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Buoyancy-Driven Flow and Nature of Vertical Mixing
in a Zonally Averaged Model

Olivier Marchal', Charles Jackson?, Johan Nilsson®, André Paul*, and Thomas F. Stocker’

The consequences for the meridional overturning circulation (MOC) of funda-
mentally different assumptions about the vertical effective diffusivity of heat and
salt (x,) are examined in a zonally averaged model of the buoyancy-driven flow in
one- and two-hemisphere basins. First, we replicate results obtained in earlier stud-
ies from a zonally averaged model based on a less elaborate closure for the zonal
pressure difference. For a single-hemisphere basin, the equilibrium response of the
MOC to freshwater forcing (salt addition at low latitudes and salt extraction at high
latitudes) depends qualitatively on the nature of vertical mixing: if the diffusivity is
constant (a common assumption), the MOC decreases with increased forcing,
whereas if it depends on vertical density stratification (at least an equally plausible
assumption) the MOC increases with increased forcing. For a two-hemisphere
basin, on the other hand, the equilibrium response of the MOC in the dominant
hemisphere to increased freshwater forcing (symmetric about the equator) is an
amplification for both mixing representations. Second, we investigate the instabil-
ity of the flow at large freshwater forcing. For both basins, the flow is more stable
to the forcing if k, varies with vertical stratification. For a single-hemisphere basin,
self-sustained oscillations of the flow that are quasi-periodic (e.g., millennial) are
found for both fixed and stability-dependent k,. For a two-hemisphere basin, such
oscillations are found only when k, is stability-dependent. For both basins, the
occurrence and period of the oscillations are partly determined by the energy avail-
able for vertical mixing if x, varies with vertical stratification. A possible analogy
with the relaxation oscillations of van der Pol is presented.

1. INTRODUCTION

Fluid flows are often so complicated that laboratory
experiments or the numerical solution of the equations of
motion are the only route to simulate their behavior in nat-
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ural circumstances. With the advent of modern computers,
numerical models have become an indispensable tool to sim-
ulate geophysical flows, such as the general circulation of
the ocean. Numerical models of the ocean circulation have
diverse merits, such as (i) their capability to represent terms
in the equations of motion that are often neglected in analy-
tical work (the non-linear advection terms are a prominent
example), (ii) their ability to accommodate complex initial
and boundary conditions, and (iii) their capability to incor-
porate realistic basin geometries. Their scientific and societal
values can be justified on various grounds. In particular,
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they can be used to explore the sensitivity to external pertur-
bations of the meridional overturning component of the gen-
eral circulation—the meridional overturning circulation or
MOC—which is thought to play an important role in climate
owing to the associated meridional flux of heat (e.g., Bryden
and Imawaki [2001]).

The solution of the equations of fluid motion on a grid
implies that sub-grid scale phenomena are omitted or at best
parameterized. Obvious oceanographic examples are the
transports of momentum, heat, and salt at the scales that are
smaller than the horizontal and vertical spacings of the grid.
The range of spatial scales that characterize the unresolved
transports is huge. Current models of the ocean general cir-
culation have grids with a horizontal spacing of O(10%) m to
O(10°) m and a vertical spacing of O(10") m to O(10%) m. In
contrast, the molecular diffusivities of momentum (~107% m?
s, heat (1077 m? s7!), and salt in seawater (10~ m? s™') are
so small that the frictional dissipation and the actual mixing
of water properties become only effective at scales of
O(107%) m to O(10-2) m. Between the scales that are resolved
by the models and the scales at which these variables are
dissipated is a range of transport phenomena whose proper
representation in models of the large-scale flow remains one
of the most vexing problems in geophysical fluid dynamics
[Pedlosky, 1987].

A common assumption in numerical models of the ocean
general circulation is that the unresolved small-scale motions
operate effectively on the resolved large-scale motions as
Fickian diffusion, with diffusivities that are several orders of
magnitude larger than those for molecular diffusion (a
Reynolds decomposition of the dynamical equations has led
to various terminologies, e.g., ‘turbulent’ or ‘eddy’ diffusivi-
ties). Thus, the flux of variables such as momentum, heat,
and salt is assumed to be proportional to the gradient of these
variables computed at the grid points, the direction of the flux
being downgradient. The representation of small-scale trans-
port phenomena as diffusion raises two legitimate questions:
(1) is the representation accurate? and (ii) assuming that it is
accurate, which values of the effective diffusivities should be
used in the numerical integrations? Whether the representa-
tion is accurate remains unclear, as there appears to be no
observational evidence that the transport of momentum, heat,
and salt at small scales operates effectively as diffusion on
large scales. Tests of the representation from results obtained
with eddy-resolving models are a subject of ongoing
research. Which values to use for the effective diffusivities is
equally problematic. Such values are constrained on the basis
of (i) observational estimates (when available), (ii) values
used in earlier numerical studies; (iii) a comparison a
posteriori between the modeled and observed distributions of
water properties such as temperature (7) and salinity
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(S); and/or (iv) a stability criterion that must be met by the
numerical method used to integrate the equations of motion.
In many cases, option (iii) is an important guide, which
implies the fundamental difficulty of truly testing numerical
models given that 7, S measurements often compose most of
the available data base.

Among the motions that are unresolved by the coarsest re-
solution models are mesoscale eddies (with horizontal scales
of O(10% m). Although higher resolution models can simu-
late eddying motions, they remain too expensive computa-
tionally for use in the long-term integrations that are needed
in climate studies. Thus, eddies need to be parameterized. For
example, Gent and McWilliams [1990] developed a parame-
terization scheme for the transport of heat and salt by eddies
in coarse resolution models. In this scheme, the transport by
eddies is represented as an additional velocity with compo-
nents that are proportional to the spatial variations of the
local isopycnal slope, the coefficient of proportionality being
called the ‘thickness diffusivity’ [Gent et al., 1995].

Here it is assumed that the representation of the sub-grid
scale transports as Fickian diffusion is formally accurate, fol-
lowing the vast majority of earlier numerical studies of the
large-scale circulation. Thus, we focus on the second ques-
tion raised above, more specifically on the effective diffusiv-
ities for the vertical transport of heat and salt (hereafter these
diffusivities are generically referred to as «,, a vertical diffu-
sivity for buoyancy). Small-scale vertical mixing in the ocean
interior (i.e., away from boundary layers and fronts) is
thought to be dominated by the breaking of internal waves.
Formal discussions of this phenomenon are often centered
around a postulated balance between (i) the production of
turbulent kinetic energy (TKE) by the vertical shear in the
mean flow, (ii) the vertical turbulent flux of buoyancy, and
(iii) the viscous dissipation of TKE. The balance can be
expressed succinctly as

R,
K, = — .
1-R, N?

(1

Here Ry is the flux Richardson number, ¢ is the rate of dis-
sipation of TKE, and N is the buoyancy frequency (for the
various assumptions leading to (1) see, e.g., Osborn [1980]).
Importantly, (1) suggests that the diffusivity may depend on
local stratification, although the nature of this dependence is
not well established. For example, models of dissipation in an
internal wave field imply different scalings of ¢ versus N and
thus different scalings of «, versus N [Polzin et al., 1995].
Thus, significant uncertainties remain regarding the nature of
the dependence of k;, on local stratification in the ocean interior.

The dynamical implications of different assumptions about
vertical mixing have been appreciated in several studies
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(e.g., Gargett [1984]; Cummins et al. [1990]; Hu [1996];
Huang [1999]). In particular, models of the buoyancy-driven
flow in a single-hemisphere basin have been used to explore
the equilibrium response of the MOC to changes in surface
buoyancy forcing for different assumptions about «,, [Nilsson
and Walin, 2001; Nilsson et al., 2003; Mohammad and
Nilsson, 2004]. If k, is constant (a diffusivity that does not
depend explicitly on stratification is a common assumption
in circulation models), the strength of the MOC decreases
with increased freshwater forcing—the forcing being defined
as the contrast between surface freshwater removal at low lat-
itudes and surface freshwater supply at high latitudes—
whereas if k, is stability-dependent (at least an equally
plausible assumption) the opposite result holds [Nilsson and
Walin, 2001; Mohammad and Nilsson, 2004]. Thus, the equi-
librium response of the MOC to perturbations in the surface
buoyancy forcing is qualitatively dependent on the represen-
tation of vertical mixing in the models.

This result is important, for it appears to challenge a
hypothesis of climate change, whereby a freshening of sur-
face waters in the northern North Atlantic would cause a
reduction in the strength of the MOC and in the associated
poleward heat flux. This view emerged in large part from
simulations with a hierarchy of ocean models (sometimes
coupled with atmospheric models) which, however, share a
common assumption: k,, does not depend on vertical density
stratification. In an ocean where k, is stability-dependent, the
vertical diffusion of buoyancy is not constant but changes
with the circulation, which provides a feedback on the
response of the MOC to perturbations in surface buoyancy
forcing. The aforementioned studies illustrated that the feed-
back can change the sign of the response of the MOC to
freshwater forcing. An outstanding question is whether this
feedback could operate in the real ocean.

