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Abstract The sensitivity of the neodymium isotopic composition (𝜀Nd) to tectonic rearrangements of
seaways is investigated using an Earth System Model of Intermediate Complexity. The shoaling and closure
of the Central American Seaway (CAS) is simulated, as well as the opening and deepening of Drake Passage
(DP). Multiple series of equilibrium simulations with various intermediate depths are performed for both
seaways, providing insight into 𝜀Nd and circulation responses to progressive throughflow evolutions.
Furthermore, the sensitivity of these responses to the Atlantic Meridional Overturning Circulation (AMOC)
and the neodymium boundary source is examined. Modeled 𝜀Nd changes are compared to sediment core
and ferromanganese (Fe-Mn) crust data. The model results indicate that the North Atlantic 𝜀Nd response to
the CAS shoaling is highly dependent on the AMOC state, i.e., on the AMOC strength before the shoaling
to shallow depths (preclosure). Three scenarios based on different AMOC forcings are discussed, of
which the model-data agreement favors a shallow preclosure (Miocene) AMOC (∼6 Sv). The DP opening
causes a rather complex circulation response, resulting in an initial South Atlantic 𝜀Nd decrease preceding
a larger increase. This feature may be specific to our model setup, which induces a vigorous CAS
throughflow that is strongly anticorrelated to the DP throughflow. In freshwater experiments following
the DP deepening, ODP Site 1090 is mainly influenced by AMOC and DP throughflow changes, while
ODP Site 689 is more strongly influenced by Southern Ocean Meridional Overturning Circulation and
CAS throughflow changes. The boundary source uncertainty is largest for shallow seaways and at
shallow sites.

1. Introduction

Changes in the global ocean circulation due to tectonic rearrangements of the Central American Seaway
(CAS) and Drake Passage (DP) are recorded in the neodymium isotopic composition (𝜀Nd), which can
be extracted from sediment cores and ferromanganese (Fe-Mn) crusts. These changes and their cli-
matic implications can also be studied using models. So far, model-data comparison was complicated
by the fact that most models lack representations of certain water mass tracers such as 𝜀Nd, or by
computational cost.

Here we present an 𝜀Nd sensitivity study of the CAS shoaling and closure, as well as the DP opening and
deepening, using the Bern3D climate model. It is the first such study on the DP opening and deepening,
including a model-data comparison of 𝜀Nd in the Southern Ocean. The CAS shoaling and closure have
recently been investigated in a more highly resolved model [Sepulchre et al., 2014], with a focus on 𝜀Nd in
the Caribbean. In contrast, we analyze large-scale 𝜀Nd changes in the North Atlantic. Furthermore, the effi-
ciency of our model does not only enable the simulation of a step-by-step shoaling but also a case-by-case
analysis of the influence of the AMOC. This accounts for the large spread of possible AMOC responses
inferred from earlier model studies (section 1.1); Rempfer et al. [2012a] have demonstrated that AMOC mod-
ifications have a substantial regional impact on seafloor 𝜀Nd, even without any seaway alterations. Due to
the coarse model resolution, we cannot attempt a geologically realistic shape of the CAS and DP. Instead,
the seaways are opened broadly and uniformly in modified modern bathymetries, to study the impact of
varying throughflows in the relevant locations. Additional model experiments investigate the influence of
the 𝜀Nd boundary source (see below), as well as the sensitivity of 𝜀Nd in the Southern Ocean to different
circulation features.
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𝜀Nd is a quasi-conservative proxy of water mass mixing [Frank, 2002]. It is calculated from the isotopic
concentrations 143Nd (radiogenic) and 144Nd as follows:

𝜀Nd =

(
(143Nd∕144Nd)sample

(143Nd∕144Nd)std
− 1

)
⋅ 104

, (1)

where the “Bulk Earth” standard ratio is 0.512638 [Jacobsen and Wasserburg, 1980]. Among other applica-
tions, 𝜀Nd is ideal for tracking interbasin exchange of water masses between the Atlantic and the Pacific [e.g.,
Abouchami et al., 1999; Burton et al., 1999; Scher and Martin, 2006; Newkirk and Martin, 2009], because of
the distinctive signatures in these two basins. The older rocks of the North Atlantic continental crust are less
radiogenic than the young volcanic material found in the North Pacific. Via neodymium (Nd) exchange at
the continental margins (hereafter called “boundary source”), the water masses inherit this 𝜀Nd signature
[Lacan and Jeandel, 2005; Arsouze et al., 2007], and at distance from the margins essentially only change their
intermediate and deep water Nd isotope compositions as a consequence of mixing with other water masses.

This paper is structured as follows. Previous research on the CAS shoaling and DP deepening is summarized
in sections 1.1 and 1.2. Following the methods description of our model study (section 2), the results are pre-
sented and discussed in sections 3 to 6: An overview of circulation and 𝜀Nd in modified bathymetries is given
in section 3, the CAS shoaling and DP deepening are presented separately in sections 4 and 5, and bound-
ary source experiments are documented in section 6. Limitations of the study are discussed in section 7,
followed by a summary and conclusions (section 8).

1.1. Shoaling and Closure of the Central American Seaway
Decreases in 𝜀Nd during the last roughly 13 million years were found in North Atlantic Fe-Mn crusts and
Caribbean sediment cores and associated with the shoaling and closure of the Central American Seaway
(CAS) [Burton et al., 1997, 1999; O’Nions et al., 1998; Abouchami et al., 1999; Frank et al., 1999; Reynolds et al.,
1999; Newkirk and Martin, 2009]. More specifically, the decreases have been related to a decreasing flow of
radiogenic Pacific waters through the CAS [Reynolds et al., 1999; Newkirk and Martin, 2009], or an intensifica-
tion of North Atlantic Deep Water (NADW) formation in response to the CAS shoaling and closure, including
increased contributions of very unradiogenic Labrador Sea Water [Burton et al., 1997, 1999; O’Nions et al.,
1998]. However, the most recent decrease (∼4 Ma to the present) may also at least in part be due to changes
in weathering inputs related to the major intensification of Northern Hemispheric glaciation [Frank et al.,
1999; Reynolds et al., 1999; von Blanckenburg and Nägler, 2001; Muiños et al., 2008].

The timing of the geological evolution of the CAS (and the emerging Isthmus of Panama) is heavily debated
based on geological, biological, and paleoceanographic evidence [Molnar, 2008; Stone, 2013]. While it is
widely accepted that the CAS was fully closed by around 3 Ma, the recent geological studies by Montes et al.
[2012a, 2012b] suggest that the seaway had already become as narrow as 200 km by the early Miocene,
and that deep water communication between the Pacific and the Caribbean had ceased by 10 Ma or earlier.
However, Coates and Stallard [2013] and others [Stone, 2013, and references therein] do not agree with this
latter finding.

In model studies with modified modern or Miocene boundary conditions, an open CAS causes a net
Pacific-to-Atlantic throughflow and weakens North Atlantic Deep Water (NADW) formation, thereby slowing
the Atlantic Meridional Overturning Circulation (AMOC) [e.g., Maier-Reimer et al., 1990]. In different mod-
els, the simulated CAS throughflows amount to 2–17 Sverdrup (Sv) and the AMOC responses range from a
very slight decrease to a near shutdown, as compiled by Sepulchre et al. [2014]. (Note: The ancient counter-
part of NADW is usually dubbed Northern Component Water (NCW). Because we are investigating modified
modern bathymetries in this study, we utilize the term NADW for both counterparts. Similarly, we also utilize
AABW (Antarctic Bottom Water) for Southern Ocean Deep Water.)

Among other impacts, the CAS shoaling and closure has also been related to a decrease in the North Pacific
Overturning circulation [Motoi et al., 2005; von der Heydt and Dijkstra, 2006; Butzin et al., 2011], Northern
Hemisphere glaciation [Murdock et al., 1997; Klocker et al., 2005; Lunt et al., 2008], and a shoaling of the
tropical thermocline [Steph et al., 2010; Zhang et al., 2012].

However, apart from the recent study by Sepulchre et al. [2014], none of the previous model studies have
included Nd isotopes. Sepulchre et al. [2014] have calculated 𝜀Nd offline using the ocean circulation from a
General Circulation Model (GCM) [Arsouze et al., 2007] with a narrow CAS (400 km) in a similar location as
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reconstructed by Montes et al. [2012b] for the Miocene. They have prescribed four different CAS depths and
found a similar range in the simulated Caribbean 𝜀Nd average (at 500 m depth) as in Caribbean sediment
data from Newkirk and Martin [2009].

1.2. Opening and Deepening of Drake Passage
Another major tectonic event that has been investigated by paleoceanographers for many decades is the
opening of DP, separating South America from Antarctica. Its timing is even more uncertain compared to
the CAS closure: estimates based on either tectonics or sediment parameters range from 6 to 50 Ma [Eagles
et al., 2006; Barker et al., 2007, and references therein], with a majority lying in the middle to late Eocene or
Oligocene epochs (i.e., between 41 and 23 Ma). Model experiments on the impact of DP on ocean circulation
and climate have been conducted with various bathymetric settings: with idealized geometries [Gill and
Bryan, 1971; Toggweiler and Bjornsson, 2000; Smith et al., 2006], modified modern bathymetries [Mikolajewicz
et al., 1993; Sijp and England, 2004; Sijp et al., 2009] and Eocene or Oligocene paleobathymetries [e.g., Huber
and Nof, 2006; Zhang et al., 2010; Sijp et al., 2011].

The three most crucial impacts of the DP opening are closely linked: The onset of the Antarctic Circumpolar
Current (ACC), its influence on Antarctic glaciation, and changes in the global meridional overturning cir-
culation. For the ACC development, the opening of another seaway must be considered in addition to DP,
namely, the Tasman Gateway separating Australia from Antarctica. It is not clear which of the two gateways
was the last barrier for the ACC [Barker et al., 2007; Bijl et al., 2013]. While this causality is not crucial if one
is mainly interested in the exchange of water masses between the Pacific and the Atlantic, it is important
for the much discussed impact of these seaways on Antarctic glaciation [Kennett, 1977; Toggweiler and
Bjornsson, 2000; DeConto and Pollard, 2003a, 2003b; Barker et al., 2007; Zhang et al., 2010; Sijp et al., 2011;
Cristini et al., 2012; Lefebvre et al., 2012; Goldner et al., 2014].

The physical mechanism dubbed “Drake Passage effect” suggests that in the presence of an uninterrupted
circumpolar Southern Ocean, a stronger ACC strengthens the AMOC, due to NADW-evoking Ekman suc-
tion in the Atlantic sector of the Southern Ocean [Toggweiler and Samuels, 1995]. In accordance with this,
some model simulations with a closed DP or Eocene configuration show a weakened or even shut down
AMOC [e.g., Mikolajewicz et al., 1993; Huber and Sloan, 2001; Sijp and England, 2004]. However, the issue is
complicated by the fact that the overturning is sensitive to changes in atmospheric greenhouse gas con-
centrations [Heinemann, 2009; Lunt et al., 2010]. Model studies comparing bathymetries with an open and
closed DP also find that the open passage causes a weakening of the Southern Ocean Meridional Over-
turning Circulation (SOMOC) [Mikolajewicz et al., 1993; Sijp and England, 2004; Sijp et al., 2009, 2011; Cristini
et al., 2012].

Although it is expected that the opening of DP has also affected the distribution of Nd isotopes, none of the
above mentioned model studies have included these tracers. In sediment cores from the Atlantic sector of
the Southern Ocean, Scher and Martin [2004, 2006] have found an 𝜀Nd increase in the middle Eocene. They
have associated this increase with the inflow of radiogenic waters from the Pacific, i.e., with the opening of
DP, and dated it to 41 Ma [Scher and Martin, 2006]. Following the increase, Scher and Martin [2008] have mea-
sured pronounced 𝜀Nd decreases in the Oligocene and Miocene and associated these mainly with enhanced
NADW transport to the Southern Ocean.

