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1 Introduction

These lecture notes form the basis of a one-semester course taught at the Physics
Institute and the Oeschger Centre of Climate Change Research of the University of
Bern.

1.1 Goals of these notes

The main goals of this notes are:
1. To introduce the students to the physical basis and the mathematical descrip-

tion of the different components of the climate system;
2. to provide the students with a first approach to the numerical solution of ordi-

nary and partial differential equations using examples from climate modelling;
3. to use and apply Matlab as a mathematical-numerical tool.

A course of two hours per week plus computer lab is too short to reach these goals.
A modest additional literature study, www included, and the application of the
knowledge gained in the computer lab shall enable the student to proceed further
in the education, e.g., in the framework of an MSc or a PhD thesis.
The course should enable the students, who are increasingly becoming users of cli-
mate models and are missing the direct contact and developmental involvement with
climate models, to gain an insight into the construction of climate model compo-
nents, the nature of parameterisations and some of the potential pitfalls of numerical
computation in the context of climate modelling. The present lecture notes aim to
achieve this by presenting and illustrating a few simple and basic examples of how
different components of the Earth system are simulated, including the processes
governing their dynamics and their relevance for past and future climate change.
Numerical climate models enable a physically based estimate of the range of future
climate change. These models, which rest on the fundamental laws of physics and
chemistry (conservation of energy, mass, momentum, etc.), are invaluable in pro-
viding scientific information towards political and societal decision making. When
the effects of a doubling of the atmospheric CO2 concentration, as it is expected
around the year 2050, and other changes in the atmospheric composition have to be
evaluated, only numerical climate models can generate a well-founded quantitative
answer.
Climate models bring together findings of many disciplines in natural sciences. The
understanding of dynamical processes in the atmosphere and the ocean is crucial
for its modelling. Fluid dynamics in a rotating frame of reference (geophysical fluid
dynamics) plays a major role. The resulting partial differential equations need to be
solved with calculation schemes: a problem for numerical mathematics. As in each
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model representation of natural systems, there are processes that cannot be simu-
lated because they are insufficiently understood or because they occur on temporal
or spatial scales which the model cannot capture. Therefore, parameterisations are
formulated, some of which will be presented in these lecture notes.

These lecture notes are an extended version of:
• Stocker, T., 2011, Introduction to Climate Modelling, Springer, 179 pp.

There are some helpful textbooks on the topic of climate and climate modelling:
• Peixoto J.P., Oort, A.H., 1992, Physics of Climate, 2nd ed., American Institute

of Physics, 520 pp.
Very clear and detailed introduction into the physical basis of the climate system
and its different components (Atmosphere, Ocean, Ice). Good presentation of the
climatology of important quantities. The aspect of climate models, however, is
treated only briefly.

• Climate System Modeling, 1992, K.E. Trenberth (Editor), Cambridge Univer-
sity Press, 788 pp.
Coherent collection of overview articles on climate modelling, particularly the dif-
ferent components, biogeochemical cycles included, presented in four parts: basic
processes, modelling and parameterisation, coupling of the different systems and
applications. In some cases no longer up-to-date.

• McGuffie K., A. Henderson-Sellers, 2005, A Climate Modelling Primer, 3rd
ed., John Wiley, 296 pp.
Introduction into the hierarchy of models and formulations including examples and
programs.

• Washington W.M., C.L. Parkinson, 2005, An Introduction to Three-
Dimensional Climate Modeling, University Science Books, 354 pp.
Clear presentation of the physics of the different system components, not as detailed
as Peixoto & Oort (1992), but closer related to modelling. Many parameterisations
are described. An updated classic of 1986.

• Ocean Circulation and Climate: Observing and Modelling the Global Ocean,
2001, G. Siedler, J. Church, J. Gould (Eds.), International Geophysics Series
77, Academic Press, 2001, 715 pp.
Very good overview of research in oceanography on a global scale. Excellent figures.

• Houghton J., 2002, The Physics of Atmospheres, 3rd ed., Cambridge University
Press, 320 pp.
Basic and comprehensive presentation of the physics of the atmosphere (radiation,
clouds, circulation), with an overview of climate change, climate models and pre-
dictability.

• Hartmann D.L., 1997, Global Physical Climatology, Academic Press, 411 pp.
Very clear and rigorous introduction to the physics of ocean and atmosphere and a
physically-based discussion on climate variability and climate change.
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• Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change.
Comprehensive presentation of the latest research of climate sciences referring to
the question of climate change. The complete report is available under http://
www.ipcc.ch.

• Houghton J., 2009, Global Warming: The Complete Briefing, 4th ed., Cam-
bridge, 456 pp.
Excellent and uptodate overview of the science knowledge regarding global warm-
ing and consequences. Sir John Houghton was Co-Chair of IPCC for the Second
and Third Assessment Reports of the Intergovernmental Panel on Climate Change
published in 1995 and 2001, respectively.

Some books on the basics of numerical solutions of problems in mathematical physics:
• Schwarz, H.R., N. Köckler, 2011, Numerische Mathematik, 8. Auflage,

Vieweg+Teubner, 595 pp.
German. Good introduction into the different numerical methods, interpolation,
integration and solution of partial differential equations. Numerous examples.

• Press W.H., S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, 1992, Numerical
Recipes in Fortran (Volumes 1 and 2), Cambridge, 963 pp. (Volume 2 for
Fortran 90, 1996).
Large collection of numerical schemes in different programming languages. Schemes
are explained briefly and succinctly. Their good and bad properties are discussed.
Must be part of the library of every modeler. The newest edition (third edition,
2007) is written in C++.

• Krishnamurti T.N., L. Bounoua 1996, An Introduction to Numerical Weather
Prediction Techniques. CRC Press, 304 pp.
Comprehensive explanation of different solving schemes and parameterisations
which are used in atmospheric circulation models.

• Haltiner, G.J., R.T. Williams, 1980, Numerical Prediction and Dynamic Me-
teorology. Wiley, 477 pp.
Advanced text with many derivations of numerical techniques. Comprehensive and
far beyond the scope of these lecture notes.

• Pratap, R., 2009, Getting Started with MATLAB: A Quick Introduction for
Scientists and Engineers. Oxford University Press, 288 pp.
An example of an introduction for Matlab beginners. Combined with the excel-
lent built-in help in Matlab, the student is enabled to attain a level, on which the
problems given in this lecture can be solved.
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1.2 The climate system

1.2.1 Components of the climate system

The climate system can be divided into five components (Fig. 1.1) which are intro-
duced below. The overview mentions some important processes as examples:

1. Atmosphere: Gaseous part above the Earth’s surface including traces amounts
of other gaseous, liquid and solid substances. Weather, radiation balance,
formation of clouds and precipitation, atmospheric flow, reservoir of natural
and anthropogenic trace gases, transport of heat, water vapour, tracers, dust
and aerosols.

2. Hydrosphere: All forms of water above and below the Earth’s surface. This
includes the whole ocean and the global water cycle after precipitation has
reached the Earth’s surface. Global distribution and changes of the inflow
into the different ocean basins, transport of ocean water masses, transport
of heat and tracers in the ocean, exchange of water vapour and other gases
between ocean and atmosphere, most important reservoir of carbon with fast
turnover.

3. Cryosphere: All forms of ice in the climate system, including inland ice masses,
ice shelves, sea ice, glaciers and permafrost. Long-term water reserves, changes
of the radiation balance of the Earth surface, influence on the salinity in critical
regions of the ocean.

4. Land Surface: Solid Earth. Position of the continents as a determining factor
of the climatic zones and the ocean currents, changes in sea level, transforma-
tion of short-wave to long-wave radiation, reflectivity of the Earth’s surface
(sand different from rock, or other forms), reservoir of dust, transfer of mo-
mentum and energy.

5. Biosphere: Organic cover of the land masses (vegetation, soil) and marine or-
ganisms. Determines the exchange of carbon between the different reservoirs,
and hence the concentration of CO2 in the atmosphere, as well as the bal-
ances of many other gases, and therefore also the radiation budget. Influences
the reflectivity of the surface, hence the radiation balance (e.g., tundra differ-
ent from grassland), regulates the water vapour transfer soil-atmosphere, and
via its roughness, the momentum exchange between the atmosphere and the
ground.

A sixth component, which is particularly relevant for the assessment of future
changes, is often treated as a distinct part of the climate system: the anthroposphere
(ανθρoπoσ = human), consisting of the processes which are caused or altered by
humans. The most important ones are the emission of substances which alter the
radiation balance, and land use change (deforestation, desertification, degradation
and transformation into constructed areas).
Most of the climate models treat processes and fluxes of the anthroposphere as an
external forcing, i.e., the models are run by prescribing atmospheric concentrations
and emissions of CO2. Prescribed are also dust and sulphate emissions from vol-
canoes: for the past based on documented data and paleoclimatic information of
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Figure 1.1: The most important components and associated processes of the climate system on
a global scale.

volcanic eruptions, for the future they may be based on the statistics of such events.
A complete climate model contains physical descriptions of all five components men-
tioned above and takes into consideration their coupling. Some components may be
described in a simplified form or even be prescribed.
Not all questions in climate sciences require a model comprising all components.
It is part of the scientific work to select an appropriate model combination and
complexity, so that robust results are produced for a specific science question.
Each climate system component operates on a range of characteristic temporal and
spatial scales. The knowledge of these scales is necessary for a correct formulation
of climate models. Table 1.1 summarizes some of relevant scales. Usually, the
definition of processes to be represented in the model restricts the temporal and
spatial resolution of the model’s grid.

1.2.2 Global radiation balance of the climate system

The Sun is the only relevant energy source for the climate system on a temporal
scale of less than about 106 years. The different energy fluxes are shown in Fig.
1.2. Coming from the Sun, on average 341 W/m2 reach the top of the atmosphere
(this corresponds to about a quarter of the solar flux density, Solar Constant S0 =
1367 W/m2), while barely half of this is available for heating of the Earth’s surface.
Major parts of the short-wave radiation are reflected by clouds or reflected directly
on the Earth’s surface itself and are absorbed by the atmosphere. Incoming radiation
contrasts with surface long-wave outgoing radiation of around 396 W/m2. Through
convection and evaporation, the surface loses another 100 W/m2, which would—if
other important processes absent—result in a negative energy balance of the surface.
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Component of the
Climate System Process Characteristic

Time Scale
Characteristic
Spatial Scale

Atmosphere collision of droplets
during cloud formation 10−6 – 10−3 s 10−6 m

formation of
convection cells 104 – 105 s 102 – 104 m

development of
large-scale weather
systems

104 – 105 s 106 – 107 m

persistence of pressure
distributions 106 s 106 – 107 m

Southern Oscillation 107 s 107 m

troposphere-
stratosphere
exchange

107 – 108 s global

Hydrosphere gas exchange
atmosphere-ocean 10−3 – 106 s 10−6 – 103 m

deep water formation 104 – 106 s 104 – 105 m

meso-scale oceanic
gyres 106 – 107 s 104 – 105 m

propagation of Rossby
waves 107 s 107 m

El Niño 107 – 108 s 107 m

turnover of deep water 109 – 1010 s global

Cryosphere formation of
permafrost 107 – 109 s 1 – 106 m

formation of sea ice 107 – 108 s 1 – 106 m

formation of land ice
masses 108 – 1011 s 102 – 107 m

Land Surface changes in reflectivity 107 – 108 s 102 m – global

isostatic equilibration
of the crust by
covering ice masses

108 – 1011 s 106 m – global

Biosphere exchange of carbon
with the atmosphere 104 – 108 s 10−3 m – global

transformation of
vegetation zones 109 – 1010 s 102 – 107 m

Table 1.1: Some examples of processes determining the climate with their characteristic time and
spatial scales.
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Figure 1.2: Global energy fluxes from different sources which determine the radiation balance of
the Earth. Figure from Trenberth et al. (2009).

The natural greenhouse effect, caused by greenhouse gases such as H2O, CO2, CH4,
N2O and further trace gases, is responsible for the infrared back-radiation of around
333 W/m2. This results in an energy balance with a global mean surface temperature
of about 14◦C.

1.3 Purpose and limitations of climate modelling

Until around the early 20th century, climate sciences were primarily concerned with
the study of past climatic states. This was done by observation of the environ-
ment using mostly geological, geographical and botanical methods. By the end of
the 1950ies, important physical measurement methods were developed. The mea-
surement of weak radioactivity of various isotopes was the basis for the dating of
organic material and enabled the determination of flux rates in different environ-
mental systems. The measurement of the stable isotopes in precipitation revealed a
conspicuous temperature dependence. By analysing stable isotope ratios in perma-
nently deposited water (i.e., polar ice) a natural “paleo-thermometer” was realised.
The determination of the concentration of trace gases and other tracers in ice cores
from Antarctica and Greenland made it possible, for the first time, to produce an
accurate reconstruction of the chemical composition of the atmosphere. By ex-
ploring different paleoclimatic archives, which may be described as environmental
systems that record and conserve physical quantities varying with time, an impor-
tant step towards a quantitative science was taken. Such archives include ice cores
from Greenland and Antarctica, ocean and lake sediments, tree rings, speleothems,
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Figure 1.3: The role of climate modelling
in climate science. C & E stands for cli-
mate and environmental.
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and many more. This enabled the transition of climate science from the purely
descriptive to a quantitative science providing numbers with units.
The increasingly detailed paleo-data require that hypotheses are quantitatively cap-
tured with regard to the mechanisms responsible for climate change. This is where
climate modelling begins. Its goal is the understanding of the physical and chem-
ical information and data retrieved from, among others, paleo-data. Such models
permit a quantitative formulation and testing of hypotheses about the causes and
mechanisms of past, and the magnitude and impact of future climate change.
Figure 1.3 visualizes the role of modelling in paleoclimate science in a schematic way.
Climate change alters certain climate and environmental (C & E) parameters which
then can be “read” using appropriate transfer functions. Even in this case, model
formulation and application play a central role, but the term climate modelling is
not applicable. Climate archives can only be made accessible to research by reliable
measurement techniques. An experimental physicist produces climate data (e.g., the
reconstruction of the atmospheric CO2 concentration over the past 800,000 years).
The modeler works on the development and application of models that yield model
results within the framework process studies. The goal is the synthesis of model
results and climate data, which is achieved when the underlying mechanisms and
hypotheses are in quantitative agreement. Hence, the model yields a quantitative
interpretation of the evolution of climate, based on the laws of physics and chemistry.
The evolution of the annual mean surface temperature averaged over the northern
hemisphere over the course of the last 1,200 years is part of some of the most
important climatic information in the debate on current climate change (Fig. 1.4).
A central question, that has to be resolved by models, is whether the reconstructed
warming—and what fraction of it—can be explained by the increase in atmospheric
CO2 and the resulting changes in the radiation budget. The modelling of the last
1,200 years of climate evolution necessitates an accurate knowledge of the different
forcings to the radiation budget and a credible representation of natural variations by
climate models. The most important forcings are the variations in solar radiation,
the magnitude, location and duration of volcanic eruptions, the changes in land



1.3 Purpose and limitations of climate modelling 9

Reconstructed (grey) and simulated (red/blue) NH temperature

1000 1200 1400 1600 1800 2000
Time (Year CE)

-0.5

0.0

0.5

1.0

Te
m

pe
ra

tu
re

 a
no

m
al

y 
(°

C)

MCA LI A 20C

Strong
solar
variability
simulations

Weak
solar
variability
simulations

Figure 1.4: Comparison of climate model simulations and reconstructions of annual temperatures
in the Northern Hemisphere over the last 1,150 years that are based on information from various
paleoclimatic archives (tree rings, lake sediments, borehole temperatures, ice cores). Simulations
shown by colored lines (thick lines: multi-model-mean; thin lines: multi-model 90% range; red/blue
lines: models forced by stronger/weaker solar variability, though other forcings and model sensitiv-
ities also differ between the red and blue groups); overlap of reconstructed temperatures shown by
grey shading; darker grey indicates more agreement between the various paleoclimate reconstruc-
tions. Distinct climate periods of the last millennium are indicated: Medieval Climate Anomaly
(MCA), Little Ice Age (LIA), and 20th Century (20C). A significant temperature increase over the
last 100 years can be identified. All data are expressed as anomalies from their 1500–1850 mean
and smoothed with a 30-year filter. Figure from IPCC (2013), Fig. 5.8.

cover by deforestation and other activities and variations in concentration of climate-
relevant atmospheric tracers. Besides sophisticated statistical methods, only climate
models are able to answer these questions in a quantitative way. Figure 1.4 compares
the most recent reconstructions of northern hemispheric temperature with those
simulated by an ensemble of climate models run over the past millennium and forced
by prescribed solar variations and volcanic eruptions. The model simulations exhibit
variations within the range of reconstructed temperatures over the past 1,150 years
and reproduce the significant increase in northern hemispheric temperature during
the 20th century. Some paleoclimate reconstructions suggest warm temperatures
around the year 1000 CE but climate models do not show such anomalies during
that period. Multi-annual coolings caused by volcanic eruptions are well simulated.
The estimation of the climate sensitivity, that is the increase in the global mean
temperature with a doubling of the atmospheric CO2 concentration above the pre-
industrial level (from 280 ppm to 560 ppm), provides important information about
the coupled climate system. Models, that are employed to address this question,
must be capable of simulating the natural climate variability as well as past climate
changes in a quantitatively correct manner.
An example is shown in Fig. 1.5. Here, the Bern2.5d model, a simplified climate
model that describes the large-scale processes in the ocean and atmosphere, was
used (Stocker et al., 1992; Knutti et al., 2002). The globally averaged warming,
which is observed between 1860 and 2000 (grey band) can roughly be reproduced
with different model simulations (lines). While the long-term trend is modeled in
an acceptable way, single variations on a time scale of less than 10 years can only
partly be captured. The uptake of heat by the ocean is only simulated in broad
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Figure 1.5: Changes in global mean temperature since 1860 a), and heat uptake in the ocean
since 1955 b). Grey bands for observations and lines for different model runs. Figure from Knutti
et al. (2003).

terms. The important deviations between 1970 and 1990 in ocean heat uptake may
well be captured by particular simulations but, until today, have not been explained
by climate models in a satisfactory way. However, this is a rare, but interesting
example of a case in which a recent correction of the observational database has
brought an improvement of the correspondence between experimental and computed
data (Domingues et al., 2008).
As any mathematical model of natural systems, a climate model is a simplification.
The degree of accepted simplification determines the complexity of the model and
restricts the applicability of the model to certain questions. Hence, the complexity
of a chosen model sets the limitations to its application. Determining these limi-
tations requires considerable experience since no objective rules or guidelines exist.
Especially for the development of climate models, particular care and a natural scep-
ticism are needed: It is not desirable to implement and parametrise all processes
without careful consideration of overall model consistency. The quality of a climate
model is not judged by the mere number of processes considered, but rather by the
quality of how chosen processes and their couplings are reproduced.
Of course, it is the duty of research and development to continuously increase the
resolution and realism of climate models and this is happening at a fast pace. How-
ever, this rather quickly and regularly reaches the limits of computing resources
particularly if long-term simulations (e.g., over 105 years or more) are performed.
For this reason, intelligent simplifications and models of reduced complexity are
required. This becomes manifest in the way how a hierarchy of models is used in
current climate research. This will be discussed in Chap. 2.
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Figure 1.6: Vilhelm Bjerknes (1862–1951), founder of
dynamical meteorology.

 
Figure 1.7: Lewis Fry Richardson (1881–1953) computed the
first weather forecast.

1.4 Historical development

Climate models emerged from models that were developed for weather prediction
since around 1940. Modelling atmospheric processes and circulation is the cradle of
climate model development. Vilhelm Bjerknes (1862–1951, Fig. 1.6) was the first to
realize that weather prediction was a problem of mathematics and physics. Thus,
conservation equations for mass, momentum and energy need to be formulated in
order to calculate the dynamics of the atmospheric circulation. They are combined
with an equation of state for an ideal gas. Hence, the atmosphere evolves in a deter-
ministic way implying that consecutive states of the system are linked by physical
laws.
Bjerknes assumed that a sufficiently accurate knowledge of the basic laws and the
initial conditions were necessary and sufficient for a prediction. He therefore adopted
the classical notion of predictability of nature, or determinism, from Laplace. Only
later it will become apparent, most notably through the work of the late Edward
Lorenz in 1963 (see Sect. 7.2), that the predictability of the evolution of a non-linear
system, in this case the atmospheric circulation, is naturally limited. Bjerknes
founded the “Bergen School” of meteorology and has produced ground-breaking
contributions to the knowledge of cyclogenesis.
Lewis Fry Richardson (1881–1953, Fig. 1.7) was the first to formulate a numerically-
based weather forecast. The calculations, which he conducted in 1917, were based on
observational data from 12 vertical profiles of pressure and temperature at different
stations across Europe, which—incidentally—were established by Bjerknes. These
data served as initial conditions for the calculation. Richardson defined a calculation
grid with a resolution of 3◦×1.8◦ and five vertical layers across Europe. It consisted
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Figure 1.8: Stationary Rossby waves in a rotating tank
(http://www.ocean.washington.edu/research/gfd).  

of 150 grid points, on which the pressure trends were calculated. Richardson made
use of the so called primitive equations: the horizontal momentum conservation
equations, the continuity equation (prescribing conservation of mass) and the ideal
gas equation. The work load for the calculation of a 24-hour forecast was enormous:
It took three months. Only after the first computers were available in the 1940ies,
weather forecasts were feasible and were deployed as a tactical means by the end of
the World War II. Richardson’s first computations were a significant achievement
of principle value but did not provide reliable predictions. The prediction for the
change in surface pressure over six hours yielded a value of 145 hPa. Not even in
the center of a low-pressure system such a fast drop in pressure can be observed.
Nevertheless, Richardson published his result in the famous book Weather Predic-
tion by Numerical Process (Richardson, 2007). The problem was that the initial
conditions, in this case the data for the surface pressure, contained small errors that
multiplied during the numerical procedure and led to strong trends in pressure. A
calculation based on the same data but filtered at the beginning by adjusting un-
naturally strong pressure gradients, led to a plausible prediction with Richardson’s
algorithms (3.2 hPa/6 h).
This points to the fact that initial conditions, or the initialization of weather and
climate models, is a central problem of which the modeler must always be aware.
Not only the initial conditions, but also the formulation of conservation equations is
crucial. Even the most accurate initial data would have led to instability using the
equations of Richardson, because they contained physical processes (gravitational
waves), which destabilize the solution and make a long-term prediction impossible.
Carl-Gustav Rossby (1898–1957) achieved a break-through by realizing that the
conservation of vorticity was a more robust constraint than that of momentum.
This approach is suitable for the system of the rotating Earth, because the Coriolis
effect can be implemented in a natural way. Planetary waves (Rossby waves) appear
in rotating fluids (Fig. 1.8) such as the atmosphere and the ocean. Atmosphere
and ocean respond to disturbances (temperature anomalies, onset of deep water
formation, etc.) with the propagation of Rossby waves that cause currents which
then are able to modify the background state. Rossby waves are fundamental for the
understanding of weather systems in the atmosphere and the large-scale circulation
in the ocean. Interesting further information is provided at http://www.ocean.
washington.edu/research/gfd including many descriptions of table-top experiments
in geophysical fluid dynamics.
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Figure 1.9: Edward Lorenz (1926–2008), the inventor of
chaos theory.

In the 1940ies and 50ies the first computer (ENIAC, Electronic Numerical Integrator
and Computer) was deployed in Princeton for the US Army. The first project was the
prediction of a storm surge at the American East Coast. In 1955, the first long-term
integrations of a simplified atmospheric circulation model were realized by Norman
Phillips (Phillips, 1956). This marked the beginning of general circulation models
which would solve the complete equations of atmospheric flow.
Besides the numerically complex problems, theoretical studies on the fundamentals
of the dynamic behaviour of the atmosphere and the ocean were advanced. The
conservation of momentum and vorticity in a rotating fluid implies non-linear terms
in the equation system. They result from advection of momentum in a flow (terms
of the form u ∂u/∂x, etc.). In addition, in a rotating frame such as the Earth, the
Coriolis force causes a coupling of the components of the horizontal movements.
Non-linearities are responsible for the finite predictability of such flow as Edward
Lorenz (1926–2008, Fig. 1.9) has found in 1963. In his landmark paperDeterministic
non-periodic flow (Lorenz, 1963) he describes how the patterns of large-scale flow
can lead to chaotic behaviour (see Sect. 7.2).
This pioneering paper set the basis for a entirely new scientific domain: Chaos
Theory. Although, the evolution of a classical system can be calculated in a deter-
ministic way at all times (by solving partial differential equations), the system loses
its predictability after a finite time. Smallest differences in the initial conditions
may result in totally different states already after a short time. A scaling of the
final state as a function of the initial states is not possible anymore. This finding
is well known as the “butterfly effect”. An excellent book with many reminiscences
and mathematical examples is The Essence of Chaos by Edward Lorenz (Lorenz,
1996).
In the mid 1960ies, almost 20 years after the development of the first models for
the circulation in the atmosphere, three-dimensional ocean models were formulated
(Bryan and Cox, 1967).
Syukuro Manabe (Fig. 1.10) found that for climate research atmospheric and oceanic
models need to be combined. This is achieved by dynamically coupling the two
components. The first coupled model was developed in the late 1960ies by Suki
Manabe and colleagues (Manabe and Bryan, 1969). A particular difficulty was the
completely different time scales for the atmosphere and the ocean (see Table 1.1). A
notorious problem was that the required heat and water fluxes from the atmosphere
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Figure 1.10: Suki Manabe, pioneer of coupled climate
modelling during a reception in Tokyo in 2004.

and the ocean, which yield climatologies that are coherent with observations, were
not compatible. This necessitated the introduction of a non-physical flux correction,
which was used in most of the models over almost 30 years.
This topic will be discussed in Chap. 8.6. The problem could only be resolved in
the last decade thanks to a higher resolution of the models—generally a resolution
of at least 2◦× 2◦ is required—, as well as due to improved parameterisations of not
explicitly resolved processes.
Since the early 1990ies, significant improvements were achieved by incorporating
further climate system components (Fig. 1.11). Climate models have become more
complete. The carbon cycle, dynamical formulations of vegetation types, the chem-
istry of the atmosphere and ice sheets, belong to components that are currently
implemented into existing physical circulation models. In consequence, climate mod-
elling has become an interdisciplinary science.
Besides ever more detailed models, also simplified climate models are being devel-
oped. They permit the study of basic problems of climate sciences in an efficient
way. The development and application of climate models of reduced complexity
(often called EMICs, Earth System Models of Intermediate Complexity) have made
important contributions to the understanding of the climate system, in particu-
lar in the quantitative interpretation of paleoclimatic reconstructions and ensemble
simulations of future climate change.

1.5 Some current examples in climate modelling

1.5.1 Simulation of the 20th century to quantify the link between
increases in atmospheric CO2 concentrations and changes in
temperature

Given that the most important driving factors of the radiation balance are known,
the effect of increasing CO2 concentrations on the annual mean atmospheric tem-
perature and other variables can be estimated. Figure 1.12 presents the results of
simulations with climate models carried out within CMIP5, the Coupled Model In-
tercomparison Project Phase 5. The averaged temperatures, ocean heat content,
and sea ice extent of the model runs are compared with observations during the
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Figure 1.11: Chronology of climate model development. The implementation of new components
(carbon cycle, vegetation and atmospheric chemistry) leads to an increased complexity as well as
to an increase in required computational resources. Yet it is a necessary development when the
interaction of the different processes needs to be simulated quantitatively. Figure modified from
IPCC (2001), Technical Summary (Box 3, Figure 1, p. 48).

20th century (bold lines). If the models consider all driving factors: change in the
solar “constant”, volcanic eruptions, atmosphere-ocean interactions, changes in the
concentration of CO2, other greenhouse gases as well as sulphate aerosols, agreement
of the simulations with the observational records is found (red bands). In case the
anthropogenic driving factors are held constant, a systematic deviation of all model
simulations from the data appears from about 1970 onwards (blue bands). This
finding is valid globally, as well as averaged over continental scales, both on land
and in the ocean basins.
This leads to a clear statement:

Human influence has been detected in warming of the atmosphere and the
ocean, in changes in the global water cycle, in reductions in snow and ice,
in global mean sea level rise, and in changes in some climate extremes. This
evidence for human influence has grown since AR4. It is extremely likely
that human influence has been the dominant cause of the observed warming
since the mid-20th century.

which was made in the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC, 2013).
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Figure 1.12: Evolution of continental land surface air temperature along with Arctic and Antarc-
tic September sea ice extent and upper ocean heat content in the major ocean basins, based on
measurements (bold line) and ensemble simulations with coupled climate models (bands). Only
simulations with a complete forcing which includes changes in greenhouse gases, aerosols, observed
volcanic eruptions and variable solar radiation, show reasonable agreement with the observations
over the entire 20th century (red bands). In case the effect of anthropogenic forcings (greenhouse
gases, aerosols) on the radiative balance is not taken into account, the global and continental-scale
increase in temperature cannot be simulated (blue bands). Figure from IPCC (2013), Summary
for Policymakers (Figure SPM.6).

1.5.2 Decrease in Arctic sea ice cover since around 1960

The decrease in the Arctic ice cover is documented by direct observations as well
as by remote sensing. Since around 1960, the decrease in total area has accelerated
(Fig. 1.13). Evidence from submarine missions also points to a drastic decrease in
the thickness of sea ice. A similar development is visible in all coupled climate models
which were used for the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC, 2013). The models indicate an accelerated decrease in
the extent of Arctic sea ice since around 1960. The simulations are based on the
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Figure 1.13: Changes in sea ice cover in the Arctic from 1900 to 2100. Shown are time-series
of the Arctic sea ice extent, firstly experimental data from satellite observations (red solid line),
and secondly ensembles of numerical simulations computed from 20 climate models, where each
dotted colored line signifies an ensemble member and each solid colored line an ensemble mean.
The numerical simulations are based on the representative concentration pathway 4.5 (RCP4.5)
which leads to a stabilization of the radiative forcing in the year 2100 at 4.5 W m−2. This Figure
is discussed in Stroeve et al. (2012); observations are updated with recent data (figure supplied by
Julienne Stroeve and modified).

representative concentration pathway 4.5 (RCP4.5) assuming a stabilization of the
actually increasing radiative forcing in the year 2100 at 4.5 W m−2 (Moss et al.,
2010). Observations and model simulations agree with negative trends of Arctic sea
ice cover. This issues a strong warning regarding the development of this important
variable in the next few decades. In fact, a sea ice-free Arctic in late summer before
mid-century is likely for a business-as-usual emission scenario (RCP8.5, see IPCC,
2013).

1.5.3 Summer temperatures in Europe towards the end of the 21st
century

The question how an increase in global mean temperatures will affect the climate
in Europe can still only roughly be answered by a few climate models with regional
resolution (Fig. 1.14). The high resolution (56 km) requires enormous computa-
tional resources and only so called time slices can be calculated. The simulation
with a regional climate model shows a significant increase in summer temperatures
in Europe between 2071–2100 (Schär et al., 2004). The warming is accentuated at
high altitudes due to the positive snow-albedo feedback and in the Mediterranean
area due to the positive feedback of soil moisture. Besides a strong warming by the
end of the 21st century, every second or third summer then will be equally hot or
hotter than the extreme summer of 2003, an extreme event which had not occurred
in the last 500 years.
A single simulation, however, is not yet a reliable description of the expected warm-
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Figure 1.14: Distribution
and estimate of the changes
in summer temperatures
over Europe in the years
2070–2100, calculated with
a regional climate model
(Schär et al., 2004). Panels
a) and b): Distribution of
summer temperatures for
30 years in the 20th century
(CTRL) and 30 years at
the end of the 21st century
(SCEN). Panels c) and
d): Temperature change
and change in temperature
variability between CTRL
and SCEN.

ing. Therefore, ensemble simulations with individual models and the aggregation of
such into multi-model ensembles have become the standard. Uncertain quantities
such as the climate sensitivity or the influence of clouds must be examined system-
atically. Future climate projections will be associated with estimates of probability
which can be derived from ensemble simulations. This approach has already been
used for the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, IPCC (2007).

1.5.4 CO2 emissions permitted for prescribed atmospheric
concentration paths

How much greenhouse gases, for example CO2, may be emitted each year without
exceeding the tolerated concentrations of these gases? The answer to this question
can only be given with the aid of climate models that include representations of
biogeochemical cycles, in particular the carbon cycle. The exchange with the ocean
and the role of the terrestrial and marine biosphere have to be considered with
suitable sub-models and parameterisations.
Figure 1.15 shows an example calculated at the Division of Climate and Environ-
mental Physics, University of Bern, Switzerland, with a simplified climate model.
The long-term stabilisation of CO2 concentrations can only be achieved by strongly
reduced and ultimately vanishing emissions of CO2. This would require a complete
replacement of fossil fuels. In 1998, the emissions of all fossil energy sources (cement
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Figure 1.15: Projected allowable carbon emissions leading to stabilization of atmospheric CO2 at
given stabilization levels for the Bern2.5CC EMIC for different pathways leading to stabilization.
a) Assumed trajectories of CO2 concentrations in the SP, OSP, and DSP profiles. b) Implied
carbon emissions as projected with the Bern2.5CC EMIC. Profiles with the delayed turning point
in the atmospheric CO2 increase (DSP) or atmospheric CO2 overshoot (OSP) are compared to the
standard SP profile. 31-yr running averages are applied to the results. Figure from Plattner et al.
(2008).

production included) was around 6.6 GtC/yr (1 GtC/yr = 1 gigaton carbon per year
= 1012 kg C/yr); 10 years later it was exceeding 8 GtC/yr. The computations show
that after a permitted maximum in 2030, the emissions need to decrease drastically
(globally around 1% per year). Such model simulations are of crucial significance to
global political decisions related to international treaties such as the Kyoto-Protocol
and its successors.

1.5.5 Prediction of the weak El Niño of 2002/2003

The irregular warming of waters in the tropical Eastern Pacific, known as the El
Niño-Southern Oscillation (ENSO) phenomenon, strongly affects the tropical cli-
mate and in particular the water cycle. The formation of atmospheric pressure and
temperature anomalies also causes deviations from the usual climate around the
globe (teleconnections).
These changes, which may last some months up to around 1.5 years, cause severe
economic damage. Due to the various teleconnections, some regions may exist which
are affected by El Niño in a positive way (e.g., by increased precipitation in vege-
tation regions, where water is normally the limiting factor). However, the strong
El Niño of 1997–1998 is estimated to have caused net economic damage (gains and
losses, depending on the region) in the USA of around 25 billion US$. Therefore, a
reliable prediction of El Niño is of highest economic and societal significance.
For the first time, the ENSO event of 1997–1998 could be predicted already 6 months
in advance. This time span allowed the affected regions to take precautions and
to adapt to the expected climatic consequences (droughts, floods, poor harvest,
increased prevalence of Malaria by unusually high temperatures, etc.). This success
was enabled by intensive research in the theory of the coupling between ocean and
atmosphere in the tropics, model development and set-up of a dense observation
net in the tropical Pacific (in situ and via remote sensing) since the early 1980ies
(TOGA Program).
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Figure 1.16: Left: Temperature in the tropical Eastern Pacific, based on several models, ini-
tialized with data until August 2002. Figure from http://www.cpc.ncep.noaa.gov/products/
predictions/90day/SSTs, National Oceanic and Atmospheric Administration (NOAA), National
Weather Service (NWS), Climate Prediction Center (CPC). Right: Distribution of SST anoma-
lies (sea surface temperature) from summer 2002 to spring 2003 based on a global coupled climate
model. Figure from http://grads.iges.org/ellfb/Jun02/pierce/fig1.gif, Institute of Global Environ-
ment and Society (IGES).

Figure 1.16 shows the prediction of the evolving ENSO 2002/03, as it was available in
August 2002. A moderate increase in SST (sea surface temperature) in the tropical
Eastern Pacific (right) was expected. It is important to note that the single models
differ in their quantitative prediction. Hence, the prediction bears an uncertainty,
analogous to the daily weather forecast in which the occurrence of rain is also given
with a probability.

1.6 Conclusions

Climate models are simplified descriptions of complex processes within the climate
system. They are used for the quantitative testing of hypotheses regarding the
mechanisms of climate change, as well as for the interpretation of instrumental
data from paleo-data from various archives. Climate models are essential for the
operational prediction of the economically important ENSO-phenomenon and other
climate modes. A further important motivation for the development and application
of climate models remains the aim to assess future climate change.
Research developing and using climate models has become interdisciplinary and com-
prises domains of physics (thermodynamics, fluid dynamics, atmospheric physics,
oceanography), chemistry (organic, inorganic and surface chemistry, reaction kinet-
ics, geochemistry, cycles of carbon, nitrogen, etc.) and biology (vegetation dynamics,
ecology).
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Atmospheric CO2 at Mauna Loa Observatory

Figure 1.17: Increase in CO2 concentration, measured since 1958 on Mauna Loa (Hawai’i). CO2-
data from http://www.esrl.noaa.gov/gmd/ccgg/trends/.