In this paper we investigate the dynamical effects of a
stability-dependent «, in a zonally averaged model of the
buoyancy-driven flow in one- and two-hemisphere basins.
Scaling arguments [Saenko and Weaver, 2003] and a numer-
ical study with a zonally averaged model [Mohammad and
Nilsson, 2006] (hereafter MN06) suggest that the response of
the MOC to surface buoyancy forcing may be less sensitive
to the nature of vertical mixing in a two-hemisphere ocean.
We extend earlier numerical work in two major respects.
First, MNOG6 used a zonally averaged model that is based on
a severe assumption in the dynamics. In zonally averaged
models the zonal pressure difference must be parameterized.
MNO6 used a simplified closure for the difference, where the
Coriolis acceleration is neglected in the equation for the
meridional velocity. Thus, in spite of the important insights
that this closure has provided in this and earlier work, a
model that is more geophysically grounded seems warranted.
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The present study relies on a model that makes the connec-
tion with the ocean circulation perhaps more apparent
[Wright et al., 1995]. Second, we explore the possibility of
self-sustained or self-excited oscillations of the flow under
constant freshwater forcing when k, depends on vertical sta-
bility. Such oscillations have been found in a hierarchy of
ocean models—most of which are based on a k, that does not
depend on vertical stability—and are often suggested as
being relevant to the study of the rapid climate changes of the
last glacial period (e.g., Winton and Sarachik [1993)). Paul
and Schulz [2002] reported self-excited oscillations in a cou-
pled climate model whose oceanic component is a zonally
averaged model based on the closure of Wright et al. [1995]
and a fixed k,. Self-sustained oscillations with a stability-
dependent x, have been found in a zonally averaged model
based on the simplified closure described above [Olsen et al.,
2005]. Here we examine whether self-excited oscillations
occur with a stability-dependent «, in a zonally averaged
model based on the more elaborate closure of Wright et al.
[1995].

It is perhaps worth being explicit about the limitations of
this work. A major limitation is the zonally averaging of the
equations of motion. Although an investigation with a three-
dimensional (3D) model would clearly be desirable, the use
of a zonally averaged model is motivated by the numerical
integrations (long and numerous) that are required to illus-
trate and understand the dynamical effects of a stability-
dependent «,. Other limitations of this work are the crude
representation of the thermodynamical interactions with the
atmosphere, the omission of the winds, and the absence of
topography. More generally, none of the assumptions listed
above can be defended rigorously. Rather, they are inspired
by our desire to understand the dynamical consequences of a
stability-dependent k, that may occur in more complete mod-
els and perhaps also in the real ocean. Thus, the present work
should be viewed as an exercise of geophysical fluid dynam-
ics, with no claim of an accurate representation of the MOC
in the real ocean (earlier studies with a similar degree of ide-
alization include the considerable work on the non-rotating
flow in a vertical plane; see, e.g., Dijkstra [2005]; and refer-
ences therein).

This paper is organized as follows. Section 2 reviews the-
oretical arguments for the importance of the nature of verti-
cal mixing for the meridional overturning circulation in the
ocean. The numerical model used to explore the dynamical
effects of a stability-dependent «, is described in section 3.
These effects are examined for both one-hemisphere (section
4) and two-hemisphere basins (section 5). In section 6 we
explore the possibility of time-dependent flows under
constant freshwater forcing when k, depends on vertical
stratification. A summary follows in section 7.
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2. THEORETICAL CONSIDERATIONS
2.1. Thermocline Scaling Theory

A formal suggestion of the importance of vertical mixing
for the MOC is provided by a scaling theory for the main
thermocline (for a short review see, e.g., Welander [1986]).
Consider a meridional section in a hypothetical ocean where
a surface of equal density (isopycnal surface) outcrops at
high latitudes (Figure 1). The depth of the isopycnal surface
at low latitudes is A, which is referred to below as the ‘depth
of the thermocline’. Because the surface outcrops, the equa-
tor-to-pole density contrast at the surface is equal to the ver-
tical density contrast at low latitudes; both contrasts are thus
denoted by the same symbol, Ap (the effect of compression
on density can be neglected for the present argument). The
flow is assumed to be in hydrostatic and geostrophic bal-
ances. In the Boussinesq approximation these lead to the
thermal wind relation,

ov :_ia_p )

oz p, Ox

Here x is the longitude, z is depth, v is the meridional
velocity, f'is the Coriolis parameter, g is the acceleration due
to gravity, and p is the density (p, is a reference value). Thus,
a vertical shear in the meridional flow should be associated
with a zonal gradient of density. Relation (2) provides a scal-
ing for the meridional transport of volume, Wy,

Ap

air

s€a

Figure 1. Ocean density field from the low to high latitudes as envi-
sioned by thermocline scaling theory. The depth scale for the ther-
mocline at low latitudes is H. The vertical density difference over H
at low latitudes is equal to the horizontal density difference at the
surface between the low and high latitudes, as the surfaces of equal
density outcrop at high latitudes. According to the theory, the den-
sity field is associated with a poleward volume flux at the surface
(W\), which is balanced by a vertical volume flux into the thermo-
cline (Wy).
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¥, ~ApH’. 3)

Here it was assumed that the zonal density difference is
proportional to the meridional density difference. A scaling
for the transport of volume across the isopycnal surface, Wy,
is provided by the assumption of a vertical balance in the
density equation,

0 0?

where w is the vertical velocity. This relation yields

Ax,
v, ~ 7, (5)

where A is the area of the upwelling region. If the poleward
flow is entirely balanced by the vertical flow into the ther-
mocline, ¥y, =¥y =Y. Two well-known relationships are
then obtained,

HNApmelB, ©6)

\PNAPI/3K3/3. (7)

The depth of the thermocline increases and the strength of
the flow decreases as the equator-to-pole density contrast is
reduced, assuming that the vertical diffusivity is constant. On
the other hand, they both increase with the vertical diffusiv-
ity. Tests of the scaling laws (6—7) from results with numeri-
cal models have had a variable success (e.g., Wright and
Stocker [1992]; Park and Bryan [2001]; Mohammad and
Nilsson [2004]; Nilsson et al. [2003]) and probably deserve a
review in their own right.

Consider now a case where k, is not constant (e.g., Nilsson
et al. [2003]). A simple approach, which is based on an argu-
ment originally put forward by Kato and Phillips [1969], is
to postulate that energy must be supplied at a certain rate in
order to mix deep dense waters with overlying light waters.
This condition is written as

8
Ez—gJ.KVa—IZ)dZ>O, (8)

where £ is the rate of energy supply per unit surface area; in
the ocean the supply is thought to be met by the rate of work
done by the winds and by the dissipation of tidal motions
(e.g., Munk and Wunsch [1998]; Wunsch and Ferrari [2004]).
If k, is vertically uniform,
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Thus, in an ocean where the energy supply is fixed, the ver-
tical diffusivity would decrease with increasing bottom-to-
top density difference. Inserting (9) into (6—7) gives

H ~Ap?P(4E)"”, (10)

¥~ Ap P (4E)?, (11)

where AE is the integral of £ over the stratified upwelling
region of surface area 4. Thus, when «x, depends on vertical
stability, the depth of the thermocline increases as the equa-
tor-to-pole density contrast is reduced, which is qualitatively
similar to the case with fixed «, (although the degree of sen-
sitivity is higher than for that case). On the other hand, the
strength of the flow increases with decreasing density con-
trast, which is opposite to the case with fixed «,. The funda-
mental mechanism responsible for the opposite reaction lies
in the adjustment of the thermocline depth to a change in the
density contrast. The adjustment to, say, a decrease of Ap is
larger if k, is stability-dependent (H ~ Ap~?3) than if it is
constant (H ~ Ap~'3), owing to the extra deepening of the
thermocline caused by the enhanced vertical mixing.
Because the flow varies with Ap to the first power and with
H to the second power, the effect of thermocline adjustment
overcomes the direct effect of a flow reduction caused by the
reduced meridional density contrast, so that this flow
increases in strength.

The contrasting influences of a fixed k, and of a stability-
dependent k, as predicted by these simple scaling arguments
have been tested by simulations with numerical models of
buoyancy-driven flows assuming (i) a restoring boundary
condition for temperature (surface temperatures relaxed to
specified values); (ii) a constant salinity; and (iii) a linear
equation of state. In their zonally averaged model for a one-
hemisphere basin, Mohammad and Nilsson [2004] (hereafter
MNO04) showed that the equilibrium responses of the thermo-
cline depth and overturning strength to changes in Ap follow
approximately (6—7) when «, is fixed and (10-11) when it
varies with vertical stability. If the model domain extends
over two hemispheres, the domain being symmetric about
the equator, the simulated flows exhibit two overturning
cells: a strong cell centered in the hemisphere where Ap is
largest (the ‘dominant’ hemisphere) and a weaker cell in the
other hemisphere (the ‘subordinate’ hemisphere) (MNO6).
These authors found that the model results still corroborate
the scaling laws (6—7) (for fixed k,) and (10-11) (for stabil-
ity-dependent k), if the degree of asymmetry in surface
buoyancy forcing between the two hemispheres is maintained
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(i.e., if the ratio between the pole-to-pole density difference
to the equator-to-pole density difference is fixed). Finally,
Nilsson et al. [2003] used a 3D model based on the primitive
equations and confined in a single hemisphere. They found
that the thermocline depth and the overturning strength fol-
low approximately (6—7) when k, is constant and (10-11)
when it is stability-dependent.

