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S1 Extended Results8

In this supplementary section, we first present two tables as discussed in the main text. Table S1 shows9

the influence of ensemble subset selection on the relation between the equilibrium climate sensitivity10

(ECS) and the realized warming fraction (RWF). Table S2 lists cross-correlations between the diagnostic11

EBM parameters for the three analyzed model ensembles.12

We also include three subsections describing complementary results, which were only briefly touched13

upon in the main text.14

Table S1: Median and 90%-spread of realized warming fraction (RWF) and influential physical quantities in the three
ensembles presented in this study (ESMs, EMICs and the B3D-LPX ensemble). For comparison, we also list the full
CMIP5 (IPCC, 2013, Andrews et al., 2015) and EMIC-AR5 ensembles (Eby et al., 2013, , this study), as well as the
subsets presented by Frölicher and Paynter (2015) (F2015). Note that the “full” EMIC-AR5 ensemble does not include the
UMD and IAP models, due to lack of ECS extrapolation (Section S2.1). The “full” CMIP5 ensemble does not include
HadCM3, for which we have not received the required model output. N , ε and γ are not listed for CMIP5 (and the
Frölicher and Paynter (2015) model selection) because we are lacking N estimates for some models.

members RWF ECS ε γ N

ESMs 15 0.46 (0.37, 0.64) 3.86 (2.55, 5.54) 1.41 (1.09, 1.63) 0.72 (0.56, 0.90) 1.38 (1.10, 1.56)

EMICs 9 0.61 (0.50, 0.69) 3.30 (2.62, 3.97) 0.99 (0.84, 1.10) 0.69 (0.58, 1.01) 1.44 (1.17, 1.86)

CMIP5 full 26 0.52 (0.38, 0.68) 3.44 (2.31, 5.25)

EMIC-AR5 full 13 0.59 (0.39, 0.76) 3.30 (1.97, 4.19) 0.97 (0.76, 1.26) 0.69 (0.51, 1.13) 1.33 (0.98 1.83)

ESMs F2015 12 0.52 (0.39, 0.64) 3.80 (2.42, 5.67)

EMICs F2015 8 0.61 (0.49, 0.80) 3.44 (2.15, 3.99) 0.99 (0.74, 1.04) 0.62 (0.51, 0.97) 1.40 (0.89, 1.64)

B3D-LPX 1068 0.60 (0.42, 0.75) 2.88 (1.43, 5.90) 1.09 (0.81, 1.42) 0.66 (0.45, 0.98) 1.13 (0.62, 1.73)

S1.1 TCR variance decomposition15

Analogously to the RWF spread, we also decompose the TCR spread based on the EBM equation16

TCR = R/(εγ − λ), using partial derivatives (Equation 4 in the main text). We do this only for the17

ESM ensemble, to compare the results with Geoffroy et al. (2012). We find that the relative TCR18
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Table S2: Cross-correlations in various ensembles. Stars mark significant correlations, at a confidence level of 95% (*),
99% (**) or 99.9% (***).

(a) EMICs

ECS ε γ R λ εγ

RWF−0.46 −0.54 −0.59 0.21 −0.48 −0.67

ECS 0.35 −0.17 0.03 0.60 −0.03

ε 0.32 0.38 −0.09 0.60

γ 0.34 −0.34 0.95***

R −0.77* 0.42

λ −0.33

(b) ESMs

ECS ε γ R λ εγ

RWF−0.70** −0.66** −0.34 0.19 −0.69** −0.55*

ECS 0.21 −0.34 −0.06 0.91***−0.10

ε 0.51 0.35 0.03 0.85***

γ 0.07 −0.35 0.88***

R −0.39 0.26

λ −0.21

(c) Bern3D-LPX constrained ensemble

ECS ε γ R λ εγ

RWF−0.86***−0.01 −0.18*** 0.05 −0.85***−0.25***

ECS 0.02 −0.09** 0.02 0.77***−0.12***

ε −0.66***−0.05 −0.04 0.00

γ 0.05 −0.06 0.73***

R −0.04 0.02

λ −0.13***

spread contributions of λ, R, γ and ε at CO2 doubling amount to 43%, 34%, 13% and 10%, respectively.19

This is roughly consistent with Geoffroy et al. (2012), who find contributions of 56%, 26%, 6% and 8%.20

The quantitative differences are not surprising given three methodological differences between their21

study and ours. Firstly, they use a two-layer EBM where ε and γ correspond to deep ocean heat uptake,22

as opposed to total heat uptake in our one-layer EBM. Secondly, they use an analysis of variance23

