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Allowable carbon emissions lowered by multiple
climate targets
Marco Steinacher1,2, Fortunat Joos1,2 & Thomas F. Stocker1,2

Climate targets are designed to inform policies that would limit the
magnitude and impacts of climate change caused by anthropogenic
emissions of greenhouse gases and other substances. The target
that is currently recognized by most world governments1 places a
limit of two degrees Celsius on the global mean warming since
preindustrial times. This would require large sustained reductions
in carbon dioxide emissions during the twenty-first century and
beyond2–4. Such a global temperature target, however, is not suffi-
cient to control many other quantities, such as transient sea level
rise5, ocean acidification6,7 and net primary production on land8,9.
Here, using an Earth system model of intermediate complexity
(EMIC) in an observation-informed Bayesian approach, we show
that allowable carbon emissions are substantially reduced when mul-
tiple climate targets are set. We take into account uncertainties in
physical and carbon cycle model parameters, radiative efficiencies10,
climate sensitivity11 and carbon cycle feedbacks12,13 along with a
large set of observational constraints. Within this framework, we
explore a broad range of economically feasible greenhouse gas sce-
narios from the integrated assessment community14–17 to deter-
mine the likelihood of meeting a combination of specific global
and regional targets under various assumptions. For any given
likelihood of meeting a set of such targets, the allowable cumulative
emissions are greatly reduced from those inferred from the tempe-
rature target alone. Therefore, temperature targets alone are unable
to comprehensively limit the risks from anthropogenic emissions.

The ultimate objective of the United Nations Framework Conven-
tion on Climate Change (UNFCCC) is the ‘‘stabilization of greenhouse
gas concentrations in the atmosphere at a level that would prevent
dangerous anthropogenic interference with the climate system’’18. This
goal is commonly expressed as a global mean temperature target, most
notably the 2 uC temperature limit1. Yet the ‘‘climate system’’ within
the UNFCCC refers to ‘‘the totality of the atmosphere, hydrosphere,
biosphere and geosphere and their interactions’’, and the broad objec-
tive specified in Article 2 of ref. 18 also covers the sustainability of ecosys-
tems and food production. This objective thus cannot be encapsulated
in one single target but may require multiple global and regional targets.
Various variables essential to the habitability of Earth are discussed8,19,20,
including climate change, sea level rise, ocean acidification, biodiversity
loss, land-use change, and terrestrial net primary production (NPP).
For policy-makers it is crucial to link these targets quantitatively to
anthropogenic greenhouse gas emissions. Probabilistic methods21,22

can be used to account for uncertainties along the cause-and-effect
chain from targets to emissions (Methods) and to provide results in
terms of probability distribution functions.

For this study we define six target variables and four limits for each
target that attempt to reflect levels of comparable stringency (Methods,
Table 1). We stress their illustrative nature and that these choices may
be refined in a dialogue with stakeholders. Two variables quantify phy-
sical changes in the climate system: the traditional global mean surface
air temperature increase above preindustrial levels (DSAT) and steric
sea level rise (SSLR). Two ocean acidification targets are defined in
terms of area fractions. The first, ASO, is the fraction of the Southern
Ocean surface area that undergoes a transition from supersaturation to
undersaturation with respect to aragonitic calcium carbonate (Varag , 1,
Methods), where sea water becomes corrosive to aragonitic shells
of marine organisms6,7,23,24. The second, AV . 3, represents the loss of
the global ocean surface area with at least threefold supersaturation
(Varag . 3), commonly associated with coral reef habitats25–27. The
third pair of targets addresses impacts on the terrestrial biosphere that
could potentially affect food production and ecosystem services9,28:
CNPP .10% is the fraction of the global cropland area that suffers from
substantial local NPP reductions (.10% relative to 2005 AD), and
Ccarbon loss is the percentage of carbon lost from cropland soils since
2005. The response of the selected target variables and their associated
uncertainties are illustrated with emission-driven simulations under
the lowest (representative concentration pathway RCP2.6) and high-
est (RCP8.5) scenarios14 used in the IPCC’s Fifth Assessment Report
(Supplementary Fig. 1, Methods).