Note that other scaling laws for the oceanic thermocline
have been developed (e.g., Samelson and Vallis [1997]; Vallis
[2000]). These authors reported a scaling that assumes that
the thermocline is composed of two different layers with dis-
tinct dynamical regimes: an upper, ‘ventilated’ thermocline
where the motion is adiabatic and a lower, ‘internal’ thermo-
cline which is diffusive. The upper thermocline comprises
fluid advected downward by Ekman pumping in the subtrop-
ical gyre, which allows an explicit consideration of the wind
in the theory. The thickness of the upper (Hy) and lower
thermoclines (H} ) obey

HU NAP—I/ZWEI/Z’ (12)

H, ~ Ap71/4WE71/4Ki/2’ (13)

where Wy is the imposed Ekman velocity. Below only buoy-
ancy-driven flows are considered and the discussion is
restricted to the scaling laws (6—7) (constant ;) and (10-11)
(stability-dependent «,).

2.2. Sensitivity to Freshwater Forcing

Nilsson and Walin [2001] (hereafter NWO01) explored the
dynamical consequences of a stability-dependent vertical
mixing (more exactly, upwelling) in a two-layer model
(Figure 1), when the fluid density depends on both tempera-
ture and salinity. The distinction between the two density
components allowed the fundamental effect of freshwater
forcing on the MOC to be investigated [Stommel, 1961]. The
following assumptions were made regarding the poleward
and vertical flows:

Wy ~ ApH?, (14)

Y, ~ApH", (15)

where £, 1 > 0. The authors found that when the upwelling
does not depend on vertical stability ({=0 and n=1) the
flow exhibits different equilibria for the same freshwater
forcing, consistent with the model of Stommel [1961]
(Figure 2). On the other hand, when the upwelling depends
on stability ({ = n = 1), there is only a single equilibrium for
a given forcing and the freshwater forcing amplifies the
strength of the flow (dashed line in Figure 2). The feedback
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between salinity and circulation anomalies, which is positive
when the upwelling is stability-independent, becomes nega-
tive when it is stability-dependent. Thus, the circulation is
stable to any (infnitesimal) perturbations in the forcing.

The theoretical relationships of NWO01 have been compared
to simulations with numerical models of buoyancy-driven
flows under mixed boundary conditions (surface temperature
relaxed and surface salinity flux imposed). For a one-hemi-
sphere basin, the strength of the MOC decreases with
increasing freshwater forcing if «, is constant, whereas it
increases with increasing forcing if «, is stability-dependent
(MNO04); these results are qualitatively consistent with the
theory (Figure 2). For a two-hemisphere basin, on the other
hand, the strength of the MOC increases with increased
freshwater forcing (symmetric about the equator) for both
representations of vertical mixing if the circulation is equa-
torially asymmetric (MNO6). Thus, the theoretical relation-
ships developed by NWO01 may not hold in a two-hemisphere
basin.
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Figure 2. Equilibrium responses of the overturning strength to sur-
face freshwater forcing in the two-layer model of Nilsson and Walin
[2001]. The actual response depends on the nature of the upwelling
into the low latitude thermocline, which is represented as Wy ~
Ap“H™. If the upwelling is independent on vertical density stratifi-
cation (=0 and n=1), the overturning strength decreases with
freshwater forcing (solid line; the unstable branch is shown by the
dotted line). If upwelling depends on vertical density stratification
(=1 and n=1), the overturning strength increases with freshwa-
ter forcing (dashed line; there is no unstable branch for this case).
The solid line labeled with ‘S’ displays a model that operates simi-
larly to the model of Stommel [1961] (the unstable branch for this
case is also shown by a dotted line).
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3. NUMERICAL MODEL

In this section we describe the zonally averaged model that
is used to examine further the theoretical arguments summa-
rized in section 2. Only a brief description is given; details
can be found in the references provided below. Two different
idealized domains are considered, each being characterized
by a flat bottom at a depth D =4000m, vertical lateral
boundaries, and a zonal width (L) equivalent to 70°. A first
domain extends from 4°S to 76°N and the second domain
extends from 76°S to 76°N. For both domains, the grid has a
cell that straddles the equator in order to permit the use of the
model employed in this work [Wright et al., 1995]. For both
domains, the grid has a meridional resolution of 8° and a
vertical resolution that is variable with depth: 50 m between
0-300 m, 100 m between 300-1000 m, 125 m between
1000-1500 m, and 250 m below (27 vertical layers).

3.1. Equations of Motion

The following approximations in the equations of motion
are made. The fluid is incompressible and Boussinesq, and
the flow has a small Rossby number and is in hydrostatic bal-
ance. Friction in the equations for horizontal momentum is
represented as Fickian diffusion in the zonal direction, which
provides the simplest model of dissipation in the western
boundary layer. These equations are thus

. TP 6
p, ox  ax\ ox)
1op Of ,0v
=——= A—|. 17
Ju p05y+6x( axj a7

Here x (y) is the longitude (latitude), u (v) is the zonal
(meridional) velocity, p is pressure, and A is a viscosity
coefficient. Cross-differentiating gives an equation for the
relative vorticity, {= 0v/Ox — Ou/0y:

9 1%
i+ (fV)— ( axj (18)

Integrating from the western boundary (at x,) to the east-
ern boundary gives, with the conditions of no normal flow
and no slip at these boundaries,

f—(Lv)+L_af——AaC|x .
ox °

(19)

Here v is the zonal average of meridional velocity and the
dissipation of relative vorticity at the eastern boundary has
been neglected. Thus, the vortex stretching or compression
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caused by meridional variations in the meridional flow is bal-
anced by (i) the advection of planetary vorticity and (ii) the
dissipation of relative vorticity in the western boundary layer.
In 3D models, the dissipation must be properly represented,
whereas in zonally averaged models it must be parameterized
[Wright et al., 1995].

These authors developed a parameterization of the dissipa-
tion based on well-defined physical assumptions (see also
Wright et al. [1998]). Consider the integrated meridional
flow (LV) as the sum of the flows in the western boundary
layer with zonal width 6(6v°) and in the inviscid interior
with zonal width / (/v"). For spherical coordinates, the para-
meterization of vorticity dissipation leads to the following
balances:

2(5‘7&) = z_g[yZ [L] | (6-end - 6eq) +
0z

f f;nd
foa oG (20)
71 il _d 4 ,
¥ £|f| o 4
(F)— G- Coy)- (21)

Here ¢ is latitude, o=(p—p,)/p, is the zonal average of
density anomaly, subscript ‘end’ denotes a value at the north-
ern or southern end of the domain, and subscript ‘eq’ denotes
a value at the equator. The closure scheme includes two para-
meters: y; and y,. The first parameter describes the dissipation
of vorticity in the unresolved western boundary layer and the
second describes the net overturning in the unresolved high-
latitude boundary layers that are embedded in the southern-
most and northernmost grid cells of the model. The density
anomaly & is computed from a linear equation of state,

G=-a(l ~T))+B(S - S,), (22)

where T (S)is the zonal average of temperature (salinity), a
is the coefficient of thermal expansion, f is the coefficient of
haline contraction, and (7, S;) are reference values. The
equations for 7 and S are (e.g., Wright and Stocker [1991]):

_ 5 _
a—T+g(CV j+—(wT)—a c’j”a—T +
ot Os Os\ a” Os

J"'CIT»

a
(23)
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Here ¢ is time, v (w) is the zonal average of meridional (ver-
tical) velocity, ¢ = cos¢, s = sing, a is the earth radius, xj, (k) is
the horizontal (vertical) effective diffusivity, and g7 (¢s) repre-
sents the effect of convection on temperature (salinity). In prac-
tice, the velocity field is obtained from a stream function v,

_ 1 oy
=——=t (25)
Y c Oz
molov (26)
a 0Os

Details regarding the method of solution and the convec-
tion scheme can be found in Wright and Stocker [1991] and
Wright and Stocker [1992]. Note that no attempt is made here
to reduce the effects of numerical diffusion. The values of
model parameters used in this work are reported in Table 1.

3.2. Initial and Boundary Conditions

The initial conditions of the model are a state of rest
(v=w=0) and uniform 7, S (overbars for the dynamical
variables are omitted henceforth). The model ocean is subject
to restoring or mixed boundary conditions at the surface
(wind stress is ignored). In the numerical experiments with
restoring boundary condition, salinity is not considered
(S =S8,) and the heat flux at the surface is given by

K, a—T=£(T T.).
oz

27

Here Az =50 m is the thickness of the surface grid cell,
7= 50 d is the restoring time scale, and 7,(¢) is the restoring
temperature. In the experiments with mixed boundary condi-
tions, both salinity and temperature affect the density. The
surface heat flux is given by (27), whereas the surface salt
flux is

oS

-K,—=F,

P (28)

where F(¢) is imposed. The latitudinal distributions 7,(¢) and
F(¢) used in our numerical integrations represent idealized
conditions of the real ocean (sections 4-5).