(ANOVA) to decompose the TCR spread contributions, while we use a simpler spread decomposition24

based on partial derivatives. Thirdly, their selection of ESMs is different, with an overlap of 10 out of 1525

models. Our qualitative agreement is thus a confirmation of their finding that λ and R explain most of26

the TCR spread in the CMIP5 ensemble.27

S1.2 Sum of variance contributions compared to total variance28

We now compare the sum of parameter variance contributions to the total variance of the RWF. For29

EMICs and ESMs, the sum of contributions is comparable to the total variance. Like in the ANOVA30

analysis of Geoffroy et al. (2012), the sum of contributions is slightly higher than the best estimate of31

total variance (Figure 4 in the main text). However, the sum is well within the 90%-uncertainty range32

of the total variance, which is 0.0027–0.0149 K2 for EMICs and 0.0049–0.0177 K2 for ESMs. These33

Bayesian uncertainty estimates (Oliphant, 2006) are so wide because the number of ensemble members34

is small.35

This is not the case for the large constrained Bern3D-LPX ensemble, where the sum of contributions36
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becomes significantly larger than the total variance. The 90%-uncertainty range of the total variance37

(0.0108–0.0124 K2) cannot be reconciled with the sum of variance contributions. This discrepancy is38

partly resolved by the fact that ε and γ are strongly anticorrelated in this ensemble (R = −0.66; Table39

S2). Due to this anticorrelation, the total εγ spread contribution (Figure 4b) is smaller than the sum of40

separate ε and γ contributions (Figure 4a). However, even the ECS (or λ) spread contribution alone is41

larger than the total variance. This may be due to the anticorrelation between ECS (or λ) and εγ.42

Although weak (R = −0.12 or −0.13), this anticorrelation is highly significant due to the large number43

of ensemble members, in contrast to the EMICs and ESMs which show no significant correlation44

between ECS and εγ (Table S2).45

This suggests that the total RWF spread in the constrained Bern3D-LPX ensemble may be reduced46

compared to the ECS-induced spread, due to the counteracting cross-correlation with εγ. Although εγ47

is separately anticorrelated with the RWF, this anticorrelation is weaker than in the EMICs and ESMs48

(Table S2) and secondary to the ECS effect. The anticorrelation between ECS and εγ is also visible in49

the Bern3D-LPX ensemble (Figure 2b). Returning to the constrained ensemble, we finally note that the50

discrepancy between the total RWF spread and the ECS-induced RWF spread is due to the long tails51

of the ECS distribution: the discrepancy is resolved if the ensemble is reduced to an ECS range of52

2–6◦C (not shown).53

S1.3 Influence of the ECS state-dependence54

We have argued in the main text and in Pfister (2017) that the global EBM should generally not55

only feature a time-dependent ε(t), but also a time-dependent λ(t). As an intermediate approach, we56

propose to explicitly include the state-dependence of λeq (Pfister and Stocker, 2017) in the EBM:57

ε(t)N(t) = R(t) + λeq(R(t))T (t) (S1)

The state-dependence of λeq can be estimated by independent equilibrium simulations with constant58

forcing (Pfister and Stocker, 2017) and explains part of the time dependence of T (t) that cannot be59

attributed to ε(t). In any model where λeq is state-dependent, only Equation S1 can unambiguously60

define ε(t).61

λeq state-dependence is equivalent to ECS state-dependence, which is found for the Bern3D-LPX62

model and most other EMICs (Pfister and Stocker, 2017), but also for most ESMs that have been63

analyzed accordingly (e.g, Jonko et al., 2013, Good et al., 2015). Accounting for state-dependence64

when calculating the RWF and ε is necessary irrespective of the direction of the state-dependence, i.e.,65

whether ECS decreases or increases with increasing forcing.66

This is illustrated in Figure S1 by example of the Bern3D-LPX model, in which ECS decreases with67

increasing forcing due to the diminishing sea-ice albedo feedback (Pfister and Stocker, 2017). Consistent68
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Figure S1: Relation of the RWF to the ocean heat uptake scaled with the prescribed radiative forcing N/Rpre, following
Winton et al. (2010). Bern3D-LPX simulations with a 1%/yr CO2 concentration increase from preindustrial concentrations
are shown, stabilizing either at CO2 doubling (blue circles) or quadrupling (red and orange crosses, purple squares). Each
symbol shows a 5-year average. In the quadrupling case, the RWF was calculated with three different reference equilibrium
temperatures: ECS(2×CO2) (red), ECS(4×CO2) (orange), and for state-dependent ECS (purple). Grey symbols show the
values at year 99 as shown in Figure 2 (ECS=3.0◦C), i.e., for ECS(2×CO2) (square) and state-dependent ECS (star).