To quantify the allowable emissions compatible with the defined tar-
gets we ran the observationally constrained model ensemble (Methods,
Supplementary Figs 2 and 3) for a set of 55 greenhouse-gas concen-
tration pathways that represent a wide range of economically plausible
scenarios14–17 (Fig. 1, Methods, Supplementary Table 3, Supplemen-
tary Fig. 4). We characterize the scenarios by the atmospheric CO2

concentration, [CO2]2100, and the radiative forcing from non-CO2

agents in the year 2100 (RFNC
2100) and interpolate the target variables

between the individual scenarios to sample the full two-dimensional
scenario space ([CO2]2100, RFNC

2100) spanned by the 55 scenarios for
each of the 1,069 model configurations (Supplementary Fig. 5, Methods).

We then calculate the probabilities of not exceeding the defined
limits for the scenario space (Fig. 2), considering uncertainties in
physical and carbon-cycle parameters (Methods). Here we focus on
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Table 1 | Target variables and limits
Target variable (annual mean) Target set number Units

1 2 3 4

DSAT Global mean SAT increase since 1800 1.5 2 3 4 uC
SSLR Steric sea level rise since 1800 20 40 60 80 cm
ASO Aragonite undersaturation of Southern Ocean surface 5 10 25 50 Percentage of area south of 50 uS
AV . 3 Global loss of surface waters with Varag . 3 60 75 90 100 Percentage of area in 1800
CNPP .10% Cropland area with NPP losses .10% 5 10 20 30 Percentage of crop area in 2005
Ccarbon loss Global soil carbon loss on croplands 5 10 20 30 Percentage of soil carbon in 2005

The targets are applied either for the time horizon of the twenty-first century or for years 2000–2300.
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target set 3 (results for all target sets are shown in Supplementary Figs
6–13). DSAT and SSLR increase with both CO2 and with non-CO2

radiative forcing (RFNC), resulting in slanted isolines of equal proba-
bility. Depending on the concurrent non-CO2 radiative forcing, CO2

must not exceed 550–870 p.p.m. to be considered ‘likely’ (.66%) to
stay below the DSAT limit of 3 uC by 2100 (Fig. 2a). In contrast, it is
extremely likely (.95%) that SSLR will not exceed 60 cm in any of the
considered scenarios by 2100 (Fig. 2b). On longer timescales, however,
the probability of exceeding the SSLR limits increases significantly
(Supplementary Fig. 10). Ocean acidification is mainly driven by the
CO2 increase (vertical isolines in Figs 2c, d and Supplementary Fig. 5).
It is likely that aragonite undersaturation is limited to 25% of the Sou-
thern Ocean surface by 2100 if CO2 stays below 625 p.p.m. (Fig. 2c).
The goal to preserve surface waters with Varag . 3 proves harder to
achieve. It is unlikely (,33%) that less than 90% of these waters are lost
during this century in scenarios with [CO2]2100 . 550 p.p.m. (Fig. 2d).
The two cropland targets are less directly connected to [CO2]2100 and
RFNC

2100 (Supplementary Fig. 5). For CNPP .10%, we find higher values

in scenarios with very low CO2 than in scenarios with higher CO2 levels
but relatively low RFNC. This is explained by the partially opposed
effects of CO2-fertilization and climate change on NPP. Similar to
SSLR, it is unlikely that the limits of set 3 are exceeded during this
century for these variables (Fig. 2e, f), but the probabilities of exceed-
ing the limits increase beyond 2100 (Supplementary Figs 1 and 12).

Allowable cumulative twenty-first-century fossil-fuel CO2 emis-
sions (Eff) are diagnosed by closing the carbon budget for each con-
centration pathway and model ensemble member (Methods). We first
examine the allowable emissions that are likely (.66%) to be compa-
tible with the limits defined in set 3 (Fig. 3). The criterion of not exceed-
ing the limits is applied to the time horizons 2000–2100 and 2000–2300
under the assumption of stabilizing CO2 and RFNC by 2150 (Supplemen-
tary Fig. 4 and Methods). The AV . 3target is the most restrictive in this
set, and the corresponding ensemble mean Eff are around 625 gigatons
of carbon (GtC), independent of the time horizon. Up to 2100 and for

5,000-member ensemble

Observations

(26 data sets)

55 greenhouse-gas scenarios

Constrained model

ensemble

(1,069 members with

associated scores Sm)

Projections

 2000–2300 AD

(55 × 1,069 simulations)