2. Methods
2.1. Model Description
The Bern3D model is a coupled ocean-atmosphere model of intermediate complexity. Its three-dimensional
ocean component is a frictional geostrophic balance model [e.g., Müller et al., 2006], which is coupled to
a single-layer energy and moisture balance model (EBM) [Ritz et al., 2011]. The model geometry consists
of 36 × 36 horizontal grid cells of equal area, and 32 logarithmically spaced depth layers with increasing
thickness (from 39 m at the surface to 397 m at full depth of 5000 m). The ocean model’s biogeochemical
component is described in, e.g., Tschumi et al. [2008] and Parekh et al. [2008] and has recently been extended
by the addition of Nd isotopes [Rempfer et al., 2011], as described below. Due to its computational efficiency,
the model is suitable for a wide range of paleoclimate studies [Ritz et al., 2011, 2013; Rempfer et al., 2012a;
Menviel et al., 2012; Roth and Joos, 2013] and sensitivity studies [Parekh et al., 2008; Tschumi et al., 2008; Ritz
et al., 2011; Rempfer et al., 2011, 2012b].
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Figure 1. (a) Locations of sediment cores and Fe-Mn crusts (labeled stars) on the Bern3D model grid and corresponding regions over which the modeled 𝜀Nd is
averaged for model-data comparison (colors). Highlighted in yellow are cells that are modified in the CAS shoaling and Drake Passage deepening experiments.
Data of 𝜀Nd from these sediment cores or Fe-Mn crusts, colors corresponding to the regions in Figure 1a. (b) Sites BM1969.05 [Burton et al., 1999] (red) and 121DK
[Abouchami et al., 1999] (purple); (c) “Blake” (Site BM1963.897) [Reynolds et al., 1999]; (d) ODP Sites 1090 (blue) and 689 (green) [Scher and Martin, 2004, 2006,
2008]. The data related to the DP opening and deepening by Scher and Martin [2006] are shown with a grey background. Additional data from Scher and Martin
[2004, 2008] are shown with a white background.

Rempfer et al. [2011] incorporated Nd isotopes into the Bern3D model, the modeled modern 𝜀Nd distribu-
tion is in reasonable agreement with measurements. In contrast to the approach by Arsouze et al. [2007],
the 143Nd and 144Nd concentrations are treated separately. In addition to Nd dust and river sources, a con-
stant boundary source is prescribed at depths between 0 and 3000 m. The only Nd sink in the model is the
Nd removal by sinking particles, parameterized using the “reversible scavenging” approach [Bertram and
Elderfield, 1993; Rempfer et al., 2011].

2.2. Gateway Modifications
For this study, we alter the DP and Panama regions in the Bern3D modern bathymetry. Grid cells which
are modified are marked in yellow in Figure 1. For the CAS, an opening width of two cells is selected to
avoid computations on a single-gridbox level. For DP, the three cells that are open in the model’s modern
bathymetry are chosen. We do not attempt to create more realistic bathymetric shapes due to the coarse
resolution of our model. CAS and DP openings merely serve as Atlantic-to-Pacific connections provid-
ing throughflows in roughly the relevant locations, the impact of which can be studied. The throughflow
strength is modified by varying the seaway depth as described below.

An overview of all model experiments is given in Table 1, including explanations of the acronyms. The CAS
cells are opened uniformly, layer by layer, starting from the modern bathymetry. The maximum opening
depth is determined by the depth of neighboring grid cells and amounts to roughly 2100 m (22 layers). For
the modern bathymetry (CTRL) and each of the 22 bathymetries with different CAS depths (CSTD1-22), sep-
arate model spin-ups are carried out. Each spin-up is run for 30,000 model years to ensure equilibration of
the 𝜀Nd distribution. Tectonic rearrangements such as the CAS shoaling are slow enough to maintain oceanic
equilibrium; therefore, these 23 simulations (starting with the deepest CAS) qualitatively represent a CAS
shoaling from a deep seaway to a fully closed one. This series of spin-ups is labeled CSTD in the remainder
of this paper.

Similarly, the DP cells are opened uniformly, starting with a fully closed DP and a relatively (1300 m) deep
CAS (EOCTRL). This CAS depth was chosen as it is the shallowest depth for which the model does not
increase boundary drag. It is kept constant for all DP opening depths. DP is gradually opened up to a depth
of roughly 2500 m (24 layers). This series of 25 simulations (EOCTRL-DSTD24) is summarizingly labeled DSTD.
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Table 1. Overview of Model Experimentsa

Control Simulations

CTRL Modern control run
EOCTRL “Pseudo-Eocene” control run (with closed DP and ∼1300 m deep CAS)

Central American Seaway (CAS) Experiment Series

CSTD CAS shoaling and closure with Standard APFb

23 model runs, representing shoaling of the CAS from ∼2100 m depth (CSTD22) to closed (CTRL)
CN10 like CSTD but with North APF reduced to 0.10 Sv
CB10 Both North and South APF reduced to 0.10 Sv
CN00 North APF reduced to 0.00 Sv
CB00 Both North and South APF reduced to 0.00 Sv
CSTDa like CSTD but with CAS boundary source modification a (no seafloor boundary source in the Caribbean)
CSTDb CAS boundary source modification b (no boundary source in the Caribbean)

Drake Passage (DP) Experiment Series

DSTD DP opening and deepening with Standard APF
25 model runs, representing deepening of DP from closed (EOCTRL) to ∼2500 m depth (DSTD24)

DN10-DB00 like DSTD but with APF modifications as in CN10-CB00 (see above)
DSTDa like DSTD but with DP boundary source modification a

(most unradiogenic Antarctic boundary source cell is turned off)
DSTDb DP boundary source modification b (no Antarctic Boundary Source)
DSTD24fw 10 freshwater (fw) experiments starting from DSTD24,

with a negative fw input of −0.02 to −0.20 Sv in the North Atlantic (section 2.4)
DN1024fw- like DSTD24fw, but with APF modifications as in CN10-CB00 (see above)

DB0024fw

aAll acronyms (except the control simulations) correspond to a series of multiple simulations, e.g., CSTD consists
of CTRL and CSTD1–CSTD22, where the number suffix denotes the depth of the Central American Seaway (CAS) in
model layers.

bHere APF is short for Atlantic-to-Pacific freshwater flux (section 2.3).

While the introduction of an Eocene or Oligocene paleobathymetry (accompanied by modified climate forc-
ings and Nd boundary conditions) would be beyond the scope of this study, including an open CAS along
with a shallow or closed DP qualitatively represents the seaway connections between the Atlantic and the
Pacific during these epochs.

2.3. AMOC Forcing
In the model’s modern control, an Atlantic-to-Pacific freshwater flux [Zaucker et al., 1994] is applied to com-
pensate for its lack of a dynamical atmosphere. The flux strength, which is set to 0.17 Sv from the South
Atlantic to the South Pacific and 0.17 Sv from the North Atlantic to the North Pacific [Ritz et al., 2011], is an
effective tuning parameter for AMOC strength. We will therefore use the shorthand term “AMOC forcing”
synonymously with “Atlantic-to-Pacific freshwater flux strength.” Note that the AMOC forcing does not pre-
scribe the AMOC, it is merely one of many factors influencing the model’s salinity balance; therefore, the
AMOC strength may still be changed by other such factors, e.g., the CAS depth. Because the northern part
(N) of the AMOC forcing has a stronger impact than the southern part (S), we select the following modifica-
tions to probe the AMOC sensitivity of the seaway experiments: reducing N to 0.10 Sv (CN10/DN10), or both
N and S to 0.10 Sv (CB10/DB10); reducing N to zero (CN00/DN00), or both to zero (CB00/DB00). Here all of
the acronyms in brackets do not correspond to single simulations but to series of spin-ups (like CSTD/DSTD);
see Table 1.

Table 2. Depths of the Sites That Are Used for Model-Data
Comparison and References to the Corresponding Data

Site Depth Reference

Blake (BM1963.897) 850 m Reynolds et al. [1999]
BM1969.05 1850 m Burton et al. [1999]
121DK 2000 m Abouchami et al. [1999]
ODP 1090 3700 m Scher and Martin [2006, 2008]
ODP 689 1600 m Scher and Martin [2004, 2006]

2.4. Freshwater Experiments
To test the impacts of a stronger AMOC
increase when DP is deep (24 layers),
additional freshwater experiments are
conducted in this bathymetry (DSTD24).
Starting from DSTD24, 10 simulations are
run with a constant negative freshwater flux
in the North Atlantic, amounting to −0.02
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to −0.2 /Sv (increments of −0.02 Sv, DSTD24fw01-DSTD24fw10). The simulations are run for 5000 years,
which is enough for the ocean circulation to equilibrate. To avoid proximity to the CAS, the freshwater flux is
only prescribed north of the Mediterranean, i.e., in latitudes of roughly 40◦N–70◦N. The flux is not compen-
sated to avoid a secondary forcing influence of the compensating flux [Stocker et al., 2007]. The freshwater
experiments are repeated with the different AMOC forcings (i.e., starting from DN1024, DB1024, DN0024,
and DB0024).

2.5. Boundary Source Modifications
We modify the Nd boundary source in relevant regions to check the robustness of the results with respect
to boundary source uncertainties. Model runs with these modifications are only performed for the standard
AMOC forcing (CSTD, DSTD). In the CAS experiments, we apply two different modifications in the Caribbean
region. First, only the boundary source of Caribbean cells that are not land cells in the modern bathymetry is
set to zero (CSTDa). Second, also the boundary source of the continental margin of the Caribbean, as well as
the CAS cells, is set to zero (CSTDb). The latter modification is quite drastic, as most of the continental mar-
gin is only one land cell wide; therefore, the boundary source in the Pacific is also affected by these cells. In
the DP experiments, two modifications to the Antarctic boundary source are applied: first, only the single
most negative (𝜀Nd ≈−40) boundary source cell is set to zero (DSTDa); second, the entire Antarctic boundary
source is removed (DSTDb). These sensitivity experiments are especially relevant, considering that boundary
exchange with the Antarctic continent is hardly detectable in the present-day water column even closest to
Antarctica [Stichel et al., 2012]. In the modern Caribbean, there is recent evidence for significant boundary
exchange in the deep water [Osborne et al., 2014] but with a less radiogenic signature than the extrapo-
lated map by Jeandel et al. [2007] and model studies based on this map suggest [e.g., Rempfer et al., 2011;
Sepulchre et al., 2014; this study].

2.6. Model-Data Comparison
Figure 1a shows the locations of sediment cores and Fe-Mn crusts from which records are used for compari-
son with the model results. The published records are shown in Figures 1b–1d: from Sites 121DK [Abouchami
et al., 1999] and BM1969.05 [Burton et al., 1999] (Figure 1b), Site BM1963.897 (“Blake,” Figure 1c), and Ocean
Drilling Program (ODP) Sites 689 and 1090 [Scher and Martin, 2006] (Figure 1d). From Abouchami et al. [1999],
only one record is chosen for the comparison, because the two cores they examined are relatively close with
respect to the coarse model resolution. Site 121DK was selected over Site 65GTV because we are more inter-
ested in East Atlantic NADW than Mediterranean Outflow Water. Similarly, Burton et al. [1999] present data
from two even closer sites (BM1969.05 and ALV539), from which the longer record from BM1969.05 is cho-
sen. In Figure 1d, the data with a grey background are probably related to the DP opening and deepening
[Scher and Martin, 2006] and are compared with the corresponding model simulations (section 5.3); the data
with a white background are probably related to increased NADW export [Scher and Martin, 2008].

From the model output, nonweighted averages of 𝜀Nd values in a 3×3×3 cell region around the core sites are
computed for comparison with the data. The cell that contains the estimated depth of the corresponding
Fe-Mn crust or sediment core is chosen as the vertical center, where Eocene paleodepths according to Scher
and Martin [2006] are used in case of the sediment cores (Table 2). The horizontal averaging regions are
shown in Figure 1a, in colors corresponding to Figures 1b–1d.

3. Circulation and Seafloor 𝜺Nd in Modified Bathymetries

Before the circulation and 𝜀Nd responses to intermediate CAS and DP depths are discussed (sections 4
and 5), a comparison of closed versus deep gateways is presented here. Figure 2 shows the barotropic ocean
circulation and seafloor 𝜀Nd in four different bathymetries. Figures 2a–2d compare the modern bathymetry
(CTRL) to a bathymetry with a 1300 m deep CAS (CSTD16). The CTRL circulation (Figure 2a) shows a rea-
sonable representation of the modern global gyre circulation, but a very weak ACC (∼ 40 Sv) compared to
observations (e.g., Cunningham et al. [2003], report a modern ACC of 134 Sv).

