders or islands
etc., could be considered. This only modifies the matrix ele-
ments and does not complicate calculations once those are de-
termj-ned. Presently, only Finite Difference techniques are

able to cope with the qeneralj-ty of application, which our
method offers. These, however, require much more and more
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difficult computer vrork than the method of Weigthed. Residuals.

Moreover, Grattonrs study is limited to straight channels
and is, therefore, not able to investigate the effect of cur-
vature on the topographic wave motion. Channels with a coyu|tl,nt.

curvature could however also easily be analyzed with our model,
since this again only modifies the matrix elements.

All this demonstratesf that our approximate method opens
many possibilities in the investigation of topographic wave

motion under a variety of aspects.

8.2 Lake models

The applicatj-on of the method to l-akes brought out clearly,
that the quality of the resul-ts depends crucially upon the as-
sumptions about the basin topography. Bathyrnetries, which are
unrealistj-c in that they do not have continuous isobaths,
show reasonable solutions in a first order model with special
aspect rat.ios. Overly simplified topographies do not pay. A

possible way out of this difficulty is shown in the previous
section where topographies varying in both horizontal dimen-
sions are incorporated without a qualitati_ve increase of com-
plexity. As long as the refined method is not tested, however,
a final qualification of our model for lake application cannot
be given. First order models show reasonable results which can
be associated with exact solutions of e.g. Ball (1965).

Our channel method occupies a place between the exact ana-
lytical mod.els, such as Lamb (1932), BaIl (1965) and Mysak
(1983,1984) on the one hand, and the Finite Difference Me-
thods on the other hand (E. Bäuerle, work under progress). A1-
though our method offers greater fl-exibil_ity to model the lake
basin as the exact models do, it does not requj-re as much com-
puter work as do the FD-calculations. In that sense the method
of Weighted Residuals represents an economic way of solving
the topographic wave problem.
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It is also possible to study boundary effects, such as
noses, bays etc.; but in these cases a compact matrix forma-
l-ism does no longer suffice. The coefficients of the system
of differential equati-ons (5.2) then depend on the variable s

and. a transformation of the form (5.7) into an afgebraic sy-
stem can not be performed. Therefore, a coupled two-point
boundary value problem with variable coefficients emerges from
(5.2) vrhich has to be sol-ved by iterative numerical methods.

8,3 Computational peculiarities

The evaluation of the eigenfrequencies of a given lake
could be done with good accuracy by using equation (6.5). The

determinant of D depends strongly upon the frequency and a
slight change of o effects large variations of det D. Adopting
the Regu1a Falsi, the zero, i.e. the eigenfrequency, can the-
refore be calculated with high accuracy. On the other hand, it
is often very difficult to determine the associated eigenvec-
tor, the kernel vector d because, by the above argument, the
numerical system is very stiff, cf. section 6.1. Inaccuracles
of the ej-genvector d turn up with dissatisfactions of the
boundary conditions at s = 0 and s = t. A thorough study of
numerical methods could certainly lift this problem.
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APPENDIX A: Necessary conditions for
topographic wave mot.ion

Topogiraphic wave motion requires two necessary conditions,
which must be fulfilled:

1. The system, in whlch topographic waves are sustained, must
be in rotation. Therefore the Coriofis parameter f must
differ from 0, f I O.

2. The basin must have a gradient of topography, VH I 0. To

prove this statement we start from the homogeneous part of
equation (2.6) and the boundary condition (2.20)

V. (H-1 v $,f,1 + f (Vq x Vn-l ).2 -- o, rn0 
(A.r)

rf = 0, on äD.

Unless both conditions above are fulfilled' (A.1) reduces
toar

V"-+ü = 0, tn0dr (A.2 )

i! = 0, on ä2.

Assuming a harmonic time dependence of the form exp(itrlt)
with o I 0, (A.2) reduces to the potential probl-em

v2ü = o, inq

ü = o, on ä?

which, invoking the Maximum Principle, admits only the
triviaf solution ü = 0 in 0. Therefore, if either f = 0 or
VH = 0, the stream function is trivial and there is no

wave motj-on governed by equation (A.l) in the systern.
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Syrunetric \.rave motion

In this appendix a proof wiII be given, that the governing
equations (2.L6) do not allow solutions that ret4in their sym-

metry for al-I times. Starting from (4.16) and using the boun-
dary condition (2.20) yields (+ subscript is dropped)

io V. (h-1 Vil,) = 0, on D

!.tv,i,rvit-r) = o, ono

?.tv,l,* vh-l) = - 2.v, h-lvV,

which implies the existence of a scalar field 0(x,y)

ü = 0, onäO

where no qüantity depends on the vertical coordinate z. It is
claimed, that for a * 0, equations (B.1) pernit only the tri-
vial solution. To this end, consider the vector identity

(8.1)

(8.7)

L
With the definition

g=v0.

g: = h-I Vi,

(8.2)

such that

(8.3)

(8.4)

(B.5)

(8.5 )

then, the system (8.1) reduces to the compact form

itr V2O = 0. rn D

Along the boundary we have from (8.4)

s.i = h-l v,i, .! = n-t #,
where .Q, is the unit vector tangential to the bound.ary. (e.1):
states, that ü does not change on ä0, and therefore, provided
,.foonBD g'!=0, onä0,

Accordingly, by (e.3), it follows that

o = v0.! = #, on D?, (8.8)

which implies, that Q is a constant along ä?. Thus (B.l) takes
on the form 

irr.: v2 o = o, in o

o = Qo, on äD (B' 9)
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which, by $: = ö-06, transforms to the

, -)ato]V'0 = U' in

ö = o. on

boundary value problem

D

AD

Invoking the Maximum Principle, this implies straightforwardly

0 = 0, tn D (8. r1)

if u f 0. Therefore, the stream function { can only be a con-
stant within the domain, which is the trivial solution for
(B.1). Allowing non-trivial- stream functions ip, on the other
hand, implies o = 0, which shows, that this would not be a so-
lution repr6senting a hrave. Thus, any wave solution of (2.16)
or (3.21) must necessarily be a composition of symmetric and

skew-symmetrj-c parts.