3.3. Mixing Representations
Two different representations of vertical mixing are consid-

ered, one with a constant diffusivity and one with a stability-
dependent diffusivity (MNO04; MNO6):

K, =K, (29)
A
K, =K, 2 (30)
Ap
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Table 1. Parameters of the zonally averaged ocean model.

Symbol Definition Value Units
a earth radius 6,371 km
f Coriolis parameter f=2Qsin ¢ s7!
Q angular velocity of earth rotation 7.27 %107 s
g acceleration of gravity 9.81 m s
Do reference density 1028 kg m™
Kh horizontal effective diffusivity 103 m?s7!
Ky vertical effective diffusivity variable m?s7!
a coefficient of thermal expansion 2% 10* oc!
B coefficient of haline contraction 8 x 10

Ty reference temperature 0 °C
So reference salinity 35

N closure parameter® 1.1

7 closure parameter® -0.6

“Based on results from a 3D model [Wright et al., 1995].

Here k0= 10" m? s7!, Ap = py(—aAT + BAS) is the differ-
ence between the bottom density and the surface density, and
Apy = -poaATy is a reference difference, where AT, =25°C.
In the experiments where salinity is not considered, Ap =
-pooAT. Thus, when a stability-dependent diffusivity is
assumed, k, varies with latitude but not with depth. In order to
avoid unrealistically large diffusivity when the water column
is close to neutral stability, we use x, = min(x,, 1073 m? s71).

3.4. Comparison with Theory

For each numerical experiment two quantities, which
describe the depth of the thermocline and the strength of the
MOC, are diagnosed in order to compare with the scaling
laws for fixed and stability-dependent «, (equations 6—7 and
10-11) and with the analytical relationships of NWO1
(Figure 2). Both quantities are diagnosed at about the middle
latitude of the basin for the single-hemisphere experiments
and of the northern hemisphere basin for the two-hemisphere
experiments. We follow the definitions given by Nilsson et al.
[2003], which were used by MNO04 and MNO06. Thus, the
thermocline depth H is taken as

J T(z) - T(~-D)

| 70 -7CD) S et 31)

where 7(0) is the temperature at the surface and 7(-D) is the
temperature at the bottom. The strength of the MOC is taken
as the maximum of the stream function from the bottom to
the surface,

WY = max Ly(z). (32)

max- o e[-D,0]

This strength is reported in units of Sv (1 Sv=10°m?3s7!).

Note that the definition of both the thermocline depth and
the overturning strength involve some arbitrariness; for
example, they can be diagnosed using different formulas
and/or at different latitudes (or they could represent averages
over some latitude range). This point should be kept in mind,
as the degree of (dis)agreement between the model results
and the theory may somewhat depend on how both quantities
are computed from the model results.

4. STEADY FLOWS IN THE ONE-HEMISPHERE BASIN

The model domain is first restricted to one hemisphere
(more precisely, between 4°S—76°N). Numerical experiments
with fixed or stability-dependent «, and with restoring or
mixed boundary conditions are conducted by integrating the
model for 5000 years. The absence of a visible trend in the
integrated surface flux of heat at the end of the integrations
suggests a nearly steady state. It is instructive to first con-
sider a representative example of the flow (obtained with
fixed x, and with mixed boundary conditions that are
detailed below). The circulation is characterized by a single
overturning cell, with water sinking at high latitudes and
water rising elsewhere (Figure 3a). At high latitudes temper-
ature and salinity are about vertically uniform, whereas a
thermocline and a halocline have developed at low latitudes
(Figures 3b—3c). Below, we investigate how the representa-
tion of vertical mixing affects the response of this flow to
changes in surface buoyancy forcing.

4.1. Restoring Boundary Condition

The model is integrated with the surface boundary condi-
tion (27), where

-



GM01073_CHO5.gxd

6/8/07 2:36 PM Page 41

T.(¢) =A2—T[1+cos:;—¢]. (33)

m

Here AT is the equator-to-pole temperature difference and
¢ = 80° is the meridional extent of the basin. A series of
experiments with different values of AT are performed.
Consider first the results obtained with a constant diffusivity
K, (relation 29). The depth of the thermocline increases as AT
decreases (solid circles in Figure 4a). The numerical results
follow closely the relationship predicted by scaling theory,
H ~ AT~ "3 Note also the departures from the theoretical
relationship, which are the most pronounced for large values
of H. Likewise, the strength of the overturning circulation
decreases with a reduced A7 in a manner that is consistent
with theory, i.e., Wpa ~ AT to a good approximation (solid

£
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Figure 3. Distribution of (a) the stream function (in Sv), (b) the
temperature (°C), and (c) the salinity anomaly (S - Sp) in a single-
hemisphere experiment where the flow is subject to mixed bound-
ary conditions and the vertical diffusivity is constant. The contour
intervals are 2 Sv, 2°C, and 0.05.
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circles in Figure 4b). The agreement with thermocline scaling
theory is concordant with earlier results obtained from a zon-
ally averaged model (MNO04) and a 3D model [Nilsson et al.,
2003].

2500 T
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Figure 4. Equilibrium responses of (a) the thermocline depth and
(b) the overturning strength to the equator-to-pole temperature dif-
ference at the surface in the one-hemisphere model. Results
obtained from a fixed k, and a stability-dependent k, are shown by
solid and open circles, respectively. The thermocline depth and over-
turning strength diagnosed from the model are the values at about
the middle latitude of the basin (at 40°N and 36°N, respectively).
They are compared to the scaling laws for the oceanic thermocline
for the case with fixed «x, (solid line) and stability-dependent x,
(dashed). To facilitate the comparison the scaling laws are anchored
to the values computed by the numerical model for the largest ther-
mal forcing at the surface (AT =40°C).
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Figure 5. Equilibrium responses of (a) the thermocline depth and
(b) the overturning strength to surface freshwater forcing in the one-
hemisphere model. Results obtained from a fixed «, and a stability-
dependent x, are shown by solid and open circles, respectively. The
thermocline depth and overturning strength diagnosed from the
model are the values at about the middle latitude of the basin (at
40°N and 36°N, respectively). Both are normalized to the values
simulated by the model for the case where the freshwater forcing
vanishes. Likewise, the freshwater forcing is normalized as
explained in the text. The model results are compared to the theo-
retical relationships of Nilsson and Walin [2001] for the case with
fixed K, (solid line) and stability-dependent x, (dashed).

Consider then the results obtained with a stability-depen-
dent k, (relation 30). Compared to the case with fixed «,, the
depth of the thermocline increases to a larger extent in
response to a reduced AT (open circles in Figure 4a). The
numerical results are well approximated by the theoretical

—p—

scaling H ~ AT23, except for the experiments characterized
by a deep thermocline. In contrast to the case with fixed «,,
the strength of the overturning increases as AT is reduced
(open circles in Figure 4b). The agreement with the theoreti-
cal scaling is good, i.e., W,,.x ~ AT"'3, except again for the
experiments with large A, which show an increase of W,
with AT. These results also resonate with those obtained in
earlier studies (MNO4; Nilsson et al. [2003]).

Note that the departures of the model from theory in the
regime of deep thermocline (Figures 4a—4b) can be rational-
ized (MNO4). In this regime, the depth of the thermocline is
not controlled by the vertical advective-diffusive balance of
buoyancy but by the basin geometry. Thus, the scaling for the
meridional overturning becomes

¥ ~ ApD’. (34)

The strength of the MOC varies linearly with the density
contrast at the surface and does not depend on the nature of
vertical mixing. This provides an explanation for the reversal
in the response of the overturning to AT as the thermocline
becomes very thick (Figure 4b).

4.2. Mixed Boundary Conditions

The model is now integrated with the surface boundary
conditions (27-28). Note that in this case the equator-to-pole
density contrast (Ap) is not imposed but is partly determined
by the dynamics. The distribution of the restoring tempera-
ture is given by (33) with AT'=25°C. The distribution of the
surface salt flux is

o
F(¢)=—Focos¢—+F, (3%5)

m

where F" is a spatially uniform correction allowing the sur-
face integral of F to vanish. In order to permit a comparison
with analytical results (NWO1) the freshwater forcing at the
surface is expressed as a nondimensional quantity (R), which
corresponds hereafter to our definition of freshwater forcing
(e.g., Figure 5 and Figure 9 later). Let us define first a refer-
ence state of the model, where the forcing vanishes
(F(¢) = 0). The nondimensional quantity R then corresponds
to the ratio between the surface buoyancy forcing associated
with the surface salt flux and the thermal buoyancy flux asso-
ciated with the simulated poleward heat transport in the ref-
erence state (e.g., MN04):

_ﬁ<F>P0Cp
a0

R (36)

Here (F) is the surface integral of F(¢) over the region where
F(¢)>0 (or < 0), C,=3900 J kg™' °C™! is the specific heat
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capacity of seawater at constant pressure, and Q, is the depth-
integrated heat flux at about the middle latitude of the basin
(36°N) in the reference state. In the reference experiment with
fixed x,, O,=0.77 PW, whereas in the reference experiment
with a stability-dependent x,, O, = 0.86 PW. Likewise, in order
to compare the model results with theory, the values of thermo-
cline depth and overturning strength simulated by the model are
normalized to the values of the reference experiments.

