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During the last 800,000 years (800 kyr), atmospheric CO2 concentrations 
have varied in close relation to Antarctic temperatures (1, 2) and the 
general waxing and waning of continental ice sheets. In particular, CO2 
rose from a stable level of 190 parts per million by volume (ppmv) dur-
ing the Last Glacial Maximum to about 280 ppmv in preindustrial times, 
showing pronounced differences in atmospheric CO2 rates of change in 
the course of the last glacial/interglacial transition (3). Many processes 
have been involved in attempts to explain these CO2 variations, but it has 
become evident that none of these mechanisms alone can account for the 
90 ppmv increase in atmospheric CO2. A combination of processes must 
have been operating (4, 5), with their exact timing being crucial. How-
ever, a unique solution to the deglacial carbon cycle changes has not 
been yet found. 

In this respect, high-resolution and precise δ13Catm records from Ant-
arctic ice cores are needed to better constrain the evolution of carbon 
cycle changes during the last deglaciation. On millennial time scales, 
δ13Catm is primarily influenced by the δ13C of dissolved inorganic carbon 
(DIC) (δ13CDIC) and sea surface temperature (SST), which controls the 
isotopic fractionation during air/sea gas exchange. The continuous rain 
of isotopically light organic material to the interior of the ocean draws 
down carbon from the surface layer to intermediate and deep waters, 
where the organic carbon is remineralized. Consequently, a vertical 
δ13CDIC gradient is established, controlled by the interplay of the ocean 
circulation with this so-called “biological pump”. The more intense the 
circulation, the smaller the gradients are for δ13CDIC, DIC, oxygen and 
nutrients. Superimposed on these marine carbon cycle processes are 
climate-induced changes in terrestrial biosphere carbon storage, which 
result in a net change in the carbon isotopic composition of the 
ocean/atmosphere system. On orbital time scales, weathering and sedi-
mentation of CaCO3 affect δ13CDIC, δ13Catm and atmospheric CO2 as well. 

Until recently (6), analytical constraints represented the fundamental 
limitation on the utility of δ13Catm ice core records (7, 8). Here we pro-
vide evidence (Fig. 1) about possible causes of carbon cycle changes 

with measurements of δ13Catm from 
two Antarctic ice cores (EPICA (Eu-
ropean Project for Ice Coring in Ant-
arctica) Dome C and Talos Dome), 
performed with three independent 
methods in two different labs (referred 
to as Bern sublimation, Bern cracker 
and Grenoble mill data) (6, 9). One of 
our records is based on a sublimation 
method (10) that avoids the effects 
associated with incomplete gas extrac-
tion and thus yields more precise re-
sults (see Supporting Online Material 
(SOM)). A stringent residual analysis 
of the three data sets shows virtually 
no offset between the two Bern data 
sets and only a small systematic offset 
between the Bern and Grenoble data 
of 0.16‰, which can be explained by 
a method-dependent systematic frac-
tionation. After correction of this off-
set, we combined the three δ13Catm 
records over the last 24 kyr using an 
error-weighted Monte Carlo bootstrap 
approach. This method showed that all 
three data sets are essentially compati-
ble within their analytical uncertain-
ties. To make full use of the resolution 
and precision of the data, the inclusion 
of all three data sets is required, alt-

hough all our conclusions are also supported by the individual records. 
The final data set consists of 201 individual measurements, each reflect-
ing typically 2 to 4 replicates and with an analytical 1σ error between 
0.04 and 0.12‰. Since the resulting Monte Carlo Average (MCA) re-
moves most of the analytical uncertainties, it contains less high-
frequency variability compared to the raw data. This is in line with the 
centennial-scale low-pass filtering inherent to the bubble enclosure pro-
cess at Dome C. Accordingly, the retained variability can be regarded as 
the signal most representative of millennial δ13Catm changes (see SOM 
for details regarding the MCA and its uncertainty). 