By the end of the 1960ies, simple climate models (energy balance models) were
developed in order to examine planned climate modifications (Budyko, 1969). The
idea was to strongly reduce the snow cover by a large-scale distribution of ash
and therefore cause a warming of Siberia in order to access new agricultural lands
(“geo-engineering”). In the meantime, we have become aware that humans alter the
climate inadvertently by continuous emissions of CO2 and other greenhouse gases.
The increase in atmospheric CO2 concentrations (Fig. 1.17) testifies to this fact
with great precision. This time series has become a corner stone in global change
research.
Figure 1.17 also provides evidence of life on planet Earth and shows its global sig-
nature. The seasonal fluctuations in CO2 are the result of the “breathing” of the
biosphere (vegetation and soils). During spring in the Northern Hemisphere, carbon
is taken up and is released in winter through respiration. Additionally, the inter-
annual variability of CO2 is visible, which is caused by the warming and cooling of
large parts of the ocean, for example during ENSO events or volcanic eruptions.
Today, CO2 concentrations are 28% higher than ever before in the last 800,000 years
(Lüthi et al., 2008). This important fact has been derived from several decades of
research on ice cores from Greenland and Antarctica. Ice contains bubbles in which
air is enclosed. The enclosure process occurs at the firn-ice transition in a depth of
about 80 to 100 meters on the two polar ice sheets of Greenland and Antarctica. Ice
cores are therefore natural archives which preserve information on the content and
composition of the atmospheric air in the past.
Figure 1.18 shows a compilation of such measurements of CO2 and an estimate of
local temperature based on the concentrations of the stable isotopes in ice. At the
far right side the increase in CO2 during the last 250 years is added to the graph.
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Figure 1.18: Evolution of the atmospheric CO2 concentration (blue) and Antarctic temperature
(red) over the past 800,000 years from measurements on several ice cores from Antarctica (Petit
et al., 1999; Siegenthaler et al., 2005; Jouzel et al., 2007; Lüthi et al., 2008). Direct measurements
of CO2 in the atmosphere since 1958 are added.

The CO2 measurements in the older half of this time series were performed at the
University of Bern (Siegenthaler et al., 2005; Lüthi et al., 2008). This demonstrates
not only the unprecedented concentrations of CO2 over the last 800,000 years, but
also the rate of increase of CO2 which is estimated to be 100 times faster than ever
during the last 20,000 years.
Regarding the ongoing changes in the composition of the atmosphere and land-
use, and the climate change induced by them, the global community has defined a
remarkable goal in Article 2 of the UN Framework Convention on Climate Change
(UNFCCC, 1992, http://unfccc.int):

Article 2: The ultimate objective of this Convention and any related legal
instruments that the Conference of the Parties may adopt is to achieve,
in accordance with the relevant provisions of the Convention, stabilization
of greenhouse gas concentrations in the atmosphere at a level that would
prevent dangerous anthropogenic interference with the climate system. Such
a level should be achieved within a time-frame sufficient to allow ecosystems
to adapt naturally to climate change, to ensure that food production is not
threatened and to enable economic development to proceed in a sustainable
manner.

In the light of this global change, geo-engineering has experienced a recent revival,
and climate models are now used to quantify the consequences of human climate
modification (Robock et al., 2008). However, no proposal so far has convincingly
shown that geo-engineering is able to reduce global warming without other, un-
desired side-effects and therefore, many reasons can be brought forward, not least
moral ones, to reject the option of geo-engineering (Robock, 2008).



2 Model hierarchy and simplified climate models

2.1 Hierarchy of physical climate models

There is no best climate model! Different models have different advantages which
may be due to their complexity or the form of their implemented parameterisations.
Table 2.1 gives an (incomplete) overview of the hierarchy of models used for climate
simulations. They are ordered according to their spatial dimensions. Only model
types are listed but each type may be formulated in different ways. For instance
different resolutions are used, different grid structures, parameters and parameteri-
sations are chosen in a different way, etc. There are, for example, more than a dozen
different ocean circulation models, all of which basically solve the same conservation
equations. For model development and progress the various Modelling Intercom-
parison Projects provide important insight: AMIP (Atmospheric Modelling Inter-
comparison Project), OMIP (Ocean . . . ), OCMIP (Ocean Carbon-cycle . . . ), CMIP
(Coupled . . . ), PMIP (Paleo . . . ), C4MIP (Coupled Climate-Carbon Cycle Modelling
Intercomparison Project), etc.
In order to tackle problems across the board in climate dynamics, a model hierarchy
is required. An example is the investigation of the climate at the time of the Last
Glacial Maximum some 21,000 years ago. Simplified models of the type shown in
the grey shaded area of Table 2.1 permit a systematic examination of the parameter
space: which driving factors (radiation, precipitation) are important for simulat-
ing, for example, the water mass distribution in the ocean, which parameters and
processes produce a significant cooling of the tropics, etc.
Models of spatial dimension 0 or 1 help us illustrate some fundamental concepts
in climate dynamics. Clever formulations of these 0-dimensional models are, under
given circumstances, very useful for scenario or ensemble calculations. An EBM
point model will be presented in Sect. 2.2.
So called Saltzman Models are globally averaged models which simulate some time
dependent, large-scale variables (e.g., global mean temperature, ice volume, CO2
content, etc.) and form a non-linear, dynamical system. These models can be de-
rived from the basic equations in a rigorous way (Saltzman, 2001). They are a radical
alternative to the classic approach in climate modelling and yield some interesting
hypotheses. For example, the question regarding the origin of the transition from a
40,000- to a 100,000-year periodicity of the glacial cycles about 106 years ago can
be addressed with such model formulations.
Pulse response models are efficient substitute models for particular quantities which
are simulated in a more comprehensive and expensive way by three-dimensional
models. They require a linear behaviour of the simulated processes which at first
has to be verified by a more complex model. The response of a complex model to
any disturbance (for example the warming caused by an increase in atmospheric
CO2) can be regarded as a temporal integral of elementary responses of a complex
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Knutti et al. 2002

Ekman models (z)

Global mixing (z)
Munk

Advection-diffusion
model (z):
HILDA Bern
Wigley-Raper

Thermohaline
models (lat/z):
Stommel,
Marotzke

Wind-driven flow
(lat/long):

Stommel, Munk

Deep ocean
(lat/long):

Stommel, Pedlosky

OGCM

1

EBM (lat)
Budyko, Sellers

Radiative-convec-
tive model (z)

Manabe

–

Ocean (lat/z)
+ EBM (lat):
Bern2.5d model
Stocker, Wright,

Mysak

–

2 EBM (lat/long)
North and Crowley

Statistical
dynamical atm.
(lat/z) + diffus.
ocean (z):
MIT model

Ocean (lat/z) +
statistical

dynamical atm.
(lat/long):
Climber2

OGCM + EBM
(lat/long): UVic
model, Bern3D

OGCM + QG atm.
model:

ECBILT-CLIO

3 AGCM + SST AGCM + mixed
layer

AGCM + slab
ocean

AOGCM
CCSM3, HadGem,

CESM, etc.

Table 2.1: Hierarchy of coupled models for the ocean and the atmosphere with some examples,
ordered according to the number of spatial dimensions considered. The direction of dimensions is
specified in brackets (lat = latitude, long = longitude, z = vertical); 2.5d corresponds to several two-
dimensional ocean basins linked in the Southern Ocean; EBM stands for energy balance model; QG
is the abbreviation for quasi-geostrophic, AGCM (atmospheric general circulation model), OGCM
(ocean general circulation model), SST (sea surface temperature). Some example models and their
authors are given in italics, the grey shaded area contains climate models of reduced complexity,
also called Earth System Models of Intermediate Complexity (EMICs), which permit integrations
over very long periods (several 103 – 106 years) or large ensembles. The table is not completely
full because some combinations are not meaningful.

model to a pulse-like perturbation (δ-function). These models are, e.g., successfully
applied to the calculation of CO2 uptake by the ocean or for the global warming as
an input for vegetation models. Thanks to their simplicity, they permit extended
scenario calculations.
A not yet common but promising method is the application of neural networks with
which substitutes for complex climate models can be built. In contrast to pulse
response models processes that are non-linear or include several equilibria can be
substituted. A limiting factor is the fact that neural networks need to be trained
with simulations of the model to be substituted. Since such “training sets” require
information, a certain amount of computational effort is necessary. Once the network
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Figure 2.1: Concept and geometry of the Bern2.5d model, one of the first climate models of
reduced complexity (Stocker et al., 1992). Ocean currents are averaged zonally and are simulated
by three basins, connected in the south (category 1/2). Thanks to the strongly simplified depiction
of the climate system, simulations spanning over 106 years are possible.

is trained, the calculation of ensembles can be realized very efficiently. This method
was employed using a simplified model (Knutti et al., 2003).
Energy balance models (EBM) belong to the earliest simplified climate models that
were used for the quantitative assessment of climate change. An example shall be
discussed later in Sects. 2.2 and 4.3.
Advection-diffusion models describe, e.g., the vertical mixing in the ocean on a global
scale in a summarized form. They provide insight into some aspects of the carbon
cycle (e.g. Siegenthaler and Joos, 1992); they are applied for questions concerning
past changes in atmospheric CO2 (last 10,000 years) as well as for the assessment of
emission scenarios for future climate change.
Models of the category (0/2) are theoretical models of physical oceanography, but
some of them are used as ocean components in simplified climate models. The
class of climate models of reduced complexity (Earth System Models of Intermediate
Complexity) is shaded in grey in Table 2.1. Long-term simulations, particularly
important for paleoclimate dynamics, are based on such models.
The Division of Climate and Environmental Physics at the University of Bern,
Switzerland, has developed and applied such models since 1993. The model concept
and the extremely simplified geometry are shown in Fig. 2.1. Although only very
few atmospheric and oceanic processes are considered, and the number of parameter-
isations is kept at a minimum, these models are fairly consistent with observations
on large spatial scales (> 106 m). For example, the meridional distribution of air
temperature or the distribution of water masses in the three ocean basins compare
well with observational estimates. These models were successfully employed in var-
ious ways in order to simulate quantitatively past climate change as, for example,
found in Greenland ice cores. Even some basic aspects of biogeochemical cycles were
implemented which permitted the direct comparison of model results with ice core
measurements of CO2 and other greenhouse gases (Marchal et al., 1999).
These models were also used to assess the stability of the oceanic circulation in the
Atlantic under a global warming scenario. The models showed that the stability of
the circulation not only depends on the absolute amount of warming, but also on the
rate of warming (Stocker and Schmittner, 1997). Later, this fundamental finding was
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Figure 2.2: Schematic illustration of model grids in three-dimensional AGCMs and OGCMs. The
resolution of a coupled climate model is typically set at 4◦ × 4◦ to 2◦ × 2◦ and 20 to 40 vertical
layers. Today, for single components, resolutions of up to 0.1◦ are applied. In this case, the
calculation is restricted to either limited regions or an extremely short time of integration, hence
not yet applicable for global climate studies. Figures from Ruddiman (2007).

confirmed by three-dimensional AOGCMs (Atmosphere/Ocean General Circulation
Models). This is a good example for how new and relevant climate mechanisms are
found and explored with models of reduced complexity. Of course, such results then
need to be verified or falsified by more comprehensive models. The implementation
of suitable biogeochemical components permits the examination of the interaction
of the carbon cycle with the ocean over the course of the next 1000 years (Joos
et al., 1999; Plattner et al., 2008, see also Fig. 1.15). This is of significance for the
question of a possible run-away greenhouse effect as a result of an anthropogenic
increase in atmospheric CO2. In the future, such models (e.g., the MIT model in
category 2/1) may be coupled to macro-economic models, which assess the economic
effects of climate change and mitigation options.
The latest developments at the Division of Climate and Environmental Physics,
University of Bern, are devoted to models of category 3/2, where the ocean is three-
dimensional, but coarsely resolved. This model type can be combined with bio-
geochemical modules and represents an important novel instrument in paleoclimate
research (Müller et al., 2006; Ritz et al., 2008, 2011).
Comprehensive climate models consist of a three-dimensional formulation for the
atmosphere (AGCM, Atmospheric General Circulation Model) as well as for the
ocean (OGCM, Ocean General Circulation Model). The grid structures are shown
schematically in Fig. 2.2. The coupling of the two, often given in differently formu-
lated grids, is dynamic, meaning that ideally, at each time step, momentum, heat
and water, and other tracers, are exchanged. For sufficiently good models, this is
possible in a consistent way. Otherwise flux corrections have to be implemented in
order to stabilize the simulated climate.
AGCMs, OGCMs and AOGCMs are classified in the highest levels of the model
hierarchy shown in Table 2.1. They are extremely demanding with regard to their
development, maintenance, computer time and storage and, finally, the analysis of
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Figure 2.3: Comparison of the performance of a climate model considering atmospheric water
vapour content at 400 hPa (around 7 km height), given as relative humidity (in %) on a day
in May. Above: model simulation with the model of MPI Hamburg at high resolution (T106,
Wild (2000)). Below: Mean relative humidity between 250 and 600 hPa, based on satellite data
(SSM/T-2), while uncertainties outside 30◦S and 30◦N are larger. Dry regions can be identified as
white areas. Figure from IPCC (2001), Chap. 7, Figures 7.1 a) and c), p. 424.

results. Although such models are already run on personal computers or clusters,
for their integration period quite strong limitations exist. A simulation of a hundred
years is already a large project! These models contain a large number of parameter-
isations. They are being developed at various centers globally (Hadley Centre, UK;
MPI Hamburg, DE; NCAR, USA; NASA-GISS, USA and many others).
The agreement of climate models with observations is generally remarkable even for
complex quantities such as water vapour (Fig. 2.3). The atmosphere consists of a
rich structure of regions that are very dry (between 20◦ and 45◦ in latitude) and
regions that are very humid with over 90% of humidity (tropics and 50◦ to 65◦ in
latitude). Models with highest resolution (around 1◦ × 1◦) are capable to simulate
even very strong gradients, similar to what is observed by satellites.
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(°C) (°C)

Multi-model mean bias Multi-model mean bias in absolute seasonality

Figure 2.4: Left panel: Difference between surface air temperature (2 metre) simulated by
CMIP5 models (multi-model mean) and the climatology from the ECMWF climatology for the
period 1980 to 2005. Right panel: Difference between the absolute seasonality, defined as
abs(DJF−JJA), as simulated by CMIP5 models and climatology. Positive values signify that
the models overestimate the seasonal temperature amplitude. Figure from IPCC (2013), Fig. 9.2b
and 9.3d.

(     )(                  )

Multi-model mean bias Multi-model mean of relative error

Figure 2.5: Left panel: Difference between annual mean precipitation rate (mm/day) simulated
by CMIP5 models (multi-model mean) and precipitation analyses from the Global Precipitation
Climatology Project for the period 1980 to 2005. Right panel: Difference relative to the multi-
model mean precipitation rate. Figure from IPCC (2013), Fig. 9.4b and 9.4d.

Simulations carried out under CMIP5 show that climate models are reproducing the
mean of surface air temperature remarkably well (Fig. 2.4). Given the large spread
of mean surface air temperature over the globe (about 50◦C), deviations of ±5◦C
must be considered as relatively moderate (Fig. 2.4 left). Over the poles, simulated
temperatures are generally too cold. The seasonal cycle of surface temperature is
also assessed in CMIP5 (Fig. 2.4 right). Over continents the amplitude of the
seasonal cycle tends to be overestimated, while over the ocean it is smaller than
climatology.
Precipitation is much more difficult to simulate because it strongly depends on sur-
face characteristics (e.g., soil moisture, vegetation cover) and topography which are
still poorly resolved in current coupled models. Hence, deviations between the simu-
lated data of individual climate models on the one hand and between the simulated
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Figure 2.6: Left panel: Zonal mean cloud fraction from CMIP3 models and compared to obser-
vations (International Satellite Cloud Climatology Project, ISCCP). Right panel: Annual and
zonal mean of the net radiative effect of clouds compared to two different analyses based on ob-
servations from the Clouds and the Earth’s Radiant Energy System (black solid and dashed). The
multi-model mean (red) is in close agreement with one of the observation-based analysis at most
latitudes, except for the tropics. Individual model simulations are shown as thin grey lines. Figures
modified from Probst et al. (2012) and IPCC (2013), Fig. 9.5f.

and observed data on the other hand can be large for all variables of the water cycle.
Figure 2.5 (left) shows the deviation of the multi-model mean of the annual mean
precipitation rate. The deviation is large in regions with high precipitation such
as in the tropics. The relative deviation (Fig. 2.5 right) is large close to mountain
ranges in North America and Central Asia and in the equatorial Atlantic and Pa-
cific Oceans where the models have largely overestimated the precipitation rate. In
spite of considerable progress in the reliability and realism of the simulation of the
global water cycle, deviations on regional scales can be still of the same order as
the observed signal. For this reason, climate projections regarding regional rainfall
changes and changes in the statistics of associated extreme events are still uncertain,
although robust patterns can be identified. In short, such projections show that wet
regions become wetter and dry regions become drier (IPCC, 2013).
Another important quantity is the distribution of cloud cover because it strongly
affects the radiative balance of the Earth. A model intercomparison of the zonally
averaged cloud cover and the annual mean net radiative effects by clouds is shown
in Fig. 2.6. The overall latitudinal structure of the representation of cloud cover
and its radiative effect is well reproduced with larger coverage and cooling in the
mid-latitudes and less coverage and cooling in the subtropics. Deviations and model
spread are large in the tropics where many models have difficulties in simulating the
regional structure of the Intertropical Convergence Zone (Sect. 7.1).
A recent overview and assessment of climate models and their performance in com-
parison with observations is given in Chapter 9 of IPCC (2013).
Model development has made significant progress in the past decade. Particularly
the consistent coupling of dynamical representations of the atmosphere and the
ocean now permits more realistic simulations of atmosphere-ocean interactions. This
is central for example when quantifying the uptake of heat and carbon into the world
ocean, assessing the importance of natural variability such as the El Niño-Southern
Oscillation, or projecting future changes in monsoon systems. As an example of
coupled model performance Figure 2.7 shows the differences of temperature and
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Figure 2.7: Comparison of simulated temperature and salinity in the world ocean with observa-
tions. Black contours show climatological values from observations from the World Ocean Atlas
2009, temperature and salinity differences are given in colors, and white contours mark positive or
negative differences of 1, 2, 3◦C (left) and 0.25, 0.5, 0.75, 1 psu (right), respectively. Figure from
IPCC (2013), Fig. 9.13.

salinity, zonally averaged over all ocean basins based on the CMIP5 multi-model
means. Generally, temperature deviations are less than 10% but there are systematic
patterns such as a too warm intermediate ocean and the deep ocean tends to be too
cold. Salinity deviations are relatively larger and this is not surprising as their
distribution results from the balance of evaporation and precipitation at the ocean
surface and the circulation patterns in the ocean. Large differences of precipitation
between observations and simulations are propagated to the salinity distribution at
the ocean surface.
In preparation of the Fifth Assessment Report of IPCC, all major modelling centers
delivered standardized model simulations for the 20th and 21st century for a reduced
set of emissions scenarios. The results are centrally stored at Lawrence Livermore
National Laboratories and made available to the science community through the
Program for Climate Model Diagnosis and Intercomparison (PCMDI). It can be ac-
cessed through www-pcmdi.llnl.gov and has been used extensively during the past
few years for model comparison, detailed investigation of climate processes, and the
estimate of the climate system’s response to increasing greenhouse gases. This effort,
coordinated within the framework of the Coupled Climate Modelling Intercompari-
son Project, Phase 5, CMIP5, is currently ongoing and the IPCC Fifth Assessment
Report draws heavily from these results (www.climatechange2013.org).

2.2 Point model of the radiation balance

For illustrative purposes we consider first the simplest of all possible climate models
with 0 dimensions. A single conservation equation for the globally integrated heat
content is formulated (see Table 2.1, 0/0). Even though the model is not of great
importance, it is instructive in various aspects. Using this simple example we will
show how solutions of climate models fundamentally depend on the exact choice of
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Figure 2.8: Schematic depiction of simple global energy balance models (left), and of two radi-
ating layers, resp. (right). The (mainly short-wave) radiation coming from the Sun is drawn with
straight arrows; the (mainly long-wave) radiation from the Earth and from higher layers of the
atmosphere is illustrated with wiggly arrows.

parameterisations.
In this example which can be solved analytically in simple cases we can also discuss
basic numerical schemes which are employed in climate modelling.
We assume a geometry as shown in Fig. 2.8 (left). The conservation of the energy
of a thin spherical air layer (as a model for the atmosphere) is given approximately
as:

4π R2 h ρ c
dT
dt = π R2 (1− α)S0 − 4 π R2 ε σ T 4 , (2.1)

where the following quantities are used:

R = 6371 km radius of the Earth
h = 8.3 km vertical extent of the air layer
ρ = 1.2 kg m−3 density of air
c = 1000 J kg−1 K−1 specific heat of air
T globally averaged surface temperature
α = 0.3 planetary albedo (reflectivity)
S0 = 1367 W m−2 solar constant
ε = 0.6 planetary emissivity
σ = 5.67 · 10−8 W m−2 K−4 Stefan-Boltzmann constant

Equation (2.1) states that the heat content of the global atmosphere (left) can be
changed due to two processes (right). The equation is a statement on the conser-
vation of energy. This model is therefore referred to as an energy balance model
(EBM). The first term on the right-hand side is the energy flux of the (mainly short-
wave) radiation coming from the Sun, reaching the Earth through a circular disk,
reduced by the reflected part. The second term describes the (mainly long-wave)
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Figure 2.9: Contour lines of equilibrium temperature according to equation (2.2) as a function of
planetary albedo (α) and planetary emissivity (ε). The global mean surface temperature derived
from measurements is equal to 14◦C (bold line).

irradiance emitted from the complete Earth surface. This term is a parameterisa-
tion of a complex process not further described in this model. The parameterisation
assumes that the long-wave radiation can be quantified by the classical grey body
radiation with parameter ε (emissivity). We will illustrate the role of this parameter
by an example.
Equation (2.1) is an ordinary, non-linear differential equation of 1st order for an
unknown time-dependent variable T (t), the globally averaged surface temperature.
For simple cases, (2.1) can be solved analytically.
The equilibrium temperature can be found easily by setting the left-hand side equal
to 0:

T =
(

(1− α)S0

4 ε σ

)1/4

. (2.2)

It is independent of the size of the Earth and the thermal characteristics of air.
Figure 2.9 shows T in ◦C for different values of α and ε. The bold line highlights
14◦C, approximately the mean surface temperature of the Earth. It is obvious that
various, but not any, combination of the model parameters α and ε can yield ‘realis-
tic’ solutions. The process of choosing model parameters in such a way that model
results agree with nature, is called tuning. When tuning was applied, agreement of
the model with observations is not a measure for the quality of the model unless
further independent information about the values of tunable parameters is used.
In this case, estimates for α and ε based on remote sensing data (ERBE, Earth
Radiation Balance Experiment) could be used to determine the components of the
radiation balance. Results based on remote sensing yield a planetary albedo of
α = 0.3. In order to obtain a mean temperature of 14◦C in this EBM, the planetary
emissivity has to be set to ε = 0.6206. This is a value significantly lower than the
emissivity of natural surface areas which is around ε ≈ 0.8 . . . 0.99. Hence, this
model parameter is unrealistic for an average Earth surface and does not give any
information about the processes leading to this radiative equilibrium.
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Figure 2.10: Contour lines of equilibrium temperature according to equation (2.4a). The global
mean surface temperature derived from measurements is 14◦C (bold line).

Assuming the Earth were a perfect black body, hence ε = 1, the temperature would
be−18.3◦C. Thanks to the natural greenhouse effect, mainly caused by water vapour
and CO2, we find a difference of approximately 32.3◦C.
This will be illustrated with a second, slightly more complex EBM (Fig. 2.8, right).
We assume, that irradiance occurs at the Earth surface at a temperature T1, as well
as from a higher level („cirrus clouds“, which are supposed not to affect the short
wave radiation and hence the albedo) at temperature T2. The high-altitude cloud
cover is not complete, but extends over a fraction c of the total area. The stationary
energy balance for both levels is given by:

π R2 (1− α)S0 + c 4 π R2 σ T 4
2 = 4π R2 ε σ T 4

1 (2.3a)
c 4π R2 ε σ T 4

1 = 2 c 4 π R2 σ T 4
2 , (2.3b)

(2.3b) where we have assumed that the Earth’s surface is a „grey“ body with emis-
sivity ε, the cloud cover is assumed to be a black body. The solution is now given
as follows:

T1 =
 (1− α)S0

4 ε σ
(
1− c

2

)
1/4

(2.4a)

T2 =
(

(1− α)S0

4σ (2− c)

)1/4

. (2.4b)

Now, we have a slightly more detailed description of the „Earth’s climate“ (two
temperatures). This comes at the expense of having more parameters (α, ε, c) for
which reasonable values have to be chosen.
Figure 2.10 shows that in this model more realistic values of the surface emissivity
can be applied. From Fig. 2.6 we derive a global-mean cloud cover of around 0.6.
Tuning the model we choose ε ≈ 0.886 and obtain an equilibrium temperature of
14◦C. This yields T2 = −38.8◦C the temperature that is approximately measured
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at a height of 8.2 km. An important information emerging from this model is that
the Earth emits infrared radiation not only from the surface, but also from higher
levels, as was already evident from Fig. 1.2.
The natural greenhouse effect is caused by the fact that a higher irradiance occurs
at a lower temperature and that these levels also radiate downwards (downward
radiation). Hence, the surface is heated by a combination of direct short-wave solar
radiation and long-wave back radiation. Fig. 2.10 is only valid for high altitude
clouds which do not affect α significantly. In general, clouds affect α and ε, and the
net effect on a global scale is a cooling one (see Sect. 2.4.3).
In reality, the atmosphere has to be regarded as a continuum because radiative fluxes
occur at all levels. These considerations lead to radiative-convective models, which
are important components of AGCMs (category 1/0 in Table 2.1).

2.3 Numerical solution of an Ordinary Differential Equation
of 1st order

We consider again the climate model given by equation (2.1) but now we examine
its time-dependence. For this we will use a numerical algorithm.
Before we derive it, we look at the temporal behaviour of the energy balance model
(EBM) near the equilibrium and write the temperature T (t) as follows:

T (t) = T + T̃ (t) ,

where T is the constant equilibrium temperature given in (2.2) and T̃ is a small
time-dependent temperature perturbation (|T̃ | � T ). Hence, (2.1) can be written
as

h ρ c
dT̃
dt = 1− α

4 S0 − ε σ
(
T + T̃

)4
. (2.5)

Now we write
(
T + T̃

)4
= T

4 (1 + T̃ /T
)4

and use the Taylor series expansion

(1 + x)n = 1 + nx+ n (n− 1)
2 x2 + . . .

with x = T̃ /T and n = 4. Neglecting the higher-order terms in this expansion with
regard to |T̃ | � T we obtain from (2.5), using (2.2)

dT̃
dt = −

4 ε σ T 3

h ρ c

 T̃ . (2.6)

This is a linear, homogenous differential equation of 1st order for the temperature
perturbation T̃ , of which the solution is known:

T̃ (t) = a e−t/τ , τ = h ρ c

4 ε σ T 3 , (2.7)

where a is constant depending on the initial conditions (a = T̃ (0)). Solution (2.7)
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states that a temperature disturbance in the EBM approximately decays on a char-
acteristic time scale of τ ≈ 35 days and the radiation equilibrium is attained at
temperature T (t) = T . Hence, the temporal behaviour is determined by the ther-
mal properties of the atmosphere and responds rather rapidly. Above considerations
also show that T is a stable state, because the perturbation T̃ (t) approaches 0 for
t→∞, as evident from Eq. (2.7).
In the following we will discuss the procedure to solve (2.1) numerically. First, the
question arises of how to compute the derivatives in this equation. We assume that
it is sufficient to know them only at certain points in time chosen a priori. Therefore,
the problem can be discretized in time. The times are chosen according to the rule

t = n∆t , n = 0, 1, 2, . . . (2.8)

∆t is the time step. (2.8) can also be interpreted as grid points on the time axis.
It has to be noted that the time step has to be significantly shorter than the char-
acteristic time scales of the processes described by the model. In the present case
∆t� 35 days would be selected.
Let us assume we know the solution at time t. Therefore, the function T (t) can be
expanded in a Taylor series:

T (t+ ∆t) = T (t) + dT
dt

∣∣∣∣∣
t

∆t+ 1
2!

d2T

dt2

∣∣∣∣∣
t

∆t2 + 1
3!

d3T

dt3

∣∣∣∣∣
t

∆t3 + . . . . (2.9)

We can solve (2.9) for the first derivative evaluated at time t:

dT
dt

∣∣∣∣∣
t

= T (t+ ∆t)− T (t)
∆t − 1

2!
d2T

dt2

∣∣∣∣∣
t

∆t− 1
3!

d3T

dt3

∣∣∣∣∣
t

∆t2 − . . .︸ ︷︷ ︸
terms of order ∆t and higher

. (2.10)

By neglecting the terms of order ∆t and higher we obtain the so-called Euler scheme,
a finite difference scheme of 1st order. This means that the corrections of this
scheme scale with ∆t. Whether the scheme is correct can be directly determined
by considering the limit ∆t → 0. It is the simplest but at the same time the most
inaccurate way of calculating first derivatives.
Adding to (2.10) the corresponding equation with ∆t replaced by −∆t, a new equa-
tion results which yields an alternative scheme for the first derivative:

dT
dt

∣∣∣∣∣
t

= T (t+ ∆t)− T (t−∆t)
2 ∆t − 1

3!
d3T

dt3

∣∣∣∣∣
t

∆t2 − 1
5!

d5T

dt5

∣∣∣∣∣
t

∆t4 − . . .︸ ︷︷ ︸
terms of order ∆t2 and higher

. (2.11)

This is the scheme of centered differences. The name refers to the position on the
time grid, where derivatives at one point are calculated by taking differences of
values from two neighbouring points. The corrections of this scheme scale with ∆t2
and for small ∆t, they converge to 0 faster than in (2.10). These simple schemes
are summarized in Table 2.2.
The formulations assume an equidistant discretization; adjustments are necessary if
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Continuous Finite differences Error Name

f ′(x) f(x+ ∆x)− f(x)
∆x O(∆x) Euler forward

f ′(x) f(x)− f(x−∆x)
∆x O(∆x) Euler backward

f ′(x) f(x+ ∆x)− f(x−∆x)
2 ∆x O(∆x2) centered difference

f ′′(x) f(x+ ∆x)− 2 f(x) + f(x−∆x)
∆x2 O(∆x2) centered difference

Table 2.2: Overview of the simplest schemes for the calculation of 1st and 2nd derivatives of the
function f .

the grid’s resolution is spatially dependent (e.g., on a spherical spatial grid).
We now solve equation (2.6) numerically by using the Euler forward scheme:

continuous: dT
dt = −AT , T (t)

discrete: Tn+1 − Tn
∆t = −ATn , Tn ≡ T (n∆t)

and obtain:

Tn+1 = Tn − ATn ∆t
= (1− A∆t)Tn
= . . .

= (1− A∆t)n+1 T0 . (2.12)

Is the numerical solution (2.12) consistent with the analytical solution (2.7)? We
would like to show that for the limit of ∆t → 0, the numerical solution converges
towards the analytical one. Therefore, we apply a transformation of variables s =
−1/ (A∆t) and take the limit s→∞ :

T (t) = T (n∆t) = Tn

= T0 (1− A∆t)n

= T0

(
1 + 1

s

)−sA t
= T0

( (
1 + 1

s

)s )−A t
. (2.13)

The following is valid,

lim
s→∞

[
T0

( (
1 + 1

s

)s )−A t ]
= T0 e−A t ,

in agreement with (2.7).
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Figure 2.11: Numerical solutions of
equation (2.6) with the initial condition
T̃ (0) = 300 K computed with the Euler
scheme and time steps of 12, 24, 36, 50
days. The exact solution of the linearized
system is drawn in a red line, the results
from the classical Runge-Kutta scheme
(∆t = 50 days) are labelled with green
circles.

Hence, it has been shown that the numerical solution converges towards the analyt-
ical solution for arbitrarily small ∆t. But are there some cases where the scheme
would fail?
From (2.12) it can be derived that for ∆t = 1/A the scheme yields Tn = 0, whereas
for ∆t = 2/A it yields Tn = (−1)n T0; both results do not make sense. This is a
distinctive feature of the equation to be solved. Central differences may also cause
general problems in the case, for example, that periodic solutions with unluckily
chosen time steps should be calculated.
The Euler scheme is the simplest, but also the most inaccurate one-step scheme.
Generally, it solves

dy
dx = f

(
x, y(x)

)
(2.14)

with an initial condition y(x0) = y0. For the EBM given by equation (2.1) the
following correspondences hold: y = T , x = t and f(x, y) = (1− α)S0/ (4h ρ c) −
ε σ y4/ (h ρ c). The Euler scheme evaluates derivatives only at the points x and
x+ ∆x which corresponds to the linearisation which was used in (2.10).
The evaluation of f(x, y) at further locations in the interval [x, x+ ∆x] and by a
suitable linear combination, the error can be reduced from O(∆x) to O(∆xk). This
leads to schemes of the type Runge-Kutta of order k. For k = 4 we obtain the
classical Runge-Kutta scheme for which the rule is as follows:

yn+1 = yn + ∆xF (xn, yn)

F (xn, yn) = 1
6 (K1 + 2K2 + 2K3 +K4)

K1 = f(xn, yn)

K2 = f
(
xn + 1

2 ∆x, yn + 1
2 ∆x K1

)
K3 = f

(
xn + 1

2 ∆x, yn + 1
2 ∆x K2

)
K4 = f (xn + ∆x, yn + ∆x K3) .

(2.15)

Figure 2.11 compares the different schemes with the exact solution (2.7) of the
linearized system (red line). The Euler scheme was applied with time steps of
∆t = 12, 24, 36, 50 days. Schemes, for which the time step is larger than their
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characteristic time scale τ , see (2.7), do converge to the exact solution but show
a completely wrong transient behaviour. By using smaller time steps, the exact
solution can be approximated with increasing accuracy. Only time steps smaller than
the characteristic time scale of 35 days approximately yield the transient behaviour
of the exact solution when using the Euler forward scheme. For the Runge-Kutta
scheme (circles) ∆t = 50 days was chosen. The agreement with the exact solution is
already significantly better than with the Euler scheme with ∆t = 12 days, in spite
of the large time step.
The use of the Runge-Kutta scheme requires that the function f in equation (2.14)
can be evaluated at any point (x, y). In most of the climate models this important
prerequisite is not fulfilled and the Runge-Kutta scheme can therefore not be applied
for the time integration.

2.4 Climate sensitivity and feedbacks

An important quantity in climate dynamics is the equilibrium climate sensitivity,
defined as the global mean temperature change resulting from a doubling of the
atmospheric CO2 concentration after the climate system has re-established a new
equilibrium. This quantity, often referred to as ∆T2×, is a fundamental characteristic
of the climate system and at the same time a useful metric for climate models. It
serves to compare models of different categories or of successive generations. Over
the last three decades ∆T2× was estimated at 1.5 to 4.5◦C, without any information
about a possible distribution within this range, see IPCC (2013). In the latest IPCC
report, IPCC (2013), more quantitative statements about the climate sensitivity
could be made:
• likely range (> 66%): 1.5 to 4.5◦C;
• extremely unlikely (< 5%): smaller than 1◦C;
• very unlikely (< 10%): greater than 6◦C.

The equilibrium climate sensitivity is evaluated when the climate model has estab-
lished a new equilibrium under an altered radiation balance. In expensive coupled
climate models, it usually has to be determined by a temporal extrapolation.
The temperature increase with a doubling of the atmospheric CO2 concentration is
the result of complex processes and interactions in the atmosphere that affect the
radiation balance. The contributions of the single processes as a response to the
disturbance of the radiation balance (e.g., by an increase in greenhouse gas concen-
trations or a volcanic eruption) can be quantified by the strength of the feedback.
Therefore, the term feedback parameter , given as λ (W m−2 K−1), is introduced. It
quantifies the change in the radiation balance per change of the global mean tem-
perature. The estimation of λ for various processes is a central task of climate
research.
The concept of feedback parameters can be illustrated using the linearised EBM. We
write for the energy balance:

0 = A(T ) +B(T ) +W (T ) + ∆Q , (2.16)
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where A is the short-wave radiation (which may be temperature-dependent via
albedo), B is the long-wave back-radiation, W is an additional term of the radiation
balance (e.g., effects of clouds, greenhouse gases, such as H2O, CO2, . . . , aerosols,
etc.) and ∆Q is a disturbance (often called forcing) of the balance which causes a
change in temperatures and shall be determined.
We expand all functions of T around the equilibrium temperature T and obtain

0 = A(T ) + A′
(
T − T

)
+B(T ) +B′

(
T − T

)
+W (T ) +W ′

(
T − T

)
+ ∆Q

= A(T ) +B(T ) +W (T )︸ ︷︷ ︸
=0

+ (A′ +B′ +W ′)
(
T − T

)
+ ∆Q ,

where A′, B′ and W ′ denote the first derivatives with respect to T of the functions
A(T ), B(T ) and W (T ) at T = T , respectively. We define the feedback parameter as

λ = λA + λB + λW = A′ +B′ +W ′ . (2.17)

Hence, the new temperature T is

T = T − 1
λ

∆Q = T + s∆Q , (2.18)

where
s = −1

λ

often is denoted the sensitivity parameter (K/(W m−2)). The smaller λ, the larger
is the temperature change due to a perturbation ∆Q. The total feedback is the sum
of the single feedbacks; the total sensitivity is equal to the inverse of the sum of the
inverse sensitivities:

λ = λA + λB + λW ,
1
s

= 1
sA

+ 1
sB

+ 1
sW

. (2.19)

In the following this will be applied to the „two-layer“-EBM presented in Eqs. (2.3).
The radiation budget for the surface temperature is given by

0 = 1− α
4 S0 − ε σ T 4 + c

2 ε σ T
4︸ ︷︷ ︸

W

,

where W describes the effects of high clouds. Cirrus clouds cause a positive contri-
bution to the radiation balance, hence a warming.
The derivatives of the individual radiation terms yield the individual feedback pa-
rameters:

λA = −S0

4
dα
dT

λB = −4 ε σ T 3

λW = c

2 4 ε σ T 3 + 1
2 ε σ T

4 dc
dT


(2.20)
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Figure 2.12: Ice-albedo feedback (left) and two plausible parameterisations for an EBM (right).
The signs next to the arrows denote the correlation between changes in the quantities in the boxes
at the beginning and at the end of the arrow. The resulting correlation is given in the centre of the
feedback loop. A self-enhancing process has a positive sign and can therefore lead to instabilities in
the climate system. A negative sign corresponds to a damped process. For the parameterisation
shown in the graph at the right, it is assumed that for low temperatures a complete snow-/ice cover
exists and the albedo is α ≈ 0.85. For high temperatures a planetary albedo of 0.3 is assumed.