Consider first the case with fixed «x,. The depth of the
thermocline increases with the freshwater forcing, the
increase being consistent with the theoretical result of NW01
(Figure Sa). Similarly, the strength of the meridional overturn-
ing decreases with increasing freshwater forcing in a manner
that is consistent with theory, although the agreement is per-
haps less apparent (Figure 5b). Note that the model solutions
become time-dependent for R > 0.31; these solutions, which
are not shown in Figure 5, will be examined in section 6.

Consider then the case with a stability-dependent «,. Both
the thermocline depth and the overturning strength increase
with the freshwater forcing, the trends being concordant with
the theoretical predictions of NWO01 (Figures 5a—5b). Thus,
the stability-dependence of the diffusivity leads to an ampli-
fication of the MOC as the freshwater forcing intensifies,
which is contrary to model results with constant diffusivity
obtained here and in earlier studies. Note that solutions
become again time-dependent for large values of the forcing,
i.e., for R > (.53 (not shown here; section 6).

In summary, our results obtained with the restoring bound-
ary condition agree with those obtained from a zonally aver-
aged model (MNO4) and a 3D model (Nilsson et al., 2003),
in the sense that they can be rationalized by scaling argu-
ments. The results obtained with mixed boundary conditions
are also consistent with those of MNO04, in the sense that the
responses to freshwater forcing follow the predictions from a
simple two-layer theory (NWO1).

5. STEADY FLOWS IN THE TWO-HEMISPHERE BASIN

The model domain is now extended to include the southern
hemisphere (the domain is between 76°S—76°N). It is unclear
whether agreement with the scaling laws and the two-layer
theory will be found for that case, as the volume exchange at
the equator may interfere with the relationships between the
thermocline depth, overturning strength, and surface buoy-
ancy forcing in a given hemisphere. Again, a series of numer-
ical experiments with fixed or stability-dependent «, and
with restoring or mixed boundary conditions is obtained by
integrating the model for 5000 years. The absence of a visi-
ble trend in the integrated surface flux of heat at the end of
the integrations is interpreted as a quasi-steady state.

It is instructive to first examine a representative experi-
ment (obtained with fixed x, and with mixed boundary
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conditions to be described). The flow shows a strong over-
turning cell centered in the northern (dominant) hemisphere
and occupying most of the basin; a weaker cell is confined to
the southern (subordinate) hemisphere (Figure 6a). The tem-
perature and salinity distributions are also strongly asymmet-
ric, i.e., the northern hemisphere is colder and saltier than the
southern hemisphere and is less vertically stratified (Figures
6b—6¢). Below, we explore to which extent the response of
this flow to perturbations in surface buoyancy forcing is
influenced by the representation of vertical mixing.

5.1. Restoring Boundary Condition
The model is again integrated with the surface boundary

condition (27) and with salinity omitted (S = S;). The distrib-
ution of the restoring temperature is (MN06)
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Figure 6. Distribution of (a) the stream function (in Sv), (b) the
temperature (°C), and (c) the salinity anomaly (S—Sp) in a two-
hemisphere experiment where the flow is subject to mixed bound-
ary conditions and the vertical diffusivity is constant. The contour
intervals are 2 Sv, 2°C, and 0.05.
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T.(¢) =%[2y +(1- ,u)(l + cosZ—(ﬁD for $<0, (37)

m

E(¢):%(l+cos;—¢J for ¢ >0. (38)

m

Here 2¢,,, = 152° is the meridional extent of the basin and
u is the ratio between the pole-to-pole temperature difference
and the equator-to-pole temperature difference in the north-
ern hemisphere. For 2 = 0, the restoring temperature is sym-
metric about the equator, whereas for u=1 the restoring
temperature is constant throughout the southern hemisphere,
the distribution 7,(¢) being unchanged in the northern hemi-
sphere. Thus, p is a measure of the degree of interhemi-
spheric asymmetry in the thermal (or buoyancy) forcing.

Consider first a series of experiments with p = 0.5 and dif-
ferent values of the equator-to-pole temperature contrast in
the northern hemisphere (A7). Thus, the degree of asymme-
try in thermal forcing is identical among the experiments.
The responses of the thermocline depth and of the overturn-
ing strength to varying AT (Figures 7a—7b) are qualitatively
similar to those simulated for a single-hemisphere basin
(Figures 4a—4b). They remain consistent with the responses
predicted from scaling theory, i.e., H ~ AT"'3 and W, ~
AT"3 when the diffusivity is fixed and H ~ AT and ¥, ~
AT when it varies with vertical stratification. Note that the
degree of agreement with theory varies with p; for example,
a set of experiments conducted with p= 0.1 shows that ‘¥,
still increases monotonically with decreasing A7 but in a way
that is different from that envisioned by theory (not shown).
Again, large departures between the model results and the
scaling laws occur as the thermocline becomes very deep
(Figures 7a—7b). Thus, the existence of a volume exchange at
the equator does not alter the dependencies of the MOC on
the thermal forcing: the strength of the overturning in the
dominant hemisphere remains controlled by the thermal forc-
ing in that hemisphere. MNOG6 obtained similar results with a
different zonally averaged model.

Consider then the case where the degree of asymmetry in
thermal forcing is wvaried, keeping AT unchanged
(AT = 25°C). The thermocline depth and overturning strength
in the northern hemisphere exhibit relatively large increases
in response to increased asymmetry for small values of 1 and
relatively small variations for large values of u (Figures
8a—8b). Klinger and Marotzke [1999] reported a similar
result from experiments with a 3D model based on the prim-
itive equations, i.e., the MOC in the dominant hemisphere
shows a large increase when the forcing from symmetric
becomes asymmetric. The representation of vertical mixing
has a relatively small influence (Figures 8a—8b): if x, is fixed
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Figure 7. Equilibrium responses of (a) the thermocline depth and
(b) the overturning strength to the equator-to-pole temperature dif-
ference at the surface in the two-hemisphere model. Results
obtained from a fixed «, and a stability-dependent x are shown by
solid and open circles, respectively. The thermocline depth and over-
turning strength diagnosed from the model are the values at about
the middle latitude in the northern hemisphere (at 40°N and 36°N,
respectively). They are compared to the scaling laws for the oceanic
thermocline for the case with fixed «, (solid line) and stability-
dependent «, (dashed). To facilitate the comparison the scaling laws
are anchored to the values computed by the numerical model for the
largest thermal forcing at the surface (AT = 40°C).

both H and W,,,, show small increases over most of the u-
range, whereas if k, depends on vertical stability they exhibit
small decreases. Thus, the dynamical effects of the nature of
vertical mixing depends on the nature of the perturbation in
surface buoyancy forcing: if the forcing varies in a way that
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Figure 8. Equilibrium responses of (a) the thermocline depth and
(b) the overturning strength to the degree of interhemispheric asym-
metry in buoyancy (thermal) forcing. Results obtained from a fixed
Kk, and a stability-dependent «x, are shown by solid and open circles,
respectively. The thermocline depth and overturning strength are the
values at about the middle latitude in the northern hemisphere
(at 40°N and 36°N, respectively).

preserves the asymmetry between the two hemispheres, these
effects are important, whereas if the asymmetry is altered,
these effects are relatively minor. This finding resonates with
the result obtained by MNO6.

It is perhaps noteworthy, however, that the overturning
strength in the dominant hemisphere is generally less sensitive
to the degree of asymmetry in thermal forcing when the dif-
fusivity depends on vertical stability (Figure 8b). In this case,
the responses of the thermocline depth and overturning
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strength saturate already for p ~ 0.3 (Figures 8a—8b). For
constant ,, on the other hand, both quantities vary more
gradually with u.

5.2. Mixed Boundary Conditions

We now integrate the model with the restoring temperature
(37-38) (with AT =25°C and p = 0.5) and the flux condition
(35) (with ¢, = 76° now corresponding to half the meridional
extent of the basin). Thus, the thermal forcing is not sym-
metric about the equator, whereas the haline forcing is—the
salt flux being into the ocean near the equator and out of the
ocean at high latitudes. The surface salt flux, the depth of the
thermocline, and the strength of the overturning circulation
are all normalized so as to permit a comparison with the the-
oretical relationships of NWOI1. Thus, it is assumed that the
symmetric freshwater forcing (35) is an appropriate form to
compare against theory. For fixed «,, the poleward heat flux
at 36°N of the reference experiment (Q,) amounts to 0.87
PW. For a stability-dependent «,, O, reaches 1.0 PW.