with Winton et al. (2010), two simulations with a gradual CO2 forcing increase at 1%/year (R(t)) are69

compared: one stabilizing at 2×CO2, the other at 4×CO2.70

If λeq is estimated separately for each simulation, such that the RWF reaches one in the perturbed71

equilibrium (as it should), ε(t) calculated from Equation 1 becomes scenario-dependent. The efficacy of72

the 1%CO2 experiment depends on the stabilisation level of the scenario (2×CO2 or 4×CO2), even in73

the first 70 years where the two simulations are identical (blue circles versus orange crosses in Figure74

S1). Alternatively, using the same λeq in both cases leads to a misdiagnosis of the realized warming75

fraction (red crosses). When using λeq estimated from ECS2× for the 4×CO2 scenario, the realized76

warming fraction amounts to roughly 0.85 in equilibrium where it should amount to 1.77

Using a state-dependent λeq(R(t)) based on the time-dependent forcing R(t) in Equation S1 amends78

this discrepancy and defines an ε(t) that is equally valid in both simulations for the first 70 years where79

scenarios overlap, consistent with an RWF that equilibrates to 1 in both scenarios (purple squares).80

This is only shown for 4×CO2 to avoid an overloaded Figure, but 2×CO2 simply follows the purple81

squares up to year 70 and the blue circles thereafter. Note that Equation S1 is still a simplification, as82

λ may not only be state-dependent but also explicitely time-dependent (Gregory et al., 2015, Rose and83

Rayborn, 2016). Any such separate time-dependence is still included in ε(t) in the state-dependent84

EBM (S1).85
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S2 Extended Methods86

In this Supplementary section, we describe and discuss the analysis of the three published model87

ensembles in more detail than in the main text.88

S2.1 EMIC-AR5 ensemble89

S2.1.1 Summary90

The EMIC-AR5 subset we analyze consists of 9 members, the remaining 6 members of EMIC-AR5 were91

excluded due to either unavailable output of ocean heat uptake (Section S2.1.2) or the requirement of92

temperature offset corrections (Section S2.1.3). We also provide estimates of diagnostic EBM parameters93

for a larger subset of 13 EMICs, including the 4 models with temperature corrections (Table S3).94

S2.1.2 Extended analysis description95

Our analysis of the EMIC-AR5 ensemble (Eby et al., 2013) is largely based on our earlier analysis96

focusing on ECS state-dependence (Pfister and Stocker, 2017). EMIC-AR5 included 15 EMICs, which97

are described in Eby et al. (2013) and listed in Pfister and Stocker (2017). Here we have first analyzed98

13 of these models (Table S3), excluding the UMD 2.0 and IAP RAS CM models. No N output was99

available for the UMD 2.0 model, and the N of the IAP RAS CM model is unrealistically low: its100

20-year average around CO2 quadrupling is 0.25 Wm−2, where the spread of the remaining models is101

2.09± 0.47 Wm−2. We have excluded 4 further models based on restart temperature or ECS corrections102

(Section S2.1.3), ending up with an ensemble of 9 uncorrected EMICs.103

We use the 1%CO2 simulation, where CO2 is increased by 1% per year up to 4× preindustrial104

(experiment 4Xc), as well as the control simulation (experiment H CTR) from EMIC-AR5. Temperature105

and ocean heat uptake anomalies for the 1%CO2 simulations are obtained by subtracting the mean106

values of the control simulations from the 1%CO2 time series. Twenty-year running means of these107

anomalies centered around year 70 (the year of CO2 doubling) yield values of ∆T and N . These are108

then used to calculate RWF = ∆T/ECS, γ = N/∆T and ε using Equation 2b.109

Values for all quantities obtained from EMIC-AR5 are listed in Table S3. ECS and R estimates110

from abrupt CO2 doubling simulations are mostly taken from Pfister and Stocker (2017), apart from111

corrections described below. Following Andrews et al. (2015), R estimates are based on a linear112

∆T (t)/N(t) fit over the first 20 simulation years after the year of peak ocean heat uptake (Figure S2).113