Probability distributions of

allowable carbon emissions

CO2 Heat

Land carbon Ocean tracers

EMF-21

RCPs

EMIC

Prior distributions

(19 model parameters)

C
O

2

Year

GGI

AME

Climate target sets

Set

ΔSAT (°C) 

SSLR (cm)

ASO (%)

A    > 3 (%)Ω

CNPP > 10% (%)

Ccarbon loss (%)

1.5 2 3 4

1 2 3 4

20 40 60 80

5 10 25 50

60 75 90 100

5 10 20 30

5 10 20 30

Bern3D-LPJ

Figure 1 | Flowchart illustrating the applied methodology. First, an
ensemble of model configurations is generated from prior distributions of
model parameters (Supplementary Table 1, Supplementary Fig. 2). Then the
ensemble is constrained by 26 observational data sets (Supplementary Table 2,
Supplementary Fig. 3) by calculating a skill score (Sm) for each ensemble
member. In the next step, the constrained model ensemble is run into the future
under multiple greenhouse gas scenarios (Supplementary Table 3,
Supplementary Fig. 4). Finally, probability distributions of allowable CO2

emissions are calculated from the simulation results for the defined
targets (Table 1).
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Figure 2 | Probabilities of staying below the targets defined in set 3 up to
year 2100. (Results for all target sets are provided in the Supplementary
Information.) Dark (light) brown shadings indicate low (high) probability of
meeting the listed target for a given point in the scenario space defined by
[CO2]2100 and RFNC

2100. The symbols indicate the ensemble average of the
target variables (scale bars in each panel; maximum in the twenty-first century;
see Supplementary Fig. 5). The representative concentration pathway (RCP,
stars), Energy Modeling Forum (EMF-21, circles), and Greenhouse Gas
Initiative (GGI, diamonds) scenarios include all major anthropogenic forcings,
whereas the Asia Modelling Exercise (AME, squares) scenarios are less
complete and we make conservative assumptions for aerosol emissions, which
results in very low RFNC.
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moderate to high RFNC
2100, the 3 uC temperature and ASO limits yield

similar emissions of 750–1,200 GtC and 975 GtC, respectively. Which
limit is the more restrictive depends on RFNC

2100 in this case (Fig. 3a).
For the very low RFNC

2100 assumed in the Asia Modelling Exercise
(AME) scenarios (see Methods), Eff are significantly higher for the
3 uC target than for the other targets and range up to 1,600 GtC. On the
longer timescale, DSAT becomes more important and approaches the
AV . 3 limit (Fig. 3b). The SSLR and Ccarbon loss limits are only relevant
on the longer timescale, and CNPP .10% is insignificant for determining
Eff for target set 3.

A crucial question is what implications arise if we require that mul-
tiple limits must not be exceeded at the same time. Generally, Eff are
lower for the combined multi-targets than for the most restrictive single
limit, particularly in the long term (Fig. 3b). Therefore, if CO2 were
stabilized at about 500 p.p.m. by 2100, each target in set 3 would—by
itself—be likely to be met, even up to 2300. Meeting all targets simulta-
neously, however, is less probable and is only achieved for [CO2]2100 ,

490 6 20 p.p.m. when considering the 2000–2100 period, and for
[CO2]2100 , 460 6 20 p.p.m. in the long term. This is related to the inter-
dependence of target variables. If, for example, a certain model con-
figuration simulates a weak oceanic CO2 uptake and a low climate
sensitivity, it is likely that surface ocean acidification is enhanced
owing to the relatively high CO2 in that model, whereas the tempera-
ture increase remains relatively small due to the low climate sensiti-
vity. Hence, this specific model contributes below-average DSAT and
above-average ocean acidification to the corresponding probability
distribution functions of Eff for the two targets. Therefore, it will con-
tribute to higher Eff for the DSAT target and to lower Eff for the ocean
acidification target, if the probability distribution functions are evalu-
ated independently. Likewise, another model with relatively highDSAT
might be at the high end of the Eff probability distribution function for
the ocean acidification target. If, however, the probability distribution
function of Eff for meeting all targets simultaneously is considered, it is
likely that the contribution from each of these individual models will
be the respective lower value, that is, the Eff given by the ocean acidi-
fication and DSAT targets for the first and second model, respectively.