For both representations of vertical mixing, the thermo-
cline depth and overturning strength increase with freshwater
forcing (Figures 9a—9b). In contrast to the experiments for a
one-hemisphere basin, the model results show strong depar-
tures from the theoretical relationships of NWO1. Thus, the
theory does not adequately represent the sensitivity of the
MOC to freshwater forcing in the two-hemisphere model.
These results are in conformity with those obtained by MN06
when the circulation is asymmetric about the equator.

The sensitivity of the overturning strength to freshwater
forcing (Figure 9b) is interpreted as follows. When the circu-
lation is asymmetric the surface freshwater flux, albeit sym-
metric, tends to create an asymmetric salinity field that
reinforces the equatorial density asymmetry due to the tem-
perature field. The reason is that the equator-to-pole salinity
difference is more sensitive to the freshwater forcing in the
subordinate hemisphere, where the circulation is weaker than
in the dominant hemisphere. Hence, enhancing the freshwa-
ter forcing increases also the pole-to-pole density difference.

Two further comments regarding the dynamical responses
of the two-hemisphere model to freshwater forcing are in
order. First, in contrast to earlier work (MNO6), the symmet-
ric circulation about the equator simulated with our model
(with = 0, not shown) does not exhibit a spontaneous tran-
sition to an asymmetric circulation for large freshwater forc-
ing; for large freshwater forcing the circulation remains
symmetric but the overturning cell of each hemisphere
becomes reversed (water sinking near the equator and water
rising elsewhere). For this reason, only the responses of the
asymmetric circulation to the forcing have been investigated
here. Second, the asymmetric flow exhibits a dramatic
change for large freshwater forcing (R >0.23) when x, is
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Figure 9. Equilibrium responses of (a) the thermocline depth and
(b) the overturning strength to surface freshwater forcing in the two-
hemisphere model. Results obtained from a fixed «x, and with a sta-
bility-dependent «, are shown by solid and open circles,
respectively. The thermocline depth and overturning strength diag-
nosed from the model are the values at about the middle latitude in
the northern hemisphere (at 40°N and 36°N, respectively). Both are
normalized to the values simulated by the model for the case where
the freshwater forcing vanishes. Likewise, the freshwater forcing is
normalized as explained in the text. The model results are compared
to the theoretical relationships of Nilsson and Walin (2001) for the
case with fixed «, (solid line) and stability-dependent «, (dashed).

constant; the resulting flow is stable and almost symmetric
about the equator with, again, water sinking near the equator
and water rising elsewhere (these solutions are not shown in
Figures 9a-9b). On the other hand, time-dependent solutions
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are found for large freshwater forcing (for R > 0.56) when «,
varies with vertical stability. A description of the time-depen-
dent solutions obtained for the single-hemisphere basin and
the two-hemisphere basin is provided in the next section.

6. UNSTEADY FLOWS

In this section, we examine numerical experiments that
are characterized by a variable flow under mixed boundary
conditions. Time-dependent solutions are obtained for a
single-hemisphere basin when x, is either constant or stability-
dependent and for a two-hemisphere basin when «,, is stability-
dependent. In the absence of a theoretical framework for the
time-dependence, the discussion below is mostly descriptive.

6.1. One-Hemisphere Basin

Consider as an example the time-dependent solution
obtained with fixed «, and R = 0.35 (Figures 10a—10b). Both
the thermocline depth at the equator and the maximum over-
turning strength in the basin exhibit quasi-periodic varia-
tions. Initially, the thermocline is relatively shallow and the
overturning is in the ‘direct’” mode with the equator-to-pole
density difference dominated by the temperature difference.
This flow is destabilized at the surface by the net supply of
salt at low latitudes and the net removal of salt at high lati-
tudes. Eventually, salinity dominates temperature in the
meridional density difference, leading to a new state with a
deeper equatorial thermocline and a reverse overturning with
water sinking at the equator and water upwelling elsewhere.
This reverse flow, however, is also unstable as the warm
water that sinks near the equator is transported poleward
below colder water, which decreases the static stability of the
water column at high latitudes. Eventually, convection sets it
and the reverse flow is interrupted by a violent, direct over-
turning of several hundreds of Sv (a flush), reported previ-
ously for zonally averaged and 3D models (e.g., Marotzke
[1989]; Wright and Stocker [1991]). After the flush, the sur-
face temperatures are quickly restored and the surface salin-
ities evolve again towards positive anomalies near the
equator and negative anomalies at high latitudes under the
effect of surface salt fluxes. This state becomes ultimately
destabilized and the cycle repeats itself. Note that for even
larger freshwater forcing (e.g., R = 0.70), the flow does not
display quasi-periodic variations but stays in the reverse
mode dominated by salinity differences (not shown).

Time-dependence of the flow occurs for larger freshwater
forcing if x, depends on vertical stability (Figure 5).
Consider the experiment obtained with R = 0.56 (thick lines
in Figure 11). The overturning strength exhibits a time evolu-
tion that is qualitatively similar to the one simulated with
fixed x, (Figure 10b); quantitative differences between the
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Figure 10. Time evolution of (a) the thermocline depth at the equator and (b) the overturning strength in a single-hemisphere exper-
iment with constant x, and R = 0.35. In panel (b) both the minimum and maximum values of the stream function in the basin are shown
(thin and thick lines, respectively).
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Figure 11. Time evolution of the maximum stream function in different single-hemisphere experiments with a stability-dependent i,
and R = 0.56. (a) Experiments with a mixing energy of 5.0 mW m- (thick line) and 5.0 x 0.5 mW m (thin line). (b) Experiments
with a mixing energy of 5.0 mW m (thick line) and 5.0 x 1.5 mW m (thin line).
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two solutions are due to differences in freshwater forcing as
well as in mixing representation. It is instructive to assess the
influence of the mixing energy £ on the time evolution of the
flow. For the experiment described above, E = gk,(Apy = 5.0
mW m~2. We conduct two other experiments with the same
freshwater forcing (R = 0.56) but with £ reduced or increased
by 50%. The lower energy level increases the time intervals
during which the flow is reversed and decreases the time
intervals during which the flow is in the direct mode (com-
pare thin line with thick line in Figure 11a). In contrast, the
higher energy level leads to a direct flow that becomes stable
after about one millennium (compare thin line with thick line
in Figure 11b). Thus, the energy available for vertical mixing
has an important influence on the dynamical response of the
flow to large freshwater forcing.

6.2. Two-Hemisphere Basin

We finally examine time-dependent flows obtained under
constant freshwater forcing for the two-hemisphere basin.
As mentioned above, time-dependent solutions for the
two-hemisphere basin are not found if k, is fixed: in this case
the flow for large amplitude of freshwater forcing evolves

—p—

into a stable state that is almost symmetric about the equator.
Of course, the fact that no time-dependent solutions are
found for a two-hemisphere basin with fixed x, does not
imply that no such solutions exist; they may well occur, for
example, for different sets of model parameters that have not
been explored here.

Consider as an example the experiment obtained with
R =0.63 (using a stability-dependent «,) (Figures 12a—12b).
The flow presents quasi-periodic variations, as for the single-
hemisphere basin. It alternates between a phase of asymmet-
ric circulation, with a shallow thermocline depth at the
equator and a strong overturning centered in the northern
hemisphere, and a phase of quasi-symmetric circulation, with
a deeper equatorial thermocline. Thus, during the second
phase, both the thermocline depth at the equator and the
overturning strength in the southern hemisphere increase
gradually. The warm waters that sink near the equator are
transported to high latitudes below colder waters in each
hemisphere. Again, this destabilizes the flow and leads
eventually to a flush. During the flushes, the maximum
stream function in both hemispheres increase rapidly
(Figure 12b). As for the single-hemisphere basin, it is instruc-
tive to explore the influence of varying levels of mixing

‘s 3000 —r— :
T L a i
F
o,
B 2000
)
=
=
5 1000
O
=
~
[=a)
s 0 T I
= 0 10000 20000

400 —r— I
5 [P f
U 250+ _
= L i
Z,
[a [ _
= 100+ .
: LL\/&/\%L&
[=] - 4
3 ]

750 | | | | | | | | ‘ | | | | | | | | |

0 10000 20000
TIME [yr]

Figure 12. Time evolution of (a) the thermocline depth at the equator and (b) the overturning strength in a two-hemisphere experi-
ment with a stability-dependent x, and R = 0.63. In panel (b) the maximum values of the stream function in the southern and north-

ern hemispheres are shown (thin and thick lines, respectively).
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energy (Figures 13a—13b). The period of the flow oscillations
increases when E is reduced and the flow stays stable and
asymmetric when £ is increased. Thus, the mixing energy has
the same qualitative influences on the flow response to large
freshwater forcing as in the one-hemisphere basin.

In summary, theoretical considerations for the steady state
indicate that the direct flow is stable to any (infinitesimal)
perturbation in freshwater forcing if «x, varies with vertical
stability (Figure 2; NWO01). The numerical experiments pre-
sented here indicate that the direct flow can be destabilized if
the forcing is finite in both single- and two-hemisphere
basins, leading to quasi-periodic variations. The flow varia-
tions have a period that varies with the energy available for
vertical mixing. Such variations are absent if the energy level
is high enough, the flow then becoming stable and direct in
the northern hemisphere.