Assuming that the albedo is not temperature-dependent, and the effect of high
clouds is irrelevant, and no additional forcing exists, we obtain:

λ = λB = −4 · 0.6206 · 5.67 · 10−8 · (287.15)3 W m−2 K−1

= −3.3 W m−2 K−1 . (2.21)

This is the feedback parameter of long-wave radiation without other feedbacks, in
particular without the water vapour feedback. This is referred to as the Planck
feedback, also denoted λP. The feedback is negative, implying that an increase
in temperature leads to an increased long-wave irradiance and hence to a cooling.
Latest estimates from the CMIP5 climate models yield λP = −(3.2±0.1) W m−2 K−1

(IPCC, 2013, Tab. 9.5).
Especially the strong temperature dependence of the water vapour content in the
atmosphere (via the Clausius-Clapeyron equation)—the most important greenhouse
gas—as well as the temperature-dependent change in albedo and cloud cover, strongly
affect the overall feedback. We would like to assess this with the ice-albedo feedback,
the water vapour- and the cloud feedback.

2.4.1 Ice-albedo feedback

A globally and locally important feedback mechanism arises from the temporal and
spatial change in the extent of the snow- and ice cover with changing temperatures.
If the extent of the snow and ice cover is large—this is generally the case at low
temperatures—more solar radiation is reflected. Snow and ice have a high reflec-
tivity, i.e., albedo (α ≈ 0.85). This implies a positive feedback, as one can see in
Fig. 2.12 (left). Under a global warming scenario the extent of the snow and ice
cover is expected to shrink; also, the seasonal snow and ice cover begins later and
ends earlier. This leads to a shortening of the seasonal cover and hence to a positive
contribution to the seasonal radiation balance.
This temperature-dependence of the albedo shall be parametrised in the EBM. This
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Figure 2.13: Global mean temperature anomaly in the mid-troposphere after the eruption of
Mount Pinatubo in 1991. A global cooling of 0.7◦C was observed with remotely sensed radiation
measurements (microwave sounding unit, MSU) after a warming effect of the 1992/93 ENSO was
subtracted. A climate model in which the water vapour feedback was turned off shows a smaller
cooling inconsistent with the observations. Figure from Soden et al. (2002).

problem was studied by Sellers as early as 1969 (Sellers, 1969), who based it on the
parameterisation given in Fig. 2.12 (right). It is obvious that in a global model the
evolution of the snow and ice cover cannot be simulated. For this reason, plausible
assumptions are made, which may be based on the correlation of snow cover and
regional temperatures. Sellers proposed:

α = 0.3− 0.009 (T − 283 K) /K , 222 K ≤ T ≤ 283 K . (2.22)

A mathematically differentiable function may be preferable (Fig. 2.12, right).
From (2.22) we derive

λA = −S0

4
dα
dT = 1367 · 0.009

4 W m−2 K−1 = 3.1 W m−2 K−1 , (2.23)

hence, a positive feedback. Therefore, the total feedback is

λ = λB + λA = (−3.3 + 3.1) W m−2 K−1 = −0.2 W m−2 K−1 . (2.24)

Compared with (2.21) this results in a large reduction of the absolute value of
the feedback parameter which causes a strong enhancement of the sensitivity. The
derivation of (2.23) is unrealistic because not the whole planet but only polar regions
are influenced by such a process. The planetary albedo feedback is essentially caused
by the snow and sea ice cover of the Northern Hemisphere. A rough estimate of
the surface from 40◦N to 90◦N, with about 210◦ longitude covered by land, would
give about 10% of the entire Earth’s surface. With this scaling we would obtain
λA = 0.3 W m−2 K−1. Latest estimates based on CMIP5 climate models yield
λA = (0.3± 0.1) W m−2 K−1 (IPCC, 2013, Tab. 9.5).
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2.4.2 Water vapour feedback

The water vapour feedback is the most important feedback in the climate system be-
cause water vapour is the primary natural greenhouse gas. A warm atmosphere can
hold more water vapour than a cold atmosphere. These additional water molecules
in the warm atmosphere cause an enhancement of the natural greenhouse effect by
increased absorption of long-wave radiation. Latest estimates from various climate
models yield λWV = (1.6± 0.3) W m−2 K−1 (IPCC, 2013, Tab. 9.5).
With this we find

λ = λB + λWV = (−3.3 + 1.6) W m−2 K−1 = −1.7 W m−2 K−1 , (2.25)

hence, again a significant reduction of the absolute value of λ which amounts to an
increased sensitivity 1/λ by a factor of about 2 compared to (2.21). The presence
of water vapour in the atmosphere doubles the climate sensitivity.
It is difficult to directly observe the water vapour feedback, but various independent
approaches have resulted in a much better quantification of this feedback in the last
few years. The agreement of the spatial structure of the water vapour distribution,
as it was shown in Fig. 2.3, does not yet guarantee that climate models compute
the climate sensitivity in a reasonable way.
However, based on observations of the change in temperature after the large volcanic
eruption of Pinatubo in 1991, it has been shown that current climate models simulate
the water vapour feedback reasonably well. A climate model with water vapour
feedback is capable of simulating the global cooling of the mid-troposphere by 0.7◦C
following the eruption (Fig. 2.13). A model, in which the water vapour content was
fixed, shows a significantly smaller cooling. Such a model therefore has a smaller
sensitivity as expected from (2.25). Fig. 2.13 also points to the fact that current
climate models simulate this effect rather well.

2.4.3 Cloud feedback

Modelling the cloud cover still belongs to one of the greatest challenges in climate
modelling and in the assessment of future climate change. A fundamental aspect
of the problem is apparent in Fig. 2.14. It illustrates, in a very simplified form,
two possible feedback mechanisms: They can be positive or negative because clouds
affect both short-wave radiation (via albedo) and long-wave radiation.
A global estimate for the effect of clouds is given in Table 2.3. The averaged effect of
the global cloud cover results in a cooling which suggests the albedo effect dominates.
The estimates in Table 2.3 yields a value for the forcing with respect to the change
in cloud cover, under the assumption of a mean cloud cover of 60%, of about

∆W
∆Clouds ≈ −

17 W m−2

60% ≈ −0.3 W m−2/% . (2.26)

An increase in cloud cover by about 13% would constitute a forcing of ∆W ≈
−3.7 W m−2. This negative forcing (cooling) would compensate the positive forcing
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Figure 2.14: Cloud feedback loops. The sign depends on the location and the quality of clouds.
Low clouds affect short-wave radiation via albedo as opposed to high clouds affecting long-wave
irradiance.

expected from a doubling of the atmospheric CO2 concentration (see Eq. (2.31)
below).

Mean Without clouds With clouds

Long-wave radiation −234 −266 +31

Absorbed short-wave radiation 239 288 −48

Net radiation +5 +22 −17

Albedo 30% 15% +15%

Table 2.3: Estimate for the change in radiation in W m−2 due to the global cloud cover (from
Hartmann, 1994).

To illustrate the concept, consider the two-layer EBM given by (2.3) as a model
for a very simplified representation of the effect of clouds and assume—as a first
step—that c does not depend on the temperature and c ≈ 0.6 (Fig. 2.6). Hence,
(2.21) becomes

λ = λB + λW = (−3.3 + 1.0) W m−2 K−1 = −2.3 W m−2 K−1 (2.27)

which suggests a reduction of the absolute value of λ, corresponding to an increase
in the sensitivity (≈ 50%) compared to (2.21).
Of course, the two-layer EBM is not a realistic model to quantify the cloud feedback
correctly. To this end, atmosphere models are necessary that resolve the formation
of clouds in all their forms. Latest estimates from several climate models yield
λW = (0.3± 0.7) W m−2 K−1 (IPCC, 2013, Tab. 9.5).
Within the last few years model consistency with regard to the cloud feedback has
increased considerably. Multiple lines of evidence indicate that the total feedback
is positive. A warming by 1◦C leads to a total additional forcing (change in cloud
cover, structure of the clouds, albedo and height of clouds) of about 0.7 W m−2.



44 2 Model hierarchy and simplified climate models

Tropics Mid-latitudes

T

z

T

z

Figure 2.15: Schematic illustration of changes in the vertical temperature structure in the tropics
and in the mid-latitudes. Due to increased convection, the lapse rate decreases in the tropics. In
the mid-latitudes the horizontal flow limits the warming to the surface and the lower atmosphere
which causes the lapse rate to increase. Compared to the mean warming, a reduced warming
of the surface occurs in the tropics (therefore a negative feedback), while it is enhanced in the
mid-latitudes (positive feedback).

2.4.4 Lapse rate feedback

All air masses of the atmosphere emit continuously long-wave radiation to space.
The rate of the resulting heat loss of any vertical air column depends on its vertical
temperature profile: Air masses at high altitudes lose heat more easily than air
masses of the same temperature at low altitudes, just because they are closer to
space. The so called lapse rate feedback on Earth’s surface temperature results from
the fact that a warming at Earth’s surface modifies the temperature profile in the
air column above and thus, in general, also the rate of heat loss of this air column
and the temperature of its bottom layer adjacent to the Earth’s surface.
The lapse rate (of the atmospheric air temperature) is defined as the rate of decrease
of the atmospheric air temperature T with increase in altitude z, corresponding to
the negative differential quotient of the temperature profile T (z),

γ = −dT
dz .

Well mixed dry and humid air masses of the troposphere have lapse rates of about
10◦C/km and 6◦C/km, respectively.
The change of the lapse rate due to a warming at the surface strongly depend on the
location. In the tropics, a warming leads to an increased convective activity: water
vapour rises and condensates at high altitudes. This transport of latent heat results
in a stronger warming in the high layers of the atmosphere which is supported by
the additional greenhouse effect due to the increased concentration of water vapour
there. In consequence, the lapse rate decreases (Fig. 2.15, left panel). In the
mid-latitudes, where horizontal circulation associated with high- and low-pressure
systems dominates, and hence, the vertical movement is less pronounced compared
to the tropics, the warming is limited to layers close to the surface. In consequence,
the lapse rate increases (Fig. 2.15, right panel).
A decreasing lapse rate (as in the tropics) reflects a warming of the upper tropo-
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Figure 2.16: Overview of the most important feedbacks in the atmosphere: P (Planck feedback),
WV (water vapour feedback), LR (lapse rate feedback), their sum (WV+LR), C (cloud feedback),
A (albedo feedback), and the total feedback (all). Thanks to the latest remote sensing and (ra-
diosonde) measurements, the sum of WV+LR can be estimated more precisely than the single
components. Results from the present model generation (CMIP5) can be compared to the pre-
vious generation (CMIP3). The total feedback is clearly positive. Figure modified from IPCC
(2013), Fig. 9.43a.

sphere relative to the lower troposphere. This leads to a stronger long-wave radiation
to space, causing a stronger cooling and therefore a negative feedback to the warm-
ing at the surface. In contrast, an increasing lapse rate (as in the mid-latitudes)
reflects a cooling of the upper troposphere relative to the lower troposphere and
leads analogously to a positive feedback. For the global average the tropics domi-
nate due to their larger spatial extent. The resulting feedback is therefore negative
but with rather large uncertainties. Latest estimates from several climate models
yield λLR = (−0.6± 0.4) W m−2 K−1 (IPCC, 2013, Tab. 9.5).

2.4.5 Summary and conclusion regarding feedbacks

Figure 2.16 summarizes the various feedbacks discussed above. Different model
studies and the inclusion of remote sensing data, as well as direct measurements
permit a quantification of the single feedbacks. The strongest positive feedback
is the water vapour feedback, which—in spite of the overall negative lapse rate
feedback—remains positive in total. Although the cloud feedback is assessed to be
likely positive in total, it is still associated with the largest uncertainties (IPCC,
2013).
The best estimate for the Planck-feedback is λP = −3.2 W m−2 K−1 and for all
other feedbacks, λall = +1.6 W m−2 K−1 (see Fig. 2.16, and IPCC, 2013, Tab. 9.5).
Therefore, the total feedback becomes:

λ = λP + λall = (−3.2 + 1.6) W m−2 K−1 = −1.6 W m−2 K−1 . (2.28)
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Figure 2.17: Projected changes (1986–2005 to 2081–2100) in annual mean zonal mean atmo-
spheric temperature for three emission scenarios. Multi-model means are calculated from the
available CMIP5 ensembles. The number of CMIP5 models used is indicated in the upper right
corner. Hatching indicates regions where the multi-model mean change is less than one standard
deviation of internal variability. Stippling indicates regions where the multi-model mean change is
greater than two standard deviations of internal variability and where at least 90% of the models
agree on the sign of change. The warming is stronger at high latitudes of the northern hemisphere
towards the surface. This increase is caused by the ice-albedo feedback, which is mainly effective in
the northern hemisphere, where the seasonal snow cover undergoes fast changes. Cooling is simu-
lated in the stratosphere as is expected from the effect of increasing greenhouse gas concentrations.
Figure modified from IPCC (2013), Fig. 12.12.

With this, the equilibrium climate sensitivity ∆T2× can be estimated. We write

∆T2× = −1
λ

∆Q2× , (2.29)

where ∆Q2× denotes the forcing caused by a doubling of the atmospheric CO2
concentration.
The radiative forcing associated with changes in the atmospheric concentration of
CO2 is given by Myhre et al. (1998):

∆Q(CO2) = 5.35 W m−2 ln [CO2]
280 ppm , (2.30)

hence
∆Q2× = 5.35 W m−2 ln 560 ppm

280 ppm = 3.7 W m−2 . (2.31)

From (2.29) it follows, that

∆T2× = −1
λ

∆Q2× = 2.3 K . (2.32)

This is consistent with the likely range of 1.5◦C to 4.5◦C, as given in the latest IPCC
assessment (IPCC, 2013).
The combined effect of different feedbacks can be illustrated by a latitudinal and
altitudinal cross-section of the warming of the atmosphere with an increase in CO2
concentrations. Figure 2.17 shows the zonal mean temperature change in the years
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2080–2099 in a multi-model ensemble for three emission scenarios (strong reduction
in emission RCP2.6, stabilisation RCP4.5, and business-as-usual RCP8.5). The
warming is stronger at high latitudes of the northern hemisphere towards the surface.
This increase is caused by the ice-albedo feedback, which is mainly effective in the
northern hemisphere, where the seasonal snow cover undergoes fast changes.
A clear enhancement of the warming also occurs in latitudes between 30◦S and 30◦N
at an altitude between 7 and 12 km. This is due to the lapse rate feedback. The
strong convection there transports water vapour (the most important greenhouse
gas) as well as condensation heat to the upper troposphere.
An important fingerprint of global warming is expected to take place in the strato-
sphere, where a cooling will occur at all latitudes. This cooling is actually observed
(IPCC, 2013, Fig. 2.24 and 2.26). It is due to the rise of the irradiance altitude for
long-wave radiation with an increase in CO2 concentrations. At these higher alti-
tudes, the temperatures are lower (in equilibrium at T ≈ 255 K, hence at 5.1 km).
This causes a disequilibrium, which the warming of the whole atmosphere compen-
sates for. This warming leads to a rise of the irradiance altitude (level of equivalent
black body radiation). Hence, a bigger part of the atmosphere now lies underneath
the irradiance altitude, meaning that the optical path up to the radiation altitude
has increased. Underneath this altitude a larger part of the long-wave irradiance is
absorbed and the stratosphere experiences a corresponding deficit, which leads to a
cooling.
Thanks to a significantly improved knowledge of the individual feedback mechanisms
in the atmosphere, the equilibrium climate sensitivity ∆T2× is now better quanti-
fied. Climate models of different categories of the hierarchy (Table 2.1) are used to
simulate the temperature change over the last 150 to 1000 years. The agreement
of the model simulations with observations and paleo-reconstructions is computed
which provides constraints for the range of various tuning parameters in the models,
or eliminates certain simulations.
In summary, this yields an estimate of the probability distribution of the equilibrium
climate sensitivity, as it is shown in Fig. 2.18. On this basis IPCC (2013) concluded
that the equilibrium climate sensitivity is likely in the range of 1.5◦C to 4.5◦C, as
mentioned at the beginning of Sect. 2.4.
Note that in order to estimate temperature increases in the near-term (e.g., by 2050
or the end of the 21st century), a more suitable metric is the Transient Climate
Response (TCR). TCR is defined as the change in global mean temperature at
the time when the atmospheric CO2 concentration has doubled in a scenario of
concentration increasing at 1% per year. The TCR is likely in the range of 1.0◦C to
2.5◦C with high confidence and extremely unlikely greater than 3◦C.
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Figure 2.18: Distribution and ranges for equilibrium climate sensitivity derived from various ap-
proaches. The grey shaded range marks the likely 1.5◦C to 4.5◦C range, grey solid line the extremely
unlikely less than 1◦C, the grey dashed line the very unlikely greater than 6◦C (see on page 38).
From IPCC (2013), Technical Summary (TFE.6, Fig. 1).



3 Describing transports of energy and matter

In nature the transport of energy and matter in fluids is determined by diffusion
and advection. These processes induce fluxes of energy and matter, of which the
mathematical description is derived by continuum mechanics. Diffusion is a random
process taking place at all times and leading to a net transport only under certain
conditions. Advection is caused by an ambient flow which transports energy and
matter.
All processes in the climate system are fundamentally influenced by the advective
and diffusive transport of mass, energy, momentum. For example, the tempera-
tures at a particular latitude are determined by the balance of heat at that location
which consists of the local radiation fluxes and the horizontal transport of heat in
the atmosphere, including the transport of moisture. Another example concerns
the transport of salt in the ocean through advective and diffusive processes. These
change the density and are thus exerting a strong influence on the large-scale circula-
tion in the ocean. Hence, the mathematical descriptions of these transport processes
in models is fundamental to climate science.

3.1 Diffusion

Diffusive processes are caused by the thermal motion of molecules (Brownian mo-
tion) and can be described only in a statistical way. We consider first the one-
dimensional case and divide the x-axis into cells of width ∆x and cross-section area
A in which molecules reside (Fig. 3.1).
Due to a positive thermodynamic temperature T > 0 the molecules are in thermal
motion. The particle density (particles per volume) at coordinate x is denoted by
n(x). We describe the random motion by a probability p that a particle jumps from
one cell to the neighboring cell. We further assume, that diffusion is an isotropic
process (this is not always the case in nature). Therefore, the probability p is uniform
and independent of the direction of the particle movement.
We determine the particle flux density (particles per unit area and unit time) at the

x
i i + 1i − 1

∆x n(xi)

A

Figure 3.1: Model of one-di-
mensional diffusion. The particle
density in cell i is given by n(xi).
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cell boundary i/i + 1 for a time interval ∆t. From cell i, a number of p n(xi)A∆x
particles jump to the right, while from cell i+ 1 a number p n(xi + ∆x)A∆x jump
to the left. Hence, the net diffusive particle flux density (number of particles per
area A and time ∆t) at the cell boundary i/i+ 1 is given by

F = p n(xi)A∆x− p n(xi + ∆x)A∆x
A∆t = −p∆x2

∆t
n(xi + ∆x)− n(xi)

∆x .

In the limit of ∆x → 0 and ∆t → 0, provided ∆x2/∆t = constant, we get Fick’s
first law of one-dimensional diffusion

F = −
(
p∆x2

∆t

)
∂n

∂x
= −D ∂n

∂x
. (3.1)

The quantity D is the diffusion constant, also referred to as diffusion coefficient or
diffusivity, with the unit m2 s−1; it depends on the physical properties of both the
diffusing particles and the medium containing these particles (the medium can be
vacuum, a gas, a liquid or a solid). This derivation shows that the diffusion constant
parametrises processes that evolve on a molecular scale.
From (3.1) it follows that net diffusive fluxes only occur when concentration gradi-
ents, in the case of (3.1) particle density gradients, are present. Due to the random
motion, gross-fluxes of particles always exist.
The generalization of (3.1) to a three-dimensional isotropic space and a concentration
C = C(x, y, z) of an arbitrary physical quantity yields Fick’s first law of three-
dimensional diffusion

~F = −D ~∇C . (3.2)
~∇ is the gradient operator and D an isotropic diffusion constant (scalar). The
gradient operator is given by

~∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)

and converts any scalar Φ(x, y, z), for example the concentration C = C(x, y, z)
from Eq. (3.2), into the gradient of Φ(x, y, z), the vector

~∇Φ(x, y, z) =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
Φ(x, y, z)

=
(
∂Φ(x, y, z)

∂x
,
∂Φ(x, y, z)

∂y
,
∂Φ(x, y, z)

∂z

)
,

which points in the direction of the highest increase of Φ(x, y, z). The negative sign
in Eq. (3.2) ensures, that the diffusive flux density ~F is in the opposite direction
of the gradient, namely in the direction of the highest decrease of C. The diffusive
flux densities in Table 3.1 serve as examples.
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transported quantity formulation

mass ~F = −D ~∇ρ

heat ~F = −Dρ c ~∇T = −λ ~∇T

salt ~F = −D ~∇ ρs

y-momentum ~F = −D ~∇ (ρ uy)

Table 3.1: Examples of diffu-
sive flux densities, ρ denotes a
mass density and ρs the particle
or the mass density of salt.

3.2 Advection

For the derivation of a formulation of advective flux densities of physical quantities in
the climate system, we first consider the one-dimensional case which is illustrated in
Fig. 3.2. We assume a flow u(x, t) which transports the quantity to be considered.
The fluid (gas, air, water) moves across a fixed control area A. The transported
physical quantity (particles, mass, energy, momentum, tracer) is given as a concen-
tration C(x, t), hence, the quantity is referred to a volume. In a short time interval
∆t a volume A∆x of length ∆x = u∆t passes through a cross section of area A and
transports the quantity A∆xC through here. The advective flux density is given
by

F = A∆xC
A∆t = ∆x

∆t C = uC .

x

∆x = u∆t

u
A

C

Figure 3.2: Flow along the x-axis.

In three dimensions, the advective flux density of a scalar quantity C in a three-
dimensional flow ~u(~x, t) is

~F = ~uC . (3.3)

The advective flux density is a vector aligned parallel to the flow. The advective
flux densities in Table 3.2 serve as examples.

transported quantity formulation

mass ~F = ~u ρ

heat ~F = ~u ρ c T

salt ~F = ~u ρs
y-momentum ~F = ~u ρ uy

Table 3.2: Examples of advective
flux densities, ρ denotes a mass den-
sity and ρs the particle or the mass
density of salt.
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3.3 Advection-diffusion equation and continuity equation

In the following discussion we will describe the connection between fluxes of phys-
ical quantities and time rates of changes of these quantities. It is established by
formulating balance statements for those physical quantities which satisfy conserva-
tion laws. An example was presented in Sect. 2.2, where we have discussed a point
model of the radiation balance.
We will set up a conservation equation for a physical quantity (for example number
of particles, energy, mass, . . . ) with density C (i.e., particle density, energy density,
mass density, . . . ) and start with one single dimension x (Fig. 3.3).

Figure 3.3: Spatially dependent flux in
one dimension.

x

x+∆x

F(x+∆x)F(x)

x

A

We consider a small fixed control volume ∆V = A∆x. The (mean) density C inside
the control volume changes in time due to fluxes into the control volume, fluxes out
of the control volume and sources and sinks operating inside the control volume.
Thus, we have

∂

∂t
(C ∆V ) = F (x)A− F (x+ ∆x)A+ P ∆V , (3.4)

where F is the flux density of quantity C and P is the net source density (sources
minus sinks per unit volume) of this quantity. Inserting (3.2) and (3.3) into (3.4)
and division by ∆V yields

∂C

∂t
= −u(x+ ∆x)C(x+ ∆x)− u(x)C(x)

∆x +
D ∂C

∂x

∣∣∣
x+∆x

− D ∂C
∂x

∣∣∣
x

∆x + P

and taking the limit ∆x→ 0, we obtain

∂C

∂t
= −∂ (uC)

∂x
+ ∂

∂ x

(
D
∂C

∂x

)
+ P . (3.5)

Generalizing to three dimensions leads to the advection-diffusion equation:

∂C

∂t
= −~∇ · (~uC) + ~∇ ·

(
D ~∇C

)
+ P , (3.6)

where ~∇· is the divergence operator. It acts on vectors and yields the “scalar prod-
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uct” of ~∇ and the vector:

~∇ · ~u =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·

uxuy
uz

 = ∂ux
∂x

+ ∂uy
∂y

+ ∂uz
∂z

.

When C is the mass density and diffusion as well as sources or sinks vanish, then a
special case arises from (3.6):

∂ρ

∂t
= −~∇ · (~u ρ) . (3.7)

This is the mass balance equation, namely the general form of the continuity equa-
tion. Physically, (3.7) describes the conservation of mass: the total mass is con-
served, mass is neither produced nor destroyed (P = 0), local mass density changes
are always due to divergences of the mass flux (apart from molecular fluctuations
due to diffusion). The equations (3.6) and (3.7) are balances representing the basis
for the mathematical description of processes in the climate system. Their solution
is the task of climate modelling.
For an incompressible fluid (e.g., ocean water in a thin interior layer) the density is
constant and (3.7) simplifies to the continuity equation for incompressible fluids:

~∇ · ~u = 0 . (3.8)

3.4 Describing small- and large-scale motions

The motions of the air in the atmosphere and of the water in the oceans can be very
complex in detail. They are described using methods of geophysical fluid dynamics.
The way this is achieved strongly depends on the spatial scale and the time scale.
A useful concept is the statistical description of fluid flow.
Figure 3.4 a) shows an illustrative time series of wind velocity measurements, which
could have been taken at a fixed position in the free atmosphere during a time of, for
example, a few minutes, or a few days, or a few weeks. It illustrates the well-known
consequences of the complexity just mentioned, namely a typically slowly varying
mean air velocity (denoted by the thick line in this Figure) and a mostly rapidly
varying deviation from the mean of the instantaneous air velocity. The cause for
such a local time dependence of the air velocity are specific movements of numerous
eddies of various sizes. These eddies are parts of the large air stream moving with
the mean air velocity, mostly parts of larger eddies themselves, and move through
the air surrounding them, after being released by irregular disturbances. In so doing
they cause collectively so called eddy fluctuations of the air velocity at a point, i.e.
local time varying deviations from the mean of the air velocity, and furthermore—as
they transport advectively measurable air properties (e.g., water, CO2, . . . )—eddy
fluctuations of the physical quantities C of these properties (Fig. 3.4 b).
Climate research is mainly interested in processes on large spatial scales (global or
continental) and long time scales (several days or longer). So the question arises
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t

τ
ua)

b)

t

C

one minute

(or  one day  or  one week ...)

u

u

Figure 3.4: Illustration of eddy fluctuations of a) air velocity u and b) another physical quantity
C, for example particle density or humidity. Bold lines designate mean values (u and C), τ is the
averaging time.

whether the small and fast movements of the eddies within the large air stream
have any relevance for the long-term trend of the physical quantity C satisfying the
advection-diffusion equation (3.5). In the following we show that they have an influ-
ence and cannot be neglected in general. Consider the one-dimensional advection-
diffusion equation (3.5) and separate the air velocity u, the physical quantity C and
the source P in a temporal mean taken over successive time intervals τ = t2 − t1
(which should be significantly shorter than the characteristic time scale of the pro-
cesses to be considered) and an instantaneous deviation from this temporal mean,
respectively,

u = u+ u′ , u = 1
τ

t2∫
t1

u(t) dt (τ = t2 − t1)

C = C + C ′ , C = 1
τ

t2∫
t1

C(t) dt

P = P + P ′ , P = 1
τ

t2∫
t1

P (t) dt ,

where u′, C ′ and P ′ denote instantaneous deviations from the time means u, C
and P , just eddy fluctuations. The time means of the eddy fluctuations vanish, for
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example the time mean of the eddy fluctuation u′:

u′ = 1
τ

t2∫
t1

u′(t) dt = 1
τ

t2∫
t1

(u(t)− u) dt = u− u = 0 . (3.9)

With this Eq. (3.5) becomes

∂
(
C + C ′

)
∂t

= −
∂
(
(u+ u′)

(
C + C ′

))
∂x

+ ∂

∂x

D ∂
(
C + C ′

)
∂x

+ P + P ′ .

Multiplying out the first term on the right side of the equation and using the sum
rule of differentiation we obtain

∂C

∂t
+ ∂C ′

∂t
= −

∂
(
uC

)
∂x

−
∂
(
u′C

)
∂x

− ∂ (uC ′)
∂x

− ∂ (u′C ′)
∂x

+ ∂

∂x

(
D
∂C

∂x

)
+ ∂

∂x

(
D
∂C ′

∂x

)
+ P + P ′ .

This equation describes the processes at any moment exactly. But now we take the
average with respect to time over the time interval (averaging time) τ , taking into
account relation (3.9) and its consequences, namely

∂C

∂t
= ∂C

∂t
= ∂C

∂t
,

∂
(
uC

)
∂x

=
∂
(
uC

)
∂x

,
∂

∂x

(
D
∂C

∂x

)
= ∂

∂x

(
D
∂C

∂x

)
,

P = P ,

∂C ′

∂t
= ∂C ′

∂t
= 0 ,

∂
(
u′C

)
∂x

= ∂ (uC ′)
∂x

= 0 , ∂

∂x

(
D
∂C ′

∂x

)
= 0 ,

P ′ = 0 ,

and obtain for the variation in time of the temporal mean of the physical quantity
C:

∂C

∂t
= −

∂
(
uC

)
∂x

−
∂
(
u′C ′

)
∂x

+ ∂

∂x

(
D
∂C

∂x

)
+ P . (3.10)

We see from this that the variation in time of C indeed depends on the eddy fluctu-
ations u′ and C ′; the nonlinearity of the term uC (advection flux) prevents the eddy
fluctuations from being cancelled out by time averaging. From the statistical view-
point, the quantity u′C ′ = (u− u)

(
C − C

)
corresponds to the covariance between

the quantities u and C. It vanishes if u and C are uncorrelated. From the physical
viewpoint, it describes the influence of the eddy fluctuations on the temporal change
of C and denotes an eddy flux density,

F = u′C ′ ,

which is, unlike the molecular fluxes explained in Sect. 3.1 and described by the
second term on the right-hand side of Eq. (3.5), a part of the advective flux uC. If,
for example, u and C are significantly positively correlated, then a positive deviation
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u′ goes in hand probably with a positive deviation C ′ and a negative deviation u′

probably with a negative deviation C ′, whereby a transport of the quantity C in
the positive direction of the x-coordinate axis results. Instead, if u and C are
uncorrelated, the eddy flux density u′C ′ vanishes.
The motions of the eddies are seemingly stochastic, quite similar to the thermal
motion of molecules. With regard to this fact we are talking about eddy diffusion,
in contrast to the molecular diffusion presented in Sect. 3.1, and describe the eddy
(diffusive) fluxes similar to the (molecular) diffusive fluxes. A widely used simple
parameterisation assumes the eddy flux density of the physical quantity C to be
proportional to the gradient of the temporal mean of C, quite similar to Fick’s first
law (3.1),

F = u′C ′ = −K ∂C

∂x
, (3.11)

where K denotes the eddy diffusion constant (also called eddy diffusion coefficient
or eddy diffusivity) with the unit m2 s−1. The latter depends, like the molecular
diffusion constant D, on the physical properties of both the transporting fluid and
the transported physical quantity C, but, unlike the molecular diffusion constant,
furthermore, among other physical properties (for example the stability of stratifi-
cation), on the air velocity field u(x, t) and finally on the averaging time τ . This
parameterisation takes care of the problem that the smallest eddy motions cannot
be resolved by the temporal and spatial resolution of the actual climate models. In
a three-dimensional isotropic space, the eddy flux density of a scalar quantity C in
a flow ~u(~x, t) is

~F = ~u′C ′ = −K ~∇C , (3.12)

in analogy to (3.2). Table 3.3 shows examples of eddy flux densities.

Table 3.3: Examples of eddy
flux densities, ρ denotes a mass
density and ρs the particle or
the mass density of salt.

transported quantity formulation

mass ~F = ~u′ ρ′ = −K ~∇ρ

heat ~F = ρ c ~u′ T ′ = −K ρc ~∇T

salt ~F = ~u′ ρ′s = −K ~∇ρs

y-momentum ~F = ρ ~u′ u′y = −ρK ~∇uy

With this we obtain for the averaged one-dimensional advection-diffusion equation
(3.10)

∂C

∂t
= −

∂
(
uC

)
∂x

+ ∂

∂x

(
K
∂C

∂x

)
+ ∂

∂x

(
D
∂C

∂x

)
+ P (3.13)

and analogously for the averaged three-dimensional advection-diffusion equation

∂C

∂t
= −~∇

(
~uC

)
+ ~∇ ·

(
K ~∇C

)
+ ~∇ ·

(
D ~∇C

)
+ P . (3.14)

These general relations apply for the ocean, too. In the case of large-scale motions
in the free atmosphere or the free ocean the molecular flux densities are mostly very
small and in many cases even negligibly small compared to the eddy flux densities.
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t=0

f(x)

x

t1 t2

0 u.t1 u.t2

Figure 3.5: Transport of function f(x) along the positive x-axis in a constant flow velocity u > 0
under the preservation of its form.

3.5 Solution of the advection equation

We consider the simplest case of (3.13) with a constant flow velocity u and without
any diffusion, sources or sinks. This leads to the one-dimensional advection equation

∂C

∂t
+ u

∂C

∂x
= 0 (3.15)

(the overbars are omitted).

3.5.1 Analytical solution

The general solution of this equation can be written as

C(x, t) = f(x− u t) , (3.16)

where f is an arbitrary differentiable function. As a partial differential equation of
first order in time, (3.15) requires an initial condition for t = 0, which is given by
f(x).
Equation (3.16) describes a constant movement of a concentration distribution with-
out any changes in shape f along the positive x-axis, as illustrated in Fig. 3.5. It
represents a dispersion-free propagation of a disturbance along the x-axis at con-
stant speed u and is reminiscent of a wave. Although (3.15) is not the classical wave
equation, it can be shown that it is indeed part of the classical wave equation.
We note that a disturbance moving to the left is given by the following partial
differential equation (PDE):

∂C

∂t
− u ∂C

∂x
= 0 ,

with u > 0. In the following we investigate the PDE of which the solution propagates
at a constant velocity along the positive as well as the negative x-axis. The following
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PDE satisfies these conditions:(
∂

∂t
− u ∂

∂x

)(
∂

∂t
+ u

∂

∂x

)
C = 0 .

The order of the operators inside the brackets may be interchanged. Eliminating
the brackets and setting u = constant leads to

∂2C

∂t2
− u2 ∂

2C

∂x2 = 0 . (3.17)

This is the classical wave equation with a constant phase velocity u. We briefly
specify the solution of the advection equation (3.15), subject to the initial condition

C(x, 0) = A ei k x . (3.18)

(3.18) contains the function cos (real part) as well as the function sin (imaginary
part). According to (3.16), a particular solution of (3.15) is therefore

C(x, t) = A ei k (x−u t) . (3.19)

(3.19) represents a plane wave of amplitude A. The quantities shown in Table 3.4
characterize the wave.

Quantity Relation

wave number k k = 2π
λ

wave length λ λ = 2π
k

= u

ν

angular frequency ω ω = 2π
T

period T T = 2π
ω

= 1
ν

frequency ν ν = 1
T

= u

λ

Table 3.4: Summary of quantities describing a one-dimensional harmonic wave.

3.5.2 Numerical solution

We now solve the one-dimensional advection equation (3.15) numerically by dis-
cretising (3.15) in space and time as follows:

spatial discretisation: x = m∆x , m = 0, 1, 2, . . .

temporal discretisation: t = n∆t , n = 0, 1, 2, . . .
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m∆x

n∆t

(n+1)∆t

(n−1)∆t

x

t

Figure 3.6: Illustration of the leap-frog scheme
(CTCS) on a spatio-temporal grid.