For ECS, we mostly select the Gregory estimates extrapolated from a ∆T (t)/N(t) fit over simulation114

years 150–1000 (∆T 150−1000
lin in Pfister and Stocker, 2017), because the exponential fits are problematic115

for some models. Only for two models, namely LOVECLIM and IGSM2, the exponential ECS fits116
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(∆T 150−1000
exp ) were used because the Gregory estimates were biased by an N offset and temperature117

variability under early equilibration, respectively.118

In addition to those ECS choices, we note that the temperature restart offset correction described119

by Pfister and Stocker (2017) was consistently applied to the whole ∆T time series for the three120

affected models LOVECLIM, FAMOUS and SPEEDO. This correction is illustrated by the example of121

LOVECLIM in Section S2.1.3, Figure S3. While the offset correction only weakly affects ECS, its122

impact on the TCR, RWF and ε is much larger. The correction is thus crucial to obtaining reasonable123

estimates of these quantities for the affected models; consequently, these estimates are very sensitive to124

the chosen correction methods. This also applies to the additional R corrections applied to LOVECLIM125

and SPEEDO (Section S2.1.3). Based on this limitation, we exclude the models with corrections of any126

kind from our correlation analysis, but we still show their corrected results in Table S3.127

S2.1.3 EMIC-AR5 diagnosis results and restart offset correction128

This subsection contains one Table and two Figures illustrating the analysis of EMIC-AR5 output.129

Table S3 lists all diagnostic EBM quantities obtained for all EMICs, after all corrections were applied130

as summarized in the table footnote. Figure S2 illustrates the Gregory estimation method (Gregory131

et al., 2004, Andrews et al., 2015) for ECS and R. Figure S3 illustrates restart offset corrections applied132

to some EMICs by the example of LOVECLIM, as described further below.133

Figure S2 is identical to Figure S1 in Pfister and Stocker (2017), except that the 4×CO2 simulations134

shown here are abrupt forcing simulations. This allows an R estimate from these simulations, which is135

very similar to the estimate from 2×CO2 for most EMICs. Note that the raw data is used for the R fits,136

but 50-year running means (not shown here) are used for the ECS fits to avoid misfits like in IGSM2137

(Pfister and Stocker, 2017).138

Figure S3 illustrates the temperature restart offset correction applied to three EMICs (Pfister and139

Stocker, 2017) by example of the LOVECLIM model, as well as an N restart offset correction that is140

only applied to LOVECLIM. The temperature offset correction (already applied to the temperatures in141

Figure S2) is described in the Supporting Information of Pfister and Stocker (2017) and very briefly142

in the following. For each EMIC, it is checked whether the first decadal warming of the 1%/year143

simulation is below zero or exceeds a warming corresponding to RWF = 1 (red dot in Figure S3)144

compared to the end of the control run. If either is true, an offset correction is applied; this is the case145

for LOVECLIM, FAMOUS and SPEEDO.146

For LOVECLIM, we have argued that the exponential ECS estimate is probably more accurate147

than the Gregory estimate (Pfister and Stocker, 2017). This is based on the fact that the warming slope148

is still substantial after 1000 years, but the N output is close to zero, which may be related to an offset149

problem as suggested also by the large N spike at the beginning of the 1%/year simulation. Therefore150
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we apply an N offset correction (Figure S3). The magnitude of this correction is obtained by shifting N151

(and thereby also R) until the Gregory ECS estimate for 2×CO2 matches the exponential ECS estimate.152

This corrected R is used in Table S3. The same shift is used for 4×CO2, because the restart offset153

should not depend on the forcing scenario.154

Table S3: Physical quantities diagnosed from the EMIC ensemble. Model label abbreviations are given in Figure S2. The
RWF and ε are calculated using ECS estimates from the Gregory method (Pfister and Stocker, 2017). Rpre is the CO2

forcing prescribed to the model, R is the effective radiative forcing diagnosed as shown in Figure S2. ECS and R values
marked by asterisks and/or daggers were corrected as specified in the footnotes.