6.3. Periodicity of the Flow Oscillations

A series of long integrations (50,000 years) allows us to
determine with more detail the relationship between the

—p—
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two-hemisphere basin (Figure 14). At relatively low energy
levels, the period decreases gradually with increased mixing
energy, the period variations being qualitatively similar for
both basins. At high energy levels, the period of flow oscilla-
tion rises sharply with increased mixing energy. For very
large levels the flow oscillations vanish, as noted earlier.

The variations of the period of flow oscillation with mix-
ing energy could partly be understood from an analogy with
the self-sustained or self-excited oscillations that character-
ize a variety of mechanical and electrical systems. A canoni-
cal example of self-sustained system with one degree of
freedom is governed by a special form of the van der Pol
equation (e.g., Stoker [1950]):

$+eF () +x=0, (39)

where the dots indicate time differentiation, x is a measure of
the departure of the system from rest, ¢ is a positive constant,
and the function F(x) is given by

3

period of flow oscillation and the energy available for F(X)=—%+ X )
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Figure 13. Time evolution of the maximum stream function in the northern hemisphere in different two-hemisphere experiments with a sta-
bility-dependent «, and R = 0.63. (a) Experiments with a mixing energy of 5.0 mW m (thick line) and 5.0 x 0.5 mW m (thin line). (b)
Experiments with a mixing energy of 5.0 mW m (thick line) and 5.0 x 1.5 mW m (thin line).
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Figure 14. Period of flow oscillation versus the energy available for
vertical mixing in the one-hemisphere basin (solid circles) and the
two-hemisphere basin (open circles). The period of flow oscillation
is taken as the average of the time intervals between subsequent
times at which the maximum stream function exceeds 100 Sv. The
mixing energies and oscillation periods are normalized to the values
obtained for the experiment characterized by a minimum period of
flow oscillation for each basin. The model results are compared to a
scaling suggested by an analogy of the model behavior with the
relaxation oscillations of van der Pol. This scaling law (dashed line)
is anchored in the figure so as to maximize the appearance of an
agreement of model results with theory.

The damping force —&F(x) tends to increase the amplitude
of the departure for small velocities and to decrease it for
large velocities. Consequently, a state of rest is not a stable
state and an oscillation will be built up from rest even in the
absence of external forces. After the transients die out, the
system (39—40) is expected to lead to a limit cycle in the
phase plane.

Analysis provides some insight into the dynamics of the
system (39-40) in the strongly nonlinear limit &1 [Stoker,
1950]. Introducing two new variables, & =x/e and v=x, the
motion must satisfy the equation

dé v

dv _ ,-F(v)-¢&

In the limit &> 1 different portions can be distinguished in

the phase plane (v versus ¢&): ones for which
E=—F(v)=v—v¥3, so that dv/dé =0, and others for which

—p—

E#—F(v), so that |dv/dé|>1 or & = constant. Thus, the
motion is relatively slow along the two portions where it
occurs along the characteristic curve £=—F(v) and is very
fast along the two portions where it does not occur along this
curve. The period of the oscillations is therefore given by

T=g¢d§ jd@ v /3) _ g@nv_§J

P2

we (42)

P

where p;, p, are two positions in the phase plane at the
extremities of a portion where &=—F(v)=v—1%3. Thus,
jerky oscillations are expected to occur in the limit &>1,
with a period that scales approximately with &. The different
portions of the motion in the phase plane correspond to two
major phases that are physically distinct: one during which
energy is stored up slowly (in a spring or capacitor) and
another in which the energy is discharged rapidly when a cer-
tain critical threshold is attained [Stoker, 1950].

We hypothesize that the ‘relaxation oscillations’ of the van
der Pol system (39—40) in the limit ¢>1 are an analogue of
the time-dependent solutions of the numerical model, where
the ‘energy’ is the potential energy stored in the deep ocean.
When the flow is reversed (in the one-hemisphere basin) or
quasi-symmetric (in the two-hemisphere basin), heat accu-
mulates in the stratified interior, leading to a storage of
potential energy. When the vertical salinity stratification can-
not stabilize the vertical temperature stratification at high lat-
itudes, a threshold is reached and the potential energy stored
in the deep ocean is suddenly released into kinetic energy
(the flushes).

In order to assess our hypothesis we determine a plausible
analogue of ¢ in the numerical model and examine whether
the relationship between the modeled flow periods and this
analogue is consistent with the scaling 7 ~ ¢ (equation 42).
This analogue must have three properties: it must increase
monotonically with increased nonlinearity in the dynamics, it
must incorporate the mixing energy £, and it must be dimen-
sionless. In the case of a stability-dependent «,, the dynami-
cal equations have two sources of nonlinearity: the advection
of buoyancy and the vertical mixing of buoyancy (vertical
mixing terms in (23-24) are nonlinear as they are propor-
tional to (Ap)~! 6%T/0z* and (Ap)~' #2S/0z?, where Ap is the
bottom-to-top difference of density). Assuming that advec-
tion is the dominant source (in the case of fixed k, it is the
only source of nonlinearity), an analogue of & would be the
ratio of the advection to the vertical mixing of buoyancy. In
(23-24) horizontal advection scales as vertical advection
owing to the incompressibility of the zonally averaged flow
that is implicit in (25-26). Thus, use of the horizontal or ver-
tical advection in the expression for the analogue is immate-
rial and the advection term in this expression has the general
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form u - Vp. Introducing a characteristic amplitude for, say,
the horizontal velocity (U) and characteric length scales for
the horizontal (L) and vertical variations of the dynamical
fields (H), an analogue of & would be

O[ u-Vp jzRoBuS' 43)

x,0°p/ oz’ En

Here Ro is the Rossby number, Bu is the Burger number, 0 is
the aspect ratio, and En is a dimensionless mixing energy, i.e.,

Ro :L, Bu = gﬁip 522, En :%.(44)
2QL p (2QL) L p(2QL)

Thus, at any given time, the relative importance of nonlin-
earity would scale as £, i.e., 7! in the numerical model
would play the role of ¢ in the van der Pol equation.

We compare therefore the periods of flow oscillation sim-
ulated by the model with the following scaling (dashed line
in Figure 14),

-l
T~E". (45)

The modeled periods at small levels of mixing energy fol-
low approximately this scaling, whereas the modeled periods
at high levels remain unexplained. Although the comparison
is by no means conclusive (the scaling law (45) is intention-
ally anchored in Figure 14 so as the maximize the appearance
of an agreement of the model results with the theoretical
scaling), it does suggest that the time-dependent solutions of
the numerical model could be fundamentally understood in
terms of the van der Pol system (39—40).

7. SUMMARY

A zonally averaged ocean model is used in order to explore
the consequences for the meridional overturning circulation
of different natures of vertical mixing. In particular, we con-
sider how amplitude changes in the large-scale pattern of
freshwater forcing—with net freshwater loss (gain) at low
(high) latitudes—affect the MOC. For a single-hemisphere
basin, we find that the equilibrium response of the MOC to an
increased amplitude of freshwater forcing is a decrease in
strength when «, is fixed and an increase in strength when it
is stability-dependent. On the other hand, for a two-hemi-
sphere basin and an asymmetric MOC about the equator,
increased freshwater forcing boosts the overturning in the
dominant hemisphere for both representations of vertical mix-
ing (note, however, that a local enhancement of freshwater
supply to the sinking regions in the dominant hemisphere

—p—
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would tend to curtail the MOC—at least for the case of a fixed
k,—as illustrated in numerous studies that focused on the
Atlantic). These results resonate with those obtained in earlier
studies based on models whose connection with the ocean cir-
culation is perhaps less apparent (NWO01; MNO04; MNO6).

For large but constant freshwater forcing, time-dependent
solutions are found for both the single-hemisphere basin and
the two-hemisphere basin. These solutions correspond to self-
sustained oscillations of the flow and are quasi-periodic (e.g.,
millennial). The critical forcing beyond which time-depen-
dence occurs is larger when k, depends on vertical stability,
i.e., the model ocean with fixed mixing energy is more stable
to freshwater forcing than the model ocean with fixed diffu-
sivity. For a single-hemisphere basin, time-dependent solutions
are found for both fixed and stability-dependent «,, whereas
for a two-hemisphere basin they occur only when x, varies
with stratification. The mixing energy affects the response of
the flow to freshwater forcing. In particular, the period of the
flow oscillations varies with the energy level in a way that can
be understood from an analogy with the van der Pol oscillator.
Thus, a range of time evolutions of the flow under large fresh-
water forcing is possible, depending on the nature of vertical
mixing and on the amount of energy available.