All four multi-target sets yield significantly lower Eff than the corres-
ponding temperature target or any of the other targets in the set alone
(Fig. 4, Supplementary Table 4). DSAT is the most limiting target only

at the low end of the emission ranges and for low targets or high proba-
bilities (Fig. 4 and Supplementary Fig. 14). For the most part, other
targets (most notably OAV . 3; Supplementary Figs 15 and 16) are
more limiting and Eff inferred from the temperature target alone would
be too optimistic. The implied limits on the other target variables given
by the temperature targets alone are listed in Supplementary Table 5.
The requirement to meet all targets simultaneously further reduces Eff

considerably as explained above. For target set 3, the average Eff values
at the 66% (90%) likelihood level are 40% (26%) lower for the multi-
target than for the 3 uC temperature target when excluding the AME
scenarios with very low RFNC

2100 (Fig. 4). Eff for the multi-target sets
depend on the specific combination of the individual targets. When
combining the temperature targets with additional targets from more
(or less) stringent sets, the resulting reduction of Eff is bigger (or smaller).
Nevertheless, we still find a considerable reduction for most combina-
tions, except when combining either of the low 1.5 uC or 2 uC temper-
ature targets with the least ambitious additional targets from set 4
(Supplementary Figs 17 and 18).

Meeting the multi-target 1 is very unlikely (,10%) if Eff exceed
360 6 40 GtC (mean and minimum–maximum range from RFNC-
scenario uncertainty; Supplementary Fig. 14), although it becomes likely
to meet the 1.5 uC target (which is part of set 1) at this range of emis-
sions (Fig. 4 and Supplementary Fig. 14). Similarly, it is unlikely that
multi-target 2 can be met if Eff exceed 470 6 80 GtC, while it is still
likely to meet the 2 uC target in 2100 if they stay below 570z180

{210 GtC.
That means that for emissions on the order of RCP2.6 it becomes likely
that global warming can be limited to 2 uC, but at the same time there is
a considerable risk that at least one of the other limits of target set
2 is exceeded. To be likely to meet multi-targets 1 and 2, we estimate
(Methods) that Eff must remain below 180–270 GtC and 290–350 GtC,
respectively. Multi-target 3 is likely to be met for Eff below 550z59

{90 GtC,
which is at the high end of the emission-range for RCP2.6 (Fig. 4). Multi-
target 4 is likely to be met if Eff stay below 1,060z140

{120 GtC, a range that
covers the high and low ends of RCP4.5 and RCP6.0, respectively.

Our results show that including additional targets along with the con-
ventional global temperature limits can considerably reduce the allow-
able CO2 emissions. In particular, ocean acidification limits pose strong
constraints on CO2 emissions and reduce the scenario uncertainty with
respect to RFNC (Methods), which suggests that CO2 targets should be
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twenty-first century (a, compare shading in Fig. 2) and years 2000–2300

(b). The red line represents the multi-target 3, that is, the requirement of
meeting all targets simultaneously, which requires smaller cumulative
emissions than any of the individual targets. The aberration in Eff around
RCP4.5 (at [CO2]2100 5 575 p.p.m.) is due to different land-use
assumptions (Methods).
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treated separately from other greenhouse gases in policy frameworks.
In probabilistic assessments it is not sufficient to choose only the most
limiting target from a set. Instead, all targets should be taken into account
simultaneously. Clearly, multiple socio-economically relevant, global
and region-specific targets need to be considered in combination when
the risks associated with anthropogenic emissions of CO2 and other
climate agents are to be assessed correctly on global to regional scales.
Our results are based on ensemble simulations with an EMIC, a limited
number of emission scenarios, and an illustrative set of targets. For
future assessments, stakeholders should define relevant target varia-
bles and agree on limits for acceptable risks associated with environ-
mental changes caused by anthropogenic emissions. We have shown
that including additional targets would probably lead to even more
stringent emission reductions than reported here. Similar studies with
more comprehensive Earth system models should be carried out to
include more regional and impact-related targets, such as extreme
events like flooding, heat waves, or droughts.