B3 DC GE I2 LO ME ML UV C2 C3 FA SP MI B3new

R [Wm−1] 3.04 3.47 3.49 3.43 3.14† 3.87 3.21 3.43 5.44 4.44 2.95 1.31†† 3.31 3.39

Rpre [Wm−1] 3.75 3.81 n.a. 3.73 3.85 4.05 3.15 3.79 3.69 3.73 n.a. n.a. 3.78 3.75

N [Wm−1] 1.22 1.33 1.40 0.74 1.17 1.44 1.59 1.66 1.78 1.92 1.32 1.14 1.13 1.24

γ [Wm−1K−1] 0.62 0.64 0.57 0.49 1.23 0.60 1.02 0.86 0.86 0.99 0.53 1.07 0.69 0.78

RWF [1] 0.58 0.70 0.61 0.84 0.46 0.63 0.49 0.50 0.63 0.59 0.57 0.28 0.68 0.52

ECScorr [K] 3.44 2.96 4.04 1.80‡ 2.08∗‡ 3.81 3.19 3.86 3.27 3.30 4.41∗ 3.85∗ 2.39 3.08

ε [1] 1.05 0.79 0.97 0.72 1.45 0.99 1.03 1.03 1.13 0.95 0.97 0.84 0.93 1.32

† R is corrected by shifting N to match corrected ECS (Figure S3)
†† R from year 1–150 fit is used because years 1–20 are biased due to centennial variability in SPEEDO (Figure S2)
∗ temperatures are shifted based on restart offset corrections (Figure S3)

‡ exponential extrapolation is used for ECS estimation instead of the Gregory method

S2.2 Ensemble of 15 CMIP5 models155

S2.2.1 Summary156

We analyze an ESM subset of 15 models from CMIP5 (Taylor et al., 2012), based on the overlap of157

published results by Andrews et al. (2015) and Gregory et al. (2015). We use ECS and R estimates from158

Andrews et al. (2015), TCR and γ estimates from Gregory et al. (2015), and calculate RWF = TCR/ECS159

and ε from Equation 2a (main text).160

S2.2.2 Extended analysis description161

In contrast to our EMIC-AR5 analysis, ECS and R estimates for the ESMs were obtained from abrupt162

CO2 quadrupling simulations (Andrews et al., 2015). This may introduce an ECS bias if those ESMs163

are state-dependent, which at least some of them are (Good et al., 2015, Pfister and Stocker, 2017).164

Due to shorter simulations, ECS was extrapolated from years 20–150, opposed to years 150–1000165

in the EMICs. This may also bias ECS, but these biases may partly cancel: The state-dependence166

likely leads to an overestimation of ECS(2×CO2) (Good et al., 2015), and the short time scale to an167

underestimation (Knutti and Rugenstein, 2015, Proistosescu and Huybers, 2017). The R time scale is168

consistent with our EMIC estimates.169
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Figure S2: Estimates of ECS and effective radiative forcing R of the EMIC ensemble using the Gregory method (Gregory
et al., 2004, Andrews et al., 2015). Raw model output is indicated by black (2×CO2) and grey (4×CO2) dots. All linear
fits shown here are performed on this raw output (solid lines: years 150–1000, red dotted: years 20–150, green dotted:
years 1–20). R is estimated from the first 20 years after N peaks. R values in the legend are in Wm−2, λ values are in
Wm−2K−1, ECS values in K.
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Figure S3: Temperature (∆T ) and ocean heat uptake (N) restart anomaly corrections applied to LOVECLIM model
output. The top row shows the Gregory fits for ECS and R, and the exponential fits for ECS (Pfister and Stocker, 2017).
Black filled dots in the first panel are only temperature-corrected, grey circles are additionally heat uptake-corrected (see
text). Remaining rows show the temperature and ocean heat uptake time series of the end of the control simulation (up to
year 0) and the start of the 1%/year 4×CO2 simulation (middle row) or the start of the abrupt 2×CO2 simulation
(bottom row); uncorrected data are shown in green, corrected data in black. The green dot and black square in the ∆T
panel denote averages of the first 10 years, the red diamond is the maximum allowed offset (corresponding to RWF = 1)
below which anomalies would not be corrected (LOVECLIM is well above). Note that the difference between red dot and
black dot is the difference between the control mean and the last control decade.
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TCR and γ estimates are taken from Gregory et al. (2015), where they are averaged over 20 years170

like our EMIC estimates. Note that the ocean heat uptake efficiency is named κ in Gregory et al.171

(2015). The remaining quantities N , ε and RWF can be calculated from these available estimates172

as described for the EMICs. Our model selection of 15 ESMs thus consists of the overlap between173

Gregory et al. (2015) and Andrews et al. (2015). For the remaining models analyzed by Andrews et al.174

(2015), consistent γ estimates are missing such that we cannot estimate N and ε. We do not use the γ175

estimates from Kuhlbrodt and Gregory (2012) to fill the model gaps, because these are obtained using176

linear regression and underestimate γ compared to the year 61-80 averages (not shown). In contrast to177