In CSTD16 (Figure 2c), the gyre circulation is not substantially changed (Figure 2c), apart from the weak-
ening of the Atlantic Subpolar Gyre, which is directly related to the slower AMOC (section 4.1). Although
the stream function values in the Southern Hemisphere are shifted, the DP throughflow is not notably
strengthened (<1 Sv). The CAS throughflow of roughly 9 Sv incorporates parts of the South Pacific and North
Atlantic subtropical gyres into an interhemispheric branch of the ACC, strengthening the western boundary
current along eastern South America. This also creates a direct flow connection between the CAS and
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Figure 2. Barotropic ocean circulation and seafloor 𝜀Nd distribution in four different bathymetries: (a, b) modern (CNTRL); (c, d) open CAS at ∼1300 m depth
(CSTD16); (e, f ) open CAS with closed Drake Passage (EOCTRL); and (e, h) open CAS with ∼2500 m deep Drake Passage (DSTD24). While the absolute 𝜀Nd signa-
tures are shown for CTRL (Figure 2b) and EOCTRL (Figure 2f ), anomalies are displayed for CSTD16 (Figure 2d) and DSTD24 (Figure 2h). Only cells that have no
boundary source (i.e., a depth of 3000 m or greater) are shown, shallower cells are shaded in grey. Circulation strength is shown in Sverdrup (106 m3/s), and flow
is clockwise around positive values.
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Figure 3. Depth profiles of the horizontal circulation through the
CAS (positive eastward) in five model experiments with differ-
ent AMOC forcings. CSTD and CB00 are the experiments with the
strongest and weakest AMOC, respectively (Table 1). The through-
flow profiles in the bathymetry with the deepest CAS (∼ 2100 m)
are shown in colors, e.g., CSTD24 for CSTD. Only for CSTD, the pro-
files in bathymetries with intermediate opening depths (CSTD2-22)
are also shown, in shades of grey. Circulation strength is plotted in
Sverdrup (106 m3/s) per meter.

the North Atlantic. In models with a more
realistic Caribbean bathymetry, this con-
nection is weaker and limited to the surface
[e.g., Sepulchre et al., 2014]. However, in
addition to this weaker direct flow, Pacific
water masses passing the CAS can also
be transported into the North Atlantic
indirectly via gyre circulation.

The CTRL seafloor 𝜀Nd shown in Figure 2b
is in reasonable agreement with observa-
tions [Rempfer et al., 2011, Figure 9]. The
differences in 𝜀Nd between CSTD16 and
CTRL are shown in Figure 2d. The open CAS
increases seafloor 𝜀Nd in the Atlantic and, to
a smaller extent, in the Indian Ocean. Note
that the increase in the Indian Ocean and
the Atlantic sector of the Southern Ocean
is probably overestimated, due to the too
weak influence of the ACC in this region.
However, the increase in the Atlantic sector
is also amplified by the reduced inflow of
unradiogenic NADW [Rempfer et al., 2012a].
In the Pacific, seafloor 𝜀Nd is only slightly
less radiogenic in CSTD16 than in CTRL. This
is because the Pacific is a large reservoir
of radiogenic Nd, such that the increased
transport of such Nd to the Atlantic only has

a minor effect on the Pacific 𝜀Nd signature; even less so at the seafloor, because the transport predominantly
occurs at intermediate water depths.

Figures 2e–2h compare the first (EOCTRL) and last (DSTD24) bathymetry of the DP opening experiments
(Table 1). The EOCTRL circulation (Figure 2e) features a vigorous (∼22 Sv) eastward CAS throughflow orig-
inating in the Southern Ocean. As detailed in section 7, this throughflow is stronger than in other models,
especially than in those with Eocene boundary conditions [e.g., Heinemann, 2009; Sijp et al., 2011]. In
DSTD24 (Figure 2c), the CAS throughflow is weakened compared to EOCTRL, and similar to CSTD16. The
only difference between DSTD24 and CSTD16 is the uniform shape of the DP in DSTD24, which enables a
stronger ACC (57 Sv, as opposed to 40 Sv).

The EOCTRL seafloor 𝜀Nd distribution (Figure 2f ) is similar to the CTRL distribution (Figure 2b) in most
regions. The most notable difference is the Atlantic 𝜀Nd, which is more radiogenic in EOCTRL, especially in
the North. The well-mixed Atlantic signature is due to the strong CAS throughflow (Figure 2e). Furthermore,
𝜀Nd in the Indian Ocean is more homogeneous because less unradiogenic Nd is mixed into the western
Indian Ocean. When DP is opened to great depth (DSTD24, Figure 2h), the ACC causes a more uniform 𝜀Nd

signature in the Southern Ocean. This results in an 𝜀Nd increase in the South Atlantic, the Indian Ocean, and
most markedly the Atlantic sector of the Southern Ocean, but a decrease in the Pacific sector. Additionally,
the North Atlantic 𝜀Nd becomes less radiogenic due to the weakened CAS throughflow with an open DP.

4. Shoaling and Closure of the Central American Seaway
4.1. Circulation Changes
To better understand the 𝜀Nd response to a CAS opening, it is instructive to first describe the depth profile
of the CAS throughflow, depending on CAS depth and AMOC forcing (section 2.3). Figure 3 shows the depth
profile of the horizontal circulation through CAS in various experiments. The circulation for a 2100 m deep
CAS is shown for each AMOC forcing (colors). In all but the two weakest AMOC cases CN00 and CB00 (in
which the AMOC amounts to less than 3 Sv with a deep CAS), a westward transport of NADW into the Pacific
is found below 1000 m depth. This feature has also been found in earlier EMIC simulations [Nisancioglu et al.,
2003; Schneider and Schmittner, 2006], but not in GCM simulations [e.g., Lunt et al., 2008; Sepulchre et al.,
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2014]. On the other hand, the GCM simulations feature a wind-driven westward surface flow that is not
present in the mentioned EMIC studies, but found in the Bern3D circulation, due to the wind stress forcing
in this region. In all experiments shown in Figure 3, however, the net throughflow is eastward, i.e., from the
Pacific to the Atlantic. Consistent with the 2–17 Sv range found in previous model studies [Sepulchre et al.,
2014, and references therein], it amounts to 0–10 Sv, as seen in Figure 4a. Only in the simulations with the
shallowest CAS and weakest Atlantic-to-Pacific freshwater flux (i.e., smallest interbasin salinity gradient), the
wind-driven surface flow prevails, resulting in a net Atlantic-to-Pacific flow. This can be seen in Figure 4a
as a negative CAS throughflow in the four shallowest openings of CN00 and CB00. Overall, the simulated
depth profile shown in Figure 3 is in qualitative agreement with the profile found by Butzin et al. [2011] in a
Miocene bathymetry of a more finely resolved EMIC (compare their Figure 10).

Figure 4 shows the CAS throughflow, AMOC strength and 𝜀Nd response in the five CAS shoaling experiments
with different AMOC forcings. The above described NADW flow into the Pacific is also visible in Figure 4a as
a decrease in net CAS throughflow for seaway depths larger than 1000 m, if the AMOC forcing is sufficiently
strong (i.e., in CSTD, CN10, and CB10). Interestingly, the wide spread of AMOC strengths in the modern
bathymetry is narrowed down to three AMOC states (of roughly 3, 6, and 9 Sv) when the CAS depth is about
400 m or deeper (Figure 4b). In other words, the AMOC difference between CN10 and CB10, and between
CN00 and CB00, vanishes for a deep CAS. This implies that the importance of the southern part of the
Atlantic-to-Pacific freshwater flux is diminished when direct water mass exchange between the two basins
is allowed north of the equator. Furthermore, the net flow through the deepest CAS (2100 m) amounts to
roughly 7.5 Sv, independent of AMOC strength. We infer that, for a deep CAS, the equilibrium between
atmospheric freshwater flux and CAS throughflow is not regulated by the net throughflow strength, but
mainly by the intensity of the AMOC.

In all experiments except CB00, the AMOC increase in response to a CAS shoaling and closure amounts to
about 6–8 Sv (Figure 4b). This absolute range is small, but the relative increase compared to the deep-CAS
AMOC strength ranges from roughly 75% (CSTD) to 200% (CN00). The latter increase is similar to GCM sim-
ulations that show a very sluggish AMOC prior to the CAS closure [Sepulchre et al., 2014], although the
AMOC in the modern bathymetry is too weak in CN00 (∼ 9 Sv). Experiment CB00 is highly unrealistic, as it
features a completely shut down AMOC in the modern bathymetry. It is notable, however, how much the
CAS throughflow and 𝜀Nd responses to shallow CAS modifications differ in the absence of a modern AMOC
(Figures 4a–4e, CB00).

4.2. The 𝜺Nd Response in the North Atlantic
Now, we look at the modeled 𝜀Nd response in the Western and Eastern North Atlantic (Figures 4c–4e). The
largest 𝜀Nd range is found around the shallow Blake site (Figure 4c). This site’s 𝜀Nd evolution is dominated by
a pronounced 𝜀Nd decrease. This is because the eastward flow through CAS at ∼100–1000 m depth (Figure 3)
decreases as CAS shoals, transporting less Pacific water to Blake. The 𝜀Nd decrease starts at a CAS depth of
∼900 m in CN00 and CB00, and ∼700 m in CN10, CB10 and CSTD. This difference is due to the delayed CAS
throughflow decrease in CN10, CB10, and CSTD (Figure 4a and section 4.1).

With an intermediate to normal AMOC forcing, the 𝜀Nd decrease around Blake stops at ∼250 m depth and is
followed by an increase (Figure 4c: CN10, CB10, and CSTD). This is because the AMOC does not only become
stronger but also less shallow as the CAS shoals. Figure 5 compares the circulation in CN1027 and CN1032,
the first and last experiments of this Blake 𝜀Nd increase (highlighted by red circles in Figure 4c). In the hor-
izontal circulation averaged between ∼500 m and ∼1000 m depth, we see a southward flow in the central
Atlantic in CN1027 (Figure 5a), but a northward flow in CN1032 (Figure 5b). This explains the 𝜀Nd increase at
Blake (marked by a star), which shifts from receiving North Atlantic waters toward receiving more radiogenic
waters from the South Atlantic and Indian Oceans. This is directly related to the fact that the intensifying
AMOC also becomes deeper: in CN1027 (Figure 5c), the depth region shown in Figures 5a and 5b (blue
band) is mainly influenced by the southward flow of NADW, while in CN1032 (Figure 5d), the NADW flow is
deeper and this depth region is mainly influenced by the subsurface return flow.

With a low AMOC forcing, the 𝜀Nd decrease continues until the CAS is fully closed (Figure 4c: CN00). No 𝜀Nd

increase occurs because the AMOC does not increase beyond 9 Sv, the minimum value that was needed in
CN10 and CB10 to cause an 𝜀Nd increase (Figures 4b and 4c). In other words, below AMOC strengths of 9 Sv,
Blake is still influenced by shallow NADW. As the CAS throughflow is nearly zero in CN00 when the CAS is
shallower than ∼200 m (Figure 4a), the additional 𝜀Nd decrease of ∼1.5 𝜀Nd units can be attributed to the
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Figure 4. Evolution of (a) the CAS throughflow, (b) AMOC strength, and 𝜀Nd averaged around (c) Blake, (d) BM1969.05,
and (e) 121DK, in the CAS shoaling and closure experiments (qualitatively corresponding to a temporal evolution from
right to left). Each dot corresponds to the equilibrium value of a separate model simulation. Colors signify different
AMOC forcings, where CSTD and CB00 are the experiments with the strongest and weakest AMOC, respectively (Table 1).
Red circles in Figure 4c mark two experiments that are further examined in Figure 5.
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Figure 5. (a, b) Intermediate horizontal circulation, averaged over roughly 500–1000 m depth, in two different experi-
ments with different CAS depths. Flow speed in mm/s along streamlines is shown in colors. Lengths of the arrows are
not related to flow speed. (c, d) AMOC in the same experiments. Circulation strength is shown in Sverdrup (106 m3/s),
flow is clockwise around positive values. The blue band marks the averaging region of the horizontal circulation shown
in Figures 5a and 5b. The Blake location is marked by a star in all panels.

AMOC switch-on from ∼3 Sv to ∼9 Sv (Figure 4b). This effect is even stronger at the deeper sites (Figures 4d
and 4e), as discussed below. No additional decrease occurs in the unrealistic case of a complete AMOC
shutdown instead of a switch-on (CB00).

The 𝜀Nd evolution at Site BM1969.05 (Figure 4d) is dominated by the changing influence of NADW, because
it is located at a depth of 1850 m where the NADW flow is strong (e.g., Figure 5d). In CSTD, the AMOC
amounts to ∼ 9 Sv even with a deep CAS (Figure 4b). Therefore, there are only very slight 𝜀Nd changes
around BM1969.05, as the site is bathed by NADW at all times. The 𝜀Nd signature remains slightly higher
than the 𝜀Nd of NADW (–13.5), probably due to radiogenic boundary source influences. In CN10 and CB10,
preshoaling 𝜀Nd values are higher and an 𝜀Nd decrease of ∼ 1.5 𝜀Nd units is simulated in line with the AMOC
increase. Only in CN00 and CB00, NADW is weak enough that changes in the eastward CAS throughflow also
have a notable impact on 𝜀Nd at Site BM1969.05, namely, a long-term decrease of ∼1.5 𝜀Nd units. However,
the effect of the subsequent AMOC switch-on in CN00 is much larger, resulting in an 𝜀Nd decrease of ∼3 𝜀Nd

units, while the CAS depth changes by only 200 m.