METHODS SUMMARY
We apply our EMIC, the University of Bern three-dimensional Earth system model44

with Lund-Potsdam-Jena dynamic global vegetation47 (Bern3D-LPJ), in a proba-
bilistic framework as depicted in Fig. 1. The model features a three-dimensional
dynamic ocean, two-dimensional atmosphere, and a comprehensive terrestrial
biosphere component with dynamic vegetation, permafrost, peatland, and land-
use modules. Following a Bayesian approach we first generate a 5,000-member
ensemble of model configurations by varying nineteen key model parameters (Sup-
plementary Table 1 and Supplementary Fig. 2). To reduce uncertainties, we exploit
a broad set of observation-based data to constrain the model ensemble to realiza-
tions that are compatible with observations. The data set combines information
from satellite, ship-based, ice-core, and in situ measurements and includes esti-
mates of surface air temperature change, ocean heat uptake, seasonal and decadal
atmospheric CO2 change and ocean and land carbon uptake rates, seven physical
and biogeochemical three-dimensional ocean tracer fields, as well as land carbon
stocks, fluxes, and fraction of absorbed radiation (Supplementary Table 2 and
Supplementary Fig. 3). Thus, both the mean state and transient responses in space

and time are probed. The constrained model ensemble is then run for a set of 55
greenhouse-gas scenarios. These are economically feasible multi-gas emission
trajectories14–17 spanning from high business-as-usual to low mitigation pathways
that require negative CO2 emissions by the end of the century (Supplementary
Fig. 4). The AME scenarios do not include aerosol emissions and we conserva-
tively assume constant aerosol emissions at the level of year 2005, which results in
very low RFNC. To derive the allowable emissions for the targets, we interpolate the
simulation results in the two-dimensional scenario space ([CO2]2100, RFNC

2100)
and determine the contour lines that correspond to the defined target values.
From the maximum, minimum, and average emissions along these contour lines
we obtain the allowable emissions (mean and RFNC-scenario uncertainty range)
for each ensemble member. Finally, we calculate the probability distributions of
the allowable emissions from the constrained ensemble.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Target selection. The conventional global mean temperature increase is a straight-
forward metric for climate change because it comes relatively early in the causal
chain from emissions to impacts, just after translating emissions to concentrations
and radiative forcing. As such, this metric sometimes also stands for impacts that
are associated with global warming but are more difficult to assess directly. Yet it
represents other anthropogenic impacts only to a limited degree. SSLR, for exam-
ple, is strongly connected to global warming but shows a delayed response owing
to the relatively slow vertical mixing of heat into the ocean interior. Sea level conti-
nues to rise even after stabilization of surface temperatures5, and thus global mean
temperature is not a suitable metric for the committed sea level change before equi-
librium in SSLR is reached. An even more obvious example for the limited validity
of global mean temperature as a metric for anthropogenic disturbance is ocean acidi-
fication from the uptake of CO2, which is a direct geochemical effect of increased
atmospheric CO2 concentrations and is largely independent of climate change in
most regions6,7. As a consequence it has been suggested to incorporate indicators
of both climate change and ocean acidification in a common policy framework
such as the UNFCCC30. Various other variables essential to the habitability of
Earth have also been proposed8,20, including biodiversity loss, land-use change
and terrestrial NPP. In the light of these considerations, we define six illustrative
global change target variables and four limits for each target (Table 1), which are
described below.
Physical targets. Two variables quantify physical changes in the climate system,
that is, the traditional global mean surface air temperature increase above prein-
dustrial (1800 AD) levels (DSAT) of 1.5–4 uC and steric sea level rise (SSLR) of 20–
80 cm. We note that SSLR does not include contributions from other sources such
as melting glaciers and ice sheets because this is not simulated by the EMIC applied
here. SSLR is estimated to contribute about 40% of the observed total sea level rise
from 1972 to 2008 with a decreasing proportion as the ice contributions increase31.
We illustrate the response of the selected target variables and their associated uncer-
tainties with emission-driven ensemble simulations under the RCP2.6 and RCP8.5
scenarios14 and their extensions32 to 2300 (Supplementary Fig. 1). These scenarios
are the lowest and the highest of the four representative concentration pathways
(RCP) defined in preparation of the IPCC’s Fifth Assessment Report. Uncertainties
in the response of the carbon cycle, most notably the CO2 absorption of the oceans
and the release of carbon from soils, introduce uncertainties in simulated atmos-
pheric CO2 concentrations that increase considerably with higher emissions and
in the long term (Supplementary Fig. 1a). The uncertainties in CO2 add up with
the weakly constrained climate sensitivity and produce a relatively large range in
DSAT by 2100. Somewhat more than half of the distribution exceeds the 4 uC limit
by 2100 under RCP8.5, while a small fraction projects a DSAT of 2–3 uC. In the
RCP2.6 scenario, more than half of the distribution exceeds 1.5 uC but not 2 uC
(Supplementary Fig. 1b). SSLR shows a similar but delayed response due to the
thermal inertia of the oceans. Recent estimates of DSAT (ref. 11) and SSLR (ref. 5)
are mostly compatible with our results but are somewhat higher for RCP8.5, parti-
cularly in the long term (Supplementary Fig. 1b, c).
Ocean acidification targets. A common metric for ocean acidification is the satu-
ration state of sea water with respect to aragonite (Varag; ref. 23), a mineral form of
calcium carbonate. We define two ocean acidification targets in terms of area frac-
tions. The first, ASO, is the fraction of the Southern Ocean surface area that under-
goes a transition from supersaturation to undersaturation (Varag , 1; annual mean),
which means that sea water becomes corrosive to aragonitic shells of marine
organisms23,24. The selected limits for this target variable range from 5% to 50%.
High-latitude waters have a naturally low saturation state and thus are generally
most prone to undersaturation6,7,33. The second ocean acidification target, OAV . 3,
addresses areas with high saturation states (Varag . 3) that are mainly found in the
tropics and subtropics, and are commonly associated with coral reef habitats25,26.
Following this broad characterization, we define this variable as the percentage of
the global ocean surface area with Varag . 3 that has been lost since preindustrial
times, and select limits from 60% to 100%. Many corals show a reduction in calci-
fication rates with decreasing Varag over the range 2 , Varag , 4 (ref. 34), and
laboratory experiments with one species have found negative net calcification for
Varag , 2.8 (ref. 35). The calcification response among species, however, is highly
variable and probably depends on the interactive effects of ocean acidification and
other environmental factors36,37. Ocean acidification and warming are concurrent
stressors to corals, which motivates a combination of ocean acidification and tem-
perature targets27,38. The simulations under the RCP8.5 and RCP2.6 scenarios
illustrate that the responses of the selected surface ocean acidification variables
depend mostly on CO2 and the rate of ocean CO2 uptake. They can be characterized
as relatively fast transitions that are reversible to some extent when anthropogenic
emissions remain low and CO2 decreases, as is the case in RCP2.6 (Supplementary
Fig. 1d, e). In RCP2.6, the Southern Ocean surface remains supersaturated in most
simulations and the median Varag . 3 area loss peaks at 60% with a considerable