N , we can calculate the RWF for the full ESM ensemble of Andrews et al. (2015) (Table S1), using178

TCR estimates from IPCC (2013) that are identical to Gregory et al. (2015) apart from rounding.179

S2.3 Constrained Bern3D-LPX ensemble180

S2.3.1 Summary181

Steinacher et al. (2013) generated 5000 Bern3D-LPX parameter sets based on estimated prior182

distributions of 19 model parameters. The 1068 parameter sets that best matched a suite of present-day183

and historic observations were selected, forming the constrained ensemble that was used to simulate184

future projections. The idealized projections we analyze here were first presented in Steinacher and185

Joos (2016).186

S2.3.2 Extended analysis description187

Idealized 2×CO2 simulations were performed by Steinacher and Joos (2016) using the constrained188

Bern3D-LPX ensemble. The scenario underlying these simulations is a CO2 increase at a rate of 1189

percent per year up a concentration of 2×CO2, which is reached in year 70, and constant concentration190

thereafter. Unfortunately, this is not identical to any of the idealized scenarios of the EMIC-AR5191

intercomparison.192

Nevertheless, we employ these 2×CO2 simulations from the Bern3D-LPX ensemble to estimate the193

RWF and related quantities at CO2 doubling. These quantities are estimated from 10-year means194

around year 70 to average out some of the variability imposed on the LPX model (Stocker et al.,195

2013, Pfister, 2017). The 10-year window length is selected over the usual 31-year window length196

(Pfister, 2017) to minimize the underestimation of the RWF in the Bern3D-LPX ensemble compared to197

EMIC-AR5 and CMIP5. Such underestimation occurs because the concentration stabilizes in year 70 in198

the Bern3D-LPX simulations while it continues to increase in the 4×CO2 scenarios of EMIC-AR5 and199

CMIP5. This should not affect our semi-quantitative considerations, as the underestimation using the200

year 65–75 averaging window (where scenarios only differ over over years 70–75) should be small.201
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S2.3.3 Forcing estimation202

More importantly, we cannot estimate R for the Bern3D-LPX ensemble members consistently with the203

EMICs and ESMs. Simulations with abrupt CO2 increases are missing, and a linear fit for R cannot204

be obtained from a gradual forcing increase. However, we know that the main forcing spread in the205

Bern3D-LPX ensemble is caused by a prior scaling factor applied to the prescribed CO2 forcing. To206

account for this, we simply scale an estimated mean R with this scaling factor that is different for207

each ensemble member. The estimated mean R = 3.04 Wm−2 was obtained from the abrupt 2×CO2208

simulation of the Bern3D-LPX model in EMIC-AR5 (Figure S2). This is the same model version as209

used by Steinacher and Joos (2016), run with standard parameter values. As most posteriori parameter210

distributions of the constrained Bern3D-LPX ensemble are centered roughly around these standard211

values (Steinacher et al., 2013), R = 3.04 should roughly correspond to the mean R of the Bern3D-LPX212

ensemble.213

While we thus account for the directly prescribed R spread, we do not account for any additional R214

spread that may be caused by changes in other prior parameters. While R is only minorly affected215

by modifications in single parameters such as the global mean λ (squares in Figure 3e) and ocean216

diffusivities (not shown), the simultaneous variation of multiple parameters may result in a more217

substantial R spread. By not accounting for this additional spread contribution in R, it is instead218

implicitly included in the ε spread as calculated from Equation 1.219

S2.3.4 ECS estimation using different methods220

We have also obtained new ECS estimates for the Bern3D-LPX ensemble by using the Gregory method221

(Gregory et al., 2004), linearly extrapolating years 150 to 1000 to equilibrium. This method and222

time scale is consistent with our ECS diagnosis for the EMIC ensemble. It is different from the ECS223

estimation by Steinacher and Joos (2016) that used an exponential extrapolation; see Pfister and Stocker224

(2017) for a comparison of the two methods. However, the resulting ECS estimates are very similar225

apart from few outlier members where the exponential fit fails. Therefore, the resulting skill-weighted226

ECS likely ranges are in very close agreement between the two methods (1.94–4.21◦C and 1.95–4.22◦C),227

with an identical median (2.88◦C). These results indicate that the ECS median and range specified by228

Steinacher and Joos (2016) are robust with respect to the two different ECS estimation methods we229

have tested.230
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