Site 121DK (Figure 4c) shows a qualitatively very similar 𝜀Nd signal to BM1969.05, although the ranges are
smaller. This difference as well as the slightly more variable 𝜀Nd signal in CSTD shows that the NADW influ-
ence is not as direct as at BM1969.05. There are three reasons for the similarity: First, the two sites are at
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Table 3. Comparison of Modeled and Measured 𝜀Nd Ranges Related to the CAS Shoaling in Three Different Locations
(Compare Figure 1)a

Location Model, Med. AMOC Model, Low AMOC Geochemical Data

BM1969.05 𝜺Nd –11.3 to –13.5 (–2.2) –9.0 to –13.3 (–4.3) –10.9 to –13.5 (–2.6)b

CAS depth/time 700 m to 250 m 1900 m to 0 m 3 Ma to the present

Notable features Δ𝜀Nd –3.0 (200 m to 0 m)

121DK 𝜺Nd –12.1 to –13.4 (–1.3) –10.8 to –13.3 (–2.5) –10.7 to –11.8 (–1.1)c

CAS depth/time 700 m to 0 m 1900 m to 0 m 3 Ma to the present

Notable features Δ𝜀Nd –1.5 (200 m to 0 m)

Blake 𝜺Nd –8.1 to –10.8 (–2.7) –6.4 to –11.2 (–4.8) –7.5 to –11.0 (–3.5)d

CAS depth/time 700 m to 250 m 900 m to 0 m 9 Ma to the present

Notable features Δ𝜀Nd +1.0 (250 m to 0 m) Δ𝜀Nd –2.5 (9 Ma to 5 Ma)

aFor the model, two ranges are given, for medium AMOC (CN10/CB10, compare Table 1) and for low AMOC (CN00).
The data ranges correspond to the minimum-to-maximum values of the time intervals presented in the referenced
studies. For easier comparison disregarding the offsets, the relative ranges are shown in italics. Additionally, the CAS
depth (/time) intervals over which these 𝜀Nd ranges are recorded in the model (/data) are listed. Finally, notable fea-
tures in the 𝜀Nd evolutions are highlighted (e.g., depth intervals showing a particularly strong 𝜀Nd decrease).

bBurton et al. [1999].
cAbouchami et al. [1999].
dReynolds et al. [1999].

roughly the same depth; second, the gyre circulation in the North Atlantic allows a zonal exchange of water
masses, and third, NADW flow in the North Atlantic is not entirely confined to the western boundary in
our model.

On a side note, a slight 𝜀Nd increase (< 1 𝜀Nd unit) is simulated around all three sites in CB10, CN10, and
CSTD for the early CAS shoaling between ∼2100 m and ∼700 m. This is probably because the flow of NADW
through the deep CAS (Figure 3) decreases, such that radiogenic Nd from the Caribbean boundary source
remains in the Atlantic instead of being advected into the Pacific. This hypothesis is strengthened by the fact
that no increase is recorded for low AMOC forcings (CB00, CN00) around Sites BM1969.05 and 121DK and
by results discussed in section 6. However, the increase is not strongest for CSTD around Sites BM1969.05
and 121DK; this may either indicate that the effect is limited by the direct NADW influence in these regions
or that other effects contribute to the increase. For CB00 and CN00, an early increase is only found around
Blake, suggesting that this is caused by a different, very local effect.

4.3. Model-Data Comparison and Discussion
Because we cannot link the modeled CAS depths to a specific time in the past, we only compare 𝜀Nd ranges
of the model simulations to the ranges measured in Fe-Mn crusts (Table 3). Table 3 also indicates the depth
or time intervals corresponding to these 𝜀Nd ranges and lists notable changes over partial intervals, which
are described in more detail in section 4.2. Results for CB00 and CSTD are not included in the table; CB00
is unrealistic as its modern AMOC is shut down, and CSTD produces much smaller ranges than CN10/CB10.
Some processes that could contribute to 𝜀Nd changes [e.g., Frank et al., 1999] are not resolved in our model:
i.e., there is no shift in the NADW formation region (not shown) and boundary source changes due to glacial
weathering are not simulated. These are referred to as “other processes” in the following.

The simulated 𝜀Nd range around Blake is very similar to the data from Reynolds et al. [1999] in case of an
intermediate, shallow AMOC (∼6 Sv before the shoaling). These model results confirm that the earlier 𝜀Nd

decrease Reynolds et al. [1999] measured (∼2.5 𝜀Nd units between 9 and 5 Ma, Figure 1b) may have been
caused entirely by CAS throughflow changes, if the CAS had shoaled by about 450 m during that time;
or alternatively, if a slighter shoaling had caused a throughflow decrease of about 6 Sv (Figure 4a). However,
the simulated modern 𝜀Nd value around Blake (∼-9.5) is too radiogenic because of an increase during the
closure (section 4.2), such that the more recent measured decrease has to be explained by other effects.
In case of a sluggish (∼3 Sv) preclosure AMOC and an AMOC switch-on in the latest stages of the
shoaling, the model produces an even larger 𝜀Nd range than the data. However, the modern 𝜀Nd value only
matches the data because the modern model AMOC is too shallow (∼9 Sv) in this scenario.
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Depending on the AMOC forcing, our model results around BM1969.05 can support either of two common
explanations for the latest 𝜀Nd decrease recorded in the data. With a medium AMOC forcing, the simulated
𝜀Nd range is in good agreement with the data, meaning that the measured 𝜀Nd range can almost entirely
be explained with changes in unradiogenic NADW inflow. While all NADW is unradiogenic in our model
(∼−13.5), this could equivalently be realized by a strengthening of the unradiogenic Labrador seawater
contribution to NADW [Burton et al., 1997, 1999; O’Nions et al., 1998]. However, this 𝜀Nd range requires a
CAS shoaling of at least 500 m in the model, which most probably did not occur in the last 3 Ma. Therefore,
the low AMOC scenario (CN00) is in even better agreement with the hypothesis of Burton et al. [1997] and
others, as the AMOC switch-on during the CAS closure (from just ∼150 m depth) can explain the full 𝜀Nd

range. A sluggish preclosure AMOC is supported by earlier model studies [e.g., Butzin et al., 2011; Sepulchre
et al., 2014]. On the other hand, in case of a strong pre-closure AMOC (>9 Sv) [Frank et al., 2002; Poore et al.,
2006], the simulated 𝜀Nd changes around BM1969.05 are very small (Figure 4d, CSTD). Thus, in this scenario
the measured 𝜀Nd decrease would have to be explained by other effects, e.g., Northern Hemispheric
glaciation [Frank et al., 1999; von Blanckenburg and Nägler, 2001; Muiños et al., 2008].

Around the East Atlantic Site 121DK, the model 𝜀Nd range is also most similar to the data for an intermediate
AMOC. However, the agreement of the absolute values is worse than in the West Atlantic, with a shift toward
too unradiogenic values. This is also the case for other deep sites in the East Atlantic that can be compared
to data from Muiños et al. [2008] (not shown). While this offset may partly be explained by the boundary
source uncertainty, it mainly reflects the model’s overestimation of NADW influence in the West Atlantic.
On another note, Muiños et al. [2008] have measured larger 𝜀Nd ranges than the model simulates in the East
Atlantic (∼ 2.5 𝜀Nd units). Although the model can reproduce this range in the low AMOC scenario, the cor-
responding CAS depth range is unrealistic for the last 10 Ma (∼ 2000 m), suggesting that their records may
also be influenced by processes not resolved in the model.

In summary, the model results favor a relatively slow and shallow (∼ 6 Sv) AMOC before the CAS shoal-
ing to depths smaller than ∼ 700 m, if the circulation changes in response to the shoaling should explain
large parts of the measured 𝜀Nd changes in the North Atlantic. This is strengthened by the absolute 𝜀Nd val-
ues at the two West Atlantic sites, which are in good agreement with the earliest data (deviation −0.4 to
−0.6 𝜀Nd units). A nearly shut down (∼3 Sv) preclosure AMOC produces too large ranges and too radiogenic
𝜀Nd values in the West Atlantic (+1.1 to +1.9 𝜀Nd units) and is therefore less plausible based on our model,
but still possible considering the uncertainties (sections 6 and 7). With a stronger preclosure AMOC (>9 Sv),
the contribution of the modeled circulation effects is small (∼1.4 𝜀Nd units around Blake and ∼0.5 𝜀Nd units
around BM1969.05).

5. Opening and Deepening of the Drake Passage
5.1. Circulation Changes
An opening of DP in the Bern3D modified modern bathymetry (EOCTRL) results in an eastward throughflow
at all depth levels. This is in agreement with other models using both modern and paleobathymetries with
an open DP [e.g., Lefebvre et al., 2012]. Due to the strong wind stress forcing, flow is strongest at the surface
and decreases with depth.

Figure 6 displays the DP and CAS throughflows, AMOC and SOMOC strength, and seafloor 𝜀Nd responses
in the five DP deepening experiments with different AMOC forcings (section 2.3). The DP throughflow
(Figure 6a, solid lines) is nearly independent of the AMOC forcing. It already amounts to roughly 9 Sv for
the shallowest (∼40 m) DP opening and increases to a maximum of about 60 Sv when the passage is deep-
ened. The steplike throughflow increase at a depth of roughly ∼1300 m is due to a reduction of the model’s
boundary drag in cells with a seafloor depth greater than this threshold value, and can thus be consid-
ered a model artifact. The slower increase before this step, and the slight decrease thereafter, suggest that
the throughflow approaches an equilibrium somewhat below 60 Sv. The magnitude of this maximum is
probably constrained by the bathymetry, grid resolution, wind stress forcing, and drag.

The net eastward CAS throughflow (Figure 6a, dashed line) is closely linked to the DP throughflow, because
it develops from a branch of the ACC (section 3). It weakens as DP is opened and deepened, because a larger
portion of the wind forcing is transferred to the strengthening ACC (see also Figures 2e and 2f). The influ-
ence of the AMOC forcing on the throughflow only becomes important when DP is opened to depths larger
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Figure 6. Evolution of (a) the DP (solid line) and CAS (dashed) throughflows, (b) AMOC strength, (c) SOMOC strength),
and 𝜀Nd averaged around ODP Sites (d) 1090 and (e) 689, in the DP opening and deepening experiments (qualitatively
corresponding to a temporal evolution from left to right). Each dot corresponds to the equilibrium value of a separate
model simulation. Colors signify different AMOC forcings, where DSTD and DB00 are the experiments with the strongest
and weakest AMOC, respectively (Table 1).
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Figure 7. Global Meridional Overturning Circulation (GMOC) in three different bathymetries: (a) ∼1300 m open CAS with closed Drake Passage (EOCTRL); (b) open
CAS with ∼ 2500 m deep Drake Passage (DSTD24); and (c) modern (CTRL). Circulation strength is shown in Sverdrup (106 m3/s), and flow is clockwise around
positive values.

than ∼ 500 m. In these cases, a stronger forcing (i.e., larger interbasin salinity gradient) enhances the CAS
throughflow, like in the CAS-only experiments (Figure 4a).

For all DP depths, AMOC strengths in DN10 and DB10 (or DN00 and DB00) are very similar (Figure 6b).
Thus, like in the CAS experiments (Figure 4b), the southern component of the AMOC forcing has a much
smaller impact than the northern component. The “Drake Passage effect” (section 1 or Toggweiler and
Samuels [1995]) is also visible in Figure 6b: The AMOC increases from very sluggish to up to 11 Sv (despite
the open CAS) as DP is opened and deepened. Because this effect is enhanced by the AMOC forcing, it is
most pronounced in DSTD.

Figure 6c shows the SOMOC response to the DP opening and deepening. Widely consistent with previ-
ous modeling studies [Mikolajewicz et al., 1993; Sijp and England, 2004; Sijp et al., 2009, 2011; Cristini et al.,
2012], the opening substantially weakens the SOMOC. The magnitude of the weakening in our model is
best comparable to what Sijp et al. [2011] found with an open versus closed DP in an Eocene bathymetry.
The weakening of the SOMOC and strengthening of the AMOC from EOCTRL to DSTD24 is readily visible
in the Global Meridional Overturning Circulation (GMOC, Figures 7a and b7). The CTRL GMOC with a more
vigorous AMOC is also shown for comparison (Figure 7c).