Our δ13Catm data are in good agreement with previously published 
lower-resolution records (6, 9). Our record shows a very stable level 
between 24 and ca. 19 kyr before present (BP, where present is defined 
as 1950), with an average δ13Catm of -6.45‰ (tables S1 and S2), similar 
to the -6.35‰ of the Late Holocene (Fig. 2B). Given the fact that a large 
set of environmental parameters such as atmospheric CO2, global SST, 
terrestrial carbon storage, and ocean circulation have varied between the 
LGM and the Late Holocene, almost identical δ13Catm values indicate 
that opposing effects must have offset each other (11). This becomes 
clear if we look at three first-order effects on δ13Catm: A SST rise of 1 K 
translates into a 0.1‰ increase in δ13Catm, due to temperature-dependent 
fractionation between atmospheric CO2 and marine DIC species (12). 
Assuming a global LGM-to-Holocene SST rise of 3 K would result in 
about 0.3‰ higher δ13Catm for the Holocene, provided that SST distribu-
tion and CO2 gross flux exchange patterns remained constant. This effect 
is further augmented by the uptake of isotopically light carbon by the 
land biosphere and counterbalanced by the smaller vertical gradient in 
δ13CDIC in the Holocene ocean, supported by marine data (13). The fact 
that both δ13Catm and CO2 show little variation from 24 to 19 kyr BP 
points to the carbon cycle being essentially in dynamic equilibrium at 
that time. As can also be seen in Fig. 2, the climate variations related to 
Heinrich stadial 2 (HS2) and Dansgaard-Oeschger event 2 (DO2) had 
little effect on the global carbon cycle during this time interval. Howev-
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er, given the opposing trends for reconstructed atmospheric Δ14C 
(Δ14Catm) (14, 15) and the expected Δ14Catm evolution (16) based on vari-
ations in 14C production rate (17, 18), the global 14C budget was not 
balanced (Fig. 2A). 

After a very small increase in δ13Catm at the very end of the glacial, a 
sharp drop in δ13Catm starting at 17.5 kyr parallels the onset of increasing 
atmospheric CO2. Taken at face value, this would point to an early SST 
rise that preceded the onset of the CO2 increase. When we apply a crude 
SST correction to our δ13Catm databased on a global estimate of SST 
temperature changes during the transition (see SOM), this δ13Catm in-
crease vanishes (Fig. 2B). Note, however, that this 0.06‰ excursion is 
within the uncertainties of our data and that other effects could also lead 
to this small enrichment in δ13Catm. The 0.3‰ drop in δ13Catm after the 
onset of the transition at 17.5 kyr BP is accompanied by a CO2 increase 
of about 35 ppmv and a 190‰ drop in Δ14Catm (19), which has been 
attributed to a release of old carbon from the deep ocean. This coeval 
drop in δ13Catm and Δ14Catm during the so-called “mystery interval”, 17.5 
– 14 kyr BP (19), is arguably the most enigmatic carbon cycle change in 
the course of the transition and will be discussed in more detail below. 

After the broad δ13Catm minimum is reached at about 16 kyr BP, 
δ13Catm increases slightly by 0.1‰ during the pronounced Bølling-
Allerød (BA) warming. Other than circulation changes in the Southern 

Ocean (20), the regrowth of the terrestrial biosphere in the northern hem-
isphere could contribute to this increase in δ13Catm (4). However, since 
the SST-corrected δ13C evolution (Fig. 2B) does not show any increase, 
a robust process attribution requires precisely dated SST reconstructions 
and transient carbon cycle modeling. 

An almost linear rise by 0.06‰ per kyr follows the second δ13Catm 
minimum at 12.2 kyr BP, leading to maximum values of -6.33‰ at 
around 6 kyr BP. This rise might be largely explained by the continuing 
regrowth of the terrestrial biosphere (21), in concert with smaller contri-
butions from SST warming and changes in circulation and export pro-
duction (9, 22). From this mid-Holocene maximum, δ13Catm values 
decline slightly to reach values of -6.35‰ at 0.5 kyr BP, as previously 
reported (6). 

As mentioned above, the carbon cycle changes during the mystery 
interval have been a matter of intense debate (19, 20, 23). Our high-
resolution δ13Catm record together with other records of carbon cycle 
changes and insights from models may help to constrain hypotheses put 
forward to explain the mystery interval. The rise in CO2 and the decline 
in δ13Catm and Δ14Catm between 17 and 15 kyr BP fit the concept of 
bringing DIC-rich waters with old carbon into exchange with the atmos-
phere. Indicative 14C signals of upwelling of old, CO2-enriched deep 
water were found in Pacific intermediate waters (24), but others (23) 
ruled out such old water in the northeast Pacific, and evidence for a 14C-
depleted glacial deep ocean remains elusive (19, 23, 25). These Δ14C 
studies were usually confronted with variable reservoir age between 
benthic and planktonic foraminifera. A study using deep sea corals now 
circumvents this problem by applying absolute U-Th dating and shows 
that the deep glacial Southern Ocean indeed ventilated its 14C-depleted 
reservoir during the mystery interval (26). 