uncertainty. Under RCP8.5, half of the ensemble distribution projects that the
entire surface of the Southern Ocean becomes undersaturated by 2100 and that
virtually no surface waters with Varag . 3 exist after 2050 and until the end of the
simulation. As shown earlier39, ocean acidification changes in the deep ocean and
in the surface ocean from business-as-usual carbon emissions during the twenty-
first century remain irreversible on human time scales.
Cropland targets. The third pair of targets addresses impacts on the terrestrial
biosphere that could potentially affect food production and ecosystem services.
The first is the fraction of the global cropland area that suffers from substantial
local net primary production (NPP) reductions (.10% relative to 2005 AD), denoted
CNPP .10%. We note that our model generally projects an increase in crop NPP on
the global average for most scenarios. NPP changes, however, are spatially very
heterogeneous, and our metric is chosen to capture potential negative impacts on
regional food production9, although the global productivity might increase. The
second terrestrial target variable is the percentage of carbon lost from cropland soils
since the year 2005 (Ccarbon loss). In contrast to NPP changes, simulated changes
are approximately homogeneous (in relative terms) and can be used as a global
metric. Changes in soil carbon content can have large impacts on soil properties
that are relevant to ecosystem functioning and crop growth28. Land that is con-
verted from natural vegetation to cropland after 2005 is not included in these metrics.
The selected limits range from 5% to 30% for both cropland targets (Table 1). The
cropland targets are affected by a series of processes which introduce considerable
uncertainties (Supplementary Fig. 1f, g). Changes in NPP depend on the interplay
of changes in temperature, precipitation and CO2 fertilization. The large climatic
changes in RCP8.5 are accompanied by CO2 fertilization, which explains the fact
that the median area with NPP losses is smaller in RCP8.5 than in RCP2.6. Owing
to the large uncertainties in RCP8.5, there is, however, still a substantial probability
of high losses. The amount of carbon lost from cropland soils generally increases
with higher temperatures but is also associated with considerable uncertainties
(Supplementary Fig. 1g).
Probabilistic approach. Connecting climate targets to allowable emissions is chal-
lenging because it involves several steps along the cause-and-effect chain which all
include uncertainties. First, the translation of carbon emissions to atmospheric
concentrations is complicated by uncertainties in the response of the carbon cycle
such as the release of carbon from mineral, peat and permafrost soils in a warmer
climate12, CO2-fertilization of plants40, anthropogenic land-use interactions41 or
the evolution of the oceanic carbon sink13. In the next step, the weakly constrained
climate sensitivity11 and radiative forcing from aerosols10 likewise hamper the
robust prediction of global temperature changes for a given atmospheric com-
position. Other processes further down the chain, such as agricultural producti-
vity, typically depend on multiple environmental variables and are accordingly
associated with larger uncertainties. Probabilistic methods can be used to account
for these uncertainties and to provide results in terms of probability distribution
functions21,22. Here we apply our EMIC—the University of Bern three-dimensional
Earth system model with Lund-Potsdam-Jena dynamic global vegetation (Bern3D-
LPJ)—in a Bayesian framework to quantify allowable carbon emissions for mul-
tiple targets as depicted in Fig. 1 and described below.
Bern3D-LPJ model parameter sampling. The Bern3D-LPJ model features a
three-dimensional dynamic ocean42,43 including sea-ice44, a single-layer energy and
moisture balance model of the atmosphere44,45, and a comprehensive terrestrial
biosphere component with dynamic vegetation46, permafrost, peatland47 and land-
use41 modules (Supplementary Information). We generate a 5,000-member ensem-
ble from the prior distributions of 19 key model parameters (Supplementary
Fig. 2, Supplementary Table 1) using the Latin hypercube sampling method48.
The prior distributions are selected such that the median matches the standard
model configuration and the standard deviation is a quarter of the plausible
parameter range based on literature and/or expert judgement (Supplementary
Information). The perturbed model parameters affect terrestrial photosynthesis,
hydrology, vegetation dynamics, soil organic matter decomposition and turnover,
diffusivities in atmosphere and ocean, atmosphere–ocean gas transfer, the radia-
tive forcing from greenhouse gases and aerosols, as well as the nominal climate
sensitivity of the model.
Observational constraints. To reduce uncertainties, we exploit a broad set of
observation-based data to constrain the model ensemble to realizations that are
compatible with observations. The data set combines information from satellite,
ship-based, ice-core and in situ measurements and includes estimates of surface air
temperature change, ocean heat uptake, seasonal and decadal atmospheric CO2