5.2. The 𝜺Nd Response in the Atlantic Sector of the Southern Ocean
Here we discuss the 𝜀Nd response in the DP experiments around ODP Sites 1090 (Figure 6d) and 689
(Figure 6e). Both sites show an overall 𝜀Nd increase as DP deepens, which is however preceded by a decrease
in response to the DP opening. The increase is linked to the strengthening ACC which transports radio-
genic Pacific waters into the Atlantic sector of the Southern Ocean. The shallower (1600 m) Site ODP 689 is
directly affected by the horizontal DP throughflow if DP is deep enough; furthermore, this site is influenced
by the downward propagation of AABW, which also gets more radiogenic as DP deepens. This may explain
why the increase is stronger around ODP 689 (∼ 1.5–1.8 𝜀Nd units) than around the deeper Site ODP 1090
(∼ 1.1–1.2 𝜀Nd units), which is only indirectly reached by the radiogenic DP throughflow (i.e., via AABW or
Circumpolar Deep Water (CDW)).

The initial 𝜀Nd decrease is also much more pronounced around ODP 689 (∼ 0.6–1.0 𝜀Nd units) than around
ODP 1090 (∼0.2–0.3 𝜀Nd units). This hints to four possible mechanisms that could cause the decrease
in the model: (i) an increased inflow of relatively unradiogenic NADW due to the strengthening AMOC
(AMOC effect), (ii) local shifts in circulation patterns toward less radiogenic source waters (source effect),
(iii) a decreased inflow of North Pacific waters due to weakening CAS throughflow (CAS effect), and (iv)
a decreased inflow of relatively radiogenic Antarctic Bottom Water (AABW) due to the reduced SOMOC
(SOMOC effect) [Rempfer et al., 2012a].

The source effect is apparently negligible, as a very similar 𝜀Nd decrease is still simulated when the bound-
ary source is modified (section 6). The AMOC effect can account for a decrease of ∼0.4 𝜀Nd units at ODP 689,
which is the difference between the decrease ranges in the strongest and the weakest (near zero) AMOC sce-
narios. This leaves the combined CAS and SOMOC effects as the prime causes of the decrease. Note that the
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Table 4. Comparison of Modeled and Measured 𝜀Nd Ranges Related to the DP Deepening
in Two Different Locations (Compare Figure 1)a

Location Model, Medium AMOC Geochemical Data

ODP 1090 𝜺Nd –8.9 to –7.7 (+1.2) –8.5 to –5.2 (+3.3)b

DP depth/time 200 m to 1600 m 42 Ma to 34 Ma

Notable features Δ𝜀Nd –0.3 (0 m to 150 m) Δ𝜀Nd +2.9 (42 Ma to 39 Ma)

ODP 689 𝜺Nd –10.2 to –8.4 (+1.8) –9.4 to –7.3 (+2.1)b

DP depth/time 350 m to 1600 m 42 Ma to 35 Ma

Notable features Δ𝜀Nd –0.9 (0 m to 300 m)

aModel ranges with an intermediate AMOC forcing (CN10/CB10) are shown. The data
ranges correspond to the minimum-to-maximum values of the time intervals presented
in the referenced studies. For easier comparison disregarding the offsets, the relative
ranges are shown in italics. Additionally, the DP depth (/time) intervals over which these
𝜀Nd ranges are recorded in the model (/data) are listed. Finally, notable features in the 𝜀Nd
evolutions are highlighted (e.g., depth intervals showing an 𝜀Nd decrease).

bScher and Martin [2006].

mechanisms causing the decrease have to be more substantial than meets the eye, as they must counteract
the rapid onset of the ACC, which is expected to increase 𝜀Nd in the region.

In the modern bathymetry, the SOMOC effect was demonstrated to have a great impact on 𝜀Nd in the
Atlantic sector of the Southern Ocean [Rempfer et al., 2012a]. However, the effect is weaker in the bathyme-
tries with a shallow or closed DP, because the difference between the Atlantic and AABW 𝜀Nd signatures is
small in these bathymetries. This is shown in Figure 2f for a closed DP, 𝜀Nd distributions with a shallow DP are
similar. The SOMOC decrease may still contribute to the 𝜀Nd decrease, especially around ODP Site 689 which
is bathed by downward flowing AABW, but it is probably not as influential as the CAS effect.

We therefore suggest that the diminishing CAS throughflow is probably the dominant cause of the simu-
lated 𝜀Nd decrease in response to the DP opening. The vigorous CAS throughflow is advected southward as
a western boundary current at intermediate depths (∼ 200–1300 m). This flow is so strong that it is readily
visible in the barotropic circulation (Figure 2e). Thereby, the CAS throughflow supplies radiogenic Nd to the
Southern Ocean. A weakening of this intermediate inflow decreases 𝜀Nd at ODP Site 689, but also at ODP
Site 1090, as the inflow eventually feeds into CDW and/or AABW. Because the CAS throughflow is probably
too strong in our model (section 7), one might argue that the 𝜀Nd decrease may be overestimated as well.
On the other hand, a weaker CAS throughflow would enable an enhanced AMOC, resulting in an increased
southward flow of unradiogenic NADW at intermediate depths, which may cause a similar 𝜀Nd decrease.

A second, less pronounced 𝜀Nd decrease is simulated for the deepest DP depths (Figures 6d and 6e). It
is probably related to both the slight DP throughflow weakening and AMOC strengthening (Figures 6a
and 6b). This is further examined with additional experiments that are discussed in section 5.4.

5.3. Model-Data Comparison and Discussion
The 𝜀Nd response in the DP simulations is less strongly influenced by the AMOC forcings than in the CAS
simulations, because the NADW influence in the Southern Ocean is limited due to the vigorous SOMOC.
Because the ranges are thus similar for all forcings (Figures 6d and 6e), we only compare the modeled 𝜀Nd

range with intermediate AMOC forcing (CN10/CB10) to the sediment core data from Scher and Martin [2006]
(Table 4).

The measured 𝜀Nd range is larger at ODP Site 1090 (∼ 3.3 𝜀Nd units) than at OPD Site 689 (∼ 2.1 𝜀Nd units).
Scher and Martin [2006] argue that a DP opening may have transported radiogenic Pacific waters to AABW
formation regions, and AABW may have influenced Site 1090 more directly than the shallower Site 689.

The circulation and 𝜀Nd changes in our model differ from this hypothesis. An 𝜀Nd decrease is simulated in the
first stages of the DP opening (Figures 6d and 6e), which is not observed in the data from Scher and Martin
[2006] (Figure 1d). However, the few measurements preceding the increase do not exclude the possibility
of such an initial decrease. This means that DP may have opened earlier than the onset of the observed 𝜀Nd

increase, corroborating findings of, e.g., Livermore et al. [2005] and Eagles et al. [2006]. We will, however, not
venture to draw this conclusion. While the delayed increase is robust within our sensitivity experiments,
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it is subject to considerable uncertainties (section 7). The CAS throughflow changes contributing to this
decrease may be specific to our model setup, but the also contributing AMOC increase and SOMOC
decrease are in agreement with earlier model studies on the DP opening [Mikolajewicz et al., 1993; Sijp and
England, 2004; Sijp et al., 2009, 2011; Cristini et al., 2012]. Our model experiments cannot answer the question
whether the AMOC and SOMOC changes alone could induce an 𝜀Nd decrease strong enough to counteract
the increase due to a more radiogenic AABW signature.

While AABW formation in the model mainly takes place close to Antarctica, the model resolution is too
coarse to confine the downward propagation of AABW so tightly that ODP Site 689 is not bathed by AABW
(e.g., Figures 1a and 7a). Therefore, ODP Site 689 is probably more strongly influenced by AABW than Site
1090 in our model, which explains the larger 𝜀Nd increase range for DP depths >300 m. On another note,
the modern AABW influence in the deep Atlantic is underestimated in the Bern3D model [Gerber and Joos,
2013]; while it is much larger in the bathymetries with a shallow DP, it may still be underestimated. However,
even with a stronger AABW influence, the simulated 𝜀Nd range at Site 1090 could probably not be much
larger than at Site 689, i.e., still smaller than the observed range. This discrepancy could only be reconciled if
the initial 𝜀Nd decrease was replaced by a steep increase, for which we do not find a plausible mechanism in
our model. Therefore, we argue based on the model results, that effects other than the inflow of radiogenic
Pacific waters may have contributed to the measured strong 𝜀Nd increase at Site 1090, e.g., local circulation
changes or changes in the boundary source. Scher and Martin [2006, 2008] present paleoceanographic evi-
dence against most plausible mechanisms other than the inflow of Pacific Waters; therefore, further model
simulations with more highly resolved models are required to unravel the role of the DP opening and other
effects in the 𝜀Nd evolution of Site 1090.

Opposed to Site 1090, the 𝜀Nd range at Site 689 is in reasonable agreement with the data. While a DP
deepening to a depth of ∼1300 m is required to achieve this 𝜀Nd range, this depth corresponds to a DP
throughflow of only 60 Sv in the model (due to the underestimation of the ACC). This throughflow strength,
and thereby also the induced 𝜀Nd range, may correspond to a shallower DP depth in reality, considering that
the modern DP throughflow amounts to 134 Sv [Cunningham et al., 2003].

5.4. Freshwater Experiments Following the DP Deepening
Following the 𝜀Nd increase related to the DP opening, Scher and Martin [2008] also found an 𝜀Nd decrease
in the ODP 1090 sediment core (Figure 1d, white background). This decrease is much stronger than the one
simulated by our model (Figure 6d, DP depth > 1500 m), amounting to roughly 3 𝜀Nd units (minimum to
maximum, neglecting some interruptions of the decrease). Scher and Martin [2008] suggest an enhanced
NADW export to the Southern Ocean in response to the DP deepening as a cause for this 𝜀Nd decrease.
Therefore, freshwater experiments were conceived (section 2.4) to test whether a stronger AMOC increase
following the DP deepening could cause a comparable 𝜀Nd decrease in the model.

Although the freshwater perturbations are limited to the North Atlantic, they also strongly influence the
CAS throughflow and, thereby, the DP throughflow and SOMOC. Therefore, we do not consider this a real-
istic framework for a model-data comparison. While an 𝜀Nd decrease is simulated around ODP Site 1090,
it is much weaker than the observed decrease [Scher and Martin, 2008], which is at least partly due to the
counteracting influences of other circulation changes provoked by the artificial freshwater forcing.

A scatterplot matrix indicates the interactions between multiple variables (Figure 8). In our case, the vari-
ables are the four most important circulation features (CAS and DP throughflows, AMOC, and SOMOC)
and 𝜀Nd at ODP Sites 1090 and 689, as well as the prescribed freshwater forcing (which is the only
independent variable).

Note that not all of the apparent correlations signify a direct dependence between the correlated variables.
This is reflected in the background coloring of the panels, which is based on the authors’ interpretation
of the model results. The panels with a light grey background mark variable pairs that are only indirectly
related (i.e., via another circulation feature). For example, the freshwater forcing only has a direct influence
on the CAS throughflow and AMOC (Figures 8a and 8c), which in turn influence the other variables. Panels
are given a dark grey background if the sign of the correlation is different from the physical expectation (e.g.,
Figure 8e, described further below). This means that the two shown variables are less strongly influenced
by one another than by a different variable, which results in the depicted indirect correlation overruling
their expected correlation. In Figures 8l–8n, the correlation is reversed for very small freshwater forcings.

PFISTER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 17



Paleoceanography 10.1002/2014PA002666

Figure 8. Freshwater experiments following the Drake Passage (DP) deepening experiments, i.e., in the bathymetry with the deepest (∼2500 m) DP. Negative
freshwater fluxes of −0.02 to −0.20 Sverdrup (106 m3/s) are prescribed the North Atlantic (section 2.4). Six dependent variables (CAS and DP throughflow, AMOC,
SOMOC, and 𝜀Nd averaged around ODP Sites 689 and 1090) are plotted against the independent variable (the prescribed freshwater forcing) and against each
other. Units are Sverdrup for the top five variables, and 𝜀Nd units for the bottom two. Light grey and dark grey backgrounds mark panels where the correlation
is mainly indirect (i.e., via one or more other variables), dark grey regions show correlations whose sign is opposite to the physical expectations (compare text).
Colors signify different AMOC forcings, where DSTD24fw and DB0024fw are the experiments with the strongest and weakest AMOC, respectively (Table 1).

These panels therefore have a split background, where dark grey starts at the data point from which on the
correlation is opposite to expectations (for all AMOC forcings).

The following observations apply for each AMOC forcing (color) separately; we do not make statements
across different forcings, as we consider them to be separate scenarios. The DP throughflow decreases
in response to the forced CAS throughflow increase (Figure 8c). The strong anticorrelation between
the two throughflows was also found in the DP deepening experiments (Figure 6a). The AMOC is most
directly controlled by the freshwater forcing, which causes it to increase (Figure 8d) despite the increasing
CAS throughflow (Figure 8e) and decreasing DP throughflow (Figure 8f ). The SOMOC strength increases
(Figure 8g), indicating that its negative correlation with the DP throughflow (Figure 8i) is stronger than its
normally negative correlation with the AMOC, which is overruled (Figure 8j). While the CAS throughflow
may also have a direct impact on the SOMOC (Figure 8h), the indirect impact via DP throughflow (Figure 8i)
is probably more important, which is why a light grey background was chosen for (Figure 8h).