We adopt the following notation

C(x, t) = C(m∆x, n∆t) = Cm,n (3.20)

for the values of the solution at the spatio-temporal grid points. The application of
central differences in equation (3.15) yields

Cm,n+1 − Cm,n−1

2 ∆t + u
Cm+1,n − Cm−1,n

2 ∆x = 0 . (3.21)

Solving for the value at the most recent time point (n+ 1) ∆t yields

Cm,n+1 = Cm,n−1 −
u∆t
∆x (Cm+1,n − Cm−1,n) . (3.22)

This scheme is called CTCS scheme (centered in time, centered in space). One
can see that the identification of the value of solution C at a given time requires
information from two neighboring grid points of the previous time step. This is
schematically illustrated on a spatio-temporal grid in Fig. 3.6. With regard to the
arrangement of the “predictors” this scheme is called leap-frog scheme. It must be
noted that for the first time step from t = 0 to t = ∆t the CTCS scheme does not
work. Instead, we must use the Euler forward scheme for time, therefore

Cm,1 = Cm,0 −
u∆t
2 ∆x (Cm+1,0 − Cm−1,0) . (3.23)

Here we used the FTCS scheme (forward in time, centered in space). For Cm,0 the
initial condition C(x, 0) is substituted.

3.5.3 Numerical stability, CFL criterion

The following presentation is based on Haltiner and Williams (1980). Here we
explore the characteristics of the leap-frog scheme (CTCS scheme). To this end,
we assume the plane wave (3.18) as initial condition. Since we know the analytical
solution, we can directly derive the discretized form,

Cm,n = Bn∆t ei km∆x , (3.24)
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Figure 3.7: Illustration of the solutions
(3.27) indicated as the large dots in the
complex plane.
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Im

1
iσ

−iσ

α

where the time dependence is given in a particular form (with an appropriate choice
of B in Eq. (3.24) this is identical to Eq. (3.19)). We insert (3.24) into (3.22) and
obtain (

B∆t
)2

+ 2 iσ B∆t − 1 = 0 , (3.25)

with
σ = u∆t

∆x sin(k∆x) . (3.26)

This is a quadratic equation in B∆t with the two solutions

B∆t = −iσ ±
√

1− σ2 . (3.27)

We distinguish two cases:

• Stable case |σ| ≤ 1:

Both solutions B∆t have the absolute value 1, therefore they lie on the unit
circle in the complex plane (Fig. 3.7). From the figure it follows:

B∆t =

 e−iα

ei(α+π)
, sinα = σ . (3.28)

Therefore, the solution (3.24) can be written as

Cm,n =
(
M e−iαn + E ei(α+π)n

)
ei km∆x (3.29a)

Cm,0 = (M + E) ei km∆x . (3.29b)

According to (3.18) we requireM+E = A. Therefore, the discretised solution
can be written as follows:

Cm,n = (A− E) ei k(m∆x−αn
k )︸ ︷︷ ︸

P

+ (−1)n E ei k(m∆x+αn
k )︸ ︷︷ ︸

N

, (3.30)

where P denotes the physical mode and N the numerical mode (computational
mode) of the solution. Note, that N changes its sign at every time step!
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E remains to be identified. For the first time step we use (3.23). For the
concentrations at time t = 0 we use (3.29b) and obtain

Cm,1 = A (1− i sinα) ei km∆x = (A− E) ei km∆x−iα − E ei km∆x+iα ,

thus
E = A

cosα− 1
2 cosα .

Inserting this expression into (3.30) yields finally

Cm,n = A
1 + cosα
2 cosα ei k(m∆x−αn

k )︸ ︷︷ ︸
P

+ (−1)n+1 A
1− cosα
2 cosα ei k(m∆x+αn

k )︸ ︷︷ ︸
N

.

(3.31)
The convergence of (3.31) to (3.19) can be shown, as the following is valid:

∆x→ 0 =⇒ σ = u∆t
∆x sin(k∆x)→ u k∆t

and for ∆t → 0 it follows that σ � 1 and hence σ = sinα ≈ α. Therefore,
(3.31) converges to

Cm,n → A
1 + cosα
2 cosα ei k(x−u t)︸ ︷︷ ︸

P

+ (−1)n+1 A
1− cosα
2 cosα ei k(x+u t)︸ ︷︷ ︸
N

.

The term P describes the physical solution of a plane wave propagating to the
right with an amplitude A (1 + cosα) / (2 cosα); for ∆t→ 0 the amplitude is
equal to A. The term N is the computational mode propagating to the left
with an amplitude that vanishes for ∆t→ 0.
The advection equation (3.15) was solved numerically for u = 1, ∆x = 1, and
∆t = 0.1 using scheme (3.22), while (3.23) was used for the first time step.
The initial condition is an amplitude of 10 at the origin, which, in the exact
solution, ought to propagate to the right preserving its shape. The numerical
integration shows indeed a wave package moving to the right, physically well-
founded, but also the numerical mode moving to the left and changing its sign
at any grid point with each time step (Fig. 3.8). Additionally, the physical
mode is subject to numerical dispersion, meaning that its form changes. In
this scheme, the propagation velocity of a wave depends on the wave length.
This causes the initially well localized wave package to slowly disperse.

• Unstable case |σ| > 1:

In this case, we can rewrite (3.27):

B∆t = −i (σ ± S) , S =
√
σ2 − 1 > 0 .

For σ > 1 we have σ + S > 1 and hence
∣∣∣(B∆t

)n∣∣∣ → ∞ for n → ∞. For
σ < −1 we have σ − S < −1 and

∣∣∣(B∆t
)n∣∣∣ diverges as well. The solution

increases exponentially with time: it “explodes”.
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Figure 3.8: Dissipation of a wave package and generation of the numerical mode (x < 0) for the
solution of the advection equation (3.15) for u = 1, ∆x = 1, and ∆t = 0.1 using CTCS.

In consequence, the numerical solution using the CTCS scheme (3.22) only converges
under the condition |σ| ≤ 1, that is∣∣∣∣∣u∆t

∆x sin (k∆x)
∣∣∣∣∣ ≤ 1 .

For this condition to be fulfilled for all wave numbers k, the following very important
condition must be satisfied: ∣∣∣∣∣u∆t

∆x

∣∣∣∣∣ ≤ 1 . (3.32)

Condition (3.32) is called the Courant-Friedrichs-Lewy criterion (Courant et al.,
1928), which must be satisfied necessarily in order to obtain stable numerical so-
lutions using central differences. It is usually referred to as CFL criterion. The
CFL criterion links the velocity, at which signals are transported in the fluid, to
the resolution of the space-time grid required to resolve the flow. At high transport
velocities and a fixed spatial resolution, small time steps must be chosen. High flow
velocities often occur in natural systems relevant for climate modelling. For exam-
ple, the jet stream in the high troposphere/lower stratosphere of the mid-latitudes,
or western boundary currents in ocean basins are difficult to resolve and require
small time steps to satisfy the CFL criterion.
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Figure 3.9: Space-time
grid and area of influence
of the CTCS scheme
(3.22). In the case here,
the characteristic of wave
propagation lies outside the
area of influence and thus
violates the CFL criterion.

We will introduce numerical schemes which do not have to satisfy the CFL criterion
and therefore are applied in difficult cases, where the time step would have to be
reduced too much.
We now present a more intuitive and physical way to understand the origin of the
CFL criterion. The CFL criterion is a result of the wave propagation as described
in the advection equation, and the area of influence of the chosen numerical scheme.
This is illustrated on a spatio-temporal grid in Fig. 3.9. A point (x, t) on this
grid is visited by a wave which started at t = 0 from a specific location and has
propagated in time t to location x. The wave propagates along its characteristic;
here as a special case with a constant velocity u. The characteristic of a wave is
defined as the geometric location of constant phase in the space-time-continuum.
Here, the phase is given by Φ = x− u t. The CFL criterion is the requirement, that
the characteristic that runs through point (x, t) is captured by the numerical scheme
at all times.
The area of influence of the numerical scheme is determined by the specific formu-
lation. In the case of the leap-frog scheme (Eq. (3.22), CTCS) a triangular area of
influence in the space-time grid results. Its vertex is located at point (x, t). From
Fig. 3.9 we see that the slope of the characteristic must be larger than the slope of
the area of influence of the numerical scheme applied, hence

1
u
≥ ∆t

∆x ⇐⇒ u∆t
∆x ≤ 1 ,

which yields the CFL criterion (3.32). Figure 3.9 also illustrates that the slope of
area of influence decreases either by increasing ∆x or by decreasing ∆t as is directly
evident from (3.32).
Analogously, using (3.24) for the heat equation

∂T

∂t
= κ

∂2T

∂ x2

and solving it numerically using the FTCS-scheme we obtain the criterion for nu-
merical stability

κ∆t
∆x2 ≤

1
2 . (3.33)
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3.6 Further methods for the solution of the advection
equation

3.6.1 Euler forward in time, centered in space (FTCS)

The numerical mode in (3.30) arose from the fact that the computation of the new
time step required the information of two previous steps. In order to suppress the
numerical mode we try an Euler forward method for time. Hence, equation (3.15)
in a discretized form becomes

Cm,n+1 = Cm,n −
u∆t
2 ∆x (Cm+1,n − Cm−1,n) . (3.34)

We assume
Cm,n = Bn∆t ei km∆x (3.35)

and obtain
B∆t = 1− iσ =

√
1 + σ2 e−i θ , (3.36)

where
σ = u∆t

∆x sin(k∆x) , tan θ = σ .

Inserting (3.36) into (3.35) yields

Cm,n =
1 +

(
u∆t
∆x

)2

sin2(k∆x)
n/2 ei k(m∆x−n θ/k) .

Since the above bracket is always greater than 1, the amplitude increases with time.
Therefore we find |Cm,n| → ∞ for n → ∞. The solution „explodes“ using this
scheme.

3.6.2 Euler forward in time, upstream in space (FTUS)

The following scheme takes into consideration the physics inherent in the simple
advection equation (3.15). In a flow with speed u, the information originates from
the negative x-direction and is carried at velocity u towards the grid point under
consideration. It seems obvious to discretize the spatial derivative using a scheme
that accounts for this situation. Instead of centered differences, Euler backwards is
used. It is clearer to use the term upstream scheme in this context, since spatial
information originating from upstream locations is used. For u > 0 the discretized
form of (3.15) therefore becomes

Cm,n+1 = Cm,n −
u∆t
∆x (Cm,n − Cm−1,n) . (3.37)

Inserting (3.35) into (3.37) and simplifying, we obtain

B∆t = 1− u∆t
∆x

(
1− e−i k∆x

)
. (3.38)
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Figure 3.10: Comparison of the exact solution (thin blue curve) of the advection of a rectangular
profile using different numerical solutions of the advection equation: centered differences in t and
x (CTCS, Eq. (3.21), black curve), and upstream scheme, respectively (FTUS, Eq. (3.37), red
curve). For both, ∆x = 0.2, ∆t = 0.1 and u = 1 are used. The initial condition is C = 1 for
−1 ≤ x ≤ 1 and C = 0 else. The numerical mode appearing when centered differences (3.21)
are used, is obvious. The upstream scheme does not produce a numerical mode but a very strong
damping and dispersion.

The numerical scheme stays stable if
∣∣∣B∆t

∣∣∣ ≤ 1. Based on (3.38), it can be shown
that this is satisfied for all wave numbers k, provided

u∆t
∆x ≤ 1 , (3.39)

hence, if the CFL criterion (3.32) is satisfied. The disadvantage of the upstream
scheme is a relatively strong damping and dispersion as illustrated in Fig. 3.10. In
the upstream scheme, the damping increases with the reduction of ∆t.

3.6.3 Implicit scheme

Often, the CFL criterion can only be satisfied if extremely short time steps are
chosen. For example, in typical ocean models near the surface, where the isopycnal
surfaces (surfaces of constant density) are steep, fluxes become large, and time
steps on the order of seconds would be required to satisfy CFL. This is clearly not
practical, and therefore an alternative must be found. The idea of the implicit
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Figure 3.11: Schematic representation of an explicit and two implicit numerical schemes. a)
explicit leap-frog scheme (3.21), b) implicit leap-frog scheme and c) implicit trapezoidal scheme
(3.40).

scheme is that spatial derivatives are taken at the new time (n+ 1) ∆t. There are
various possibilities to do so as is illustrated on a spatio-temporal grid in Fig. 3.11.
The implementation of the implicit trapezoidal scheme for the advection equation
(3.15) reads

Cm,n+1 − Cm,n
∆t + u

1
2

(
Cm+1,n+1 − Cm−1,n+1

2 ∆x + Cm+1,n − Cm−1,n

2 ∆x

)
= 0 , (3.40)

where 1
2 (. . .) represents the average of the first spatial derivative at times (n+ 1) ∆t

and n∆t. Again, we insert (3.35) into (3.40) and obtain

B∆t = 1− iσ
1 + i σ , σ = u∆t

2 ∆x sin (k∆x) . (3.41)

For any value for σ we find
∣∣∣B∆t

∣∣∣ = 1. Therefore, this scheme is stable without a
constraint concerning the time step or the spatial grid resolution. For this scheme,
neither the CFL criterion has to be satisfied nor a damping of the amplitude occurs.
Unfortunately, the phase velocities of the waves become distorted.
It is evident from (3.40) that the implicit scheme leads to a large system of linear
equations which requires a matrix inversion in order to solve for the new time step.
We now write the equations resulting from using the implicit scheme in a compact
way. Therefore, we collect the solutions at grid points m = 1, 2, . . . , M and time n
in a vector:

~Cn =


C1,n
C2,n
...

CM,n

 . (3.42)

The discretized form (3.40) can then be written as a system of linear equations in
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the following way:

... ... ... ... ...... ... ... ... ...
. . . − u∆t

4 ∆x −1 u∆t
4 ∆x . . .

... ... ... ... ...... ... ... ... ...





...
Cm−1,n
Cm,n
Cm+1,n

...



+



... ... ... ... ...... ... ... ... ...
. . . − u∆t

4 ∆x 1 u∆t
4 ∆x . . .

... ... ... ... ...... ... ... ... ...





...
Cm−1,n+1
Cm,n+1
Cm+1,n+1

...

 = 0 ,

or in short
A ~Cn + B ~Cn+1 = 0 . (3.43)

The solution at time n+ 1 is given by

~Cn+1 = −B−1 A ~Cn . (3.44)

This means that for one time step, the solution at all spatial grid points is derived
by the inversion of a linear equation system. Since the corresponding matrices are
usually sparse, the solution can be obtained without using a full matrix inversion
which is computationally expensive. In the case of (3.40), the matrix has non-zero
elements only in the diagonal and the first off-diagonals.
The numerical solution of the implicit scheme (3.40) for the same parameters ∆t
and ∆x and the same initial conditions as in Fig. 3.10 is practically indistinguish-
able from the numerical solution using (3.21). However, the big advantage is the
possibility of an arbitrary increase of the time step without sacrificing the quality
of the numerical solution (Fig. 3.12).

3.6.4 Lax scheme

In Sect. 3.6.1 it was shown, that the scheme Euler forward in time, centered in space
(FTCS) is always unstable. Now, the idea in the Lax scheme is to stabilize the FTCS
method by an additional diffusion term. This can be achieved by replacing Cm,n by
the spatial mean of two neighbouring grid points in (3.34). This leads to

Cm,n+1 = 1
2 (Cm+1,n + Cm−1,n)− u∆t

2 ∆x (Cm+1,n − Cm−1,n) . (3.45)

The scheme (3.45) is equivalent to (3.34) plus a diffusive term, because

Cm,n+1 = Cm,n −
u∆t
2 ∆x (Cm+1,n − Cm−1,n)︸ ︷︷ ︸

= (3.34)

+ 1
2 (Cm+1,n − 2Cm,n + Cm−1,n)︸ ︷︷ ︸

D

,
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Figure 3.12: Comparison of the exact solution (thin blue curve) with the numerical solutions of
the advection equation using the implicit-trapezoidal scheme (3.40) with two different time steps:
∆t = 0.1 (black curve) and ∆t = 0.5 (red curve) with ∆x = 0.2 and u = 1. The initial condition
is C = 1 for −1 ≤ x ≤ 1, and C = 0 else. Both schemes reproduce the main maximum relatively
well, but they also generate numerical modes propagating to the left. The method with the large
time step exhibits a greater lag of the main maximum.

and term D is a discretized form of a diffusion term

Term D = ∆x2

2
Cm+1,n − 2Cm,n + Cm−1,n

∆x2 ≈ ∆t
(

∆x2

2 ∆t

)
∂2C

∂x2 (3.46)

with a numerical diffusion constant ∆x2/ (2 ∆t). Therefore, the reduction of ∆x
decreases the diffusion quadratically, whereas a decrease of the time step increases
diffusion. But ∆x and ∆t cannot be chosen independent from one another because
of the CFL criterion. This follows from using form (3.35) and inserting it into (3.45).
This yields

B∆t = cos (k∆x)− u∆t
∆x i sin (k∆x) . (3.47)

Hence, the scheme is stable only if

∣∣∣B∆t
∣∣∣ ≤ 1 ⇐⇒

∣∣∣∣∣u∆t
∆x

∣∣∣∣∣ ≤ 1 , (3.48)
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Figure 3.13: Comparison of the exact solution (thin blue curve) with different numerical solutions
of the advection equation: Lax scheme (3.45) (black curve) and Lax-Wendroff scheme (3.49) (red
curve). The parameters are: ∆x = 0.2, ∆t = 0.1 and u = 1. The initial condition is C = 1 for
−1 ≤ x ≤ 1, C = 0 else. The Lax scheme (3.45) exhibits a strong damping and therefore an un-
derestimation of the gradients. The Lax-Wendroff scheme (3.49) overestimates the maximum and
shows trailing oscillations. However, the representation of the gradients is significantly improved
over the Lax scheme.

which is again the classical CFL criterion. The numerical solution is illustrated in
Fig. 3.13; the parameters are identical to Fig. 3.10. The smaller the chosen time
step, the stronger is the effect of diffusion of the first term in (3.45) and the scheme
becomes useless.
The Lax scheme exhibits no numerical mode. But the clear disadvantage of the
scheme is the rather large damping of gradients.

3.6.5 Lax-Wendroff Scheme

The Lax-Wendroff scheme addresses directly the problem of numerical diffusion from
which the Lax scheme suffers. It reproduces gradients considerably better than the
Lax scheme. This scheme is based on the idea to combine the Lax scheme for an
intermediate time step with a subsequent Euler forward in time, centered differences
in space (FTCS scheme, Sect. 3.6.1). The intermediate or preparatory step is given
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by
C̃m+ 1

2 ,n+ 1
2

= 1
2 (Cm+1,n + Cm,n)− u∆t

2 ∆x (Cm+1,n − Cm,n) (3.49)

and then followed by time stepping to time (n+ 1) ∆t

Cm,n+1 = Cm,n −
u∆t
∆x

(
C̃m+ 1

2 ,n+ 1
2
− C̃m− 1

2 ,n+ 1
2

)
. (3.50)

Inserting (3.49) into (3.50) reveals how the formerly unstable scheme (3.34) becomes
stabilized:

Cm,n+1 = Cm,n −
u∆t
2 ∆x (Cm+1,n − Cm−1,n)︸ ︷︷ ︸

= (3.34)

+ u2 ∆t2
2 ∆x2 (Cm+1,n − 2Cm,n + Cm−1,n)︸ ︷︷ ︸

D

. (3.51)

Term D in (3.51) is a diffusion term, because

Term D = ∆t u
2 ∆t
2

Cm+1,n − 2Cm,n + Cm−1,n

∆x2

≈ ∆t
(
u2 ∆t

2

)
∂2C

∂x2 . (3.52)

Here, the numerical diffusivity is u2 ∆t/2 and thus much weaker than for the Lax
scheme. It scales with ∆t, and hence decreases for small time steps. The numerical
solution is illustrated in Fig. 3.13; the parameters are as in Fig. 3.10. In this scheme,
the reduction of the time step does not affect the form of the main maximum but
the trailing oscillations extend over a larger domain.
It can be shown that also for the Lax-Wendroff Scheme the CFL criterion (3.48) has
to be satisfied to ensure stability.

3.7 Numerical solution of the advection-diffusion equation

Let us now consider the one-dimensional advection-diffusion equation (3.5) with a
source term proportional to C(x, t):

∂C

∂t
= D

∂2C

∂x2 + u
∂C

∂x
+ bC ; (3.53)

D, u and b are constants. A generalized formulation of the discretized form of (3.53)
is given by

Cm,n+1 − Cm,n
∆t = D

θ∇2
xCm,n+1 + (1− θ)∇2

xCm,n
∆x2

+ u
∇xCm,n

2 ∆x + bCm,n (3.54)
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using two centred difference operators, defined as follows:

∇xCm,n = Cm+1,n − Cm−1,n ,

∇2
xCm,n = Cm+1,n − 2Cm,n + Cm−1,n .

(3.55)

θ in (3.54) is a free weighting parameter, 0 ≤ θ ≤ 1, defining the “degree of implicity”
of the scheme. For θ = 0 the scheme is explicit and the right-hand side of (3.54) has
no time index n+ 1. The explicit scheme is stable for D∆t/∆x2 ≤ 1

2 .
For the parameter combination u = 0, b = 0 and θ = 1

2 (3.54) is called the Crank-
Nicholson scheme which is absolutely stable. In general, stability of (3.54) requires

D
∆t

∆x2 ≤
1
2

1
1− 2 θ for 0 ≤ θ < 1

2 (3.56)

and for absolute stability: θ ≥ 1
2 .

3.8 Numerical Diffusion

Any numerical scheme exhibits non-physical properties due to the truncation. By
neglecting high-order terms in the Taylor expansion, errors are introduced. Nu-
merical diffusion is one of them, and it becomes particularly obvious when the real
diffusion of physical properties needs to be quantified (e.g., mixing of tracers in a
fluid system, penetration of heat into the ocean, etc.). We have encountered this
already in (3.45) and (3.50), but it is also evident in Fig. 3.10 (scheme (3.37)).
In order to examine the dependence of this numerical artifact from the choice of
the discretization, we look at the one-dimensional advection equation (3.15) which
represents one part of the classical wave equation:

∂C

∂t
+ u

∂C

∂x
= 0 , (3.57)

∂2C

∂t2
− u2 ∂

2C

∂x2 = 0 . (3.58)

We discretize in space (index m) and time (index n), and write the following Taylor
expansions for the spatial and time steps, respectively:

Cm+1,n = Cm,n + ∂Cm,n
∂x

∆x+ 1
2!
∂2Cm,n
∂x2 ∆x2 + . . .

Cm,n+1 = Cm,n + ∂Cm,n
∂t

∆t+ 1
2!
∂2Cm,n
∂t2

∆t2 + . . . .

(3.59)

In (3.59), we solve for the first derivatives and insert them into (3.57). We obtain

Cm,n+1 − Cm,n
∆t + u

Cm+1,n − Cm,n
∆x

− 1
2!
∂2Cm,n
∂t2

∆t− u 1
2!
∂2Cm,n
∂x2 ∆x− . . . = 0 . (3.60)
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A solution of (3.57) is also a solution of (3.58). Therefore, the second time derivative
in (3.60) can be substituted using (3.58). Finally, we get

Cm,n+1 − Cm,n
∆t + u

Cm+1,n − Cm,n
∆x

−
(1

2 u
2∆t+ 1

2 u∆x
)
∂2Cm,n
∂x2 − . . . = 0 . (3.61)

The third term in (3.61) is again a diffusion term. (3.61) reveals the fact, that for all
1st-order schemes consisting of the numerical formulations of derivatives, diffusion
occurs. We define a numerical diffusivity

DN = 1
2 u

2∆t+ 1
2 u∆x (3.62)

that scales with the time and spatial steps. Various schemes exist that compensate
for the numerical diffusion up to a certain point (see e.g., Smolarkiewicz, 1983).
Such modern schemes are denoted FCT-schemes (flux-corrected transport).



4 Energy transport in the climate system and its
parameterisation

4.1 Basics

In the annual mean, the Earth takes up energy between 30◦S and 30◦N, while it has
a negative energy balance towards the poles (Fig. 4.1). Since neither a continuous
warming in the lower latitudes nor a cooling in the high latitudes are observed, a
strong poleward transport of energy is required. The integration of the meridional
radiation balance from the South Pole to the North Pole, as it is given in Fig.
4.1, yields the heat transport, required by the radiation balance (Fig. 4.2). In
each hemisphere, about 5 · 1015 J/s = 5 PW (Petawatt) are transported polewards.
This flux is split about evenly between ocean and atmosphere. The maximum
heat transport in the northern hemisphere occurs around 45◦N in the atmosphere
and around 20◦N in the ocean. This fact points to the different mechanisms and
boundary conditions (continents) responsible for the meridional heat transport. The
atmosphere transports heat in a way fundamentally different from that of the ocean.
The most important mechanisms are briefly explained in the following sections.
A central question is how climate models simulate heat transport and whether a
certain model is able to reproduce the relevant processes of heat transport at all.
It turns out that state-of-the-art three-dimensional climate models (position 3/3 in
the model hierarchy of Table 2.1) simulate heat transport in the atmosphere as well
as in the ocean in a physically adequate way. However, particularly models with a
coarser resolution tend to underestimate the meridional heat transport in some of
its important components and require unphysical corrections.
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Figure 4.1: Radiation balance as a function of latitude. Shown are the annual mean as well as
the two seasonal means DJF (December-January-February) and JJA (June-July-August). Data
from NCEP reanalysis (Saha et al., 2006). Figure constructed by F. Lehner.
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Figure 4.2: Annual mean meridional heat transport in the atmosphere (latent and dry) and in
the ocean. Figure from Siedler et al. (2001).

4.2 Heat transport in the atmosphere

The total energy per unit mass in the atmosphere is given by

E = cV T︸ ︷︷ ︸
I

+ g z︸ ︷︷ ︸
P

+ L q︸ ︷︷ ︸
L

+ 1
2
(
u2 + v2

)
︸ ︷︷ ︸

K

, (4.1)

where cV is the specific heat capacity of air at constant volume, T is the temperature,
g is the gravity acceleration, z an altitude above a reference level, L the specific
latent heat, q the humidity (mass of water vapour per mass of dry air), and u and
v the horizontal components of the velocity (the vertical component is neglected).
The four terms on the right-hand side denote the internal (I), the potential (P), the
latent (L) and the kinetic (K) energy. The order of magnitude of the individual
forms of energy in the atmosphere is given in Table 4.1.

106 J m−2 fraction (%)

Internal Energy I 1800 70.2

Potential Energy P 700 27.3

Latent Energy L 64 2.5

Kinetic Energy K 1.2 0.05

Total 2565 100

Table 4.1: Amount and distribution of energy per unit surface area in the global atmosphere
(from Peixoto and Oort, 1992).

In order to explain the mechanisms of the temporal and zonal mean energy flux
density ~F = ~u ρE, we split the variables into a temporal mean and a temporal devi-
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ation on the one hand, as we have already done in Sect. 3.4, and, quite analogously,
into a zonal mean and a zonal deviation, on the other hand. The temporal and
zonal means of a quantity A are defined as follows:

A = 1
τ

t2∫
t1

A dt , [A ] = 1
2 π

2π∫
0

A dλ (4.2)

(time average taken over a time interval τ = t2 − t1 of a few weeks, for example).
We denote the temporal and zonal deviations from the respective means as

A′ = A− A , A∗ = A− [A ] . (4.3)

From (4.3) follows, that
A′ = 0 , [A∗ ] = 0 , (4.4)

as shown in (3.9).
Calculating fluxes such as the energy flux density ~F = ~u ρE involves products of
quantities that vary in time and space. We write

AB =
(
A+ A′

) (
B +B′

)
= AB + AB′ + A′B + A′B′

= AB + A′B′

=
( [

A
]

+ A
∗
)( [

B
]

+B
∗
)

+ A′B′

=
[
A
] [
B
]

+
[
A
]
B
∗ + A

∗ [
B
]

+ A
∗
B
∗ + A′B′ . (4.5)

After zonal averaging of (4.5) we obtain[
AB

]
=
[
A
] [
B
]

+ 0 + 0 +
[
A
∗
B
∗ ]+

[
A′B′

]
=
[
A
] [
B
]

+
[
A
∗
B
∗ ]+

[
A′B′

]
. (4.6)

The zonal and temporal mean of the product quantity AB consists of the product
of the means

[
A
]
and

[
B
]
of the respective individual quantities A and B plus the

zonal covariance between the temporal means A and B plus the zonal mean of the
temporal covariance A′B′.
For illustration, we consider the first component of (4.1) in the following. By apply-
ing (4.6) onto the meridional flux density of internal energy v ρ cV T , where ρ is the
mass density, we get, ignoring both the approximately constant mass density and
the approximately constant specific heat capacity, for the zonally and temporally
averaged meridional flux of internal energy:[

v T
]

= [ v ]
[
T
]

︸ ︷︷ ︸
M

+
[
v∗ T

∗ ]︸ ︷︷ ︸
SE

+
[
v′ T ′

]
︸ ︷︷ ︸
TE

. (4.7)

Hence, the zonally and temporally averaged meridional flux of internal energy con-
sists of three components: the flux due to the mean meridional current (M), the
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Figure 4.3: Schematic illustration of stationary and transient eddies in the atmosphere. In the
situation above, both systems transport heat northwards.

flux due to stationary eddies (SE, caused, for example, by stationary high- and low-
pressure systems) and the flux due to transient eddies (TE, caused, for example, by
moving high- and low-pressure systems).
Here, M is the classical advective heat flux as described in Sect. 3.2. The terms SE
and TE in (4.7) originate from spatial and temporal correlations of v and T . An
illustration is given in Fig. 4.3. The meridional energy flux and its components, as
determined from observations, are given in Fig. 4.4.

4.3 Meridional energy balance model

As can be inferred from Fig. 4.4, the annual mean meridional transport of total
energy in the atmosphere is positive in the northern and negative in the southern
hemisphere. In the zonal and annual mean, the meridional temperature gradient
∂T/∂ϕ is positive in the southern and negative in the northern hemisphere. There-
fore, a negative correlation exists between ∂T/∂ϕ and

[
v E

]
. This observation-

based relation is now used to suggest a simple parameterisation of the meridional
heat flux. We write

F = ρ c v′ T ′ = −ρ c K(ϕ) 1
R

∂T

∂ϕ
, (4.8)

where F is the meridional flux density of energy, ρ the air density, c the specific heat
of air, v′ and T ′ the eddy fluctuations of meridional air velocity and temperature,
respectively. K = K(ϕ) is a zonal eddy diffusivity dependent on latitude ϕ and on
the order of 106 to 107 m2/s, R the Earth radius and T (the temporal mean of) the
local temperature.
It is obvious, that the spatial and temporal scales, where (4.8) can be regarded
as valid, are strongly limited. Figure 4.4 shows, that during winter, when steeper
temperature gradients are present, more energy is transported. It has been empir-
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Figure 4.4: Profile of the zonally and vertically averaged meridional transports of the total energy
in (4.1) in ◦C m s−1. a) total; b) transient eddies; c) stationary eddies; d) mean meridional flow,
for the annual mean (bold), winter (thin line) and summer (dashed) months. In order to obtain
units of PW, the factor (2πR cosφ) cp (p0/g) has to be multiplied. Figure from Peixoto and Oort
(1992).

ically shown that (4.8) is valid for time scales of ≥ 6 months and spatial scales of
≥ 1500 km (Lorenz, 1979).
We now apply this to the point energy balance model (2.1) which can be extended
to a one-dimensional energy balance model. The balance equation is given by

h ρ c
∂T

∂t
= h

R cosϕ
∂

∂ϕ

(
ρ cK(ϕ) 1

R

∂T

∂ϕ
cosϕ

)

+ 1− α(ϕ)
4 S(ϕ)− ε(ϕ)σ T 4 , (4.9)

where the eddy diffusivity K, the albedo α, and the emissivity ε may be functions
of latitude. The (mainly short-wave) incoming radiation S(ϕ) is also a function of
latitude. A good approximation for the annual mean is given by

S(ϕ) = S0
(
0.5294 + 0.706 cos2 ϕ

)
,
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where S0 is the solar constant.
The first term on the right-hand side of (4.9) is the divergence of the meridional heat
flux density multiplied by h, the vertical extent of the troposphere. The temperature
is a function of time and latitude. Since (4.9) is a differential equation of 2nd
order (∂2/∂ϕ2) in space, two boundary conditions must be satisfied. The boundary
conditions at the two poles require the heat flux to vanish, hence

∂T

∂ϕ
= 0 for ϕ = −π2 , +π2 . (4.10)

The one-dimensional energy balance model presented in (4.9) is referred to as the
Budyko-Sellers EBM . Budyko (1969) and Sellers (1969) were the first to propose
such a simplified climate model and to address fundamental questions concerning
climate change using their models.
The EBM in (4.9) can be further generalized to two dimensions by additionally
considering the zonal direction. Such models were developed in the 1980ies for
studying the temperature difference between glacial and interglacial periods based
on the changes in the radiation balance (North et al., 1983). Still today, they are
implemented in some models of reduced complexity (Table 2.1, dimensions 2/2 and
2/3).
It must be emphasized that dynamic global circulation models of the atmosphere
(AGCMs) compute the individual contributions to the energy transport (see (4.1)
and (4.7)) based on the dynamics, and, to describe large-scale eddies and their effect
on the heat transport, simplified parameterisations like (4.8) are not needed. This
requires a minimum spatial resolution of 1000 km or less in order to simulate eddies
and their transport. As a result, a significantly increased computational burden is
carried which in turn limits the length of the integrations and hence the applicability
of GCMs.

4.4 Heat transport in the ocean

The meridional heat transport in the ocean is caused by completely different mecha-
nisms from those operating in the atmosphere, even though the equations describing
the flow are analogous in both systems. The reason for this is on the one hand, that
parameters in these equations are different (in certain cases by orders of magnitude)
and that on the other hand, the ocean is restrained by basin boundaries. Along
the latter, important current systems emerge which contribute significantly to the
meridional heat flux.
In the ocean, eddies appear to play a minor role for the meridional heat transport
except in some particular regions (equator, circumpolar current, southern tip of
Africa). However, this statement is based on idealized model simulations and sparse
observational data, for which reason the uncertainties are still quite high. An es-
timate for the meridional heat transport in the global ocean is given in Fig. 4.5.
Some 2 PW are transported polewards in both hemispheres, with the maximum
in the northern hemisphere located more towards the equator than in the southern
hemisphere.
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Figure 4.5: Zonally integrated
heat transport in the ocean
based on observations and in-
verse modelling. Figure from
Ganachaud and Wunsch (2000).

The different ocean basins transport different amounts of heat in the different basins.
Ganachaud and Wunsch (2000) roughly derived the heat fluxes based from tempera-
ture and salinity measurements combined with inverse modelling. This is illustrated
in Fig. 4.6. While heat is transported northwards at all latitudes in the Atlantic, a
southward transport can be observed in the Indian Ocean. Despite its large extent,
the transports in the Pacific are surprisingly small. Transport in the circumpolar
current is largest with about 1.3 to 1.7 PW eastwards. The direction of the heat
transport in the different ocean basins is qualitatively consistent with the strongly
simplified depiction of the global oceanic conveyor belt proposed by Wally Broecker
(Broecker, 1987).
In order to quantify the transport mechanisms of heat in the ocean, we define the
vertical averaging of quantity A in the ocean according to

A = 1
H

0∫
−H

A dz , A′ = A− A , (4.11)

and obtain, analogously to (4.7), the following partitioning of the vertical and zonal
averaged meridional heat transport:

[
v T

]
= [ v ]

[
T
]

︸ ︷︷ ︸
=0

+
[
v∗ T

∗ ]︸ ︷︷ ︸
G

+ [ v′ ] [ T ′ ]︸ ︷︷ ︸
MOC

+ [ v′∗ T ′∗ ]︸ ︷︷ ︸
EK

− K
R

[
∂T

∂ϕ

]
︸ ︷︷ ︸

D

, (4.12)

where the first term vanishes due to mass conservation in a closed basin, G denotes
the heat transport associated with horizontal barotropic gyres (i.e., ocean gyres
with a one-to-one correspondence of density and pressure, so that isobaric surfaces
are isopycnic surfaces, as further explained in Sect. 6.8), MOC is the meridional



80 4 Energy transport in the climate system and its parameterisation

  60 °W    0 °W   60 °W  120 °W  180 °W  120 °W

  60 °S

  30 °S

   0 °

  30 °N

  60 °N

A2

A5

A6

A7

A8

A9

A10

A11

A21

A12 I6
I9S P12

I5

I3

I4

I2

I10

JADE89

P6

P21E

P3

P1
0.6

1.3

0.7

1

0.9

0.8

0.3

0.7

1.3

0.7

0.9 1.7

1.4

1.5

1.8

1.6 1.4

0.6

0.2

0.5

0Heat

1 PW

Uncertainty

+0.5 PW

–0.5 PW

Figure 4.6: Meridional and vertical heat transports in the different regions of the world ocean.
Numbers in boxes denote the meridional transport in PW. Horizontal bars represent the vertical
transport (to the left = downwards). Figure from Ganachaud and Wunsch (2000).

overturning circulation (thermohaline and wind-driven meridional ocean circulation)
and EK is the heat transport due to the surface- and bottom Ekman circulation
(which is induced by pressure forces, wind- and bottom-friction forces as well as
Coriolis forces, see Sects. 6.2 and 6.7). The term D follows from (4.8) and is
primarily important in ocean models of coarse resolution, containing eddy diffusivity.
Available data for the ocean does not yet permit to determine (4.12) by measure-
ments. Therefore, Bryan (1987) simulated (4.12) in an ocean model of coarse resolu-
tion without eddies and found that around 80% of the meridional heat transport in
the Atlantic is caused by the MOC. These results were later corroborated by a global
OGCM of high resolution (Jayne and Marotzke, 2002). Thanks to a resolution of
0.25◦, this model simulates individual eddies.
Globally, as well as in the Atlantic, the meridional transport of heat is predominantly
associated with the term MOC in (4.12). Eddies only contribute in some limited
regions to the total heat transport mainly in the tropical Pacific and in the western
boundary currents (Fig. 4.7). For this reason, particularly in the Atlantic, the deep
circulation, or thermohaline circulation (which is driven by ocean water density
differences emerging from temperature and salinity differences), is the most relevant
one for climate.
A rough estimate of the quantity of the term MOC in (4.12) yields the following
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values: In the northern Atlantic, the thermohaline circulation transports some 20 ·
106 m3 s−1 polewards near the surface at a temperature of around 18◦C. Meanwhile
the same volume flows towards the equator at a depth of 2–3 km along the western
boundary at a temperature of around 3◦C. This corresponds to a meridional heat
transport of ρ c (∆V/∆t) ∆T ≈ 103 ·4 ·103 ·20 ·106 ·15 W = 1.2 PW. This is in rough
agreement with the values of Fig. 4.6. The large vertical temperature contrast is
therefore the reason for the meridional heat transport in the Atlantic.
Also in ocean models, sub-scale transports need to be parametrised due to the
limitations imposed by the grid resolution. To this end, like in the energy balance
model (4.9), a flux-gradient relationship (see (4.12), term D) is chosen, because
there are physical mechanisms (barotropic and baroclinic instabilities, see Pedlosky
(1987)) that scale with the gradients of temperature and velocity. Therefore, the
assumptions shown in Table 4.2 are made.