change and ocean and land carbon uptake rates, seven physical and biogeoche-
mical three-dimensional ocean tracer fields, as well as land carbon stocks, fluxes
and fraction of absorbed radiation (Fig. 1, Supplementary Table 2, Supplementary
Fig. 3). Thus, both the mean state and transient responses in space and time are
probed. The model ensemble is run over the historical period (1800–2010) driven
by reconstructed historical CO2 emissions, the radiative forcing from additional
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greenhouse gases, anthropogenic and volcanic aerosols, maps of anthropogenic
land cover changes, as well as changes in solar irradiance and orbital forcing. From
the simulation results (‘mod’) and the large set of observational (‘obs’) constraints
we assign a score to each ensemble member, 1 # m #5,000:
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m {Xobs

� �2

s2

0
@
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This likelihood-type function basically corresponds to a Gaussian distribution of
the data-model discrepancy (Xmod

m {Xobs) with zero mean and variance s2, which
represents the combined model and observational error (Supplementary
Information). The overbar indicates that the error-weighted data-model discre-
pancy is first averaged over all data points of each observational variable (volume-
or area-weighted) and then aggregated in a hierarchical structure by averaging
variables belonging to the same group (Supplementary Information, Supplemen-
tary Fig. 3, Supplementary Table 2). Cross-correlation of errors is not considered
owing to computational and methodological limitations. Finally, the total score
SmSm is normalized to one. Ensemble members with very low scores are excluded
from the scenario simulations to reduce the computational cost. The reduced
ensemble with 1,069 members fully represents the 5,000-member ensemble within
an error of ,1% (Supplementary Information).
Greenhouse-gas scenarios. The constrained model ensemble is run for a set of 55
greenhouse-gas scenarios from the integrated assessment community. The result-
ing set of about 59,000 simulations permits us to quantify the allowable CO2