In contrast to the DP deepening experiments, the 𝜀Nd changes in response to the freshwater forcing are
mostly opposite at ODP Sites 689 and 1090 (Figures 8k, 8p, and 8u), except for the weakest freshwater
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Figure 9. Boundary source sensitivity study for (a) the CAS experiments and (b) the Drake Passage experiments. Spatially
averaged 𝜀Nd evolutions around (a) Sites BM1969.05, 121DK, and Blake, and (b) ODP Sites 689 and 1090 are plotted.
Colors correspond to Figure 1. The experiments with unmodified boundaries (CSTD/DSTD) are shown as solid lines, the
ones with a modified boundary source in the Caribbean/Antarctic (CSTDa/DSTDa) as dotted lines, and the ones with no
boundary source in these regions (CSTDb/DSTDb) as dashed lines (section 2.5).

forcings. This allows us to infer which circulation effects dominate the 𝜀Nd signal at each site. For 𝜀Nd in
the Southern Ocean, we expect a positive correlation with CAS throughflow, DP throughflow and SOMOC
strength, and a negative correlation with AMOC strength. Since the correlations are mostly of opposite sign
in Figures 8l, 8o, 8r, and 8s, we deduce that these influences are weaker. We infer that ODP Site 689 is most
strongly influenced by the combined effects of CAS and SOMOC changes (Figures 8q and 8t). This is because
the site is relatively shallow and bathed by downward propagating AABW. However, the influences of DP
throughflow and AMOC are apparently only slightly weaker, as the 𝜀Nd changes are very small at this site,
and particularly nonlinear for low freshwater and/or AMOC forcings. ODP Site 1090 on the other hand, is
mainly influenced by the combined effects of DP throughflow and AMOC changes (Figures 8m and 8n).
As this site lies deeper than the main DP throughflow and NADW in our model, these signals are probably
transported to the site by CDW. Note, however, that these findings are not necessarily applicable for, e.g.,
bathymetries with a shallow DP, in which the 𝜀Nd distribution prior to circulation changes is different.

6. Boundary Source Modifications

Boundary source modifications that were applied in experiments CSTDa, CSTDb, DSTDa, and DSTDb
(Table 1) do not considerably alter the qualitative trends in the 𝜀Nd evolutions (Figure 9). This confirms that
the signals we have discussed above are indeed primarily caused by ocean circulation changes. However,
the boundary source modifications shift the absolute 𝜀Nd values. These shifts are largest for the shallow-
est sites (Blake and ODP 689). Note that modifications are quite drastic in CSTDb and DSTDb; therefore, the
actual boundary source uncertainty is probably smaller than these shifts indicate. The unmodified experi-
ments (CSTD/DSTD) should still produce the most realistic values, as the magnitude of the boundary source
was tuned (along with other parameters) to best reproduce the present-day 𝜀Nd as well as dissolved Nd
concentrations [Rempfer et al., 2011].

In the CAS experiments (Figure 9a), two slight trend deviations are caused by boundary source modifica-
tions in addition to the shifts. First, the slight 𝜀Nd increase in CSTD for the deep shoaling (∼ 2100–700 m)
vanishes around all sites when the Caribbean boundary source is removed (CSTDb). This confirms that this
increase in CSTD (and CN10, CB10) may be caused by the weakening advection of radiogenic Caribbean
waters out of the Atlantic as the CAS shoals (section 4.2). Second, the 𝜀Nd increase at Blake in the final stages
of the shoaling is less pronounced in CSTDb than in CSTD. This is because the AMOC return flow, which is
mixed with Caribbean waters before reaching Blake (Figure 5b), is less radiogenic in CSTDb. If the Caribbean
boundary source was not removed, but less radiogenic (as suggested by Osborne et al. [2014]), changes in
𝜀Nd evolutions would probably be similar, but less pronounced.

In the DP experiments, trend deviations are only notable around ODP Site 689 for the very first opening step,
probably because this step causes a strong SOMOC change which is sensitive to the Antarctic boundary
source. Except for this first step, the 𝜀Nd shift is very similar in DSTDa and DSTDb, suggesting that the influ-
ence of the Antarctic boundary source toward more negative values is mainly caused by the single most
negative boundary source cell.
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In summary, uncertainties associated with the boundary source call for caution, especially in the interpre-
tation of simulated changes in 𝜀Nd for very shallow openings. However, these uncertainties may also partly
explain simple offsets between measured and simulated 𝜀Nd evolutions. For intermediate CAS and DP open-
ings, the fact that boundary source modifications do not alter the qualitative 𝜀Nd evolution strengthens the
confidence in the interpretations of simulated 𝜀Nd changes.

7. Limitations

The main limitations of this sensitivity study fall into two categories: boundary conditions and model lim-
itations. These are obviously linked: e.g., the coarse model resolution constrains the amount of detail in
the tectonic boundary conditions (i.e., the bathymetry). Apart from that, the largest deviation from realis-
tic boundary conditions is induced by our choice of present day boundary conditions for both bathymetry
and climate. This probably has a larger impact on the DP experiments [e.g., Heinemann, 2009; Zhang et al.,
2010], but could also significantly influence the CAS experiments, as the shoaling may have taken place
predominantly before 10 Ma [Montes et al., 2012a]. However, choosing present day boundary conditions
has the advantage of enabling a sensitivity study purely on the effects of the two seaways (CAS and DP),
without tackling the large uncertainties related to tectonic boundary conditions [e.g., Barker et al., 2007;
Molnar, 2008].

Model limitations include the frictional geostrophic formulation, inducing the underestimation of some
circulation features in the present day bathymetry (i.e., the ACC and AABW in the Atlantic sector of the
Southern Ocean). Also, while the EBM can account for temperature changes as well as evaporation and pre-
cipitation adjustments, it cannot produce a dynamical atmospheric response, and the wind stress remains
prescribed to present-day level. This is reasonable, as von der Heydt and Dijkstra [2006] have found in a
GCM that wind stress over the ocean with Miocene and Oligocene conditions differs only slightly from
present day.

Furthermore, there are uncertainties related to our approach for the simulation of Nd. As the boundary
source has the strongest impact on the 𝜀Nd distribution [Rempfer et al., 2012b], the most critical simplifi-
cation for a paleoceanographic study remains that this source is set to modern values, which have been
interpolated from Jeandel et al. [2007]. However, Rempfer et al. [2012b] have shown that very large source
modifications would be necessary to achieve ocean-wide 𝜀Nd changes of magnitudes comparable to the
changes found in geochemical data. This means that, while the uncertainty of the model results is increased
due to this simplification, qualitative or semiquantitative statements on the past evolution of 𝜀Nd based on
the model are possible.

The direction and magnitude of the CAS throughflow is a source of great uncertainty for the 𝜀Nd response
to a DP opening and deepening. Other models with a shallow or closed DP (mostly in a paleobathymetry)
show a net throughflow that is either eastward [e.g., Heinemann, 2009, Figure 4.2] or westward [e.g., Sijp
et al., 2011, Figure 5] but weaker than in our simulations in both cases. Thus, the eastward transport
through CAS is probably overestimated in our model. The main reasons for this are probably the lack of flow
constriction in the CAS region due to the coarse resolution, as well as the lack of an open Tethys Seaway
[e.g., von der Heydt and Dijkstra, 2006].

8. Summary and Conclusions

1. The attribution of the 𝜀Nd changes in the North Atlantic during the last 10 Ma to circulation changes
and other effects is highly dependent on the preclosure AMOC strength. By preclosure, we refer to a
CAS depth of roughly 400 m, because the AMOC strength starts to change only when the CAS shoals to
shallower depths than this threshold.

2. For a sluggish (∼ 3 Sv) preclosure AMOC, an AMOC switch-on in response to the CAS closure causes 𝜀Nd

decreases of ∼ 3.0 𝜀Nd units at Site BM1969.05, ∼ 1.5 𝜀Nd units at Site 121DK, and ∼ 1.2 𝜀Nd units at Blake.
In this scenario, even if some of these ranges are overestimated, 𝜀Nd decreases during the last 3 Ma could
entirely be explained by such an AMOC switch-on (or a switch-on of Labrador Sea Water formation).

3. We consider a shallow (∼6 Sv) preclosure AMOC to be the most probable scenario based on the
model-data agreement, as most measured 𝜀Nd changes can be explained by the simulated circulation
changes. Only the most recent changes cannot be fully explained, suggesting a contribution of other
effects, e.g., Northern Hemispheric glaciation.
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4. For an active (>9 Sv) preclosure AMOC, modeled circulation effects alone can explain none of the
observed 𝜀Nd changes. Especially at Site BM1969.05, the simulated 𝜀Nd changes are very small, such that
the measured decrease must entirely be explained by unresolved effects in this scenario.

5. Assuming the sluggish or shallow AMOC scenario, the measured 2.5 𝜀Nd decrease at Blake at 9–5 Ma can
entirely be explained by CAS throughflow changes, if the CAS was at least 700 m deep at 9 Ma. In the
active AMOC scenario, the modeled throughflow changes can only explain about half of that increase.

6. When the AMOC strengthens, it also deepens in our model. This causes an 𝜀Nd increase in the shallow
North Atlantic, because the influence of shallow NADW decreases and the influence of the relatively
radiogenic AMOC return flow increases. If such an AMOC deepening took place during the CAS shoaling,
other effects may have counteracted this possible 𝜀Nd increase, because no such increase is measured
at Blake.

7. Our model and other EMICs indicate water mass transport from the Atlantic to the Pacific through the
deep CAS, exporting radiogenic Nd from the Caribbean boundary source out of the Atlantic. The deep
CAS shoaling prevents this export, thus causing a slight 𝜀Nd increase in the North Atlantic.

8. In the DP deepening and freshwater experiments, a strong anticorrelation between the eastward CAS
and DP throughflows is found. Because the CAS throughflow is very strong when DP is closed or shallow,
it has a pronounced influence on 𝜀Nd in the Atlantic sector of the Southern Ocean.

9. The decreasing CAS throughflow, along with contributions of the decreasing SOMOC and increasing
AMOC, causes an initial 𝜀Nd decrease around ODP Sites 1090 and (more notably) 689 in response to the
simulated DP opening. This could mean that DP opened even earlier than the measured 𝜀Nd increase;
if these sites were indeed influenced by the CAS throughflow or if SOMOC and AMOC changes alone
were strong enough to counteract the 𝜀Nd-increasing effect of Pacific waters. However, the simulated
decrease could also be specific to our model setup, due to an overestimated CAS throughflow and
other uncertainties.

10. Following this decrease, the DP deepening causes an 𝜀Nd increase that is in reasonable agreement
with the data for ODP Site 689, but much weaker for Site 1090. The AABW influence at Site 1090 may be
underestimated, and the influence of the decreasing CAS throughflow may further diminish the simu-
lated range. Even without these effects however, our model cannot achieve the measured 𝜀Nd range at
Site 1090. This indicates either that the model does not fully capture the circulation response to the DP
deepening, or that unresolved effects (i.e., local circulation shifts or boundary source changes) may have
contributed to the measured 𝜀Nd increase.

11. In our model, the influence of the AMOC increase in response to the DP deepening is too weak to cause
a strong 𝜀Nd decrease at ODP Site 1090.

12. Freshwater perturbation experiments in an open CAS/deep DP bathymetry indicate that 𝜀Nd at ODP
Site 689 is most strongly influenced by combined changes in the CAS throughflow and SOMOC, while
the dominant influences at Site 1090 are AMOC and DP throughflow changes. Furthermore, the SOMOC
strength is more directly influenced by DP throughflow changes than AMOC changes.

13. Boundary source modifications cause 𝜀Nd shifts, but no qualitative changes in 𝜀Nd evolutions except for
very shallow CAS/DP (or very deep CAS). This strengthens the confidence in the model results for inter-
mediate seaway depths but calls for cautious interpretation of the 𝜀Nd response to very shallow openings
(at shallow sites, i.e., Blake and ODP 689).

14. It is suggested that the DP deepening experiments, especially the opening to shallow depths of up to
∼300m, are repeated in a more comprehensive and highly resolved model. An Eocene or Oligocene pale-
obathymetry should be used to account for the open Tethys Seaway and narrow Tasmanian Gateway in
addition to the open CAS and shallow DP. It is crucial to constrain the nature and magnitude of the CAS
and Tethys Seaway throughflows during this period, in order to better understand the 𝜀Nd changes in the
Atlantic and Southern Oceans.