APPENDl X Topogiraphic waves and Rossby waves

In order to work out the interrelatlonship between atmosphe-

ric Rossby waves (Pedlosky, 1979, p. 108ff) and topographic
waves in channels and lakes, v7e start from

(8. to )

(c.1)

homog:eneous

v3,pv'-+-
which is the nonscal-ed more

part of (2.L6), see Hutter

2.(vrl'^ v*l = o,
-E

general form of the
(1984a, p. 28) .

Figure CI
The different wave phenomena
ned by equation (C.1).

that are gover-

t ä,'

Governing Equation: v. (-T-:) + ?.(v,t,- vf I = o

Mechani sms: Vf and VH

Topographic fJaves
in Channels and Lakes

vf=0, vHl0

Planetary Rossby Waves
in the Atmosphere

vfl0, vH=0
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At mid-latitude, calculations are performed on a ß-plane.
This means that spherical effects are accounted for with a li-
near increase of the Coriolis parameter f to the north. Select-
ing a coordinate system, whose x-axis points to the east and

y-axis to the north, then

Vf= ,S) = (0,$,0) (c.2)

(C.1) is lhe equation which yields the topographic waves when

assuming Vf = 0 and VH I 0. On the other hand let { have a

wave like structure

' qr = "i 
(cot-kx-[Y) 

,

and assune an atmosphere with constant depth H (no orography),
then (C.1) yields the well-known dispersion relation

ßk

kz + 9"2

This is the dispersion relation of planetary Rossby waves in
an aptmosphere at rest (Pedlosky, 1979, p. I09). Therefore, we

have demonstrated the alliance between those two wave phenome-

na. Tn an atmosphere with strong orography, e.g. in the Alps'
it might be likely to observe 'taaves which have both, topogra-
phic and Rossby wave character.

APPENDI X A mechanical analogy for topographic
wave motion

The mechanism of topographic or second class wave motion
is the conservation of angular momentum, when a. fluid column

changes its position in a basin with topography. To understand
this, consider the simple model sketched in Figure Dl. The wa-

ter column j-s assumed to be a rigid body rotating around its
vertical axis with an angular velocity hrhich in the two re-
spective positions is Q1 and Q2.

The angular velocity which column 1 will take on when it is
transported to position 2 can be calculated when the conserva-

äf(o,Ti

(c.3)

(c.4 )

t

t
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Figure Dl

A mechanical analogy
of the mechanism of
topographic wave mo-
tion.

tion laws of mass and angular momentum are applied. Balance
of mass in the columns requires

ti Hr = ti nz, (D.1)

and conservation of ang'ular momentum yields

L 2 ^ t 2jm1 ri fi1 =i^zrioz.

(D.3)

(D.s)

-.F€:

(D.2)

Equations (D.l) and (D.2) are satisfied provided the quantity

$ foftowing the fluid motion remains constant:
0
G'= constan!.

Because the vertical component of the absolute vortici-ty of
rigid body motion is thrice Line tota.L angular velocity, (D.3),
on a rotating earth, is ldentical to

H

which is the conservation 1aw of barotropic potential vortici-
ty. The operator $ is tfre convective derivative operatordt

da_ _ _ + 1r.\/dt ät = ''

(D.4)

where üJz is the vertical component of relative vorticity and

f the Coriolis parameter. This quantity must therefore be con-
served when one follows the fluid motion, implying that (D.4)

takes on the well-known form



- 1t? -

in which g is the fluid velocity.

Equation (D.5) can be transformed into an equatlon for the
barotropic or mass transport stream function rf given by

ify = -Hnr
tirx = Hv.

These last equations satisfy the continuity equation under the
rigid 1id assumption. In terms of tf the vertical component of
the relative vortlcity reads

äv
- dx

fn a two-aimensional barotropic model (D.5) then becomes

o r!r -dx t1
(D.6)

here, non-linear terms have been ignored and f and H have been

assumed to be time-independent. Equation (D.6) can be written
in the compact vector form

V{) + q. (Vrf x (D.7)

which describes both planetary Rossby waves and topographic
waves in lake basins, see Appendix C. Equation (D.7) is a spe-
cial case of equation (2.6) containing the rigid lid assump-

tion and no wind forcing, from which we started our study.
Therefore, it is demonstrated that the fundamental mechanism

of second class wave motion consists in the conservation of
angular momentum.

APPEND ] X Numerical calculation of the matrix
elements up to fourth order

In this Appendix the constant part of the matrix elements
(4.31) tä3", i.e. Kä]" in section 5.I, are listed up to the
fourth order, thus o,, ß=t,...t4. They are cal-culated on a com-

puter using the IMSL-library with a relative accuracy of 10-6.

3u - 1-,._ = V';VIU
dyH

r a'JJ a ,f,
E a" äy \H/I a - r-. r aü_ 

-vH at H' Häy

vfl = o,a .- I
ät \ u ' H
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K00--

Kl0++

Kl0--
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0+-
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.32{838+00 I

-.e3633E+00 I
.2o64sE+01 J
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-.180328+00 1
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e = 0,05 q = 0,5
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