emissions compatible with the targets defined in this study. Thus we focus on
economically feasible multi-gas emission trajectories spanning a large range from
high business-as-usual pathways to low mitigation pathways that require negative
CO2 emissions by the end of the century (Supplementary Table 3 and Supplemen-
tary Fig. 4). These scenarios include the four RCPs (ref. 14) and 22 scenarios from
the EMF-21 project15, which served as a basis for the RCP selection. In addition,
the scenario set comprises 29 ‘post-RCP’ scenarios from the GGI16 of IIASA, and
23 scenarios from the AME17 (Supplementary Table 3). For these simulations, we
prescribe CO2 and RFNC derived from the emission scenarios (Supplementary
Information). Fossil-fuel CO2 emissions are translated to concentration pathways
in a simulation with prescribed CO2 emissions and standard model parameters.
RFNC is modelled following ref. 49 with radiative efficiencies and lifetimes updated
according to ref. 10. The AME scenarios, however, are less complete because they
do not provide emission paths for aerosols and some minor greenhouse gases. To
include these scenarios in our framework, we chose the most conservative approach
by assuming constant aerosol emissions at the level of the year 2005 (radiative
forcing of 21.17 W m–2) and neglecting the forcing from the missing additional
greenhouse gases, which implies a significant cooling effect continued into the
future (Supplementary Fig. 4f). Following the approach of ref. 32 for RCP4.5 and
RCP6.0, we extend the scenarios from 2100 to 2300 by stabilizing CO2 and RFNC

by 2150 (Supplementary Fig. 4).
Allowable emissions. Fossil-fuel CO2 emissions are diagnosed in the Bern3D-LPJ
model by closing the global carbon budget for each concentration pathway and
ensemble member. These emissions do not include emissions from land-use
changes which are simulated internally by the model41. To derive the allowable
carbon emissions for the defined targets, we first interpolate the results for each
ensemble member in the two-dimensional space ([CO2]2100, RFNC

2100) between
the 55 scenarios using ordinary kriging50. This method is appropriate owing to the
relatively simple relation between ([CO2]2100, RFNC

2100) and the target variables
for an individual ensemble member (Supplementary Fig. 5). Then we determine
the contour lines in the interpolated fields that correspond to the defined target
values. From the maximum, minimum and average emissions along these contour
lines we obtain the allowable emissions (mean and RFNC-scenario uncertainty
range) for each ensemble member. Finally, we calculate the probability distri-
bution of the allowable carbon emissions from the ensemble and the weights Sm

(Supplementary Information). We note that the range of considered scenarios is
limited at the low end, implying that allowable emissions cannot be determined
adequately for low targets and high confidence levels that require very low emis-
sions that are hardly covered even by the most stringent mitigation scenarios
included in our large set. This is the case for the multi-target sets 1 and 2 (dashed
lines in Supplementary Fig. 14). In those cases only upper-limit estimates for the

average allowable emissions can be given, as indicated by symbols without uncer-
tainty ranges in Fig. 4.
Scenario uncertainties. Sampling the scenario space in two dimensions, that is,
[CO2]2100 and RFNC

2100, which varies by about 1.6–2.9 W m–2 for a given [CO2]2100,
adds considerable scenario uncertainty to the diagnosed allowable emissions
(Fig. 4). This uncertainty is generally lower for the multi-target sets than for the
temperature targets because the ocean acidification metrics are largely indepen-
dent of the radiative forcing. It is important to note that this uncertainty is only
related to the choice of the emission scenario and neither to the parameter uncer-
tainty of the model nor to the uncertainty of translating emissions to radiative
forcing, which are both included in the probability distribution function of the
allowable emissions. Another scenario uncertainty arises from the choice of the
land-use scenario for the non-RCP simulations (Supplementary Information).
The presented results are based on the assumption that the total land-use area
increases in the non-RCP scenarios as in the RCP8.5 and RCP2.6 scenarios. If the
land-use area decreases during the twenty-first century, as assumed in RCP4.5 and
RCP6.0, allowable cumulative fossil-fuel CO2 emissions are 50–100 GtC higher
(,5–10%, Supplementary Fig. 19).
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