References
Abouchami, W., S. Galer, and A. Koschinsky (1999), Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: Proxies for trace metal paleosources

and paleocean circulation, Geochim. Cosmochim. Acta, 63(10), 1489–1505, doi:10.1016/S0016-7037(99)00068-X.
Arsouze, T., J.-C. Dutay, F. Lacan, and C. Jeandel (2007), Modeling the neodymium isotopic composition with a global ocean circulation

model, Chem. Geol., 239(1–2), 165–177, doi:10.1016/j.chemgeo.2006.12.006.
Barker, P. F., G. M. Filippelli, F. Florindo, E. E. Martin, and H. D. Scher (2007), Onset and role of the Antarctic circumpolar current, Deep Sea

Res. Part II, 54(21–22), 2388–2398, doi:10.1016/j.dsr2.2007.07.028.

Acknowledgments
We thank Martin Frank and two anony-
mous reviewers for their constructive
comments that have helped to sub-
stantially improve the manuscript.
We acknowledge support by the
Swiss National Science Foundation
through project 200020_147174.
The model results presented in this
study are available from the cor-
responding author upon request
(pfister@climate.unibe.ch).

PFISTER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 21

http://dx.doi.org/10.1016/S0016-7037(99)00068-X
http://dx.doi.org/10.1016/j.chemgeo.2006.12.006
http://dx.doi.org/10.1016/j.dsr2.2007.07.028


Paleoceanography 10.1002/2014PA002666

Bertram, C., and H. Elderfield (1993), The geochemical balance of the rare earth elements and neodymium isotopes in the oceans,
Geochim. Cosmochim. Acta, 57(9), 1957–1986, doi:10.1016/0016-7037(93)90087-D.

Bijl, P. K., et al. (2013), Eocene cooling linked to early flow across the Tasmanian Gateway, Proc. Natl. Acad. Sci. U.S.A., 110(24), 9645–9650,
doi:10.1073/pnas.1220872110.

Burton, K. W., H. F. Ling, and R. K. ONions (1997), Closure of the Central American Isthmus and its effect on deep-water formation in the
North Atlantic, Nature, 386(6623), 382–385, doi:10.1038/386382a0.

Burton, K. W., D.-C. Lee, J. N. Christensen, A. N. Halliday, and J. R. Hein (1999), Actual timing of neodymium isotopic variations recorded
by FeMn crusts in the western North Atlantic, Earth Planet. Sci. Lett., 171(1), 149–156, doi:10.1016/S0012-821X(99)00138-7.

Butzin, M., G. Lohmann, and T. Bickert (2011), Miocene ocean circulation inferred from marine carbon cycle modeling combined with
benthic isotope records, Paleoceanography, 26, PA1203, doi:10.1029/2009PA001901.

Coates, A. G., and R. F. Stallard (2013), How old is the Isthmus of Panama?, Bull. Mar. Sci., 89(4), 801–813, doi:10.5343/bms.2012.1076.
Cristini, L., K. Grosfeld, M. Butzin, and G. Lohmann (2012), Influence of the opening of the Drake Passage on the Cenozoic Antarctic ice

sheet: A modeling approach, Palaeogeogr. Palaeoclimatol. Palaeoecol., 339–341, 66–73, doi:10.1016/j.palaeo.2012.04.023.
Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon (2003), Transport and variability of the Antarctic circumpolar current in

Drake Passage, J. Geophys. Res., 108(C5), 8084, doi:10.1029/2001JC001147.
DeConto, R. M., and D. Pollard (2003a), Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2, Nature, 421(6920),

245–249, doi:10.1038/nature01290.
DeConto, R. M., and D. Pollard (2003b), A coupled climate-ice sheet modeling approach to the early Cenozoic history of the Antarctic ice

sheet, Palaeogeogr. Palaeoclimatol. Palaeoecol., 198(1–2), 39–52, doi:10.1016/S0031-0182(03)00393-6.
Eagles, G., R. Livermore, and P. Morris (2006), Small basins in the Scotia Sea: The Eocene Drake Passage Gateway, Earth Planet. Sci. Lett.,

242(3–4), 343–353, doi:10.1016/j.epsl.2005.11.060.
Frank, M. (2002), Radiogenic isotopes: Tracers of past ocean circulation and erosional input, Rev. Geophys., 40(1), 1–38,

doi:10.1029/2000RG000094.
Frank, M., B. C. Reynolds, and K. R. O’Nions (1999), Nd and Pb isotopes in Atlantic and Pacific water masses before and after closure of

the Panama Gateway, Geology, 27(12), 1147–1150, doi:10.1130/0091-7613(1999)027<1147:NAPIIA>2.3.CO;2.
Frank, M., N. Whiteley, S. Kasten, J. R. Hein, and K. O’Nions (2002), North Atlantic deep water export to the Southern Ocean over the past

14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts, Paleoceanography, 17(2), 1022, doi:10.1029/2000PA000606.
Gerber, M., and F. Joos (2013), An ensemble Kalman filter multi-tracer assimilation: Determining uncertain ocean model parameters for

improved climate-carbon cycle projections, Ocean Model., 64, 29–45, doi:10.1016/j.ocemod.2012.12.012.
Gill, A. E., and K. Bryan (1971), Effects of geometry on the circulation of a three-dimensional Southern-Hemisphere ocean model, Deep

Sea Res. Oceanogr. Abstr., 18(7), 685–721, doi:10.1016/0011-7471(71)90086-6.
Goldner, A., N. Herold, and M. Huber (2014), Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition,

Nature, 511(7511), 574–577, doi:10.1038/nature13597.
Heinemann, M. (2009), Warm and sensitive Paleocene-Eocene climate, PhD thesis, Dept. Geowissenschaften der Univ. Hamburg,

Hamburg, Germany. [Available at http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_70.pdf.]
Huber, M., and D. Nof (2006), The ocean circulation in the Southern Hemisphere and its climatic impacts in the Eocene, Palaeogeogr.

Palaeoclimatol. Palaeoecol., 231(1–2), 9–28, doi:10.1016/j.palaeo.2005.07.037.
Huber, M., and L. C. Sloan (2001), Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse

climate, Geophys. Res. Lett., 28(18), 3481–3484, doi:10.1029/2001GL012943.
Jacobsen, S. B., and G. Wasserburg (1980), Sm-Nd isotopic evolution of chondrites, Earth Planet. Sci. Lett., 50(1), 139–155,

doi:10.1016/0012-821X(80)90125-9.
Jeandel, C., T. Arsouze, F. Lacan, P. Téchiné, and J.-C. Dutay (2007), Isotopic Nd compositions and concentrations of the lithogenic inputs

into the ocean: A compilation, with an emphasis on the margins, Chem. Geol., 239(1–2), 156–164, doi:10.1016/j.chemgeo.2006.11.013.
Kennett, J. P. (1977), Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanogra-

phy, J. Geophys. Res., 82(27), 3843–3860, doi:10.1029/JC082i027p03843.
Klocker, A., M. Prange, and M. Schulz (2005), Testing the influence of the Central American Seaway on orbitally forced Northern

Hemisphere glaciation, Geophys. Res. Lett., 32, L03703, doi:10.1029/2004GL021564.
Lacan, F., and C. Jeandel (2005), Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent—Ocean interface,

Earth Planet. Sci. Lett., 232(3–4), 245–257, doi:10.1016/j.epsl.2005.01.004.
Lefebvre, V., Y. Donnadieu, P. Sepulchre, D. Swingedouw, and Z.-S. Zhang (2012), Deciphering the role of southern gateways and carbon

dioxide on the onset of the Antarctic circumpolar current, Paleoceanography, 27, PA4201, doi:10.1029/2012PA002345.
Livermore, R., A. Nankivell, G. Eagles, and P. Morris (2005), Paleogene opening of Drake Passage, Earth Planet. Sci. Lett., 236(1–2), 459–470,

doi:10.1016/j.epsl.2005.03.027.
Lunt, D. J., P. J. Valdes, A. Haywood, and I. C. Rutt (2008), Closure of the Panama Seaway during the Pliocene: Implications for climate and

Northern Hemisphere glaciation, Clim. Dyn., 30(1), 1–18, doi:10.1007/s00382-007-0265-6.
Lunt, D. J., P. J. Valdes, T. Dunkley Jones, A. Ridgwell, A. M. Haywood, D. N. Schmidt, R. Marsh, and M. Maslin (2010), CO2-driven ocean

circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization, Geology, 38(10), 875–878,
doi:10.1130/G31184.1.

Maier-Reimer, E., U. Mikolajewicz, and T. J. Crowley (1990), Ocean general circulation model sensitivity experiment with an open central
American Isthmus, Paleoceanography, 5(3), 349–366, doi:10.1029/PA005i003p00349.

Menviel, L., F. Joos, and S. Ritz (2012), Simulating atmospheric CO2, 13C and the marine carbon cycle during the last glacial-interglacial
cycle: Possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory, Quat. Sci.
Rev., 56, 46–68, doi:10.1016/j.quascirev.2012.09.012.

Mikolajewicz, U., E. Maier-Reimer, T. J. Crowley, and K. Y. Kim (1993), Effect of Drake and Panamanian Gateways on the circulation of an
ocean model, Paleoceanography, 8(4), 409–426, doi:10.1029/93PA00893.

Molnar, P. (2008), Closing of the Central American seaway and the ice age: A critical review, Paleoceanography, 23, PA2201,
doi:10.1029/2007PA001574.

Montes, C., et al. (2012a), Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure,
Geol. Soc. Am. Bull., 124(5–6), 780–799, doi:10.1130/B30528.1.

Montes, C., G. Bayona, A. Cardona, D. M. Buchs, C. A. Silva, S. Morón, N. Hoyos, D. A. Ramírez, C. A. Jaramillo, and V. Valencia
(2012b), Arc-continent collision and orocline formation: Closing of the Central American Seaway, J. Geophys. Res., 117, B04105,
doi:10.1029/2011JB008959.

PFISTER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 22

http://dx.doi.org/10.1016/0016-7037(93)90087-D
http://dx.doi.org/10.1073/pnas.1220872110
http://dx.doi.org/10.1038/386382a0
http://dx.doi.org/10.1016/S0012-821X(99)00138-7
http://dx.doi.org/10.1029/2009PA001901
http://dx.doi.org/10.5343/bms.2012.1076
http://dx.doi.org/10.1016/j.palaeo.2012.04.023
http://dx.doi.org/10.1029/2001JC001147
http://dx.doi.org/10.1038/nature01290
http://dx.doi.org/10.1016/S0031-0182(03)00393-6
http://dx.doi.org/10.1016/j.epsl.2005.11.060
http://dx.doi.org/10.1029/2000RG000094
http://dx.doi.org/10.1130/0091-7613(1999)027<1147:NAPIIA>2.3.CO;2
http://dx.doi.org/10.1029/2000PA000606
http://dx.doi.org/10.1016/j.ocemod.2012.12.012
http://dx.doi.org/10.1016/0011-7471(71)90086-6
http://dx.doi.org/10.1038/nature13597
http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/WEB_BzE_70.pdf
http://dx.doi.org/10.1016/j.palaeo.2005.07.037
http://dx.doi.org/10.1029/2001GL012943
http://dx.doi.org/10.1016/0012-821X(80)90125-9
http://dx.doi.org/10.1016/j.chemgeo.2006.11.013
http://dx.doi.org/10.1029/JC082i027p03843
http://dx.doi.org/10.1029/2004GL021564
http://dx.doi.org/10.1016/j.epsl.2005.01.004
http://dx.doi.org/10.1029/2012PA002345
http://dx.doi.org/10.1016/j.epsl.2005.03.027
http://dx.doi.org/10.1007/s00382-007-0265-6
http://dx.doi.org/10.1130/G31184.1
http://dx.doi.org/10.1029/PA005i003p00349
http://dx.doi.org/10.1016/j.quascirev.2012.09.012
http://dx.doi.org/10.1029/93PA00893
http://dx.doi.org/10.1029/2007PA001574
http://dx.doi.org/10.1130/B30528.1
http://dx.doi.org/10.1029/2011JB008959


Paleoceanography 10.1002/2014PA002666

Motoi, T., W.-L. Chan, S. Minobe, and H. Sumata (2005), North Pacific halocline and cold climate induced by Panamanian Gateway closure
in a coupled ocean-atmosphere GCM, Geophys. Res. Lett., 32, L10618, doi:10.1029/2005GL022844.