To apply our results to the real ocean would require a leap
that we do not attempt, given the highly idealized character
of the model and of the numerical experiments. In our two-
basin experiments, the upwelling required to balance sink-
ing in the northern (dominant) hemisphere occurs to a large
extent at the mid- and low latitudes with a relatively small
contribution at high southern latitudes. The dynamical
effects of vertical mixing may be altered if the upwelling in
the real ocean takes place mostly at these latitudes.
Toggweiler and Samuels [1998] used simulations from a 3D
model to argue that a MOC powered by winds in the
Southern Ocean—the so-called Drake Passage effect—may
exist with very little vertical mixing and deep upwelling at
low latitudes. Saenko and Weaver [2003] used the concep-
tual model of Gnanadesikan [1999] to examine how the
nature of vertical mixing affects the MOC in the presence of
a circumpolar ‘Southern Ocean’. In this model, upwelling
occurs in the low latitudes as well as in the Southern Ocean
where the net upwelling is the difference between northward
Ekman transport and southward eddy transport across the
circumpolar current. Analysis shows that the equilibrium
response of the MOC to changes in the equator-to-pole den-
sity contrast in the northern hemisphere remains controlled
by the nature of vertical mixing even in the presence of
Ekman transport (for negligible eddy transport). Saenko and
Weaver [2003] assumed that the eddy transport is propor-
tional to thermocline depth, a choice inspired by the scheme
of Gent and McWilliams [1990]. For this representation of
eddy-transport and with a stability-dependent x,, the MOC
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decreases with increasing density contrast, provided that the
eddy transport is below a threshold value. For stronger
eddy transport, however, the more common response is
obtained, i.e., the MOC increases with increasing density
contrast. Thus, the contrasting equilibrium responses of the
MOC for diferent natures of vertical mixing, which are
obtained in this study, need to be examined with more
complete models.

Acknowledgments. We thank Alain Colin de Verdiére and Carl
Wunsch for comments on the manuscript. Support for this work
came from the U.S. National Science Foundation (authors CJ and
OM), the ‘Deutsche Forschungsgemeinschaft’ (AP), the Swedish
Science Research Council (JN), and the Swiss National Science
Foundation (TFS).

REFERENCES

Bryden, H.L., and S. Imawaki, Ocean heat transport, G. Siedler, J. Church,
and J. Gould (Eds.), Ocean Circulation and Climate, Volume 77 of
International Geophysical Series, pp. 455-474. Academic Press, 2001.

Cummins, PF, G. Holloway, and A.E. Gargett, Sensitivity of the GFDL
ocean general circulation model to a parameterization of vertical diffu-
sion, J. Phys. Oceanogr., 20, 817-830, 1990.

Dijkstra, H.A. Nonlinear physical oceanography: A dynamical system
approach to the large scale ocean circulation and El Nino. Springer,
Dordrecht, New York, 2005.

Gargett, A.E., Vertical eddy diffusivity in the ocean interior, J. Marine Res.,
42,359-393, 1984.

Gent, PR., and J.C. McWilliams, Isopycnal mixing in ocean circulation
models, J. Phys. Oceanogr., 20, 150-155, 1990.

Gent, PR., J. Willebrand, T.J. McDougall, and J.C. McWilliams,
Parameterizing eddy-induced tracer transports in ocean circulation mod-
els, J. Phys. Oceanogr., 25, 463-474, 1995.

Gnanadesikan, A., A simple predictive model for the structure of the oceanic
thermocline, Science, 283, 2077-2079, 1999.

Hu, D., On the sensitivity of thermocline depth and meridional heat transport
to vertical diffusivity in OGCMs, J. Phys. Oceanogr., 26, 1480-1494, 1996.

Huang, R.X., Mixing and energetics of the ocean thermohaline circulation,
J. Phys. Oceanogr., 29, 727-746, 1999.

Kato, H., and O.M. Phillips, On the penetration of a turbulent layer into a
stratified fluid, J. Fluid Mech., 37, 643-655, 1969.

Klinger, B.A., and J. Marotzke, Behavior of double-hemisphere thermoha-
line flows in a single basin, J. Phys. Oceanogr., 29, 382-399, 1999.

Marotzke, J., 1989. Instabilities and multiple steady states of the thermoha-
line circulation. in D.L.T. Anderson and J. Willebrand (Eds.), Ocean
Circulation Models: Combining Data and Dynamics, NATO ASI,
pp. 501-511. Kluwer.

Mohammad, R., and J. Nilsson, The role of diapycnal mixing for the equi-
librium response of the thermohaline circulation, Ocean Dynamics, 54,
54-65, 2004.

Mohammad, R., and J. Nilsson, Symmetric and asymmetric modes of the
thermohaline circulation, Tellus, Ser. A, 58, 616-627, 2006.

Munk, W., and C. Wunsch, Abyssal recipes II: Energetics of tidal and wind
mixing, Deep Sea Res., 45, 1977-2010, 1998.

Nilsson, J., G. Brostrom, and G. Walin, The thermohaline circulation and ver-
tical mixing: Does weaker density stratification give stronger overturn-
ing?, J. Phys. Oceanogr., 33, 2781-2795, 2003.

—p—

Nilsson, J., and G. Walin, Freshwater forcing as a booster of the thermoha-
line circulation, Tellus, 53A, 629-641, 2001.

Olsen, S.M., G. Shaffer, and C.J. Bjerrum, Ocean oxygen isotope constraints
on mechanisms for millennial-scale climate variability, Paleoceanography,
20, doi:10.1029/2004PA001063, 2005.

Osborn, T.R., Estimates of the local rate of vertical diffusion from dissipa-
tion measurements, J. Phys. Oceanogr., 10, 83-89, 1980.

Park, Y.-G., and K. Bryan, Comparison of thermally driven circulations from
a depth-coordinate model and a isopycnal-layer model. Part I: Scaling-law
sensitivity to vertical diffusivity, J. Phys. Oceanogr., 31, 972-991, 2001.

Paul, A., and M. Schulz. Holocene climate variability on centennial-to-mil-
lennial time scales: 2. Internal and forced oscillations as possible causes,
G. Wefer, W. Berger, K.-E. Behre, and E. Jansen (Eds.), Climate
Development and History of the North Atlantic Realm, pp. 55-73.
Springer-Verlag, Berlin, 2002.

Pedlosky, J. Geophysical Fluid Dynamics (2 ed.). Springer, 1987. 710 pp.

Polzin, K.L., .M. Toole, and R.W. Schmitt, Finescale parameterizations of
turbulent dissipation, J. Phys. Oceanogr., 25, 306-328, 1995.

Saenko, O.A., and A.J. Weaver, Southern ocean upwelling and eddies:
Sensitivity of the global overturning to the surface density range, Tellus,
Ser. A, 55A, 106-111, 2003.

Samelson, R.M., and G.K. Vallis, Large-scale circulation with small diapycnal
diffusion: The two-thermocline limit, J. Marine Res., 55, 223-275, 1997.
Stoker, J.J., Nonlinear vibrations, Pure and applied mathemathics.

Interscience publishers, Inc., New York, 1950. 273 pp.

Stommel, H., Thermohaline convection with two stable regimes of flow,
Tellus, 13, 224-241, 1961.

Toggweiler, JR., and B. Samuels, On the ocean’s large-scale circulation
near the limit of no vertical mixing, J. Phys. Oceanogr., 28, 1832-1852,
1998.

Vallis, G.K., Large-scale circulation and production of stratification: Effects
of wind, geometry, and diffusion, J. Phys. Oceanogr., 30, 933-954, 2000.

Welander, P, 1986. Thermohaline effects in the ocean circulation and related
simple models. in J. Willebrand and D.L.T. Anderson (Eds.), Large-Scale
Transport Processes in Oceans and Atmosphere, pp. 163-200. D. Reidel.

Winton, M., and E.S. Sarachik, Thermohaline oscillations induced by strong
steady salinity forcing of ocean general circulation models, J. Phys.
Oceanogr., 23, 1389-1410, 1993.

Wright, D.G., and T.E. Stocker, A zonally averaged ocean model for the ther-
mohaline circulation, Part I: Model development and flow dynamics, J.
Phys. Oceanogr., 21, 1713-1724, 1991.

Wright, D.G., and T.F. Stocker, Sensitivities of a zonally averaged global
ocean circulation model, J. Geophys. Res., 97, 12,707-12,730, 1992.

Wright, D.G., T.F. Stocker, and D. Mercer, Closures used in zonally averaged
ocean models, J. Phys. Oceanogr., 28, 791-804, 1998.

Wright, D.G., C.B. Vreugdenhil, and T.M. Hughes, Vorticity dynamics and
zonally averaged ocean circulation models, J. Phys. Oceanogr., 25, 2141-
2154, 1995.

Wunsch, C., and R. Ferrari, Vertical mixing, energy, and the general circula-
tion of the oceans, Ann. Rev. Fluid Mech., 36, 281-313, 2004.

C. Jackson, Institute of Geophysics, University of Texas at Austin, Austin,
Texas, USA.

O. Marchal, Woods Hole Oceanographic Institution, Department of
Geology/Geophysics, Quissett Campus, Clark Building, MS# 23, Woods
Hole, Massachusetts 02543, USA. (omarchal@whoi.edu)

J. Nilsson, Department of Meteorology, University of Stockholm,
Stockholm, Sweden.

A. Paul, Department of Geosciences, University of Bremen, Bremen,
Germany.

T. F. Stocker, Climate and Environmental Physics Division, Physics
Institute, University of Bern, Bern, Switzerland.