−AH
∂u

∂x
, −AH

∂u

∂y
−AH

∂v

∂x
, −AH

∂v

∂y

Eddy-momentum flux in x-
and y-direction

−AV
∂u

∂z
−AV

∂v

∂z

Eddy-momentum flux in
z-direction

−KH
∂T

∂x
, −KH

∂T

∂y
−KH

∂S

∂x
, −KH

∂S

∂y

Eddy-heat and -salt flux in
x- and y-direction

−KV
∂T

∂z
−KV

∂S

∂z

Eddy-heat and -salt flux in
z-direction

Table 4.2: Components of eddy fluxes, namely x-, y- and z-components of eddy fluxes of horizontal
momentum, eddy fluxes of heat and eddy fluxes of salt.

The values of the eddy viscosities AH, AV and the eddy diffusivities KH, KV are
insufficiently restrained by data and hence, they are very uncertain. The value of
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AH depends on the grid resolution of the ocean model: the smaller ∆x, the smaller
AH, since the model is able to resolve more scales for smaller ∆x. Table 4.3 lists
typical values used in ocean models.

Table 4.3: Values for eddy viscosities
and eddy diffusivities in ocean models
of coarse resolution.

Typical values ( m2/s)
AH 101 . . . 105

AV 10−5 . . . 10−1

KH 103 . . . 104

KV 10−5 . . . 10−4

The role of eddies in mixing the water masses and their realistic and consistent
parameterisation in models is a current topic of research. In which way the mixing
effect of the tides and their interaction with the ocean topography could be accounted
for, also remains an unresolved question.



5 Initial value and boundary value problems

5.1 Basics

The energy balance models by Sellers (1969) and Budyko (1969) result in a linear
partial differential equation of 1st order in time and 2nd order in space, Eq. (4.9).
The first term on the right-hand side is the divergence of the temperature gradient
in one dimension, the second term is a source term, independent from the solution
itself, and finally there is a term proportional to T 4 which in its linear approximation
about the temperature To reads

T 4 ≈ T 4
o + d (T 4)

dT

∣∣∣∣∣
To

(T − To) = T 4
o + 4T 3

o (T − To) = −3T 4
o + 4T 3

o T .

If the eddy diffusivity K in (4.9) is taken as a constant, Eq. (4.9) is therefore
approximately of the general type

∂C

∂t
+K ~∇2C + α̃ C = ρ̃(~x) , (5.1)

where α̃ is constant and ρ̃(~x) a function of ~x, and defined on a (not necessarily
finite) domain Ω. It describes numerous linear or linearized phenomena in physics,
chemistry or mathematical biology.
Functions C = C(~x, t), ~x ∈ Ω, solve (5.1) for suitable boundary and initial condi-
tions. If such a solution results with an initial condition

C(~x, 0) = f(~x) , (5.2)

where f(~x) is a suitable function defined on the domain Ω, then the differential
equation (5.1) and the initial condition (5.2) together represent an initial value
problem. Instead, if the problem is independent of time,

~∇2C + αC = ρ(~x) (5.3)

(with the constant α and the function ρ(~x)), for example

~∇2C = 0 Laplace Equation,

~∇2C = ρ(~x) Poisson Equation,

~∇2C + αC = 0 Helmholtz Equation,

and the solution C = C(~x) results with boundary conditions

α(~xb) ∂C(~xb)
∂n

+ β(~xb)C(~xb) = γ(~xb) , (5.4)
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where ∂/∂n is the derivative perpendicular to the boundary ~xb of the domain Ω, and
α(~xb), β(~xb) as well as γ(~xb) are suitable functions defined on this boundary, then
the differential equation (5.3) and the boundary condition (5.4) together constitute
a boundary value problem. For boundary conditions (5.4) at a point ~xb on the
boundary the following names are commonly used:

α(~xb) = 0 Dirichlet boundary condition,

β(~xb) = 0 Neumann boundary condition,

else Cauchy boundary condition.

One of the most common boundary value problem is Poisson’s Equation

~∇2C = ρ(~x) (5.5)

(together with a suitable boundary condition), i.e., specifically in two dimensions
using Cartesian coordinates,

∂2C

∂x2 + ∂2C

∂y2 = ρ(x, y) . (5.6)

Equations (5.5) and (5.6) describe such diverse examples as stationary tempera-
ture distributions (T instead of C) in regions where heat sources are present, also
stationary distributions of the electrostatic potential (ϕ instead of C) in regions
containing electric charges, or the stationary flow of an incompressible and inviscid
fluid (velocity potential instead of C) in the presence of mass sources and sinks.

5.2 Direct numerical solution of Poisson’s equation

This section is given only for introductory purposes and in order to demonstrate
the principles. The numerical solution of a boundary value problem would not be
derived by means of this method, because it would be rather inefficient to find an
approximate solution. Superior methods are available which will be presented below.
For simplification, we first assume, that the region, in which the equation is to be
solved, is quadratic in shape. For the numerical solution of (5.6) a grid with a
grid spacing of ∆x and ∆y (Fig. 5.1) is overlaid on the region. Circles are termed
inner points, diamonds denote boundary points. Further, we assume that Dirichlet
boundary conditions are formulated, i.e. the values of the boundary points are given.
The derivatives in (5.6) are discretized according to Table 2.2:

∂2C

∂x2 = Ci,j+1 − 2Ci,j + Ci,j−1

∆x2 + O(∆x2) (5.7a)

∂2C

∂y2 = Ci+1,j − 2Ci,j + Ci−1,j

∆y2 + O(∆y2) . (5.7b)

Inserting (5.7) into (5.6), assuming ∆x = ∆y, and neglecting terms of higher order
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i

j

Figure 5.1: Grid with inner points (circles) and
boundary points (diamonds).

in (5.7), we obtain:

Ci+1,j + Ci−1,j + Ci,j+1 + Ci,j−1 − 4Ci,j = ∆x2 ρi,j . (5.8)

(5.8) states, that the deviation of the sum of the four closest neighbors from the value
in the centre is equal to the source term at this point. Equation (5.8) is a system of
linear equations of dimension N M ×N M of the unknowns Ci,j, i = 1, . . . , N ; j =
1, . . . , M . By appropriately numbering the indices of the inner points, a vector Ck,
k = 1, . . . , N M can be defined. We choose the following numbering, here illustrated
for N = 3 and M = 3, a total of 9 inner points as in Fig. 5.1,C1,1 C1,2 C1,3

C2,1 C2,2 C2,3
C3,1 C3,2 C3,3

 ≡
C1 C4 C7
C2 C5 C8
C3 C6 C9

 , (5.9)

which converts (5.8) into the system of linear equations

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4





C1
C2
C3
C4
C5
C6
C7
C8
C9


=



r1
r2
r3
r4
r5
r6
r7
r8
r9


, (5.10)

where the vector on the right side of the equation contains the values ∆x2 ρi,j plus
possible boundary values. The matrix in (5.10) is symmetric and has a block struc-
ture. By inverting the matrix in (5.10), C can easily be solved for. However, this
method quickly leads to very large systems, which can hardly be handled. By num-
bering (5.9) in a different way, we obtain a different structure of the matrix. The
conditioning of the matrix depends on this numbering. This has an impact on the
accuracy of the solution C.
We have seen that the numerical solution of partial differential equations rapidly
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leads to large systems of linear equations which have to be solved using appropriate
numerical methods. For a typical grid resolution of 50 × 50 already a matrix of
dimension 2500× 2500 has to be inverted.

5.3 Iterative methods

The inversion of a large matrix is costly. To avoid this obstacle, we consider here
iterative methods, first methods of relaxation and then the method of successive
overrelaxation.

5.3.1 Methods of relaxation

The solution of (5.6) is a special solution of the time-dependent partial differential
equation

1
K

∂C

∂t
= ∂2C

∂x2 + ∂2C

∂y2 − ρ(~x) , (5.11)

namely the one for which ∂C/∂t = 0. We seek the stationary solution of (5.11).
Discretization in space and time yields

Cn+1
i,j = Cn

i,j + K ∆t
∆x2

(
Cn
i+1,j + Cn

i−1,j + Cn
i,j+1 + Cn

i,j−1 − 4Cn
i,j

)
−K ∆t ρi,j , (5.12)

where again ∆x = ∆y and the upper index n denotes the time step. For the
time discretization in (5.12), Euler forward was used. The simultaneous solution
of a system of linear equations is replaced by an iterative calculation rule given by
(5.12). In the course of a relaxation iteration procedure the values Ci,j converge to
the values of the stationary solution ∂C/∂t = 0. For the solution to be stable, the
appropriate CFL criterion (3.33) in two dimensions must be satisfied, i.e.

K ∆t
∆x2 ≤

1
4 . (5.13)

By considering the maximum allowable time step derived from (5.13), (5.12) trans-
forms to the classical Jacobi method:

Cn+1
i,j = 1

4
(
Cn
i+1,j + Cn

i−1,j + Cn
i,j+1 + Cn

i,j−1

)
− ∆x2

4 ρi,j . (5.14)

The Jacobi method converges only very slowly. A related method is the Gauss-Seidel
method, which uses already computed values of the consecutive time steps in (5.14).
Hence, when we proceed along the rows (i = constant) from small to large j, (5.14)
can be modified to

Cn+1
i,j = 1

4
(
Cn
i+1,j + Cn+1

i−1,j + Cn
i,j+1 + Cn+1

i,j−1

)
− ∆x2

4 ρi,j . (5.15)

Even the Gauss-Seidel method is not very efficient. In order to reduce the error of
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the solution by p orders of magnitude, i.e., by a factor of 10p, about 1
2 p J

2 iterations
are required, where J is the number of grid points.

5.3.2 Method of successive overrelaxation (SOR)

The successive overrelaxation method (SOR) described in this section is a good and
appropriate method for simple boundary value problems that do not have to be
designed for efficiency. It is an iterative method based on the discretization given in
equation (5.8).
The solution matrix C in (5.9) is again numbered as a vector: Ck, k = 1, . . . , J ,
J = M N . For clarity, the solution vector here will be denoted x, instead of C.
Hence, (5.8) reads

Ax = b . (5.16)

The matrix A can be written as a sum of the diagonal, a left and a right triangular
matrix

A = D + L + R . (5.17)

In this notation, the methods we have previously presented read:

Jacobi method Dxn+1 = − (L + R)xn + b , (5.18)

Gauss-Seidel method (D + L)xn+1 = −R xn + b . (5.19)

We subtract (D + L)xn from both sides of (5.19) and solve for xn+1. We get the
following equation

xn+1 = xn −
(
D + L

)−1 (
(D + L + R)xn − b

)
︸ ︷︷ ︸

= ξn

. (5.20)

The quantity ξn is called the residual of equation (5.20) at time step n, because
ξn = Axn − b. Hence, the iteration reads

xn+1 = xn− (D + L)−1 ξn︸ ︷︷ ︸
= ∆xn+1

, (5.21)

where ∆xn+1 = xn+1− xn = − (D + L)−1 ξn is the correction at iteration step n+ 1
(the first iteration step goes from n = 0 to n = 1).
The idea of the method of successive overrelaxation is to accelerate the convergence
by scaling the correction in (5.21) by a factor ω with 1 < ω < 2. This amounts to
increasing the correction term by up to 100%. Accordingly, the SOR method reads

xn+1 = xn − ω (D + L)−1 ξn (5.22)

(ω = 1 would lead to the Gauss-Seidel method).
It can be shown that in order to reduce the error by a factor 10p, here only 1

3 p J
iterations are required. The computational burden therefore only scales linearly
with J rather than quadratically (1

2 p J
2) as for the Jacobi and the Gauss-Seidel
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methods. However, this only holds if an optimum value for ω is used in (5.22) and
this is the difficulty in the SOR method. Luckily, there are some prior estimates
for ωopt (see Press et al., 1992, chapter Relaxation Methods). For smaller problems,
ωopt can be found by a search algorithm.
The matrix formulation (5.22) of the algorithm is only of theoretical value. The
practical implementation is straightforward. The discrete form of a partial differen-
tial equation of second order can be written in a generalized way as follows:

ai,j xi+1,j + bi,j xi−1,j + ci,j xi,j+1 + di,j xi,j−1 + ei,j xi,j = fi,j . (5.23)

The new estimate for xi,j can be calculated analogously to (5.22):

xn+1
i,j = xni,j − ω

ζni,j
ei,j

, (5.24)

where ζni,j is the residual of the nth iteration:

ζni,j = ai,j x
n
i+1,j + bi,j x

n
i−1,j + ci,j x

n
i,j+1 + di,j x

n
i,j−1 + ei,j x

n
i,j − fi,j . (5.25)

In 1950, D.M. Young and S.P. Frankel proposed independently from each other
an optimized SOR method which uses previously computed xn+1

i,j in (5.25). This
method has become a standard SOR method and is outlined in appendix A. The
description there should also illuminate the relation between the relaxation factor
ω and the speed of convergence of any SOR method.



6 Large-scale circulation in the ocean

Every fluid parcel in the atmosphere and the ocean obeys the fundamental laws of
fluid mechanics including the equation of motion and the continuity equation. In the
following we will describe approximate forms of these two equations for large-scale
circulations in the ocean. Analogous equations apply for large-scale circulations in
the atmosphere, too. As a preparatory step, we consider a special time derivative.

6.1 Material derivative

Given a small water parcel moving through the ocean on a path

~r(t) =

x(t)
y(t)
z(t)

 .

Hence, at time t the water parcel passes the coordinates x(t), y(t) and z(t) with the
velocity

~u(t) = d~r(t)
dt =


dx(t)

dt
dy(t)

dt
dz(t)

dt

 =

u(t)
v(t)
w(t)

 , (6.1)

where u(t), v(t) and w(t) are the x-, y- and z-components of the velocity, respectively.
Any physical property A of the water parcel—such as the velocity, the pressure,
the density, the temperature, or the salinity—is a function of time and space, A =
A(t, x, y, z). The total derivative with respect to time of this mathematical function
is

dA
dt = ∂A

∂t
+ dx

dt
∂A

∂x
+ dy

dt
∂A

∂y
+ dz

dt
∂A

∂z
. (6.2)

Determining the derivative along the path of the water parcel, where dx/dt = u,
dy/dt = v and dz/dt = w according to (6.1), we get the material derivative, also
called Lagrangian derivative or advective derivative,

DA
Dt = ∂A

∂t
+ u

∂A

∂x
+ v

∂A

∂y
+ w

∂A

∂z
, (6.3)

corresponding to the time rate of change of the physical quantity A measured by an
observer moving with the water parcel. The first term on the right-hand side of this
equation is the partial derivative of A with respect to time t (the space coordinates
x, y and z are held constant), called Eulerian derivative, corresponding to the rate
of change of the physical quantity A measured by an observer at a fixed position in
space (x, y, z = constant). The difference between the material derivative DA/Dt
and the Eulerian derivative ∂A/∂t is due to transport with the oceanic current, of
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which the water parcel is part, namely due to advection. Equation (6.3) can also be
written in vector notation:

DA
Dt = ∂A

∂t
+ (u, v, w)·


∂A
∂x
∂A
∂y
∂A
∂z


= ∂A

∂t
+ ~u · ~∇A . (6.4)

6.2 Equation of motion

The small water parcel satisfies the conservation equation for momentum, namely
the equation of motion based on the 2nd Law of Newton. With respect to an Earth-
fixed coordinate system it is

D~u
Dt = ~a+ ~aI , (6.5)

where ~a signifies the acceleration (force per unit mass) due to the resultant of all real
forces (pressure gradient force, friction force, gravity force) and ~aI analogously the
acceleration due to the resultant of all inertial forces (also called apparent forces)
arising from Earth’s rotation in an Earth-fixed reference system (Coriolis force,
centrifugal force).
Denoting the nearly constant angular velocity of Earth’s rotation with ~Ω, the accel-
eration of the water parcel due to inertial forces relative to an Earth-fixed reference
system is given by

~aI = −2 ~Ω× ~u− ~Ω×
(
~Ω× ~r

)
, (6.6)

as shown for example in Peixoto and Oort (1992). The first term on the right-hand
side is the Coriolis acceleration, the second term is the centrifugal acceleration.
Due to the centrifugal acceleration, the Earth surface is approximately a rotational
ellipsoid so that the horizontal component of the centrifugal acceleration is nearly
cancelled out by the horizontal component of the gravity acceleration ~g. Therefore,
in contrast to the Coriolis force, the horizontal component of the centrifugal force
can be neglected.
Every realistic version of the equation of motion has to consider that the oceanic
currents are flowing on the approximately spherical surface of the Earth. But there
are good approximations, especially for circulations on smaller scales, which assume
oceanic flows to occur in a plane (Fig. 6.1). This plane is called f -plane or β-plane,
depending on the approximations assumed (see below). A Cartesian coordinate
system (x, y, z), in which the equations are formulated, is defined on this plane.
The coordinate system is attached to the sphere and rotates with it. The Coriolis
acceleration in this system is given by

~aC = −2

 0
Ω cosϕ
Ω sinϕ

×
uv

0

 =

 2 Ω sinϕv
−2 Ω sinϕu
2 Ω cosϕu

 ; (6.7)
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z

x

R

Ω

λ

ϕ

y

f, β-plane

Figure 6.1: Local Cartesian coordinate system on
a rotating sphere.

considering inertial forces, we will neglect vertical motions by setting w = 0. In
both horizontal components the common factor

f = 2 Ω sinϕ (6.8)

appears. This is the Coriolis parameter which, due to the spherical shape of the
Earth, depends on latitude ϕ. Linearisation of f(ϕ) yields

f(ϕ) ≈ f(ϕ0) + df
dϕ

∣∣∣∣∣
ϕ0

(ϕ− ϕ0)

≈ 2 Ω sinϕ0 + 2 Ω cosϕ0 (ϕ− ϕ0)

≈ f0 + 2 Ω cosϕ0

R
y

≈ f0 + β y . (6.9)

If we only account for the constant term f0 in the equations of motion in the (x, y, z)
system, we are considering the dynamics on an f -plane. On the β-plane one uses
the linear approximation (6.9) when considering the dynamics.
Next, we work out the most important real forces, namely the pressure gradient
force, the friction force due to shear stress and the gravity force. Pressure forces
(caused by pressure p) and friction forces (caused by shear stress τ) act on a mass
element as follows (see also Fig. 6.2):

ρ δx δy δz ax = p(x) δy δz − p(x+ δx) δy δz
+ τxy(y + δy) δz δx− τxy(y) δz δx
+ τxz(z + δz) δx δy − τxz(z) δx δy

(the water density ρ is taken as constant). Friction forces within the ocean arise
especially from eddy shear stress due to eddy fluxes of momentum going through the
frictional surface considered (viscous shear stress, however, is generally negligible for
large-scale motions), so that according to Table 3.3 τxy = −ρ u′ v′, τxz = −ρ u′w′,
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Figure 6.2: Denominations of
the pressure and of the shear
stress for the derivation of the
pressure gradient accelerations
and friction accelerations.

p(x) p(x+δx)

δx
δx

δy
δy

δz

δz

τxz(z+δz)

τxy(y+δy)
−τxy(y)

τxz(z)
−τxz(z)

except at the boundaries. We obtain for the components of the acceleration,

ax = −1
ρ

∂p

∂x
+ 1
ρ

∂τxy
∂y

+ 1
ρ

∂τxz
∂z

ay = −1
ρ

∂p

∂y
+ 1
ρ

∂τyx
∂x

+ 1
ρ

∂τyz
∂z

az = −1
ρ

∂p

∂z
+ 1
ρ

∂τzx
∂x

+ 1
ρ

∂τzy
∂y
− g ,

(6.10)

where g denotes the free-fall acceleration, i.e., the resultant acceleration due to the
gravity force and the vertical components of centrifugal force and Coriolis force. As
the horizontal shears of large-scale ocean circulations are commonly negligibly small
compared to the vertical shear we write approximately

ax = −1
ρ

∂p

∂x
+ 1
ρ

∂τxz
∂z

(6.11a)

ay = −1
ρ

∂p

∂y
+ 1
ρ

∂τyz
∂z

(6.11b)

az = −1
ρ

∂p

∂z
− g . (6.11c)

With this we obtain from (6.5) the equation of motion approximated for large-scale
horizontal circulations,

Du
Dt = −1

ρ

∂p

∂x
+ 1
ρ

∂τxz
∂z

+ f v (6.12a)

Dv
Dt = −1

ρ

∂p

∂y
+ 1
ρ

∂τyz
∂z
− f u (6.12b)

Dw
Dt = −1

ρ

∂p

∂z
− g , (6.12c)
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i.e., written out in full with regard to (6.3),

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ 1
ρ

∂τxz
∂z

+ f v (6.13a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
+ 1
ρ

∂τyz
∂z
− f u (6.13b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g . (6.13c)

6.3 Continuity equation

The equation system (6.13) is not yet complete. In order to account for the mass
conservation, we assume that the ocean water is incompressible and satisfies there-
fore the continuity equation (3.8):

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 . (6.14)

6.4 Special case: Shallow water equations

We now assume that the ocean is a homogeneous layer of water of average thickness
H, its surface everywhere at height z = 0 in the stationary equilibrium but generally
at height z = η, the ocean bottom at height z = −H+ηb (Fig. 6.3). Thus, the local
instantaneous layer thickness is h = H + η − ηb. If the average thickness H of the
water layer is much smaller than its horizontal extent—a precondition of the subse-
quently described shallow water model—then the vertical accelerations in the water
mass will be rather small (Dw/Dt ≈ 0), so that the ocean will be approximately in
the so-called hydrostatic equilibrium, defined by the hydrostatic equation following
from the vertical component of the equation of motion, Eq. (6.12c):

z

−H

x,y

0

h

η

ηb

ocean surface

ocean bottom

Figure 6.3: Vertical cross section showing a part of the ocean. Average layer thickness H, water
surface at height z = η, bottom at height z = −H + ηb, local layer thickness h = H + η − ηb.
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∂p

∂z
= −ρ g . (6.15)

Under these conditions, the hydrostatic pressure at height z within the water layer
is given by

p(z) = p(η) +
(
p(z)− p(η)

)
= p(η) +

z∫
η

∂p

∂z
dz

= p(η) + ρ g (η − z) .

It is therefore equal to the sum of the atmospheric air pressure at the surface of
the ocean water, p(η), and the weight per unit area of the water column above,
ρ g (η − z). Assuming the atmospheric air pressure to be constant, we get for the
pressure gradients ∂p/∂x and ∂p/∂y

∂p

∂x
= ρ g

∂η

∂x
∂p

∂y
= ρ g

∂η

∂y
.

Obviously, the pressure gradients within the layer in hydrostatic equilibrium are
independent of z. Due to this important fact, the horizontal components of the
velocity u and v are constant with height for all time, if this had already been the
case at the beginning. Provided this case, the friction forces due to shear stress
vanish and the horizontal components of the equation of motion (6.12) become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
+ f v (6.16a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂η

∂y
− f u , (6.16b)

where we have written out in full the material derivative, as in (6.13), and the
vertical motions neglected.
In order to close the equation system for the three unknowns u, v and η, we integrate
the continuity equation (6.14) from the bottom of the ocean water layer to its surface.
To be sufficiently exact, we take the vertical motions into account:

η∫
−H+ηb

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
dz

=
η∫

−H+ηb

∂u

∂x
dz +

η∫
−H+ηb

∂v

∂y
dz +

η∫
−H+ηb

∂w

∂z
dz = 0 . (6.17)

The limits of integration z1 = −H + ηb and z2 = η = z1 + h are functions of x
and y, i.e. z1 = z1(x, y) = −H + ηb(x, y) and z2 = η(t, x, y) = z1(x, y) + h(t, x, y).
Using the Leibniz integral rule (rule for the differentiation of a definite integral) and
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noting that the velocities u and v are constant, we get
η∫

−H+ηb

∂u

∂x
dz = ∂

∂x

η∫
−H+ηb

u dz − u ∂η
∂x

+ u
∂ηb

∂x

=
∂
(
u (H + η − ηb)

)
∂x

− u ∂η
∂x

+ u
∂ηb

∂x

= ∂ (uh)
∂x

− u ∂η
∂x

+ u
∂ηb

∂x
η∫

−H+ηb

∂v

∂y
dz = ∂

∂y

η∫
−H+ηb

v dz − v ∂η
∂y

+ v
∂ηb

∂y

= ∂ (v h)
∂y

− v ∂η
∂y

+ v
∂ηb

∂y
η∫

−H+ηb

∂w

∂z
dz = w(η)− w(−H + ηb)

and with this from (6.17)

∂ (uh)
∂x

− u ∂η
∂x

+ u
∂ηb

∂x

+ ∂ (v h)
∂y

− v ∂η
∂y

+ v
∂ηb

∂y

+ w(η)− w(−H + ηb) = 0 . (6.18)

The difference between the vertical velocity at the surface w(η) and the vertical
velocity at the bottom w(−H + ηb) corresponds to the change in height per unit
time of the water column between −H + ηb and η and therefore to the material
derivative (with respect to the horizontal motion) of the column height h(t, x, y) =
H + η(t, x, y)− ηb(x, y):

w(η)− w(−H + ηb) = Dh
Dt

= ∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

= ∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
− u ∂ηb

∂x
− v ∂ηb

∂y
.

So, we obtain from (6.18)

∂η

∂t
+ ∂ (uh)

∂x
+ ∂ (v h)

∂y
= 0

or, because h = H + η − ηb, where H as well as ηb are time independent,

∂h

∂t
+ ∂ (uh)

∂x
+ ∂ (v h)

∂y
= 0 . (6.19)

The equation of motion (6.16) and continuity equation (6.19) represent the funda-
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mental equations of the shallow water model, namely the shallow water equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
+ f v (6.20a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂η

∂y
− f u (6.20b)

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
= −h

(
∂u

∂x
+ ∂v

∂y

)
, h = H + η − ηb ; (6.20c)

the continuity equation (6.20c) follows from (6.19) with the aid of the product rule
of differentiation.
This equation system becomes particularly simple for the case of a non-rotating
Earth (f = 0), a flat bottom (ηb = 0), small velocities u, v and elevations η � H as
well as small space derivatives of u, v and h. In this case the Coriolis terms vanish
and the non-linear terms are negligible:

∂u

∂t
= −g ∂η

∂x
(6.21a)

∂v

∂t
= −g ∂η

∂y
(6.21b)

∂η

∂t
= −H

(
∂u

∂x
+ ∂v

∂y

)
. (6.21c)

Taking the time derivative of the continuity equation (6.21c), the space derivative
∂/∂x of the equation of motion (6.21a) and the space derivative ∂/∂y of the equation
of motion (6.21b) we obtain a single equation for the surface elevation:

∂2η

∂t2
= g H ~∇2η . (6.22)

This is a classical wave equation, formally identical to (3.17). Solutions of the simpli-
fied shallow water equations (6.21) are therefore, among others, harmonic dispersion-
free waves with phase speed

√
g H. Accounting for the effects of a rotating Earth

(f 6= 0), i.e. starting from (6.20) and neglecting nonlinear terms, wave equations
can be derived which describe Kelvin, Rossby, and planetary-gravity waves.
In order to compute atmospheric and oceanic flows in climate models, spherical
coordinates are applied. Hence, the Laplace operator in (6.22) has to be written
in spherical coordinates. In the ocean, conditions have to be formulated at the
boundaries of ocean basins, in the atmosphere, periodic boundary conditions are
postulated.
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6.5 Different types of grids in climate models

The partial differential equations describing the dynamics in climate models need
to be discretized. Up to now, we have assumed that all quantities are evaluated at
the same grid points. However, in most cases this is not the best choice. It will
be shown in simple examples that other arrangements of grids, which represent the
physical reality better, lead to much more efficient schemes. This will be illustrated
using the one-dimensional version of the simplified shallow water equations (6.21).
The simplified shallow water equations (6.21) in one dimension are given by

∂u

∂t
= −g ∂η

∂x
(6.23a)

∂η

∂t
= −H ∂u

∂x
, (6.23b)

where the two unknown functions u(x, t) and η(x, t) are to be determined. It is
important to realize that the two equations in (6.23) are tightly coupled. If we choose
the common discretization in space according to x = i∆x with the denominations
ui ≡ u(i∆x, t) , and ηi ≡ η(i∆x, t), both functions are evaluated at identical grid
points (Fig. 6.4a). The discretized forms of equations (6.23) read

∆x

x

x

η
i−2

η
i−1

η
i

η
i+1

η
i+2

u
i−2

u
i−1

u
i

u
i+1

u
i+2

Figure 6.4a: Simple grid for the shallow water equations. All functions are evaluated at the same
points. Two independent sub-grids, connected with the red and blue lines, result.
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2∆x
∂u

∂x i−1/2

∂η

∂x i+1/2

Figure 6.4b: Staggered grid for the shallow water equations. Flux quantities (u) and volume
quantities (η) are evaluated at different points.

∂ui
∂t

= −g ηi+1 − ηi−1

2 ∆x , (6.24a)
∂ηi
∂t

= −H ui+1 − ui−1

2 ∆x . (6.24b)
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Thus, it appears that the two schemes are applied on two independent sub-grids,
the solution vectors (η2k, u2k+1) and (η2k+1, u2k) are mutually independent and no
information is interchanged. The error of the schemes in (6.24) is of order ∆x2.
By shifting one axis in Fig. 6.4a, we consider a staggered grid as it is shown in
Fig. 6.4b. Here, twice the grid spacing as before is chosen. Therefore, only half the
number of values needs to be computed. The discretized forms of equations (6.23)
for this grid are given by

∂ui
∂t

= −g ∂η
∂x

∣∣∣∣∣
i+1/2

= −g ηi+1 − ηi
2 ∆x , (6.25a)

∂ηi
∂t

= −H ∂u

∂x

∣∣∣∣∣
i−1/2

= −H ui − ui−1

2 ∆x . (6.25b)

By evaluating derivatives in (6.25) at the intermediate points, they can be regarded
as central differences with an equivalent grid spacing of ∆x, even though indices
only include immediate neighbors. For this reason, the schemes in (6.25) are of the
same accuracy as the ones in (6.24), where twice the number of values need to be
computed. Hence, the staggered grid affords a significant improvement with regard
to the present differential equations.

Figure 6.5a: Two-dimensional Arakawa A-grid, in
which all functions are evaluated at identical grid
points.
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Figure 6.5b: Two-dimensional Arakawa E-grid,
where flux quantities (u, v) and volume quantities
(η) are evaluated at different places.

u,vη η

η η
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These findings can be generalized to two dimensions. To illustrate this, we consider
again the equation system (6.21), where the three unknown functions u(x, y, t),
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uη η

η η

vv

u

Figure 6.6: Two-dimensional Arakawa C-grid,
in which flux quantities of different directions
are evaluated at different points, while vol-
ume quantities are computed in between. The
dashed grid illustrates the physical meaning of
the C-grid. Volume quantities (η) are located in
the centers of the dashed boxes, while flux quan-
tities (u, v) are centered on the box boundaries.
Therefore, the C-grid accounts for mass balance
in a natural way.

v(x, y, t) and η(x, y, t) have to be computed on a two-dimensional grid (Fig. 6.5). In
case all functions are evaluated at the same grid points (Fig. 6.5a), we denote this
an A-grid (Arakawa A-grid). An alternative choice is an E-grid (Arakawa E-grid)
for which the velocity components are evaluated at points between the η points
(Fig. 6.5b) and in so doing the relations between the velocity components and the
horizontal gradients of η are taken into account.
A further commonly used grid is the C-grid (Arakawa C-grid), for which the velocity
components of different directions are evaluated at different grid points (Fig. 6.6).
This grid structure represents the physics of fluid motion most appropriately, be-
cause flux quantities (e.g., velocities, energy fluxes, etc.) are defined at the boundary
of grid boxes while volume quantities (e.g., surface elevation, concentration, temper-
ature, etc.) are represented in the center.
The question concerning the grid type also plays a role in the solution of the one-
dimensional energy balance model. Equation (4.9) can be simplified to

∂T

∂t
= a+ b T 4 + c

∂

∂ϕ

(
e
∂T

∂ϕ

)
(6.26)

with spatially dependent coefficients a, b, c and e. In this model, temperature is
the volume quantity while the meridional temperature gradient represents a flux
quantity. If an A-grid is selected (Fig. 6.7a), the discretized form of (6.26) reads

∂Ti
∂t

= ai + bi T
4
i + ci

ei+1 T
′
i+1 − ei−1 T

′
i−1

2 ∆ϕ
(6.27a)

T ′i = Ti+1 − Ti−1

2 ∆ϕ
, (6.27b)

where again (T2k, T
′
2k+1) and (T2k+1, T

′
2k) are independent solution vectors. The

solution is evaluated on two non-connected sub-grids.
In a C-grid configuration (Fig. 6.7b) with double grid spacing, only half the number
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Figure 6.7a: A-grid for the one-dimensional energy balance model. The scheme (6.27) for the
solution of (6.26) results in two independent sub-grids (colored lines).
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Figure 6.7b: C-grid for the one-dimensional energy balance model.

of functions has to be evaluated and, accordingly, the discretized form reads

∂Ti
∂t

= ai + bi T
4
i + ci

ei T
′
i − ei−1 T

′
i−1

2 ∆ϕ (6.28a)

T ′i = Ti+1 − Ti
2 ∆ϕ (6.28b)

which is of the same accuracy, but requires only half the computational resources.
In addition, the implementation of boundary conditions with respect to the flux
quantities (see (4.10)) is straightforward, since they can be set to zero: T ′0 = 0 and
T ′M = 0.

6.6 Spectral models

Here, a short section on an important alternative method to solve partial differential
equations in spherical geometry is presented. Up to now, we have treated several
methods that make use of finite differences. For global climate models, the integra-
tion domain covers a sphere, which enables the use of particular functions for the
solution of the partial differential equations. Therefore, in order to solve equations
of the type given in (6.22) on a sphere, spectral methods are often applied.
Usually, the atmospheric components of global climate models are spectral models.
In global ocean models they are employed rarely, or only for the vertical component
as the strong gradients of properties near the surface (e.g., temperature) can be
better accounted for.
Instead of spanning a grid over the sphere and then replacing the differential equa-
tions by a system of equations in finite differences, the unknown functions are ex-
panded by appropriate basis functions which satisfy certain boundary conditions.
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Consider eigenfunctions of the Laplace operator on a sphere of radius R,

~∇2Y m
` = −` (`+ 1)

R2 Y m
` , (6.29)

namely spherical harmonics, which are given by

Y m
` (ϕ, λ) = Pm

` (sinϕ) eimλ , (6.30)

where Pm
` (sinϕ) are associated Legendre functions of the 1st kind. The quantities

m and ` are wave numbers: 2m is the number of knot meridians (zeroes on a circle
of latitude), ` − m is the number of knot latitudes excluding the two poles. The
following orthogonality relation is valid

1
4 π

1∫
−1

d (sinϕ)
2π∫
0

dλ Y m
` Y m′

`′ =

 1 if m = m′, ` = `′

0 else
(6.31)

which is consistent with the fact, that (6.30) constitutes a complete basis of func-
tions.
The unknown solution of (6.22) is now expressed as a linear combination of basis
functions Y m

` (ϕ, λ) with time-dependent coefficients Φm
` (t):

η(t, ϕ, λ) =
∑
|m|≤`

∑
`

Φm
` (t)Y m

` (ϕ, λ) . (6.32)

Inserting (6.32) into (6.22) and using (6.29) we obtain following ordinary differential
equations for the coefficient functions:

d2Φm
`

dt2 = −` (`+ 1) g H
R2 Φm

` . (6.33)

Hence, the partial differential equation (6.22) is replaced by a set of ordinary differ-
ential equations for the coefficient functions Φm

` (t).
The expansion in (6.32) theoretically ranges from ` = 0, . . . , ∞, m = −`, . . . ,+`,
but in practice, the summation needs to be truncated at an appropriate point.
This results in finite spatial resolution determined by the highest wavenumbers.
The most commonly used truncations are triangular and rhomboidal truncations,
schematically illustrated in Fig. 6.8.
Early GCMs used R15 and R21. Transient eddies, important features of the atmo-
sphere, are barely resolved in R15. Hence, the partitioning—in absolute terms—of
the meridional heat transport in the atmosphere is not realistically simulated. This
is one of the reasons for coupled models of low resolution to require flux corrections
(see also Sect. 8.6). Simulations are currently performed at T42 to T85. Results of
a simulation with very high resolution (T106) were shown in Fig. 2.3.
The choice of the basis function already satisfies some of the boundary conditions.
This is a distinct advantage of spectral models. However, one difficulty arises with
the treatment of the non-linear terms and terms describing Coriolis effects which
are part of the full equations of motion. When these effects are considered, spectral
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Figure 6.8a: Triangular truncation Figure 6.8b: Rhomboidal truncation

η(t, ϕ, λ) =
M∑

m=−M

M∑
`=|m|

Φm
` (t)Y m

` (ϕ, λ)

η(t, ϕ, λ) =
M∑

m=−M

|m|+M∑
`=|m|

Φm
` (t)Y m

` (ϕ, λ)

denomination: T(M) denomination: R(M)

examples: T21, T31, T42, T63, T85,
T106.

examples: R15, R21, R30.

models become much more complicated, and coupling between the individual wave
numbers occurs.