The constant δ13Catm values during the late glacial indicate that the 
build-up of such an old, DIC-rich reservoir must have occurred before 
24 kyr BP. A large number of records mark the start of the deglaciation 
around 17 kyr BP (Fig. 2). Within the uncertainty in marine and ice core 
age scales, the CO2 increase, the pronounced Δ14Catm drop (15), the re-
sumption of vigorous Southern Ocean upwelling as recorded in intense 
deposition of biogenic opal (20), and the launch of ice-rafted debris lay-
ers at the beginning of the Heinrich 1 stadial (27) all occurred simulta-
neously. Interestingly, our δ13Catm record shows its largest deviation of 
0.3‰, i.e., the entire δ13Catm decrease from the LGM to the Preboreal 
(PB), within the first 2 kyr after the start of the deglaciation. Within the 
same interval, CO2 rose by 30 ppmv from 190 ppmv to 220 ppmv, i.e., 
only 35% of the LGM-PB rise. Together with the trend reversal in 
δ13Catm toward the end of the mystery interval, this indicates that only a 
fraction of the glacial/interglacial CO2 increase can be explained by an 
intensification of deep ocean ventilation bringing isotopically depleted 
and carbon-rich water to the surface of the Southern Ocean. Our new, 
high-resolution δ13Catm data constrain the period of this release of isotop-
ically depleted carbon from the deep ocean to the atmosphere to between 
17.4 kyr BP and 15 kyr BP. This interpretation of the proxy records is 
quantitatively in line with dynamical ocean model results that link deep 
ocean ventilation, atmospheric CO2, δ13Catm, δ13CDIC, opal burial, and 
radiocarbon (28). 

Alternative hypotheses (29, 30) invoking the release of old carbon 
from permafrost or carbon locked under continental ice sheets are un-
likely to explain the carbon cycle changes in the mystery interval be-
cause the amount of terrestrial carbon needed to account for the 14C drop 
is very large, at 5000 Gt (25), and would conflict with the moderate 30 
ppmv rise in atmospheric CO2. Moreover, it would lead to an overall 
decline in δ13CDIC, which is not observed in benthic foraminifera in the 
deep ocean (13, 22). Also, a carbonate dissolution event at the sea floor 
that would have to accompany such a large terrestrial carbon release into 
the atmosphere/ocean system is not imprinted in the deglacial marine  

Fig. 1. Ice core reconstructions of atmospheric δ13C and CO2 
concentration covering the last 24 kyr. (A) δ13Catm of atmos-
pheric CO2 measured with three different methods on two dif-
ferent ice core drill sites. Blue circles: Bern cracker data, 
green squares: Grenoble mill data (9) after offset correction, 
red circles: Bern sublimation data. Red stars indicate values 
from the sublimation method but measured on Talos Dome Ice 
Core (TALDICE). Error bars represent the standard deviation 
of replicate measurements. The black line is the result of 4000 
Monte Carlo simulations representing an error-weighted aver-
age of the different δ13Catm data sets. The light and dark shad-
ed areas represent the 2σ and 1σ error envelope around the 
Monte Carlo Average (see SI). (B) CO2 concentration. Black 
circles represent earlier measurements on EDC (3), other 
symbols are the same as in panel A. Note: All ice core records 
are plotted on a synchronized age scale (32). 
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CaCO3 record (31) 
Consequently, despite the fact that the search for an extremely 14C-

depleted deep water mass in marine records has thus far not been suc-
cessful (23) and might not even essential to explain the Δ14Catm anomaly 
(26), the release of carbon from the deep ocean remains the most plausi-
ble scenario to explain the early deglacial drop in our new δ13Catm record. 
Furthermore, model results suggest that a δ13Catm decrease of 0.3‰ and a 
CO2 increase of about 30 ppmv can be accommodated by relatively 
small (about 20‰) and spatially complex changes in deep ocean Δ14C 
(28). These changes may remain undetected in the search for the old 
abyssal water using benthic foraminifera (19, 25). However, they are 
also too small to explain the reconstructed Δ14Catm decline in the mystery 
interval. Based on these considerations, the currently available marine 
and ice core information cannot be reconciled with the atmospheric radi-
ocarbon record in a straightforward manner. One possibility to resolve 
this issue is to also reconsider a larger change in 14C production between 
the Holocene and the glacial, and to work toward independent verifica-
tion of the Δ14Catm history. 
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