Muiños, S. B., M. Frank, C. Maden, J. R. Hein, T. van de Flierdt, S. M. Lebreiro, L. Gaspar, J. H. Monteiro, and A. N. Halliday (2008),
New constraints on the Pb and Nd isotopic evolution of NE Atlantic water masses, Geochem. Geophys. Geosyst., 9, Q02007,
doi:10.1029/2007GC001766.

Müller, S. A., F. Joos, N. R. Edwards, and T. F. Stocker (2006), Water mass distribution and ventilation time scales in a cost-efficient,
three-dimensional ocean model, J. Clim., 19(21), 5479–5499, doi:10.1175/JCLI3911.1.

Murdock, T. Q., A. J. Weaver, and A. F. Fanning (1997), Paleoclimatic response of the closing of the Isthmus of Panama in a coupled
ocean-atmosphere model, Geophys. Res. Lett., 24(3), 253–256, doi:10.1029/96GL03950.

Newkirk, D. R., and E. E. Martin (2009), Circulation through the Central American Seaway during the Miocene carbonate crash, Geology,
37(1), 87–90, doi:10.1130/G25193A.1.

Nisancioglu, K. H., M. E. Raymo, and P. H. Stone (2003), Reorganization of Miocene deep water circulation in response to the shoaling of
the Central American Seaway, Paleoceanography, 18(1), 1006, doi:10.1029/2002PA000767.

O’Nions, R. K., M. Frank, F. von Blanckenburg, and H.-F. Ling (1998), Secular variation of Nd and Pb isotopes in ferromanganese crusts
from the Atlantic, Indian and Pacific Oceans, Earth Planet. Sci. Lett., 155(1–2), 15–28, doi:10.1016/S0012-821X(97)00207-0.

Osborne, A. H., B. A. Haley, E. C. Hathorne, S. Flögel, and M. Frank (2014), Neodymium isotopes and concentrations in Caribbean
seawater: Tracing water mass mixing and continental input in a semi-enclosed ocean basin, Earth Planet. Sci. Lett., 406, 174–186,
doi:10.1016/j.epsl.2014.09.011.

Parekh, P., F. Joos, and S. A. Müller (2008), A modeling assessment of the interplay between aeolian iron fluxes and iron-binding ligands
in controlling carbon dioxide fluctuations during Antarctic warm events, Paleoceanography, 23, PA4202, doi:10.1029/2007PA001531.

Poore, H. R., R. Samworth, N. J. White, S. M. Jones, and I. N. McCave (2006), Neogene overflow of northern component water at the
Greenland-Scotland Ridge, Geochem. Geophys. Geosyst., 7, Q06010, doi:10.1029/2005GC001085.

Rempfer, J., T. F. Stocker, F. Joos, J. Dutay, and M. Siddall (2011), Modelling Nd-isotopes with a coarse resolution ocean circula-
tion model: Sensitivities to model parameters and source/sink distributions, Geochim. Cosmochim. Acta, 75(20), 5927–5950,
doi:10.1016/j.gca.2011.07.044.

Rempfer, J., T. F. Stocker, F. Joos, and J. Dutay (2012a), On the relationship between Nd isotopic composition and ocean overturning
circulation in idealized freshwater discharge events, Paleoceanography, 27, PA3211, doi:10.1029/2012PA002312.

Rempfer, J., T. F. Stocker, F. Joos, and J.-C. Dutay (2012b), Sensitivity of Nd isotopic composition in seawater to changes in Nd sources
and paleoceanographic implications, J. Geophys. Res., 117, C12010, doi:10.1029/2012JC008161.

Reynolds, B., M. Frank, and R. O’Nions (1999), Nd- and Pb-isotope time series from Atlantic ferromanganese crusts: Impli-
cations for changes in provenance and paleocirculation over the last 8 Myr, Earth Planet. Sci. Lett., 173(4), 381–396,
doi:10.1016/S0012-821X(99)00243-5.

Ritz, S. P., T. F. Stocker, and F. Joos (2011), A coupled dynamical ocean-energy balance atmosphere model for paleoclimate studies,
J. Clim., 24(2), 349–375, doi:10.1175/2010JCLI3351.1.

Ritz, S. P., T. F. Stocker, J. O. Grimalt, L. Menviel, and A. Timmermann (2013), Estimated strength of the Atlantic overturning circulation
during the last deglaciation, Nat. Geosci., 6(3), 208–212, doi:10.1038/ngeo1723.

Roth, R., and F. Joos (2013), A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2
records: Implications of data and model uncertainties, Clim. Past, 9(4), 1879–1909, doi:10.5194/cp-9-1879-2013.

Scher, H. D., and E. E. Martin (2004), Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes, Earth
Planet. Sci. Lett., 228(3–4), 391–405, doi:10.1016/j.epsl.2004.10.016.

Scher, H. D., and E. E. Martin (2006), Timing and climatic consequences of the opening of Drake Passage, Science, 312(5772), 428–430,
doi:10.1126/science.1120044.

Scher, H. D., and E. E. Martin (2008), Oligocene deep water export from the North Atlantic and the development of the Antarctic
Circumpolar Current examined with neodymium isotopes, Paleoceanography, 23, PA1205, doi:10.1029/2006PA001400.

Schneider, B., and A. Schmittner (2006), Simulating the impact of the Panamanian Seaway closure on ocean circulation, marine
productivity and nutrient cycling, Earth Planet. Sci. Lett., 246(3–4), 367–380, doi:10.1016/j.epsl.2006.04.028.

Sepulchre, P., T. Arsouze, Y. Donnadieu, J.-C. Dutay, C. Jaramillo, J. Le Bras, E. Martin, C. Montes, and A. J. Waite (2014), Conse-
quences of shoaling of the Central American Seaway determined from modeling Nd isotopes, Paleoceanography, 29, 176–189,
doi:10.1002/2013PA002501.

Sijp, W. P., and M. H. England (2004), Effect of the Drake Passage throughflow on global climate, J. Phys. Oceanogr., 34(5), 1254–1266,
doi:10.1175/1520-0485(2004)034<254:EOTDPT>2.0.CO;2.

Sijp, W. P., M. H. England, and J. R. Toggweiler (2009), Effect of ocean gateway changes under greenhouse warmth, J. Clim., 22(24),
6639–6652, doi:10.1175/2009JCLI3003.1.

Sijp, W. P., M. H. England, and M. Huber (2011), Effect of the deepening of the Tasman Gateway on the global ocean, Paleoceanography,
26, PA4207, doi:10.1029/2011PA002143.

Smith, R. S., C. Dubois, and J. Marotzke (2006), Global climate and ocean circulation on an aquaplanet ocean-atmosphere general
circulation model, J. Clim., 19(18), 4719–4737, doi:10.1175/JCLI3874.1.

Steph, S., R. Tiedemann, M. Prange, J. Groeneveld, M. Schulz, A. Timmermann, D. Nürnberg, C. Rühlemann, C. Saukel, and G. H. Haug
(2010), Early Pliocene increase in thermohaline overturning: A precondition for the development of the modern equatorial Pacific
cold tongue, Paleoceanography, 25, PA2202, doi:10.1029/2008PA001645.

Stichel, T., M. Frank, J. Rickli, and B. A. Haley (2012), The hafnium and neodymium isotope composition of seawater in the Atlantic sector
of the Southern Ocean, Earth Planet. Sci. Lett., 317–318, 282–294, doi:10.1016/j.epsl.2011.11.025.

Stocker, T. F., A. Timmermann, M. Renold, and O. Timm (2007), Effects of salt compensation on the climate model response in simulations
of large changes of the Atlantic meridional overturning circulation, J. Clim., 20(24), 5912–5928, doi:10.1175/2007JCLI1662.1.

Stone, R. (2013), Battle for the Americas, Science, 341(6143), 230–233, doi:10.1126/science.341.6143.230.
Toggweiler, J. R., and H. Bjornsson (2000), Drake Passage and palaeoclimate, J. Quat. Sci., 15 (4), 319–328,

doi:10.1002/1099-1417(200005)15:4<319::AID-JQS545>3.0.CO;2-C.
Toggweiler, J. R., and B. Samuels (1995), Effect of Drake Passage on the global thermohaline circulation, Deep Sea Res. Part I, 42(4),

477–500, doi:10.1016/0967-0637(95)00012-U.
Tschumi, T., F. Joos, and P. Parekh (2008), How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model

study, Paleoceanography, 23, PA4208, doi:10.1029/2008PA001592.
von Blanckenburg, F., and T. Nägler (2001), Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of

the Labrador Sea and North Atlantic Deep Water, Paleoceanography, 16(4), 424–434, doi:10.1029/2000PA000550.

PFISTER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 23

http://dx.doi.org/10.1029/2005GL022844
http://dx.doi.org/10.1029/2007GC001766
http://dx.doi.org/10.1175/JCLI3911.1
http://dx.doi.org/10.1029/96GL03950
http://dx.doi.org/10.1130/G25193A.1
http://dx.doi.org/10.1029/2002PA000767
http://dx.doi.org/10.1016/S0012-821X(97)00207-0
http://dx.doi.org/10.1016/j.epsl.2014.09.011
http://dx.doi.org/10.1029/2007PA001531
http://dx.doi.org/10.1029/2005GC001085
http://dx.doi.org/10.1016/j.gca.2011.07.044
http://dx.doi.org/10.1029/2012PA002312
http://dx.doi.org/10.1029/2012JC008161
http://dx.doi.org/10.1016/S0012-821X(99)00243-5
http://dx.doi.org/10.1175/2010JCLI3351.1
http://dx.doi.org/10.1038/ngeo1723
http://dx.doi.org/10.5194/cp-9-1879-2013
http://dx.doi.org/10.1016/j.epsl.2004.10.016
http://dx.doi.org/10.1126/science.1120044
http://dx.doi.org/10.1029/2006PA001400
http://dx.doi.org/10.1016/j.epsl.2006.04.028
http://dx.doi.org/10.1002/2013PA002501
http://dx.doi.org/10.1175/1520-0485(2004)034<254:EOTDPT>2.0.CO;2
http://dx.doi.org/10.1175/2009JCLI3003.1
http://dx.doi.org/10.1029/2011PA002143
http://dx.doi.org/10.1175/JCLI3874.1
http://dx.doi.org/10.1029/2008PA001645
http://dx.doi.org/10.1016/j.epsl.2011.11.025
http://dx.doi.org/10.1175/2007JCLI1662.1
http://dx.doi.org/10.1126/science.341.6143.230
http://dx.doi.org/10.1002/1099-1417(200005)15:4<319::AID-JQS545>3.0.CO;2-C
http://dx.doi.org/10.1016/0967-0637(95)00012-U
http://dx.doi.org/10.1029/2008PA001592
http://dx.doi.org/10.1029/2000PA000550


Paleoceanography 10.1002/2014PA002666

von der Heydt, A., and H. A. Dijkstra (2006), Effect of ocean gateways on the global ocean circulation in the late Oligocene and early
Miocene, Paleoceanography, 21, PA1011, doi:10.1029/2005PA001149.

Zaucker, F., T. F. Stocker, and W. S. Broecker (1994), Atmospheric fresh-water fluxes and their effect on the global thermohaline circulation,
J. Geophys. Res., 99(C6), 12,443–12,457, doi:10.1029/94JC00526.

Zhang, X., et al. (2012), Changes in equatorial Pacific thermocline depth in response to Panamanian Seaway closure: Insights from a
multi-model study, Earth Planet. Sci. Lett., 317–318, 76–84, doi:10.1016/j.epsl.2011.11.028.

Zhang, Z.-S., Q. Yan, and H.-J. Wang (2010), Has the Drake Passage played an essential role in the Cenozoic cooling?, Atmos. Oceanic Sci.
Lett., 3(5), 288–292.

PFISTER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 24

http://dx.doi.org/10.1029/2005PA001149
http://dx.doi.org/10.1029/94JC00526
http://dx.doi.org/10.1016/j.epsl.2011.11.028

	Influence of the Central American Seaway and Drake Passage on ocean circulation and neodymium isotopes: A model study
	Abstract
	Introduction
	Shoaling and Closure of the Central American Seaway
	Opening and Deepening of Drake Passage

	Methods
	Model Description
	Gateway Modifications
	AMOC Forcing
	Freshwater Experiments
	Boundary Source Modifications
	Model-Data Comparison

	Circulation and Seafloor Nd in Modified Bathymetries
	Shoaling and Closure of the Central American Seaway
	Circulation Changes
	The Nd Response in the North Atlantic
	Model-Data Comparison and Discussion

	Opening and Deepening of the Drake Passage
	Circulation Changes
	The Nd Response in the Atlantic Sector of the Southern Ocean
	Model-Data Comparison and Discussion
	Freshwater Experiments Following the DP Deepening

	Boundary Source Modifications
	Limitations
	Summary and Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