6.7 Wind-driven flow in the ocean (Stommel model)

Since the beginning of inter-continental marine navigation in the 15th century, it is
well known that the surface flow in the ocean is characterized by large-scale gyres
(in the northern hemisphere clock-wise subtropical gyre, counter-clockwise subpolar
gyre). These gyres are not spatially uniform but feature a strongly intensified current
along the western boundary of the ocean basin, namely a strong northward current in
the northern hemisphere and a strong southward current in the southern hemisphere,
while in the eastern part the currents are weak.
The well-known Gulf stream is part of the western part of the North Atlantic’s
subtropical gyre. This then turns into the Transatlantic Drift Current as soon as
it leaves the American East Coast and moves northward towards the eastern part
of the subpolar gyre. Its effects on temperature and salinity are observed as far
as north Spitsbergen. The Kuroshio Current, the Brazil Current and others form
dynamically similar circulation systems.
The wind, i.e., the Westerlies in the mid-latitudes and the pronounced Easterlies
more towards the equator, have quickly been identified as causes of these currents.
However, the dynamical problem, why the ocean currents only intensify along the
western basin boundaries, has not been resolved until 1948 when a landmark paper
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Figure 6.9: Geometry of the
ocean basin and mass trans-
port in a Cartesian coordinate
system, which is tangent to
the Earth’s sphere at a given
latitude.

was published by Henry Stommel (Stommel, 1948). Using an elegant model, he
demonstrated that the spherical shape of the rotating Earth is the origin of this
conspicuous phenomenon.
Following Stommel we consider a homogenous fluid (ρ = constant) in a flat rectan-
gular basin (Fig. 6.9) on the β-plane; vertical cross-section as shown in Fig. 6.3.
We assume the bottom to be flat, ηb = 0, further the atmospheric air pressure at
the surface of the ocean water p(η) to be constant, and finally the vertical elevation
to be much smaller than the mean layer thickness, i.e. η � H. Multiplication of
the horizontal components of the equation of motion (6.13) with ρ, integration over
the entire depth from the height of the bottom z = −H to the height of the water
surface z = η plus the assumption of stationarity ∂/∂t = 0 and linearity yields

−f
η∫

−H

ρ v dz = −
η∫

−H

∂p

∂x
dz + τxz(η)− τxz(−H) , (6.34a)

f

η∫
−H

ρ u dz = −
η∫

−H

∂p

∂y
dz + τyz(η)− τyz(−H) . (6.34b)

We define the mass transport as follows:

~M =
η∫

−H

ρ ~u dz (6.35)

and substitute this in (6.34). Equation (6.34) reveals that the mass transport is
driven by the shear at the surface and slowed by the friction on the ground. Hence,
at the surface the effect of the wind is to transfer momentum into the fluid. The
flux of momentum must be passed on to the fluid by internal friction or friction at
the bottom of the ocean basin.
Stommel chose the simplest possible parameterisation for this effect by postulating
that the shear exerted by the bottom is proportional to the velocity, or the mass
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transport, respectively. Hence, (6.34) becomes

−f My = −
η∫

−H

∂p

∂x
dz + τxz(η)−RMx , (6.36a)

f Mx = −
η∫

−H

∂p

∂y
dz + τyz(η)−RMy , (6.36b)

where R is an inverse characteristic time during which the current comes to rest due
to friction.

6.7.1 Determination of the stream function

By cross-differentiation ∂(6.36b)/∂x − ∂(6.36a)/∂y the pressure gradient terms in
(6.36) are eliminated. Taking (6.9) into account, we obtain

βMy + f

(
∂Mx

∂x
+ ∂My

∂y

)
= ∂τyz

∂x
− ∂τxz

∂y
−R

(
∂My

∂x
− ∂Mx

∂y

)
, (6.37)

where the functions τxz and τyz are now written without argument.
The two unknown components of the mass transport are not mutually independent,
since in a closed basin mass conservation must be satisfied. The vertical integration
of continuity equation (6.14) yields, analogously to the derivation leading to (6.19)
but with ∂/∂t = 0,

~∇ · ~M = ∂Mx

∂x
+ ∂My

∂y
= 0 , (6.38)

where the unknown vector function ~M can now be replaced by a scalar choosing

Mx = −∂Ψ
∂y

, (6.39a)

My = ∂Ψ
∂x

. (6.39b)

The scalar function Ψ(x, y) is called stream function. Streamlines are lines of con-
stant stream function, along which the current moves tangentially.
Definition (6.39) satisfies (6.38) automatically, and we can use (6.39) in (6.37) in
order to obtain the Stommel equation which was first formulated in 1948 (Stommel,
1948):

β
∂Ψ
∂x

= ∂τyz
∂x
− ∂τxz

∂y
−R

(
∂2Ψ
∂x2 + ∂2Ψ

∂y2

)
. (6.40)

This equation contains the phenomenon of western boundary currents in an ocean
basin in principle. Equation (6.40) is a partial differential equation of 2nd order in
x and y for the function Ψ(x, y).
Boundary conditions still remain to be formulated. Since the transport must be
parallel to the boundaries, we require along the boundaries in the y-direction Mx =
−∂Ψ/∂y = 0, and along the boundaries in the x-directionMy = ∂Ψ/∂x = 0. Hence,
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Figure 6.10: Stream function Ψ (in Sverdrup, 1 Sv = 106 m3 s−1) of the Stommel model (6.40)
for a) β = 2 ·10−11 m−1 s−1 and b) β = 0, with R = 1/(6 days), and T = 0.1 N m−2 in (6.42). The
numerical solution was computed on a grid with (Nx = 100)× (Ny = 20) and using the method of
successive overrelaxation (5.22). The current flows clockwise and is parallel to the stream lines.

Ψ is constant along the boundary. Because (6.40) only contains derivatives of Ψ, we
can set, without loss of generality,

Ψ = 0 at the boundaries. (6.41)

Therefore, the Stommel model is a boundary value problem with Dirichlet bound-
ary conditions (Sect. 5.1). In order to find the solution, the wind stress must be
prescribed. For particularly simple spatial relationships of the stress, the boundary
problem may even be solved analytically. To this end, Stommel chose a purely zonal
wind stress given by

τxz = −T cos
(
π

B
y
)
, (6.42a)

τyz = 0 . (6.42b)

Thus, (6.40) can be solved analytically by separation of the variables. But for more
complicated profiles of the wind stress, numerical methods, presented in Chap. 5,
need to be applied. We will not explain this analytical solution but are going to
discuss numerical solutions of this problem.
The numerical solutions of the boundary value problem (6.40), (6.41) in a rectan-
gular basin between 0 ≤ x ≤ 7000 km and 0 ≤ y ≤ 5000 km are illustrated in
Fig. 6.10. We have employed the method of successive overrelaxation described in
Sect. 5.3.2. On a β-plane, a western boundary current develops; for β = 0, a sym-
metric solution results which exhibits no boundary current. The western boundary
current in this model appears as soon as the Coriolis parameter f depends on the
latitude, implying that the spherical shape of the Earth plays a fundamental role in
the establishment of the dynamics.
In case a boundary current is present, the x derivatives of the stream function in
(6.40) become dominant at the boundary. Assuming a typical lateral width δ of the
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boundary current and inserting Ψ ∼ 1− e−x/δ into (6.40), we obtain

β
1
δ
∼ R

1
δ2 hence δ ∼ R

β
. (6.43)

The width of the boundary current (Stommel boundary layer) scales with the friction
coefficient and is inversely proportional to β.

6.7.2 Determination of the water surface elevation

According to (6.36), wind-driven flow induces pressure gradients, which become
manifest as an elevation η of the water surface. This effect shall be quantified in
the following. It will lead to a boundary value problem with Neumann boundary
conditions (Sect. 5.1).
Analogously to (6.35), we define the pressure integrated over the depth as

P =
η∫

−H

p dz (6.44)

and take ∂(6.36a)/∂x+∂(6.36b)/∂y with regard to η � H. Using (6.38) and (6.39),
for P (x, y) we obtain now the following Poisson equation

~∇2P = f ~∇2Ψ + β
∂Ψ
∂y

+ ∂τxz
∂x

+ ∂τyz
∂y

. (6.45)

The previous choice of the wind stress (6.42) allows us to cancel the last two terms
in (6.45). The boundary conditions for P (x, y) may be derived from (6.36) and the
fact that the transport must be parallel to the boundaries:

∂P

∂x
= f

∂Ψ
∂x

+ τxz at x = 0 and x = L (6.46a)
∂P

∂y
= f

∂Ψ
∂y

+ τyz at y = 0 and y = B . (6.46b)

Consequently, the derivatives of P perpendicular to the boundary are fixed (Neumann
boundary conditions). It must be noted, that (6.45) and (6.46) restrict the solution
up to a single constant.
By calculating P (x, y) based on (6.45) and considering (6.46), we can determine the
elevation of the water surface using (6.44) and assuming hydrostatic equilibrium:

P (x, y) =
η∫

−H

ρ g (η − z) dz = 1
2 ρ g (H + η)2 . (6.47)
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Figure 6.11: Interpolation of the solution function at the boundary using parabolas.

We expand (6.47) with regard to η � H,

P (x, y) = 1
2 ρ g H

2
(

1 + η

H

)2

≈ 1
2 ρ g H

2 + ρ g H η ,

and find with this
η(x, y) ≈ P (x, y)

ρ g H
− H

2 . (6.48)

The numerical solution of a boundary value problem with Neumann boundary con-
ditions requires some additional considerations. For Dirichlet boundary conditions,
such as (6.41), the boundary values are accounted for naturally by setting the values
in the numerical scheme directly. However, Neumann boundary conditions require
additional information from the points next to the boundary in order to find the
values at the boundary itself.
We derive the discretized schemes to determine the boundary values in the case
of Neumann boundary conditions. The idea is to calculate the derivatives at the
boundary using the values of the grid points inside and assuming an appropriate
interpolation. There are various possibilities for this: linear, parabolic, etc. We ex-
plain the approach for the boundaries x = 0 and x = L; corresponding formulations
for the other boundaries can be inferred analogously.
In x-direction, the discretisation ∆x = L/N , with x = i∆x is chosen. We evaluate
the solution function P (x) at the grid points, that is P (i∆x) ≡ Pi, where P0 and PN
are located at the respective boundaries (x = 0 and x = L, Fig. 6.11). A parabola is
assumed to interpolate the solution between the boundary point and the two points
closest to the boundary. For the boundary x = 0, we assume the quadratic function

y = a x2 + b x+ P0 . (6.49)

In order to assure that the parabola goes through the values P1 and P2, the following
must be valid

P1 = a (∆x)2 + b (∆x) + P0 and P2 = a (2 ∆x)2 + b (2 ∆x) + P0 , (6.50)

and analogous expressions hold for the boundary at x = L. Solving (6.50) for the
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Figure 6.12: Surface elevation η (in cm) calculated using the Stommel model (6.40). Panel a)
β = 2 · 10−11 m−1 s−1; Panel b) β = 0, and Panel c) f = 0. The parameters are R = 1/(6 days),
H = 1000 m and T = 0.1 N m−2 in (6.42). The numerical solution of (6.45) and (6.46) was
calculated on a grid with (Nx = 100) × (Ny = 20) using the method of successive overrelaxation
(5.22).

coefficients of the interpolation parabola we obtain

a = P2 − 2P1 + P0

2 ∆x2 , (6.51a)

b = −P2 + 4P1 − 3P0

2 ∆x . (6.51b)

With this, the first derivative at the boundary can be computed using (6.49):

dy
dx

∣∣∣∣∣
x=0

= b . (6.52)

Hence, for the derivative to be given as a boundary condition at the boundaries, we
can apply (6.51) and (6.52) in order to calculate the value of the function at the
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boundary. We find

P0 = 4P1 − P2

3 − 2
3 ∆x dy

dx

∣∣∣∣∣
x=0

(6.53a)

PN = 4PN−1 − PN−2

3 + 2
3 ∆x dy

dx

∣∣∣∣∣
x=L

. (6.53b)

The numerical solution of (6.45), shown for different parameter values in Fig. 6.12,
was computed inside the domain using the method of successive overrelaxation ac-
cording to (5.22). Therefore, Ψ(x, y) needs to be determined first by solving the
Dirichlet boundary value problem given by (6.40) and (6.41). The boundary con-
ditions (6.46) are accounted for by computing the boundary values according to
(6.53).
The current is clock-wise (Fig. 6.10). Inside the western boundary current, pres-
sure gradient, Coriolis and inertial forces are in equilibrium with the wind stress
(Fig. 6.12, a). On an f -plane (β = 0, Fig. 6.12, b), the current is approximately
in a geostrophic equilibrium (Coriolis forces are balanced mainly by the pressure
gradients, friction compensates for the wind stress). It must be noted, that due to
the friction, currents do not exactly follow the lines of constant pressure, although
∇2P = f ~∇2Ψ is valid inside the domain. This follows from the equation of motion
(6.36). In case the reference system is not rotating (f = 0, Fig. 6.12, c), the meridi-
onal flow is directed parallel to the negative pressure gradients, i.e. “downhill”, and
the zonal flow is forced to flow “uphill”, i.e. against the pressure gradient, owing to
the zonal wind stress.

6.8 Potential vorticity: An important conserved quantity

Conservation theorems are fundamental statements in physics and enable a more
profound understanding of various processes responsible for the dynamics. Hence,
conservation theorems and related quantities are also very useful in geophysical fluid
dynamics and climate modelling. A conservation equation for large-scale ocean flow
is derived from the equations of motion (6.13) in this section.
The following explanations of this section are based on a simple model of a large-scale
ocean flow in hydrostatic equlibrium (Sect. 6.4). It approximates the continuous
stratification of the real ocean water by a discontinuous stratification formed by
superimposed thin layers, shallow water layers indeed, as illustrated in Fig. 6.13.
Any of these layers has a constant density ρ and a variable thickness h(x, y) and slides
between the underlying denser layer and the overlying lighter layer, thereby moving
along surfaces of constant density (isopycnals). The function ρ h(x, y) represents the
mass per unit area in this layer and obeys the relation

∂ (ρ h)
∂t

+ ∂

∂x
(u ρ h) + ∂

∂y
(v ρ h) = Q . (6.54)

This is a generalized version of the continuity equation (6.19) of the shallow water
model taking into account a cross-isopycnal mass flux Q (in kg/(m2 s)) as well,
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Figure 6.13: Vertical cross section showing a part of a discontinuously stratified ocean. Providing
that the stratification is stable, the water of the lower layers are denser than the water of the upper
layers (∆ρ > 0). Eddy fluctuations w′ of the vertical velocity w occur and yield mean eddy mass
fluxes ±w′ ρ′ = ±w′∆ρ between the layers.

which could arise for example from eddy mass fluxes ±w′ ρ′ (covariance between
vertical velocity w and density ρ) going through the upper and the lower boundaries
of the layer. Using definition (6.3) for horizontal motions and neglecting density
changes (but not volume changes) within the layer, (6.54) can be written as

Dh
Dt + h

(
∂u

∂x
+ ∂v

∂y

)
= Q

ρ
. (6.55)

We now define the vorticity measured relatively to the Earth’s surface, namely the
relative vorticity ζ, as the vertical component of the curl of the velocity field ~u,
which is measured relatively to the Earth’s surface, according to

ζ =
(
~∇× ~u

)
· ẑ = ∂v

∂x
− ∂u

∂y
. (6.56)

ẑ is the unit vector normal to the Earth’s surface. It can be shown that the relative
vorticity ζ equals twice the angular velocity of an infinitesimal vortex on Earth as
illustrated in Fig. 6.14.

Figure 6.14: Vortex in the form of a solid
disk rotating with angular velocity ω about
an Earth-fixed z-axis. The velocity of the
points of the vortex at a distance r from the
center is ω r and always tangential. Hence,
the relative vorticity is 2ω.
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To examine the time evolution of relative vorticity inside the layer, we consider the
equations of motion (6.13) — namely a generalized version of the equations of motion
of the shallow water model (6.20) — and calculate ∂/∂y(6.13a) and ∂/∂x(6.13b)
assuming w = 0. Observing (6.11) we obtain

∂

∂y
(6.13a) :

∂

∂t

∂u

∂y
+ ∂u

∂y

∂u

∂x
+ u

∂2u

∂x ∂y
+ ∂v

∂y

∂u

∂y
+ v

∂2u

∂y2 = ∂ax
∂y

+ ∂f

∂y
v + f

∂v

∂y
,

∂

∂x
(6.13b) :

∂

∂t

∂v

∂x
+ ∂u

∂x

∂v

∂x
+ u

∂2v

∂x2 + ∂v

∂x

∂v

∂y
+ v

∂2v

∂y ∂x
= ∂ay

∂x
− ∂f

∂x
u− f ∂u

∂x
,

so that ∂/∂x(6.13b)− ∂/∂y(6.13a) reads

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ u

∂

∂x

(
∂v

∂x
− ∂u

∂y

)
+ v

∂

∂y

(
∂v

∂x
− ∂u

∂y

)

+ ∂u

∂x

(
∂v

∂x
− ∂u

∂y

)
+ ∂v

∂y

(
∂v

∂x
− ∂u

∂y

)

= ∂ay
∂x
− ∂ax

∂y
− ∂f

∂x
u− f ∂u

∂x
− ∂f

∂y
v − f ∂v

∂y

and with (6.56) and ∂f/∂t = 0

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+
(
∂u

∂x
+ ∂v

∂y

)
ζ

= ∂ay
∂x
− ∂ax

∂y
− ∂f

∂t
− u ∂f

∂x
− v ∂f

∂y
− f

(
∂u

∂x
+ ∂v

∂y

)
,

i.e.
D
Dt (ζ + f) = − (ζ + f)

(
∂u

∂x
+ ∂v

∂y

)
︸ ︷︷ ︸

CON

+ ∂ay
∂x
− ∂ax

∂y︸ ︷︷ ︸
PRO

. (6.57)

ζ + f is the absolute vorticity, i.e. the vorticity taken relative to an unaccelerated
reference system (f = 2 Ω sinϕ is the vorticity of the rotating surface of the Earth
at latitude ϕ).
We consider the terms on the right-hand side of (6.57). They signify two distinct
sources of absolute vorticity: (i) convergence of the flow (CON), and (ii), production
by real forces (PRO). From (6.11) it follows for ocean water with constant density
ρ:

∂ay
∂x
− ∂ax

∂y
= 1
ρ

∂2τyz
∂x ∂z

− 1
ρ

∂2τxz
∂y ∂z

.

In such a fluid the production by real forces (PRO) is independent of the pressure
gradient forces. Such a fluid is called barotropic, all the others are baroclinic (Sect.
4.4). In a barotropic fluid the change of the absolute vorticity results solely from
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1 2 3 4 5

Direction of flow ρ h
Dζ
Dt

+ρ h Df
Dt ≈ −

∂τxz
∂y

−R ∂My

∂x
+R ∂Mx

∂y

N → S ≈ 0 < 0 < 0 ≈ 0 ≈ 0

S → N ≈ 0 > 0 < 0 � 0 ≈ 0

Table 6.1: Signs of the individual terms in (6.59) for the Stommel model in the northern hemi-
sphere. The relation shaded in grey is required in order to close the balance of terms. The large
gradients imply a strong, confined flow, i.e., a boundary current.

circulation convergence and vorticity production due to friction.
Equation (6.55) allows us to simplify the term CON in (6.57) applied to the shallow
water layer emphasized in Fig. 6.13:

D
Dt (ζ + f) = −ζ + f

h

(
Q

ρ
− Dh

Dt

)
+ ∂ay
∂x
− ∂ax

∂y
,

i.e.
1
h

D
Dt (ζ + f)− ζ + f

h2
Dh
Dt = −ζ + f

h

Q

ρh
+ 1
h

(
∂ay
∂x
− ∂ax

∂y

)
and consequently

D
Dt

(
ζ + f

h

)
= −

(
ζ + f

h

)
Q

ρh
+ 1
h

(
∂ay
∂x
− ∂ax

∂y

)
. (6.58)

The quantity (ζ + f) /h is the potential vorticity in the shallow water layer. Potential
vorticity is a conservative quantity in a barotropic and frictionless ocean circulation,
if no mass is supplied or removed.
Regarding (6.58), wind-driven flow described in Sect. 6.7 can now be understood in
a coherent framework. In the Stommel model, a closed flat basin (Q = 0 and ηb = 0,
Fig. 6.3) with only one shallow water layer was considered. We integrate (6.58) over
the layer thickness h, assuming η � H (so that h = H + η ≈ H = constant), and
substitute ax and ay for the right-hand side of (6.36). We assume τyz = 0 according
to the Stommel model. This results in the approximation

ρ h
Dζ
Dt + ρ h

Df
Dt ≈ −

∂τxz
∂y
−R ∂My

∂x
+R

∂Mx

∂y
. (6.59)

An estimate for the individual terms in (6.59) for large-scale circulation of typical
spatial scales of 106 m reveals the individual contributions given in Table 6.1 and
provides substantial insight into the dynamics of large-scale geophysical flow.
We now consider the signs and magnitudes of the five terms in (6.59) for northward
and southward flow. The dominant term on the left-hand side is Df/Dt (term 2
in Table 6.1), and the material derivative of the relative vorticity (term 1) can be
neglected in comparison. Southward flow implies decreasing f , and for northward
flow f increases. The sign of term 3 is always negative, and the west-east mass
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1 2 3 4 5

Direction of flow ρ h
Dζ
Dt

+ρ h Df
Dt ≈ − (ζ + f)Q −R ∂My

∂x
+R ∂Mx

∂y

N → S ≈ 0 < 0 > 0 � 0 ≈ 0

S → N ≈ 0 > 0 > 0 ≈ 0 ≈ 0

Table 6.2: Signs of the terms in (6.59) for the Stommel-Arons model on the northern hemisphere.
The relation shaded in grey is required in order to close the balance of terms. The large gradients
imply a strong, confined flow, i.e., a boundary current.

transport Mx (term 5) vanishes towards the eastern and western boundary. We
therefore are left with term 4 to close the vorticity balance. For southward flow
both left-hand side and right-hand side of (6.59) are negative, so term 4 is not
required to achieve vorticity balance. In contrast, for northward flow, term 2 and 3
have opposite sign and only a strongly positive term 4 can achieve vorticity balance.
−R∂My/∂x � 0 is, however, only possible at the western boundary. Therefore,
friction in the boundary current produces enough positive vorticity that the negative
vorticity input by the wind is overcompensated. This enables the movement of the
water parcel from south to north.
Henry Stommel examined the deep circulation, as well. He used a similar model
which is generally referred to as the Stommel-Arons model presented in two land-
mark papers (Stommel, 1958; Stommel and Arons, 1960). These articles led to the
remarkable prediction of a western boundary current that is supposed to be located
in the Atlantic at a depth of 2–3 km, flowing from north to south! Consequently,
physical oceanographers set up an intensive search for this current in order to verify
the theoretical prediction. It was finally identified off Cape Hatteras using current
meters. Maximum velocities in the core at a depth of 2500 m are around 20 cm/s.
At this depth, the effect of the wind can be neglected, however, the mass flux, also
a source term in (6.58), must be accounted for. Stommel postulated a large-scale,
extremely slow upwelling in the deep ocean in order to compensate for the deep
water formation occurring in polar regions. This signifies that water leaves the layer
h and hence Q < 0 in (6.58). Analogously, Table 6.2 can be compiled.
The vorticity balance requires a deep western boundary current flowing southward.
It supplies the inner geostrophic flow with water and therefore continuously loses
strength. Just this prediction could not be confirmed by observations, which points
to a much more complicated picture of deep currents, in particular, the assumption
of large-scale uniform upwelling seems inconsistent with recent measurements. A
recent critical overview is given in Lozier (2010).
In a highly simplified view, Fig. 6.15 displays the structure of the current systems
in the northern hemisphere Atlantic schematically.
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7 Large-scale circulation in the atmosphere

7.1 Zonal and meridional circulation

In this chapter the general circulation in the atmosphere is presented in a simplified
form. A comprehensive description of the dynamics of the atmosphere can be found
in Holton (2004).
The consideration in Chap. 4 of zonally and temporally averaged quantities and
their deviations was useful for the analysis of the meridional heat fluxes. Here, we
follow the same approach. Applying suitable time averages the short-term weather
events are filtered out and the general circulation can be separated into a quasi-
stationary component, a monsoon component that changes its direction during the
seasonal cycle, and a component describing low-frequency variations.
The mean flow in the atmosphere is mainly directed from west to east, and so are
the highest wind velocities (Figs. 7.1 and 7.2). This is a result of the conservation
of the air masses’ angular momentum on the rotating Earth. Their movement is
driven by the meridional temperature distribution.
The specific angular momentum (angular momentum per mass) of an air parcel that
moves along the latitude ϕ at velocity u relative to the Earth’s surface is given by

L = (ΩR cosϕ+ u)R cosϕ , (7.1)

20 m/sStreamflow [m/s] and geopotential height [m] at 200 mb

90 N

L
at

it
u
d
e

Longitude

60 N

30 N

0

30 S

60 S

90 S

180 120 W 60 W 0 60 E 120 E 180

Figure 7.1: Mean wind field at an altitude of around 12 km. Data from ERA-40 (Uppala et al.,
2005). Figure constructed by F. Lehner.
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Figure 7.2: Mean wind in m s−1 in a meridional transect of the atmosphere. The strong west-east
jets in the northern- and southern hemisphere at an altitude of around 12 km are clearly visible.
Data from ERA-40 (Uppala et al., 2005). Figure constructed by F. Lehner.

where Ω and R are the angular velocity and the Earth radius, respectively. If no
forces act on the air parcel, the angular momentum L is conserved. Consider an air
parcel which starts from rest at the equator and reaches latitude ϕ. Accounting for
the conservation of its angular momentum, its zonal velocity reaches

u(ϕ) = ΩR sin2 ϕ

cosϕ . (7.2)

This means, that at 30◦N a westerly wind with a velocity of u = 134 m s−1 would
result. This calculation, however, overestimates the speed of the zonal jet stream
by about a factor of 3. The observed jet stream maximum is located at 35◦N and at
an altitude of about 12 km (Fig. 7.2). But this simple computation shows that the
transport of angular momentum is by far sufficient for an explanation of the high
zonal wind velocities at mid-latitudes. However, it also leads to the conclusion that
angular momentum must be constantly removed from the flow. This is caused by
eddies and the associated transport of angular momentum. The mean meridional
advective transport of angular momentum is given by[

v L
]

= [ v ] (ΩR cosϕ+ [ u ])R cosϕ︸ ︷︷ ︸
M

+
(

[ u∗ v∗ ]︸ ︷︷ ︸
SE

+
[
u′ v′

]
︸ ︷︷ ︸
TE

)
R cosϕ , (7.3)
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Figure 7.3: A simple depiction of the Hadley circulation in the northern hemisphere. Heated air
at the equator rises first, then moves polewards, descends at higher latitudes and finally returns
to the equator as a near-surface flow.

in analogy to (4.7). The meridional transport of angular momentum is achieved by
the combination of the mean flow (M), stationary eddies (SE) and transient eddies
(TE). Observations show that at latitudes between 20◦ and 50◦ TE is the largest
contribution to angular momentum transport.
In the 18th century, George Hadley proposed that the strong solar radiation in the
tropics heats up the air and causes it to rise. On the northern hemisphere the
resulting near-surface flow is directed towards the equator and converges finally at
the so-called intertropical convergence zone (ITCZ). Its deviation towards the west
(so that the zonal velocity is westward, u < 0) is a result of angular momentum
conservation. This causes the well-known trade winds. The return flow at higher
levels is analogously deviated towards the east (u > 0) inducing a zonal jet stream
at higher latitudes where it passes over to descending air motions. The resulting
meridionally closed circulation is referred to as Hadley circulation or Hadley cell,
schematically depicted in Fig. 7.3.
The effect of the Coriolis force, or of the conservation of angular momentum respec-
tively, is hence a south-west-directed flow at the surface and a north-east-directed
flow at high altitudes. Hadley expected the circulation cell to extend all the way
to the pole. However, observations indicated that the Hadley cell does not even
reach the mid-latitudes, because there, the mean winds are directed to the east at
the surface, as well as at high altitudes (westerlies). The simple picture of a merely
thermally-driven flow is therefore not sufficient to explain observations outside the
tropics.
For a deeper understanding the balance equations for momentum, mass and energy
in the atmosphere need to be solved. The equation of motion is basically analogous
to Eq. (6.13) and the continuity equation is given with (3.7); in addition, the ther-
modynamic energy equation must be taken into account. For a complete derivation
of the equations, the reader is referred to Holton (2004).
We consider the zonally and temporally averaged equations, where terms of the form
(4.6) will occur. The flow in a meridional plane can be described by a meridional
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stream function χ(y, z), defined as follows:

ρ0 v = −∂χ
∂z

(7.4a)

ρ0w = ∂χ

∂y
, (7.4b)

where v and w are meridional and vertical velocities and ρ0 = ρ0(z) is the density of
air. The overbars denote appropriate time averaging. As derived in Holton (2004),
the stream function satisfies the following partial differential equation:

N2

ρ0

∂2χ

∂y2 + f 2
0
∂

∂z

(
1
ρ0

∂χ

∂z

)

= κ

H

∂J

∂y︸ ︷︷ ︸
D

− R
∗

H

∂2v′ T ′

∂y2︸ ︷︷ ︸
TEH

− f0
∂2v′ u′

∂z ∂y︸ ︷︷ ︸
TEM

+ f0
∂X

∂z︸ ︷︷ ︸
R

. (7.5)

Here, N is the Brunt-Väisälä frequency, the angular frequency of free vertical oscil-
lations in a stable atmosphere given by

N2 = R∗

H

(
κT0

H
+ dT0

dz

)
(7.6)

(which is approximately constant in the troposphere), where R∗ is the specific gas
constant of the air and κ = R∗/cp; furthermore, H = R∗ T̂0/g is the isothermal
scale-height of the atmospheric layer considered here with temperature T0 = T0(z)
and a layer mean temperature T̂0. The physical quantity J(y, z) in (7.5) is a mean
diabatic heating rate (induced by heat fluxes at the ground or latent heat from
condensation processes) and X is a mean drag in a zonal direction by friction at
the ground. Finally, the coordinate z in (7.5) signifies the so-called log-pressure
coordinate z = −H ln(p/ps) with ps the air pressure on the underside of the layer. In
the troposphere, the log-pressure coordinate is nearly equal to the usual z-coordinate
which represents a geometric height coordinate. According to (7.5), the stream
function is driven by four processes: (i), diabatic heat sources (D), (ii), heat fluxes
associated with transient eddies (TEH), (iii), fluxes of momentum associated with
transient eddies (TEM) and, (iv), friction (R).
Equation (7.5) is a generalized form of the Poisson equation and needs to be com-
plemented by boundary conditions. Therefore, we consider a domain, reaching from
the equator nearly to the pole and in the vertical dimension from the Earth surface
up to the tropopause. Transport is assumed to be confined within these boundaries
and hence χ = 0 on the boundary. The domain is illustrated in Fig. 7.4.
For the qualitative discussion of (7.5), we assume that χ can be represented by
appropriate sin-functions in y and z which satisfy the boundary conditions. Hence,
the left-hand side of (7.5) is proportional to −χ and we can derive the following
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Figure 7.4: Schematic illustration of the stream function χ in the northern hemisphere. χ > 0
is the thermally direct Hadley cell, χ < 0 describes the thermally indirect Ferrel cell. Angular
momentum is supplied to the atmosphere south of about 30◦N and removed from the atmosphere
north of it.

relations:

χ ∝− ∂

∂y
(diabatic heat sources) + ∂2

∂y2 (meridional eddy heat flux)

+ ∂2

∂z ∂y
(meridional eddy momentum flux)− ∂

∂z
(zonal shear) . (7.7)

Close to the equator, a large amount of latent heat is released and hence, J > 0,
while at around 30◦N and further to the north cooling caused by radiative losses
dominates, hence J < 0. Between the equator and 30◦N J decreases and hence
∂J/∂y < 0. In these latitudes the eddy fluxes TEH and TEM are small; their
contribution to the zonal wind stress, that is directed towards the east due to the
trade winds, is only to be considered at its lower boundary. Term D prevails in (7.5)
and contributes, together with the smaller term R, to the observed Hadley cell, a
meridional cell with χ > 0. This is denoted as a thermally direct cell, i.e., warm air
rises, while colder air sinks (Fig. 7.4).
The eddy activity has a maximum at around 30◦ to 60◦N where the storm tracks are
located. The latitudinal and altitudinal dependence of the meridional eddy fluxes
are illustrated in Fig. 7.5. It can be shown that at these latitudes the two respective
terms are negative in (7.7). Due to the westerlies, the drag is directed towards the
west and decreases in magnitude with increasing altitude, hence −f0 ∂X/∂z < 0.
Therefore, according to (7.7), χ < 0 and an indirect cell is formed. This indirect
cell in the region of 40◦ to 60◦N is called Ferrel cell (Fig. 7.4). The Ferrel cell is
thermally indirect, i.e., cold air rises and warm air sinks.
A part of the specific angular momentum (7.1) of the northern hemisphere is pro-
duced in the Hadley cell in the region of the trade winds, where u < 0. Here, the air
is accelerated by friction at the Earth surface so that a flux of angular momentum
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Figure 7.5: Observed distribution of eddy fluxes of heat (left, in ◦C m s−1) and momentum
(right, in m2 s−2) for northern winter. Positive fluxes are directed northward. Data from ERA-40
(Uppala et al., 2005). Figure constructed by F. Lehner.

from the Earth to the atmosphere is induced (Fig. 7.4). This angular momentum
is transported polewards to the Ferrel cell and subsequently again lost to the Earth
surface in mid-latitudes, where u > 0.
The observed meridional circulation (Fig. 7.6) shows strong Hadley cells in the
respective winter hemisphere. The Ferrel cells in the southern and northern hemi-
spheres can also be identified. The simplified theoretical model in (7.5) captures
this structure quite well.
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7.2 The Lorenz-Saltzman model

In order to examine the thermally-driven flow, Barry Saltzman (1931–2001) derived
an approximation consisting of a non-linear system of ordinary differential equations
from the governing equations of a viscous, stably stratified flow (Saltzman, 1962).
The fundamental significance of this equation system was recognized by Edward
Lorenz who numerically solved this system and interpreted it (Lorenz, 1963). Be-
yond the particular application for viscous incompressible fluids, the system may be
interpreted as the simplest form of a description of non-linear processes in relation
with the general circulation in the atmosphere. The model is of particular signifi-
cance because it was the first system to describe deterministic chaos and, based on
it, Chaos theory was developed.
Deterministic chaos can occur in a non-linear system (non-linearity is a necessary
but not satisfactory condition) and is based on the fact that the instantaneous time
derivative is given functionally, however, the temporal evolution of the system cannot
be predicted over long periods. Mathematically speaking, the system is determined
by several coupled ordinary differential equations of first order in time. Its changes
can be calculated exactly at all times: the system is therefore deterministic. This
system is generally referred to as the Lorenz model. But since the original equations
were derived by B. Saltzman, we shall call it Lorenz-Saltzman model.
The following derivation of the Lorenz-Saltzman model is somewhat technical. Nev-
ertheless, it will be described here, since in the literature only the dimensionless
system is usually given. The Lorenz-Saltzman model is formulated on a meridi-
onal plane in the non-rotating reference system (y, z). A generalization for the
f -plane was realized later (Lorenz, 1984). Solutions are assumed uniform in the
x-direction. We further assume, that diabatic effects, e.g., heat sources, drive the
flow clock-wise. Additionally, a constant vertical temperature gradient is chosen as
a background state. The solution domain is shown schematically in Fig. 7.7.

z=H

y

z

z=0
y=0 θ0y=H/a

∆T

ψ>0

ψ=0

θ1

Figure 7.7: Coordinates and
solution domain for the Lorenz-
Saltzman model. A constant
vertical temperature gradient is
chosen.

The fluid is considered incompressible (in fact, not a valid approximation for the
atmosphere, but applicable to a water body), therefore, mass conservation is given
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by the continuity equation (6.14),

∂v

∂y
+ ∂w

∂z
= 0 . (7.8)

With this, a stream function can be defined as follows:

v = −∂Ψ
∂z

, w = ∂Ψ
∂y

. (7.9)

Thus, the relative vorticity in the meridional y-z-plane, i.e. ζ = ∂w/∂y − ∂v/∂z, is
given by

ζ = ~∇2Ψ . (7.10)

The formulation of the conservation equation of vorticity reveals that vorticity is
dissipated by molecular diffusion and produced by meridional temperature gradients
∂θ/∂y (buoyancy). In order to derive the vorticity equation, we start from the
momentum equations

Dv
Dt = − 1

ρ0

∂p

∂y
+ ν ~∇2v (7.11a)

Dw
Dt = − 1

ρ0

∂p

∂z
+ ν ~∇2w − g

ρ0
ρ̃ , (7.11b)

where ν is the kinematic viscosity and the last term in (7.11b) describes the accel-
eration due to buoyancy, caused by a small deviation ρ̃ from the constant density
ρ0 (Archimedes’ principle). Cross-differentiating ∂(7.11b)/∂y − ∂(7.11a)/∂z and
considering (7.8) yields

Dζ
Dt = ν ~∇2ζ − g

ρ0

∂ρ̃

∂y
. (7.12)

Using the volume coefficient of expansion

α = − 1
ρ0

∂ρ̃

∂θ
, (7.13)

(7.12) can be rewritten as

Dζ
Dt = ν ~∇2ζ + g α

∂θ

∂y
,

i.e.,
∂ζ

∂t
+ v

∂ζ

∂y
+ w

∂ζ

∂z
= ν ~∇2ζ + g α

∂θ

∂y
. (7.14)

We now assume the following temperature distribution

θ(y, z, t) = θ0 −
∆T
H

z + θ̃(y, z, t) , (7.15)

where θ̃ is the deviation from a stable linear temperature profile θ0 −∆T/H z with
∆T = θ0 − θ1 (Fig. 7.7). The conservation of thermal energy can be captured by
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the heat equation
Dθ
Dt = κ ~∇2θ ; (7.16)

considering (7.15), we obtain

∂θ̃

∂t
+ v

∂θ̃

∂y
− w ∆T

H
+ w

∂θ̃

∂z
= κ

∂2θ̃

∂y2 + κ
∂2θ̃

∂z2 . (7.17)

Here, κ is the thermal diffusivity. Inserting (7.9) and (7.10) into (7.14) and (7.17)
results with (7.15) in the following system:

∂

∂t
~∇2Ψ− ∂Ψ

∂z

∂

∂y
~∇2Ψ + ∂Ψ

∂y

∂

∂z
~∇2Ψ = ν ~∇4Ψ + g α

∂θ̃

∂y
(7.18)

∂θ̃

∂t
− ∂Ψ
∂z

∂θ̃

∂y
+ ∂Ψ
∂y

∂θ̃

∂z
= κ ~∇2θ̃ + ∆T

H

∂Ψ
∂y

. (7.19)

Equations (7.18) and (7.19) represent a coupled, non-linear system of partial differ-
ential equations which has to be completed by boundary conditions. We postulate
no transport across the boundaries and no heat flux across the meridional bound-
aries. Furthermore, fixed temperatures at the ground and at the upper boundary
shall be given, hence

Ψ = 0 at the boundary , (7.20a)

∂θ̃

∂y
= 0 for y = 0 and y = H/a , (7.20b)

θ̃ = 0 for z = 0 and z = H . (7.20c)

The solution of this system is supposed to be found approximately by only consid-
ering the rough spatial structure inside the solution domain. To do so, we assume a
truncated Fourier expansion satisfying the boundary conditions:

Ψ(y, z, t) = X(t) sin
(
π a y

H

)
sin

(
π z

H

)
(7.21a)

θ̃(y, z, t) = Y (t) cos
(
π a y

H

)
sin

(
π z

H

)
− Z(t) sin

(2 π z
H

)
. (7.21b)

The space dependence is prescribed, the time dependence is given by the coefficient
functions X(t), Y (t) and Z(t). This a priori choice allows solutions with the sim-
plest possible structure and, due to the truncation of the expansion only represents
approximate solutions. Inserting (7.21) into (7.18), and eliminating the common
factor sin (π a y/H) sin (π z/H) we find(

π

H

)2 (
1 + a2

) dX
dt = −ν

(
π

H

)4 (
1 + a2

)2
X + g α

π a

H
Y . (7.22)
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Similarly, inserting (7.21) into (7.19) yields

cos
(
π a y

H

)
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π z

H

){dY
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π a

H

2π
H

X Z cos
(2π z
H

)

+ κ
(
π
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)2 (
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)
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}

= sin
(2 π z
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){dZ
dt −

1
2
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π
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(2 π
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}
,

i.e., with sin
(

2π z
H

)
= 2 sin

(
π z
H

)
cos

(
π z
H

)
,

cos
(
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H

){dY
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H

2 π
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)2 (
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Y − ∆T

H
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H
X
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(
π z
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){dZ
dt −

1
2
π a

H

π

H
X Y + κ

(2 π
H

)2
Z

}
. (7.23)

Since this equation has to be valid for all values 0 ≤ y ≤ H/a and 0 ≤ z ≤ H, the
sums in the two {}-brackets have to vanish. Finally, we assume that the dynamics
are determined by processes inside the vertical range 1/4H < z < 3/4H and hence,
the rough approximation cos (2π z/H) ≈ −1 is applicable.
The system of ordinary differential equations for the coefficient functions X(t), Y (t)
and Z(t) reads:

dX
dt = −cX + d Y , (7.24a)

dY
dt = −eX Z + f X − g Y , (7.24b)

dZ
dt = hX Y − k Z , (7.24c)

with the seven constants

c = ν
(
π

H

)2 (
1 + a2

)
, d = g α aH

π (1 + a2) ,

e = 2 π2 a

H2 , f = ∆T π a
H2 , g = κ

(
π

H

)2 (
1 + a2

)
,

h = π2 a

2H2 , k = 4κ
(
π

H

)2
.

(7.25)

By introducing new dimensionless physical quantities t, X, Y and Z in the following
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way,

( π
H

)2
(
1 + a2

)
κ t → t

a

κ (1 + a2) X → X

a

κ (1 + a2)
g α aH3

π3 (1 + a2)2 ν
Y → Y

2 a

κ (1 + a2)
g α aH3

π3 (1 + a2)2 ν
Z → Z ,

the classical Lorenz-Saltzman model can be derived:

dX
dt = −σX + σ Y (7.26a)

dY
dt = −X Z + r X − Y (7.26b)

dZ
dt = X Y − b Z (7.26c)

with
σ = ν

κ
, r = g αH3 ∆T

ν κ

a2

π4 (1 + a2)3 , b = 4
1 + a2 . (7.27)

Note, the quantities t, X, Y and Z in (7.26) are the scaled forms of the quantities
t, X, Y and Z in (7.24); for simplicity we do not introduce a new notation.
Figs. 7.8 and 7.9 illustrate the solution of (7.26) for a given set of parameters.
The time series exhibit a chaotic behaviour, where the variables, here Y (t), change
from one regime (Y > 0) to the other (Y < 0) in an irregular way (Fig. 7.8).
The residence time in a certain regime is erratic and considerably longer than the
transition between the regimes itself. The system obviously evolves on two different
time scales: one for the transition and one for the residence time in one regime.
The Lorenz-Saltzman model is a prime example for abrupt changes in a dynamical
system. These transitions are not a response to external disturbances, but are
spontaneously triggered by the dynamics of the system itself.
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Figure 7.8: First 3000 time steps of the time series Y (t) of the Lorenz-Saltzman model with
the classical parameter values r = 28, σ = 10, b = 8/3 and ∆t = 0.012, integrated using the
Runge-Kutta scheme.
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Figure 7.9: Cross-sections through the different planes in the (X,Y, Z)-space of the Lorenz-
Saltzman model with the classical parameter values (see Fig. 7.8). a) (X,Z)-plane. b) (Y,Z)-
plane. c) (X,Y )-plane.

Figure 7.9 shows the trajectories of the Lorenz model at subsequent time steps
in the three-dimensional variable space (X, Y, Z). The points (X = ±8.49, Y =
±8.49, Z = 27) represent unstable equilibria. Trajectories originating in their sur-
roundings move away from these points in spirals. For chaotic behaviour, as is the
case in Figs. 7.8 and 7.9, the trajectories will never cross in the (X, Y, Z)-space. An-
other particular point is the origin (0, 0, 0), representing another stationary solution
of the equations (7.26). It is located in the center of the “transition point” from one
regime to the other and hence, is the location of highest “non-predictability” in the
Lorenz-Saltzman system.
It is remarkable that this system can exhibit chaotic, periodic or stationary be-
haviour depending on the choice of parameters (7.27). The chaotic behaviour of
the Lorenz-Saltzman model only occurs in certain “windows” of parameter values.
Outside these windows, either a stable equilibrium is reached after a relatively long
transient phase (Fig. 7.10) or a periodic behaviour can be observed. These are
self-sustained oscillations, as shown in Fig. 7.11. They develop after a transient
phase.
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Figure 7.10: As Fig. 7.8 but with r = 20, σ = 10, b = 8/3.
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Figure 7.11: As Fig. 7.8 but with r = 100, σ = 10, b = 8/3.



8 Atmosphere-Ocean interactions

8.1 Coupling of physical model components

Energy, momentum and matter (water, carbon, nitrogen, ...) are exchanged between
the ocean and the atmosphere. Most of the movements in the ocean, particularly
the large-scale flow, are caused by these exchange fluxes. Consequently, they need
to be reproduced in a climate model as realistically as possible. In the context of
these lecture notes we will not treat micro-scale fluxes, occurring on a cm- or smaller
scale. An in-depth description is provided by Kraus and Businger (1994). We will
only present the parameterisations that are implemented mainly in climate models
of coarse resolution. Formulations of so-called boundary layers in the atmosphere
and ocean are also not discussed.
In the present chapter, we consider primarily heat fluxes (fluxes of thermal or latent
energy), water fluxes and momentum fluxes (Fig. 8.1). They are influenced by the
dynamics of the atmosphere and the ocean whilst they influence these dynamics.
For the individual model components, the fluxes can be considered and formulated
as boundary conditions.
Similar considerations have to be made for the coupling of sea ice, ice sheets, and
land surface modules.

Motion

Equation of

Motion

Equation ofEquation of

Water Vapor Radiation

Thermodynamic Eqn.

Thermodynamic Eqn.
Salt Equation

Sea Ice Equation

Atmosphere

Ocean

Surface StressEvaporation

Precipitation

Sensible Heat

Radiative Transfer

Figure 8.1: Diagram of the different model parts and fluxes of water, heat and momentum. Re-
drawn from Fig. 1 in Manabe and Stouffer (1988).
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8.2 Thermal boundary conditions

The complete thermal boundary condition for the heat flux from the ocean to the
atmosphere FO→A is given by

FO→A = − (1− αO)Qshort︸ ︷︷ ︸
SW

+ εO σ T
4
O︸ ︷︷ ︸

LW
− εA σ T

4
A︸ ︷︷ ︸

LB
+D (TO − TA)︸ ︷︷ ︸

S
+E(TO, TA)︸ ︷︷ ︸

E
, (8.1)

where TO and TA are the surface temperatures of the ocean and the atmosphere,
respectively, Qshort denotes the (mainly short-wave) solar radiation impinging on
the ocean surface, αO the albedo of the ocean surface, εO and εA the emissivities
of the ocean surface and the atmosphere, respectively, D a transfer coefficient for
the sensible heat flux and finally E(TO, TA) a relation describing the evaporation
on the ocean surface. The heat flux consists of five components: short-wave solar
radiation (SW), long-wave radiation of the ocean (LW), long-wave back radiation
of the atmosphere (LB), sensible heat flux (S) and evaporation (E). A positive sign
denotes a flux from the ocean to the atmosphere. The global distribution of ocean-
atmosphere fluxes is given in Fig. 8.2 and for the Atlantic in Fig. 8.3.
Typical values for the parameters in (8.1) are

αO = 0.2 , εO = 0.96 , εA = 0.7 . . . 0.9 , D = 10 W K−1 m−2 . (8.2)

For certain parameterisations, the transfer coefficient D for the sensible heat flux
may depend on wind speed.
The temperature dependence of the evaporation E can be expressed as a Taylor
series expanded about the temperature of the atmosphere TA (Haney, 1971),

E(TO, TA) = E(TO = TA, TA) + dE(TO, TA)
dTO

∣∣∣∣∣
TO=TA

(TO − TA) + . . . .

An appropriate linear truncated Taylor series, which is in accordance with the
Clausius-Clapeyron equation, reads (Gill, 1982; Stocker et al., 1992)

E(TO, TA) = cE e14.7− 5418 K
TA

(
0.2 + 5418 K TO − TA

T 2
A

)
, (8.3)

where cE is a transfer coefficient depending on the wind speed.
For simplicity, in (8.1), the long-wave heat fluxes are given as grey body radiation
with their associated emissivities. However, particularly LB may originate from the
individual contributions of the free atmosphere and the reflection of clouds (high, as
well as low clouds) and hence, may depend on modeled variables of the atmosphere
component in a complex way. They also affect the solar radiation Qshort which is
prescribed in (8.1) but in reality this also depends on the state of the atmosphere. In
principle, the heat flux between ocean and atmosphere depends on the temperatures
in both components as well as on the wind speeds. These are all quantities that are
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Figure 8.2: Left: Annually averaged heat fluxes in W m−2 based on the Comprehensive Ocean
Atmosphere Data Set (COADS), Woodruff et al. (1987). Areas with heat fluxes exceeding
60 W m−2 are hatched. Right: Zonal average. Figure from Trenberth et al. (2001).

 

Figure 8.3: Heat flux −FO→A in the Atlantic in W m−2. The map was compiled on the internet
(http://ingrid.ldeo.columbia.edu), where many data sets are available. Here we have used the
Cayan data set, Cayan (1992).

simulated in a coupled climate model.
In climate modelling, simplified forms of (8.1) are often applied, especially when a
single model component (e.g., the ocean) is integrated individually or in models of
reduced complexity. This is often the case at the beginning of a simulation, when
a stable equilibrium climate has to be reached. An adequately simplified form of
(8.1) for an ocean model is found by linearizing this relation using a truncated Taylor
series about the temperature of the atmosphere TA, which is assumed to be constant
(for an atmospheric model analogously):

FO→A(TO) = FO→A(TA) + dFO→A

dTO

∣∣∣∣∣
TO=TA

(TO − TA)

= F0 +D∗ (TO − TA) , (8.4)



8.2 Thermal boundary conditions 131

where

F0 = FO→A(TA) ,

D∗ = dFO→A

dTO

∣∣∣∣∣
TO=TA

.

F0 is the net heat flux through the ocean surface of the temperature TO = TA and
D∗ ≈ 45 W K−1 m−2 is a typical transfer coefficient. Note, that D∗ > D, since
(8.4) contains the effects of temperature-dependence of evaporation and of the net
long-wave radiation. Haney (1971) proposed a further simplification of (8.4),

FO→A(TO) = D∗ (TO − T ∗O) , (8.5)

with the so-called restoring temperature

T ∗O = TA −
F0

D∗
, (8.6)

which is assumed to be constant. The formulation (8.5) is called restoring heat flux
or Newtonian heat flux . This is due to the fact that heat fluxes are directed in a
way that the variable surface temperature TO asymptotically approximates the fixed
temperature T ∗O when no other heat fluxes (e.g., advective heat fluxes) are present.

∆z

T
O

A

F
O   A

Figure 8.4: 1-box model for the illustration of restoring
fluxes.

The effect of the restoring heat fluxes and the role of D∗ shall be briefly illustrated
by means of a 1-box model. The energy balance in the 1-box model (Fig. 8.4) with
surface area A and volume V = A∆z is given by

ρ V c
dTO

dt = −AFO→A(TO) = −AD∗ (TO − T ∗O) . (8.7)

ρ is the mass density and c the specific heat capacity of the ocean water. Equation
(8.7) can be written as follows:

d (TO − T ∗O)
dt = − D∗

ρ c∆z (TO − T ∗O)

and the solution is
TO(t) = T ∗O +

(
TO(t = 0)− T ∗O

)
e− t

τ ,

where τ is a typical time scale of the relaxation. Accordingly, disturbances decay
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on a time scale τ . An estimate of this restoring time scale yields:

τ = ρ c∆z
D∗

≈ 1028 · 3900
45

s
m ∆z ≈ 1 day

m ∆z . (8.8)

In an ocean model used in an uncoupled mode, restoring heat fluxes are commonly
used and for the restoring temperature T ∗O the observed surface temperature is ap-
plied. This guarantees that the surface values of temperature never deviate too far
from the observations and that a defined equilibrium of the currents is reached. In
atmosphere models, one can proceed analogously.
The formulation (8.5) as part of an ocean model may be regarded as the simplest
form of a specific parameterisation of the effect of the not dynamically modeled at-
mosphere. A closer investigation of two extreme cases of ocean models demonstrates
this:
• Constant temperature of the atmosphere TA: The atmosphere acts as a “heat

reservoir” with infinite heat capacity. These are infinite heat capacity models.
• Constant flux from the ocean to the atmosphere: We select D∗ = 0 in (8.4),

implying that the heat flux FO→A(TO) is constant, FO→A(TO) = F0, and
therefore independent of a possible deviation from the mean temperatures of
ocean and atmosphere. The heat capacity of the atmosphere vanishes, the
atmosphere radiates the heat energy immediately to space. This is referred
to as zero heat capacity models, and is also the case for very long relaxation
times.

Analogous considerations apply for atmospheric models.
The fact that (8.5) ignores a possible scale-dependence of the relaxation time is an
important problem. Small-scale temperature anomalies at the sea surface are elimi-
nated at a rate of≈ 1 m/day by direct heat exchange. But large-scale anomalies may
persist much longer, since they penetrate deeper into the ocean, and hence require
a significantly higher amount of heat for equilibration. Under certain circumstances
this heat energy cannot be provided by the atmosphere (e.g., in the form of rapidly
passing storms).
In order to account for the scale-dependence, we would have to write

F (~x) =
∫

Λ(~x, ~x ′) {T (~x ′)− T ∗(~x ′)} d~x ′ , (8.9)

which contains a non-local dependence of the fluxes at location ~x. Here, the determi-
nation of the form function Λ(~x1, ~x2) is a challenge. A step towards scale dependence
of τ or D was proposed by Willebrand (1993),

FO→A(TO) = D1 (TO − T ∗O)−D2 ~∇2 (TO − T ∗O) , (8.10)

with D1 ≈ 2 W K−1 m−2 and D2 ≈ 1013 W K−1. Small-scale anomalies at a typical
spatial scale of 500 km, given a surface ocean layer of 50 m thickness, are equilibrated
on a time scale of τ2 = ρ c∆z L2/D2 ≈ 60 days, while large-scale anomalies decay
on a time scale of τ1 = ρ c∆z/D1 ≈ 3.5 years. Formulation (8.10) may also be
interpreted as a compact form of an atmospheric energy balance model.
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8.3 Hydrological boundary conditions

The coupling of the water cycle is of fundamental significance for the transport of
energy in the form of latent heat in the atmosphere and for the change in density of
the surface water, induced by precipitation and evaporation. Evaporation separates
water and salt and only the latter remains in the ocean.
Accordingly, evaporation leads to an increase of the salinity in the surface ocean.
The density of sea water at the surface ρ(T, S) can be expressed as a Taylor series
expanded about a temperature T0 and a salinity S0. An appropriately truncated
Taylor series reads

ρ(T, S) = ρ0
(
1 + α (T − T0) + β (S − S0) + γ (T − T0)2

)
, (8.11)

where
ρ0 = 1028 kg m−3 α = −5.4128 · 10−5 K−1

T0 = 0◦C β = 7.623 · 10−4

S0 = 35 γ = −5.0804 · 10−6 K−2 .

(8.12)

ρ decreases with increasing temperature T and increases with increasing salinity S
(S in g salt per kg water).
In analogy to (8.5), ocean models are run to equilibrium with the boundary condition

FO→A
S (S) = D∗S (S − S∗) (8.13)

(the transfer coefficient D∗S has the units kg m−2 s−1). This guarantees surface
salinity values to remain close to the observational data S∗. Formulation (8.13) is
called restoring salt flux . Here, the restoring time scale

τ = ρ∆z
D∗S

(8.14)

is most commonly selected to be identical with the restoring time scale (8.8). In
case both fluxes, as given by (8.5) and (8.13), are applied in ocean models, we refer
to restoring boundary conditions.
Analogously, atmosphere models require a condition for the lower boundary. Above
water, it usually reads

FO→A
W (q) = D∗W (q − q∗) , (8.15)

where q∗ is a prescribed specific humidity. For land surfaces, simple hydrological
models (bucket models) are commonly used. The coupling of atmosphere and ocean
models requires that the salt fluxes in (8.13) are consistent with the water fluxes in
(8.15). This is approximately accounted for by dividing the salt fluxes by a constant
conversion factor ρ S0, S0 is a reference salinity:

p− e = 1
ρ S0

FO→A
S (8.16)

and p− e is the net water balance in m/s (or mm/yr). The distribution of p− e is
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Figure 8.5: Distribution of water fluxes p− e in m/year, at a contour interval of 0.5 m/year. The
map was compiled on the internet (http://ingrid.ldeo.columbia.edu), where numerous data sets
are available (here we used the Oberhuber data set).
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Figure 8.6: Water fluxes p − e in the Atlantic in m/year. The map was compiled on the inter-
net (http://ingrid.ldeo.columbia.edu), where numerous data sets are available (here we used the
Oberhuber data set).

shown in Figs. 8.5 and 8.6. The conversion to energy fluxes is done according to

E = ρL e , P = ρL p , (8.17)

with L = 2.5 · 106 J kg−1 for the specific latent heat of water.

8.4 Momentum fluxes

Any wind stress τ on the ocean surface is due to a momentum flux between ocean
and atmosphere. It is a function of the horizontal wind speed vh =

√
u2 + v2. For

dimensional reasons of the units, the following parameterisation is used,

τ = cD ρ v
2
h , (8.18)
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where ρ is the density of air and cD is a dimensionless transfer coefficient for mo-
mentum. Based on wind tunnel experiments, one may select for atmosphere-ocean
fluxes

cD =

 1.1 · 10−3 0 < |u| < 6 m
s

0.61·10−3 + 6.3·10−5 s
m · |u| 6 m

s < |u| < 22 m
s ,

(8.19)

but many other parameterisations have been proposed to account for different char-
acteristics of the interface. In the models, vertical momentum fluxes are imple-
mented as forces acting on the uppermost layer of the ocean model (or the lowest
layer in the atmosphere model).

8.5 Mixed boundary conditions

Restoring boundary conditions as given by (8.5) are useful when equilibria of ocean
models are sought for which the surface temperatures and salinities should be in good
agreement with the data. Analogously, they are used in atmosphere-only models
when sea surface temperatures are prescribed. For heat fluxes it may plausibly be
argued that fluxes are proportional to the deviations. In fact, this is a discretized
formulation of the heat flux according to Fick’s first law. In physical terms, this
means that for example a warm anomaly of the surface temperature in the ocean
leads to an increased heat flux from the ocean to the atmosphere and hence causes
a cooling of the ocean tending to restore the previous equilibrium.
However, the same argument cannot be used for water fluxes. A locally increased
salinity at the surface of the ocean, for example induced by an oceanic eddy, does
not lead to increased precipitation (Fig. 8.7). Such anomalies are therefore not
eliminated on a typical time scale and have a much longer life time. Hence, (8.13)
lacks a physical justification.

warmer higher salinity

Figure 8.7: Schematic illustration of temperature and salinity anomalies at the surface ocean and
the different responses of heat and water fluxes. A warm SST anomaly causes an increased ocean-
to-atmosphere heat flux which removes the anomaly. On the other hand, a SSS anomaly does not
influence the amount of precipitation in the atmosphere.

In order to account for this fact in ocean models that have reached equilibrium (after
several 1000 years for T and S), equation (8.13) is replaced by a constant flux

F̂O→A
S = D∗S (S∞ − S∗) , (8.20)
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where S∞ is the salinity attained in equilibrium. According to (8.20), F̂O→A
S is

not time-dependent. The combination of the two boundary conditions (8.5) and
(8.20) is denoted mixed boundary conditions. In principle, they represent a first
approximation to the different nature of feedback processes associated with heat
and water fluxes.
For mixed boundary conditions, the salinity, and hence the density at the surface
ocean can deviate arbitrarily from a fixed prescribed distribution S∗ without water
fluxes to react and to counteract the emerging changes. This implies that salinity
anomalies could permanently alter the structure of the circulation. This concept—
first proposed by Stommel (1961)—was used by Bryan (1986) in a three-dimensional
ocean model. The surprising result was the detection of multiple equilibria: For dif-
ferent boundary conditions, qualitatively different ocean circulations were simulated.
This is further discussed in Chap. 9.

8.6 Coupled models

The biggest challenge in climate modelling is the construction of consistent coupled
models that incorporate and quantitatively simulate the components ocean, atmo-
sphere, cryosphere, land surface, biosphere as well as the physical-biogeochemical
interactions. Over the years, large progress in the coupling has been achieved as
illustrated in Fig. 1.11. A particular difficulty is to simulate climatologies of the
ocean as well as the atmosphere, that agree well with the observations. For a long
period, the fact that the ocean and the atmosphere required different fluxes in order
to reach equilibrium, was a major obstacle in modelling. This implies, that at the
time of coupling, the two model components cannot be driven by the same fluxes.
This inevitably leads to drift of the two components and possibly to completely
unrealistic states.
Ideally, the coupling follows the scheme presented in Fig. 8.8 without flux correc-
tions. In climate models of earlier generations, this often led to climate drift. A
stable state agreeing with the climatology could not be attained. This is especially
difficult, when the model state is in a range where several equilibria are possible.
Such a climate drift simulated with a coupled model of reduced complexity is shown
in Fig. 8.9. The ocean component is first brought to equilibrium for 4000 years
under restoring boundary conditions. Subsequently, a simple energy balance model
is coupled to the ocean model. From this point on, more degrees of freedom are
available, therefore, T and S may also change.
As mentioned earlier, the prevention of drift is based on an unphysical crutch: so-
called flux corrections. Although the latest generation of coupled models no longer
requires such flux corrections, they shall be discussed more thoroughly, also with
respect to their order of magnitude.
Flux corrections for heat, water and momentum fluxes are implemented as constant
artificial sources and sinks at the boundaries of the individual model components.
In doing so, the different model components are not fully coupled, but are rather
linked via their deviations from an independently maintained equilibrium state. This
is also referred to as anomaly coupling.
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Figure 8.8: Scheme of the cou-
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Figure 8.9: Climate drift in a coupled model of reduced complexity, the Bern 2.5d model, initi-
ating at the time of coupling (t = 4000 years). The salinity of the Pacific (P) is increasing, the
energy balance is perturbed and an approach to a different equilibrium state is simulated (upper
panel). This leads to a change in the meridional circulation (lower panel), apparent in the drift
of the stream functions. Figure from Stocker et al. (1992).
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Figure 8.10: Schematic depiction
of the different fluxes with a
flux correction in coupled climate
models; “data” denotes measured
climatologies.
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Flux corrections may be described as follows. F (o, a) denotes the heat flux from the
ocean (o) to the atmosphere (a), as it results from a fully coupled model, hence it
is computed based on the variables TO and TA in (8.1). F (ou, au) denotes the heat
flux that the uncoupled model requires in which TO,u und TA,u are used. In contrary,
F (ou, am) denotes the heat flux based on fixed observational data of the atmosphere
based on measurements (am) and values of the uncoupled ocean model (ou). This is
illustrated in Fig. 8.10.
Instead of driving the ocean model with the fully coupled fluxes F (o, a), F (o, a) is
replaced by

F̃o(o, a) = F (o, a) + {F (ou, am)− F (ou, au)}︸ ︷︷ ︸
FO

, (8.21)

where FO is the flux correction for the ocean model. FO = 0, in case the vari-
ables from the uncoupled atmosphere model completely agree with the measured
quantities, i.e., au = am. Analogously, for the atmosphere model we write

F̃a(o, a) = F (o, a) + {F (om, au)− F (ou, au)}︸ ︷︷ ︸
FA

, (8.22)

where FA is the flux correction for the atmosphere model. The difference F̃o− F̃a is
the artificial net source of heat, induced by the deviations of the modeled fluxes in
the uncoupled model from the measured fluxes. The corrections in (8.21) and (8.22)
may reach the same order of magnitude as the fluxes themselves. For the heat flux,
this is shown in Fig. 8.11, for the flux of water in Fig. 8.12.
By means of simple models and other considerations, it can be demonstrated, that
for relatively small changes (e.g., the simulation of the next 50 year’s climate) flux
corrections do not yield fundamentally different results compared to the ones without
flux correction (Egger, 1997). However, one has to be generally cautious when
interpreting such models.
As mentioned above, most of current climate models no longer employ flux cor-
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Figure 8.11: Correction of the heat flux. Particularly in areas with strong oceanic currents (Gulf
stream and Kuroshio), as well as in areas of deep water formation (Norwegian and Weddell Seas),
very large fluxes result. Figure from Schiller et al. (1997).

Figure 8.12: Correction of the water flux
in m/year. Particularly in areas with
strong oceanic currents (Gulf stream and
Brazil Current), as well as in areas of deep
water formation (Norwegian Sea), very
large fluxes result. Figure from Manabe
and Stouffer (1988).

rections. This is an evidence for the progress in the understanding of processes in
the climate system components (ocean, atmosphere, land, sea ice, snow, vegetation,
etc.) and their representation in coupled models. Improved parameterisations, and
to some extent a higher model grid resolution, have contributed to this progress.
However, occasionally coupled models still use other forms of flux correction, e.g.,
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an imposed additional freshwater flux from the Atlantic to the Pacific in order to
enhance deep water formation in the North Atlantic and improve the global ocean
circulation (e.g., Zaucker et al., 1994; Renssen et al., 2005; Ritz et al., 2011).



9 Multiple equilibria in the climate system

9.1 Abrupt climate change recorded in polar ice cores

The most detailed information about past climate states of the last 800,000 years
can be retrieved from polar ice cores (Jouzel et al., 2007). One example for the
last 90,000 years is presented in Fig. 9.1. The Holocene, the present interglacial,
has started after the abrupt end of the last glacial period, 11,650 years ago. The
transition from the last ice age to the Holocene, called Termination I, started about
20,000 years ago. An increase in the concentrations of particular isotopes could
be detected in Antarctic ice cores. Stable isotopes of the water molecule are a
measure for the local temperature. The temperature indicators also show that the
climate changed in an abrupt way 25 times in Greenland during the last glacial
period. These abrupt warming events, numbered in Fig. 9.1, are now referred to
as Dansgaard-Oeschger events (D/O events) in remembrance of the research of the
two pioneers in ice core science Willy Dansgaard (1922–2011) and Hans Oeschger
(1927–1998) from the University of Copenhagen and the University of Bern.
These D/O events all show an abrupt warming of the northern hemisphere within
one decade and a subsequent continuous cooling over about 1000 to 3000 years.
Interestingly, the isotope maxima and minima during the glacial periods are all at
the same level. Already in 1984, Hans Oeschger proposed that the climate system
may have operated similar to a physical flip-flop and that the ocean circulation in
the Atlantic Ocean is likely to be responsible for these climate jumps (Oeschger
et al., 1984). Flip-flop systems are characterized by several stable equilibria. The
Lorenz-Saltzman model (Sect. 7.2) is a classical example.
When Frank Bryan (Bryan, 1986) demonstrated using a three-dimensional ocean
circulation model that several states of the thermohaline circulation can be realized,
Wally Broecker synthesized the results from different climate archives and argued
that rapid oscillations of the “Atlantic heat pump” (the thermohaline circulation) are
responsible for the abrupt climate changes found in the Greenland ice cores, in tree
rings, in sea and lake sediments, stalagmites, and in numerous other paleoclimatic
archives (Broecker et al., 1985; Broecker and Denton, 1989). Some relevant sources
of related research on abrupt climate change are Alley et al. (2003), Barker et al.
(2009), Blunier and Brook (2001), Blunier et al. (1998), Broecker (1997), Broecker
and Denton (1989), Broecker et al. (1985), Clark et al. (2002), Dansgaard et al.
(1984), Dansgaard et al. (1993), EPICA Community Members (2006), Huber et al.
(2006), Knutti et al. (2004), Manabe and Stouffer (1988), Manabe and Stouffer
(1994), Oeschger et al. (1984), Rahmstorf (2002), Stocker (1998), Stocker (2000),
Stocker (2003), Stocker and Johnsen (2003), Stocker and Marchal (2000), Stocker
and Wright (1991), Stocker et al. (1992).
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Figure 9.1: Climate history of the last 90,000 years recorded in ice cores from Greenland and
Antarctica. A) Oxygen-isotope ratio 18O (in per mille deviation from a predefined standard)
in the GRIP ice core from Greenland; B) 18O in the Byrd core from Antarctica; C) Methane
concentration in the GRIP core; D) Methane concentration in the Byrd core. In the Greenland ice
core, 21 Dansgaard/Oeschger events are recorded. The longest D/O events exhibit a corresponding
warm event in the Antarctic core; labeled A1 to A7. All of the D/O events are marked by abrupt
peaks in the methane, enabling a synchronization of the time scales of Greenland and Antarctic
ice cores. Figure from Blunier and Brook (2001).

9.2 The bipolar seesaw

Evidence from many climate archives supports the hypothesis that the ocean is
primarily responsible for these abrupt changes. A sudden shut-down of the North
Atlantic deep water formation causes a reduction of the meridional heat flux and
therefore an abrupt cooling in the North Atlantic region. An active meridional cur-
rent draws heat from the Southern Atlantic. A shut-down of the heat pump will
consequently cause a warming of the Southern Atlantic and should be noticeable in
distinct teleconnections. This has led to the formulation of the so-called “Bipolar
Seesaw” as a paradigm for the interaction of the northern and southern hemisphere
during abrupt climate transitions (Broecker, 1998; Stocker, 1998). The bipolar see-
saw is shown in Fig. 9.2 (right part) and suggests that an abrupt warming in the
north leads to an abrupt cooling of the Southern Atlantic and vice-versa. This
hypothesis makes distinct predictions that can be tested in climate archives.
A slightly more elaborate concept is the thermal bipolar seesaw proposed by Stocker
and Johnsen (2003). It results from coupling a large heat reservoir to the southern
end of the seesaw and leads to a fundamentally different temporal response of the
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Figure 9.2: Bipolar seesaw cou-
pled with a southern heat reser-
voir to form the thermal bipolar
seesaw. Figure from Stocker and
Johnsen (2003).

Southern Ocean to abrupt temperature changes in the north. An abrupt cooling
in the South Atlantic (i.e., abrupt warming in the North Atlantic) induces a slow
continuous cooling in the whole Southern Ocean. In this simple manner, the very
different characteristics of temperature signals extracted from ice cores of Greenland
and Antarctica and shown in Fig. 9.1 can be explained.
The thermal bipolar seesaw is formulated as an energy balance for the Southern
Ocean temperature:

dTS(t)
dt = 1

τ

(
− TN(t)− TS(t)

)
, (9.1)

where TS is the temperature anomaly of the Southern Ocean and TN may represent
the temperature anomaly of Greenland. With this, −TN is the temperature anomaly
of the South Atlantic adjacent to the Southern Ocean assuming the instantaneous
seesaw. τ is a characteristic time scale for the heat equilibration in the Southern
Ocean. If TN(t) is given, the temporal evolution of TS(t) can be determined by a
Laplace transformation of (9.1):

TS(t) = −1
τ

t∫
0

TN(t− t′) e−t′/τ dt′ + TS(0) e−t/τ . (9.2)

Hence, TS is completely determined by the temporal evolution of TN and reflects the
northern temperature with a “damped memory”. Let us consider this simple model
in order to explain the different temporal evolution of the temperatures in Greenland
and the Antarctica. By tuning the only free parameter τ we aim at producing the
largest possible correlation between the modeled TS based on (9.2) with the known
temperature from the ice core TN as input and the measured TS derived from the
Antarctic ice core. For τ ≈ 1, 100 years a maximum correlation of 0.77 is achieved.
This allows us to predict the Antarctic temperature based on the temperature of
Greenland in a surprisingly accurate way.
Although this simple concept explains a surprisingly large part of the variability, the
required long time scale τ of over 1000 years seems incompatible with the results
from Ocean General Circulation Models (OGCMs), simulating only around 100 to
200 years as a typical exchange duration for the Southern Ocean.
There is another interesting consequence of the bipolar seesaw which follows from
(9.2). Consider a very simple case of a northern temperature signal that has the
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shape of a periodic step function:

TN(t) =


−1

2 ∆T for (2 i) t0 < t < (2 i+ 1) t0

+1
2 ∆T for (2 i+ 1) t0 < t < 2 (i+ 1) t0 ,

(9.3)

where i = 0, 1, 2, . . . and ∆T the temperature amplitude of abrupt changes in the
north. In this case, we can determine TS(t) easily using (9.2). Assuming TS(0) = 0
we get in the first interval 0 ≤ t < t0:

TS(t) = 1
2 ∆T

(
1− e−t/τ

)
. (9.4)

Values for TS(t) in later intervals are calculated similarly. From the Taylor series
expansion of this function about t = 0 truncated to first order, we obtain

TS(t) ≈ TS(0) + dTS

dt

∣∣∣∣∣
t=0

t

≈ ∆T
2 τ t ,

which is a good approximation for t� τ . We find a remarkable linear dependence
of the maximum southern warming on the duration t0 of the northern cooling,

TS(t0) ≈ ∆T
2 τ t0 . (9.5)

The longer the cooling in the northern Atlantic lasts due to the cessation of the
meridional overturning circulation, the larger the warming will be in Antarctica.
The warming further depends on the overall cooling, ∆T , in the north.
This linear relationship could be confirmed using the most recent information from
the EPICA ice core from Dronning Maud Land (Antarctica). This ice core was
drilled in a location geographically relatively close the Southern Atlantic Ocean
where one would expect the largest influence of the bipolar seesaw. The duration of
the stadials prior to the Dansgaard-Oeschger events was determined from the tem-
perature reconstructions of the Greenland ice core from North GRIP; the amplitude
of the warming in the south was obtained from the isotopic measurements on the
EPICA ice core from Dronning Maud Land (EPICA Community Members, 2006).
Figure 9.4 shows this impressive linear relationship for Marine Isotope Stage 3 during
the last ice age and provides therefore the most convincing and independent evidence
that much of the variability during an ice age can be captured by the very simple
concept of the bipolar seesaw. It is remarkable that such a strong connection of the
climatic behaviour on millennial time scales operates across the hemispheres.
More recent paleoclimatic reconstructions suggest that this mechanism also oper-
ated during the last Termination, i.e. the transition from the last ice age to the
Holocene, a time period which was punctuated by large and abrupt climate changes
such as the Bølling/Allerød warming and the Younger Dryas cooling in the North
Atlantic region, and the Antarctic Cold Reversal in the south (Barker et al., 2009),
as hypothesized earlier (Stocker, 2003).
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Figure 9.3: High-pass filtered time series of the temperatures in Greenland (A) and Antarctica
(B) derived from ice cores. (C) is the simulated temperature according to (9.2) with input (A).
The abrupt Dansgaard-Oeschger events of the north hence become manifest in the local isotope
maxima in Antarctica (A1, A2, . . . ). Figure from Stocker and Johnsen (2003).

Figure 9.4: Linear correlation between
the duration of the cold stadials preceding
the Dansgaard-Oeschger events in Green-
land and the temperature amplitudes of
the warmings in Antarctica. The numbers
indicate the D/O events in Fig. 9.3. Figure
from EPICA Community Members (2006).

9.3 Multiple equilibria in a simple atmosphere model

Geological evidence suggests that the Earth has gone through several phases of
almost complete glaciation (“Snowball Earth” hypothesis, Hoffman and Li (2009)).
How could this happen, given a roughly constant solar irradiation?
The energy balance model presented in Sect. 2.2 already yields a possible answer in
case the ice-albedo feedback is accounted for (Sect. 2.4.1). Considering the equilibria
of the energy balance (2.1) and parameterizing the albedo according to (2.22) but in
a mathematically differentiable form, as illustrated in Fig. 2.12, an energy balance
equation results that is non-linear in T :(

1−
(

0.575− 0.275 tanh
(
0.033 K−1 (T − 252.5 K)

)))S0

4 = ε σ T 4 . (9.6)
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Figure 9.5: Right-hand
(dashed) and left-hand sides of
(9.6) for S0 (upper curve) and
0.85S0. The temperature de-
pendence of the albedo produces
several equilibrium solutions:
stable states (filled circles and
diamond) and an unstable
equilibrium state (triangle).  

The left- and right-hand sides of (9.6) are shown in Fig. 9.5 for the two cases of a
solar constant of S0 = 1367 W m−2 and one which is reduced by 15%, S∗0 = 0.85S0.
For today’s value of the solar constant (S0) three equilibria exist, of which two are
stable as indicated by filled circles. They represent a “warm” and a “cold” climate
state. In the case of a 15% weaker solar constant (S∗0 , faint young Sun), only a single
stable equilibrium exists corresponding to a very cold climate. Likewise, Fig. 9.5
reveals that the structure of the solution strongly depends on the specific form of the
ice-albedo feedback parameterisation. For example, if an albedo parameterisation
with a flatter slope were chosen, the two stable equilibria would shift towards the
unstable one and finally merge into a single stable equilibrium.
The question remains, whether multiple equilibria also exist in more complex climate
models, e.g. in a coupled atmosphere-ocean model. This is discussed in Sect. 9.5.

9.4 Multiple equilibria in a simple ocean model

The deep circulation in the Atlantic is associated with a large heat transport that
considerably affects climate in the North Atlantic region (conveyor belt). This heat
transport is responsible for a comparatively mild climate. Already at the beginning
of the 20th century geologists assumed that the change in the ocean circulation may
be responsible for part of the climate variability. In 1961, Henry Stommel presented
a conceptual model that is able to reproduce such changes since it contains several
equilibria (Stommel, 1961). This model is presented in its simplified form following
Marotzke (2000). The reason for the existence of multiple equilibria is linked to the
fact that heat and water fluxes respond differently to anomalies. Mixed boundary
conditions account for this phenomenon. Different relaxation times in (8.8) and
(8.14) can also lead to several equilibria.
In this model the ocean is strongly simplified and consists of two boxes: one for
latitudes where evaporation dominates (a positive water flux P ) and one for the
high latitudes where precipitation dominates (Fig. 9.6). Ti und Si represent the
temperatures and salinities of the two boxes, respectively. A fixed temperature
difference ∆T between the boxes is assumed. It is maintained by heat fluxes between
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P

Figure 9.6: 2-Box model of the thermohaline circulation. Figure after Stommel (1961) and
Marotzke (2000).

the atmosphere and the ocean. Between high and low latitudes a water transport q
operates and is driven by the density difference according to

q = k (ρ2 − ρ1) = k ρ0
(
α (T2 − T1) + β (S2 − S1)

)
(9.7)

in which (8.11) with α < 0 and β > 0 but with γ = 0 was used. The balance of the
salinity in the two boxes is

dS1

dt = |q| (S2 − S1) + P ,
dS2

dt = |q| (S1 − S2)− P , (9.8)

where P > 0 denotes the net water flux. In (9.8) the absolute value of q appears, be-
cause for the exchange the direction of the current is irrelevant. Stationary solutions
for (9.8) can only be found if

∆S = S2 − S1 =



−α∆T
2 β ±

√√√√(α∆T
2 β

)2

− P

ρ0 k β
q > 0

−α∆T
2 β −

√√√√(α∆T
2 β

)2

+ P

ρ0 k β
q < 0 ,

(9.9)

where ∆T = T2 − T1 < 0. For the direct circulation, q > 0 and hence ρ2 > ρ1, two
solutions are possible: one with a smaller contrast in salinity ∆S < 0 and one with
a large negative ∆S. For an even smaller ∆S an indirect circulation exists, q < 0
and ρ2 < ρ1. We put

δ = −β∆S
α∆T , E = β P

ρ0 k (α∆T )2 , (9.10)
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Figure 9.7: Multiple equilibria
(unstable = dashed) of the ther-
mohaline circulation for different
values of the water flux in the
Stommel box model.
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and obtain from (9.9)

δ =



1
2 ±

√
1
4 − E q > 0

1
2 +

√
1
4 + E q < 0 .

(9.11)

The transport q is given by

q = k ρ0 α∆T (1− δ) . (9.12)

For δ > 1 the circulation is indirect, i.e., water sinks where it is warmer. In order
to attain a sufficiently high density that permits a sinking, the salinity must be
accordingly high. For δ < 1 two solutions result, of which one is unstable (Fig. 9.7).
For the direct circulation (water sinks where it is colder) q > 0. In case P increases,
E and δ increase as well. But this leads to a decrease of q. An amplified hydrological
cycle slows down the thermohaline circulation.
For 0.5 < δ < 1 and hence 0 < q < 1

2 k ρ0 α∆T the circulation is unstable. The
model shows a threshold for q, below which the thermohaline circulation does not
exist. It must be noted, that in this simple model the meridional temperature
contrast directly determines this threshold.
The existence of multiple equilibria of the thermohaline circulation can be quali-
tatively understood by considering the heat and water transport as schematically
illustrated in Fig. 9.8. In Fig. 9.8 a) the circulation is direct. Under the typical
depth-profiles of T and S in the ocean (with respectively high values at the surface)
the ocean transports heat and salt northwards. The cycle of the fluxes is closed by
an excess of heat in the equatorial region and a cooling in the north, and by the at-
mospheric water transport. However, the same water transport can also result from
an opposite circulation as shown in (b) in case the vertical gradient of S changes
sign.
Hence, significant relocations of salt masses in the ocean are necessary in order
to provoke basin-scale changes in the oceanic circulation. In the context of mixed
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Figure 9.8: Schematic depiction of the thermohaline circulation and the meridional heat and
water fluxes. a) direct circulation: water sinks where it is cold; b) indirect circulation: water sinks
in warm areas. Arrows of the water circulation are color coded: red (warm), blue (cold/fresh),
green (salty).

boundary conditions for ocean models the salinity at the surface may change in
an unlimited way which is a precondition for attaining state (b) in Fig. 9.8. The
question whether this bears any realism is addressed in the next section.

9.5 Multiple equilibria in coupled models

Model simulations by Manabe and Stouffer (1988) revealed for the first time results
from a coupled climate model, in which for present climate conditions, two different
states were found. They primarily differed in their thermohaline circulation in the
Atlantic. One of the states had an active deep water formation in the North Atlantic,
the other state showed a circulation similar to the one in the Pacific. Transitions can
be triggered by short-term differences in the water balance in the North Atlantic.
Similar results were also found with other coupled models.
Therefore, it is probable that the deep water circulation in the Atlantic sensitively
responds to changes in the surface water balance. This is a plausible mechanism
to explain the abrupt changes found in climate time series (e.g., Fig. 9.1). One
hypothesis claims that during glacial periods the ice sheets located around the North
Atlantic discharged large amounts of freshwater caused by advancing ice streams.
This situation was reinforced towards the end of the last glacial period, when the
melting of the northern hemispheric ice sheets led to a sea level rise of about 120 m.
During that time, the last sequence of abrupt climate changes was observed.
The lessons from the past clearly raise the question whether limited stability of
the climate system, observed in many paleoclimatic records, may also be an issue
today when the increase of greenhouse gas concentrations represents a significant
perturbation to the climate system. The anthropogenic warming in the atmosphere
not only increases sea surface temperatures but also alters the freshwater balance in
a profound way. First, the melting of Greenland, which is proceeding at rapid rates,
delivers freshwater to the Atlantic Ocean. Second, a warmer climate intensifies
the water cycle due to the increased amount of water vapour in the atmosphere
and to the higher evaporation rates induced by higher temperatures. This leads
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RCP2.6 RCP8.5

Figure 9.9: Atlantic Meridional Overturning Circulation (AMOC) strength at 30◦N as a function
of year, from 1850 to 2300 as simulated by CMIP5 models in response to scenario RCP2.6 (left)
and RCP8.5 (right). The vertical grey bar shows the range of AMOC strength measured at 26◦N,
from 2004 to 2011. Figure from IPCC (2013), Technical Summary (TFE.5, Fig. 1).

to a stronger meridional transport of water in the atmosphere. All three processes
(warming of the SST, melting of Greenland and more precipitation) tend to decrease
the sea surface density in the North Atlantic and, in consequence, have the potential
to reduce the formation of deep water in the North Atlantic.
The question remains, whether this has basin-scale implications with the possibil-
ity that the Atlantic meridional overturning circulation may weaken in the future.
Whether a threshold will be exceeded and a complete shut-down of this circulation
system follows, is the object of current research.
The Intergovernmental Panel on Climate Change has addressed this issue (IPCC,
2013, Chap. 12). Fig. 9.9 illustrates the change in the meridional overturning cir-
culation of the Atlantic for the coming 300 years based on different coupled models.
Large differences between models exist; some models are inconsistent with observa-
tional estimates of the Atlantic meridional overturning.
Nevertheless, a general weakening trend during the 21st century emerges. None of
the models simulates an intensification or an abrupt shut-down under this scenario
within the coming 100 to 200 years.
Models of reduced complexity show that a threshold of the circulation exists be-
yond which a complete shut-down of the current results without additional exter-
nal inputs. Therefore, a transition to a second stable equilibrium occurs. This
behaviour might also be observable in more complete models (three-dimensional
coupled atmosphere-ocean models without flux corrections), according most recent
simulations (Mikolajewicz et al., 2007) and as suggested by two of the three longest
simulations for the RCP8.5 scenario in Fig. 9.9. Multiple equilibria were also shown
in a fully coupled AOGCM, although in an aquaplanet configuration (Ferreira et al.,
2011).
Simulations with a simplified coupled model (Bern 2.5d model), consisting of a zon-
ally averaged 3-basin ocean model and an energy balance model for the atmosphere,
show that the threshold depends on several important quantities in the climate sys-
tem, as well as the history of the perturbation. Figure 9.10 gives a summary of the
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Figure 9.10: Simulations with the Bern 2.5d model for the evolution of the meridional overturning
circulation (MOC) in the Atlantic considering a warming scenario. The different simplified CO2-
scenarios (upper panel) consist of an exponential increase at different rates, leveling off at a
given maximum value. The MOC reveals a bifurcation in its behaviour (lower panel): for small
maximum values or slow rates of CO2 increase, the threshold for a complete shut-down may be
avoided. Figure from Stocker and Schmittner (1997).

results. For the respective simulations, simplified CO2-scenarios were chosen: after
an exponential growth at different rates, the CO2 concentration was held constant.
The evolution of the thermohaline circulation may be split into two cases. One ex-
hibits a linear behaviour in which a temporarily strong reduction of the circulation
is followed by a recovery over a few centuries. The reduction of the overturning
circulation depends on the maximum value of the CO2 increase and hence on the
warming. In the second case, the circulation shuts down completely and does not
recover. An irreversible transition to the second stable equilibrium has been realized.
It is interesting to notice that a reduction of the maximum concentration of CO2
(from experiment 750 to 650) as well as a reduction of the rate of CO2 increase
(from experiment 750 to 750S) avoids the crossing of the critical threshold. Hence,
the rate of future warming in the climate system plays a significant role. Depending
on the rate and amount of warming, irreversible changes may result.
There is evidence that a similar behaviour can be produced by a more complex
model. However, it must be considered that these models contain more degrees
of freedom and hence respond to disturbances in a much more sophisticated way.
The question, whether multiple equilibria can also occur in the models of highest
resolution, remains unresolved.
In its latest assessment report, the IPCC draws a cautious conclusion regarding this
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problem in the Summary for Policymakers, IPCC (2013):

It is very likely that the Atlantic Meridional Overturning Circulation
(AMOC) will weaken over the 21st century. Best estimates and ranges
for the reduction are 11% (1 to 24%) in RCP2.6 and 34% (12 to 54%) in
RCP8.5. It is likely that there will be some decline in the AMOC by about
2050, but there may be some decades when the AMOC increases due to
large natural internal variability.

Recent research has focused on the question whether there may exist other compo-
nents in the climate system which may exhibit instabilities or which are forced into
new, quite different, equilibrium states. One example of intensive debate is the fate
of the Greenland ice sheet. Recent observations confirm sustained mass losses for
both Greenland and Antarctica (Shepherd et al., 2012). Some model simulations
suggest that there exist thresholds for warming in the area of the Greenland ice
sheet and if crossed, this may lead to an irreversible melt-down of the ice sheet
with a massive sea level rise of more than 6 meters over the next several 100 years.
However, paleoclimatic information suggests that during the last interglacial about
120,000 years ago, which was about 4◦C warmer than today, the Greenland ice sheet
was still present, although much smaller in extent.
Also, the Amazonian rainforest is supposed to respond to anthropogenic climate
change both directly to the warming and, of course, due to direct deforestation.
Some model simulations suggest that in this area a steppe-like vegetation cover may
develop which then would feed back to the regional hydrological cycle and produce a
new state of stable, but much drier regional climate. Even if the large-scale climate
conditions were reset to pre-industrial values, the change in vegetation would not
be reversible.
Permafrost in the boral areas of Siberia and North America is also a system which is
increasingly investigated. Large amounts of methane are trapped in the permafrost.
With the warming, permafrost is melting which could release methane from these
areas. As a powerful greenhouse gas, this would enhance the greenhouse effect.
However, due to natural sinks for methane in the atmosphere and the short lifetime
of methane (about 10 years), such a perturbation would disappear rather rapidly.
There is therefore the general concern that anthropogenic perturbations may have
already caused irreversible climate change. In this context, one often refers to “Tip-
ping Points” in the climate system (Lenton, 2011), although this concept is difficult
to quantify in the climate system. Obviously, predictability is extremely low, if not
impossible, for such climate instabilities.

9.6 Concluding remarks

The goal of these lecture notes was to provide some basic knowledge in climate mod-
elling. In addition to theoretical concepts and recent results from climate research,
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we have framed the material in a sequence of simple problems which were solved nu-
merically. This afforded the opportunity to introduce some basic numerical solution
techniques and expose specific characteristics of those. A further goal was to give an
introduction to a few fundamental concepts of the dynamics of the climate system.
Surely, these notes could only provide an initial, very limited insight into this fas-
cinating topic. Hopefully, it was made clear, that questions remain unresolved and
that therefore many areas of activity are open for good ideas and creative model
design.
Climate modelling is the only, however by far not perfect, method to make quantita-
tive statements concerning past climate change. For predictions of future changes,
climate modelling is the only scientific basis. An ongoing analysis of observed data
and climate variables, as well as a more profound understanding of the fundamen-
tal processes guarantees a continuous improvement of these models. The scientific
assessment of the impact of human activities on this planet, and to foresee danger-
ous developments to a certain degree, becomes an important duty of a responsible
modern society.
Climate models also help us design and develop a strategy for sustainability. This is
necessary, because a stable climate is a crucial resource for humanity, even though
this is not yet widely acknowledged. The stable climate is also a prerequisite for
continuous ecosystem services. Each modification of a resource implies a risk. In
this sense, the changes observed to date, should be considered as both a reminder
and starting point for resolute actions. These are required if society decides that
future warming should be limited (Copenhagen Accord, 2009).
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The Young-Frankel successive overrelaxation
method

The Young-Frankel successive overrelaxation method was derived independently by
David M. Young (Young, 1950) and Stanley P. Frankel (Frankel, 1950). This method
may be viewed as a generalized Gauss-Seidel method (5.19). Nowadays it represents
the standard SOR method and is described in detail in many textbooks, for example
in Varga (2009) or Schwarz and Köckler (2011).
We start our brief description of this method by writing down again the iterative
methods of Jacobi and Gauss-Seidel which we have already noted in (5.18) and
(5.19):

Jacobi method Dxn+1 = − (L + R)xn + b , (A.1)

Gauss-Seidel method (D + L)xn+1 = −R xn + b . (A.2)

We subtract Lxn+1 from both sides of (A.2):

Dxn+1 = −Lxn+1 −R xn + b . (A.3)

This representation of the Gauss-Seidel method elucidates the fact, that this method,
while advancing from the first component k = 1 successively to the next components
k = 2, 3, . . . , J , uses always the most recent of the already calculated values (as
mentioned on page 86), in contrast to the Jacobi method (A.1): The kth component
of the vector xn+1, i.e. the component xn+1

k , results from the components xn+1
1 , . . .,

xn+1
k−1 just calculated during the actual iteration step and from the components xnk+1,
. . ., xnN already calculated before, during the foregoing iteration step (equation (5.15)
is an example). Now we subtract Dxn from both sides of equation (A.3) and left
multiply both sides by D−1:

xn+1 = xn −D−1
(
Lxn+1 + (D + R)xn − b

)
= xn + ∆xn+1 .

The quantity ∆xn+1 = xn+1 − xn = −D−1 (Lxn+1 + (D + R)xn − b) signifies the
correction demanded from the Gauss-Seidel method at iteration step n + 1 (where
n = 0, 1, 2, . . .).
The Young-Frankel successive overrelaxation method scales the Gauss-Seidel correc-
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tion ∆xn+1 by a relaxation factor ω > 1,

xn+1 = xn + ω∆xn+1 (A.4)
= xn − ωD−1

(
Lxn+1 + (D + R)xn − b

)
,

i.e.
(D + ωL)xn+1 = Dxn − ω

(
(D + R)xn − b

)
or

xn+1 = (D + ωL)−1
(

(1− ω) D− ωR
)
xn + ω (D + ωL)−1 b . (A.5)

It includes the Gauss-Seidel method (5.15) with ω = 1. Clearly, (A.5) is a linear
non-homogeneous recurrence relation,

xn+1 = Txn + c , (A.6)

where both the so-called iteration matrix T and the vector c (the non-homogeneous
part of the recurrence relation) are functions of the relaxation factor ω:

T = (D + ωL)−1
(

(1− ω) D− ωR
)
, (A.7)

c = ω (D + ωL)−1 b .

The following aspects are fundamental for the further discussion:
1. Starting with any initial approximation x0 and using any relaxation factor ω,

the recurrence relation (A.6) determines a unique sequence of approximations

{xn} = x0, x1, x2, . . . . (A.8)

2. The sequence (A.8) might be divergent or convergent. If it is convergent
then it must converge to the unique solution x of equation (5.16) implying
xn+1 = xn = x for n → ∞ and therefore the solution x to be a fixed point of
the recurrence relation (A.6):

x = Tx+ c . (A.9)

To ensure convergence of the sequence (A.8), the iteration matrix T must fulfil
a particular requirement. This requirement follows from the fact that, in case of
convergence, the sequence of errors {εn}, where

εn := xn − x
(A.9)= Txn−1 + c− (Tx+ c)

= T
(
xn−1 − x

)
= T εn−1

= T2 εn−2

= ...
= Tn ε0 , (A.10)
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has to converge to the null vector. It is clear that this happens for each initial
approximation x0, i.e. for each initial error ε0 = x0−x, if, and only if, the matrix T
is a convergent matrix, i.e. a matrix whose sequence of powers {Tn} converges to
the null matrix. And this is the case precisely if all the eigenvalues λ1, λ2, . . . , λJ
of T (which may be complex numbers) have absolute values1 smaller than one,
i.e. precisely if the largest of the J values |λ1|, |λ2|, . . . , |λJ |, the so-called spectral
radius2 of the iterative matrix T,

ρ(T) = max
k=1,...,J

(|λk|) , (A.11)

is smaller than one, ρ(T) < 1. This is a general rule and easy to justify in the
special case of a diagonalizable matrix T: We know from linear algebra that for
such a matrix there is a regular matrix P causing the matrix P−1 T P to be a
diagonal matrix

Λ = P−1 T P =


λ1

λ2
. . .

λJ

 ,

where the diagonal elements of Λ are the eigenvalues of T (and the columns of P
are the eigenvectors of T). It follows

T = P Λ P−1 (A.12)

and further T2 = P Λ P−1 P Λ P−1 = P Λ2 P−1 and consequently, for any n ∈ N,

Tn = P Λn P−1 = P


λ1

λ2
. . .

λJ


n

P−1 = P


λ
n
1

λ
n
2

. . .
λ
n
J

 P−1 .

This confirms that Tn → 0 for n → ∞ is equivalent to ρ(T) = max (|λk|) < 1.
The smaller the spectral radius ρ(T), the faster the convergence. After conduct-
ing m successive iteration steps, the error has changed approximately by a fac-
tor of ρ(T)m; to change the error by a factor of 10−p it needs approximately
m ≈ −p ln 10/ ln ρ(T) = −p/ log10 ρ(T) iteration steps.
The spectral radius ρ(T) of any SOR iteration matrix T = T(ω) depends on the
relaxation factor ω. Figure A.1 shows an example. Usually, the function ρ(ω)
has a unique minimum. If this minimum is less than one, then the corresponding
relaxation factor ω = ωopt is optimal concerning speed of convergence. This optimal
relaxation factor is generally difficult to determine exactly. What is certain is that
it must be in the value range between 0 and 2, together with the other relaxation
factors ensuring convergence. This follows easily by taking the determinant of the
iteration matrix T given in (A.7):3

det (T) = λ1 λ2 . . . λJ = det
(

(D + ωL)−1
(

(1− ω) D− ωR
))

1The absolute value of a complex value z = x+ i y is the real, positive value |z| =
√
x2 + y2.

2The eigenvalues λ1, λ2, . . . , λJ of a complex N × N matrix M constitute the spectrum of this
matrix. The radius of the smallest circle in the complex plane with center at the origin which
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Figure A.1: Spectral radius ρ(ω) = ρ(T(ω)) of the iteration matrix (A.7) derived from the matrix
A = ( 2 1

1 2 ). The spectral radius results with ρ(ω) = max (|λ1(ω)|, |λ2(ω)|), where λ1(ω) and λ2(ω)
are the eigenvalues of T.

= det (D + ωL)−1 · det
(

(1− ω) D− ωR
)

= 1
det (D) · (1− ω)J · det (D)

= (1− ω)J .

From this it results |λ1 λ2 . . . λJ | =
∣∣∣(1− ω)J

∣∣∣ = |1− ω|J and from (A.11) also
|λ1 λ2 . . . λJ | ≤ ρ(T)J . It is therefore |1− ω|J ≤ ρ(T)J and simply |1− ω| ≤ ρ(T).
A convergent matrix T(ω) requires ρ(T) < 1 and thus |1− ω| < 1, i.e.

0 < ω < 2 (A.13)

(a necessary but not sufficient condition for convergence of the sequence (A.8)).
The iteration procedures (A.5) using relaxation factors ω < 1 are accordingly called
successive underrelaxation methods (SUR). They can be used in cases where the
iteration matrix T(ω) is divergent for relaxation factors ω > 1 and convergent for
some ω < 1.

incloses all eigenvalues is the spectral radius ρ(M).
3Some properties of the determinant function are used in the reasoning (matrices X and Y should
be J × J matrices, α a constant value):

det (X Y) = det (X) · det (Y) ,

det
(
X−1) = 1

det (X) ,

det (αX) = αJ det (X) .

If X has eigenvalues λ1, λ2, . . . , λJ (which do not have to differ from each other) then

det (X) = λ1 λ2 . . . λJ .

If X is a triangular matrix, either a left triangular matrix with xij = 0 for i < j or a right
triangular matrix with xij = 0 for i > j then the determinant of X is the product of the
diagonal elements of X:

det (X) = x11 x22 . . . xJJ .
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Appendix B

Problem Sets

Problem 1

Calculate the sum
S(N) =

N∑
n=1

n

for N = 100 and for N = 10, 000, first by summing all the numbers from 1 to N
and then by using the Gauss formula

S(N) = N (N + 1)
2 .

Compare the two approaches.
Plot a graph of S as a function of N .

Problem 2

Prime numbers between 2 andM can be determined using the technique of Erathostenes’
sieve which goes as follows: In the vector of numbers from 1 to M , all multiples of
the largest prime still in the vector are cancelled, with the exception of the prime
itself. Start with 2.

Problem 3

Calculate the hydrostatic pressure p(z) of sea water as a function of depth z, by
integrating the hydrostatic equilibrium

dp
dz = g ρ(z) , (B.1)

where ρ is sea water’s density and g = 9.81 m s−2 the gravitational acceleration.
Density depends, in a simplified form, on temperature T and salinity S according
to

ρ(T, S) = ρ0
(
1− α (T − T0) + β (S − S0)

)
,

where ρ0 = 1028 kg/m3, T0 = 0◦C, and S0 = 35, and the thermal and haline expan-
sion coefficients are given by α = 5.4 · 10−5 K−1, and β = 7.6 · 10−4. Temperature
at a depth of z = 1000 m is T = −1◦C and increases linearly to T = 10◦C at the
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surface (z = 0) typical of high latitudes. Surface air pressure is p = 1.013 · 105 Pa.
Assume S = 37.

a) The first derivative in (B.1) should be discretized using the Euler forward
scheme. Calculate the pressure profile and plot it against z.

b) Calculate pressure by integrating (B.1). The integral can be directly calcu-
lated in Matlab. Alternatively, calculate it numerically by approximating the
integral by the area of a trapezoid:

b∫
a

f(x) dx ≈ (b− a) f(a) + f(b)
2 .

c) A better approximation is obtained if the interval (a, b) is divided in many
small sub-intervals in which the trapezoidal rule is applied.

d) In lower latitudes temperatures vary exponentially from the surface at T =
20◦C to T = 5◦C at 1000 m depth with a scale depth of d = 150 m. Plot ρ(z)
and p(z).

Problem 4

The energy balance model of the atmosphere was introduced in Sect. 2.2. The
balance equation (2.1) reads:

h ρ c
dT
dt = (1− α) S0

4 − ε σ T
4 . (B.2)

Determine the equilibrium temperature for the parameter values given on page 31.
The ice-albedo feedback should be simulated by using the following approximation
of the albedo:

α =
{

0.42 for T > −10◦C
0.62 for T ≤ −10◦C .

In order to solve the differential equation (B.2) you use
a) the Euler forward,
b) the Runge-Kutta scheme of 4th order.

The initial value is T = 290 K. Terminate the iteration, if the change of temperature
in an iteration step is smaller than 10−3 K, or more than 1000 iterations are used.

Problem 5

We now extend Problem 4 by including a simple description of the ocean surface
layer. We also want to investigate the consequence of a varying solar constant,



163

typical for a solar cycle. Consider the energy balance,

(h ρ c+ hoc ρoc coc)
dT
dt = (1− α) S0

4 − ε σ T
4 , (B.3)

where we use ρoc = 1028 kg m−3, coc = 3900 J kg−1 K−1 as typical ocean values. In
equation (B.3) we have assumed that the atmosphere is in instantaneous equilibrium
with the ocean. For albedo use the constant α = 0.42, and assume that the solar
constant varies sinusoidally with an amplitude of 2%� and a period of 11 years.
Consider different depths of the surface ocean layer, hoc: 50 m, 100 m, 500 m, and
1000 m.
In order to solve the differential equation (B.3) you use

a) the Euler forward,
b) the Runge-Kutta scheme of 4th order.

Try increasing time steps from 1 month, 1 year, 3 years, 5 years to 7 years. Integrate
(B.3) over several solar cycles, and produce a graph in which you show T as a function
of time. Note how the temporal behaviour depends on ocean depth (phase lag).

Problem 6

A tracer is released continuously into an aquifer in which water is flowing at a
speed of u = 1 m/day. We assume that this tracer is salt, whose concentration
is measured in grams per kilogram water. The concentration of the tracer at the
location of release raises from 0 for t < 0 abruptly to 100 g/kg at time t = 0 and is
held constant thereafter, t > 0. Determine the time, when the tracer concentration
exceeds 0.1 g/kg at a distance of 500 m from the location of release.
The problem is described by the one-dimensional advection equation:

∂C

∂t
+ u

∂C

∂x
= 0 .

Solve this equation using
a) central differences,
b) upstream scheme,
c) using a diffusive correction described in Sect. 3.8.
d) What is the exact time?

Plot the numerical solutions at different subsequent times. Try different time steps.

Problem 7

Assume now that the tracer considered in Problem 6 is tritium, the unstable isotope
of hydrogen (3H). Tritium decays radioactively (β-decay) with a half life of 12.3
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years. The initial activity is 120 Bq/liter.
Determine the time, when the tracer activity first exceeds 2 Bq/liter at a distance
of 500 m from the location of release.
The problem is now described by

∂C

∂t
+ u

∂C

∂x
+ λC = 0 .

Plot the numerical solutions at different subsequent times.

Problem 8

Solve Problem 7 now with an implicit scheme as described in Sect. 3.6.3. Use Euler
forward in time and central differences in space. The discretized problem can be
written in matrix form.

Problem 9

Consider the one-dimensional energy balance model which was presented in Eq.
(4.9). The energy balance now reads:

h ρ c
∂T

∂t
= (1− α) S4 − ε σ T

4 + h ρ c

R2 cosϕ
∂

∂ ϕ

(
K cosϕ ∂T

∂ϕ

)
, (B.4)

where the latitudinally dependent eddy diffusivity K (in m2 s−1), the albedo α and
the incoming solar radiation S are given by

K = K(ϕ) ≈ (1.5 + 2.5 cosϕ) 106 m2 s−1

α = α(ϕ) ≈ 0.6− 0.4 cosϕ
S = S(ϕ) ≈ S0

(
0.5294 + 0.706 cos2 ϕ

)
.

S0 = 1367 W/m2 is the solar constant. The values of the other parameters are given
in Sect. 2.2.
Define a grid where the temperatures are given at the centres of the grid boxes,
and the first derivatives ∂T/∂ϕ are given at the box edges, as in the figure below.

S N

T1 T2T1 T2 TMTM TM+1

∆ϕ

∆ϕ

The temperatures are evaluated at the points, the derivatives at the diamonds.
The boundary conditions are imposed at the open diamonds. The discretized first
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derivative is given by
T ′i = Ti − Ti−1

∆ϕ ,

the second derivative is evaluated at the points, and given by

T ′′i = T ′i+1 − T ′i
∆ϕ .

a) Calculate the steady-state temperature as a function of latitude. Choose 1◦ as
the meridional resolution, and Euler forward for the time discretization with
∆t = 20 min. Note that you need at least 10,000 iterations for convergence.

b) Compare the temperature with that obtained for K = 0.
c) Compare the result with the surface air temperature data set available under

www.climate.unibe.ch/stocker/EKlima/matlab/prob9_sat.dat.

Problem 10

The first model of the wind driven large-scale circulation in a closed basin was
proposed by Henry Stommel as introduced in Sect. 6.7.
The streamfunction Ψ satisfies the partial differential equation (PDE) (6.40),

β
∂Ψ
∂x

= ∂τyz
∂x
− ∂τxz

∂y
−R

(
∂2Ψ
∂x2 + ∂2Ψ

∂y2

)
,

and Ψ = 0 on the boundary. The PDE should be solved in a rectangular domain of
zonal extent of L = 7000 km, and B = 5000 km meridional extent. The circulation
is driven by a zonal wind stress for which we assume the simple profile (6.42),

τxz = −T cos
(
π

B
y
)
, τyz = 0 ,

with T = 0.1 N m−2. We select β = 2 · 10−11 m−1 s−1, and R = 1/(6 days).
a) Discretize the PDE using central differences. Use successive overrelaxation

(SOR) to calculate the streamfunction. The iteration can be terminated when
the maximum relative error is smaller than 10−6, i.e., max (ζi,j/ (ei,j Ψi,j)) <
10−6 (see Sect. 5.3.2).

b) Determine the optimum relaxation parameter ω by plotting the number of
iterations as a function of ω.

c) Make a contour plot of the streamfunction.
d) Plot the streamfunction Ψ(x, y = B/2) for three values of the friction: R =

1/(2 days), 1/(6 days), 1/(20 days). Note that your discretisation might not
be appropriate to represent a very narrow boundary current whose width scales
as R/β.
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Problem 11

The Lorenz model is a simple, but powerful model for flow in the atmosphere. It
is the starting point of chaos theory, first described by Ed Lorenz in his landmark
paper entitled Deterministic non-periodic flow (Lorenz, 1963). The equations (7.26)
of this famous model were actually derived by Barry Saltzman:

dX
dt = −σX + σ Y

dY
dt = −X Z + r X − Y

dZ
dt = X Y − b Z .

All quantities are dimensionless. These equations describe the small-scale thermal
convection of an incompressible fluid in a box. The physical meaning of X, Y , and
Z, and the derivation are given in Sect. 7.2.
Calculate the solution of the Lorenz model using the 4th order Runge-Kutta scheme
(see Sect. 2.3) with a time step of ∆t = 12/2000. Use the following parameters:
r = 28, σ = 10, and b = 8/3. Calculate the solution for two slightly different initial
conditions:

1. X1(0) = 1, Y1(0) = 2, Z1(0) = 11.01
2. X2(0) = 1, Y2(0) = 2, Z2(0) = 11.02 .

a) Plot the first 10,000 time steps in the Y -Z-plane.
b) Plot the distance between the solutions starting from the two initial conditions

as a function of time. The distance is defined as

d(t) =
√

(X1 −X2)2 + (Y1 − Y2)2 + (Z1 − Z2)2 .

Problem 12

The predictability of atmospheric flow depends on the current state of the atmo-
sphere. Predictability can be determined by integrating an ensemble of initial con-
ditions that are within certain predefined bounds.
We now use the Lorenz model to calculate ensembles from initial conditions at t = 0
which are located in circles of radius 0.5 in the Y -Z-plane, centered at the three
locations:

(X1, Y1, Z1) = (1, 2, 42) ;
(X2, Y2, Z2) = (1, 2, 9) ;
(X3, Y3, Z3) = (1,−1, 11) .

Follow how the circles deform as time progresses. Consider the time interval from
t = 0 to t = 0.5.
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