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Abstract
Increasing atmospheric methane (CH4) concentrations have contributed to approximately 20% of
anthropogenic climate change. Despite the importance of CH4 as a greenhouse gas, its atmospheric
growth rate and dynamics over the past two decades, which include a stabilization period
(1999–2006), followed by renewed growth starting in 2007, remain poorly understood. We provide
an updated estimate of CH4 emissions from wetlands, the largest natural global CH4 source, for
2000–2012 using an ensemble of biogeochemical models constrained with remote sensing surface
inundation and inventory-based wetland area data. Between 2000–2012, boreal wetland CH4
emissions increased by 1.2 Tg yr−1 (−0.2–3.5 Tg yr−1), tropical emissions decreased by 0.9 Tg yr−1

(−3.2−1.1 Tg yr−1), yet globally, emissions remained unchanged at 184 ± 22 Tg yr−1. Changing air
temperature was responsible for increasing high-latitude emissions whereas declines in low-latitude
wetland area decreased tropical emissions; both dynamics are consistent with features of predicted
centennial-scale climate change impacts on wetland CH4 emissions. Despite uncertainties in wetland
area mapping, our study shows that global wetland CH4 emissions have not contributed significantly
to the period of renewed atmospheric CH4 growth, and is consistent with findings from studies that
indicate some combination of increasing fossil fuel and agriculture-related CH4 emissions, and a
decrease in the atmospheric oxidative sink.
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Introduction

The increase of methane (CH4) in the atmosphere
is responsible for approximately 20% of the radia-
tive forcing related to contemporary climate change
(Ciais et al 2013). Since 1850, atmospheric CH4 con-
centrations have risen by more than 150%, from a
pre-industrial level of 700 ppb to 1834 ppb in 2015,
primarily as a result of human activities that include
fossil fuel extractionandagriculturepractices (Kirschke
et al 2013, Ruddiman 2013, Dlugokencky et al 2015,
Tian et al 2016). In recent assessments of the global
CH4 budget, covering the period 1980 to 2009, natural
wetlands were estimated to be the largest but also most
uncertain source of CH4, emitting between 177–284 Tg
CH4 yr−1 using bottom-up modeling approaches and
142–208 Tg CH4 yr−1 based on top-down atmospheric
inversions (Kirschke et al 2013). Wetland emissions
now represent about 30% of the total combined nat-
ural and anthropogenic sources and are projected
to increase and amplify global warming (Stocker
et al 2013). The large differences among published
source estimates results from difficulties in defin-
ing wetland CH4 producing area, uncertainties in
biogeochemical modeling of anaerobic sources, oxida-
tive sinks, and from uncertainties in atmospheric
inversions (Melton et al 2013, Wania et al 2013,
Patra et al 2016).

The atmospheric growth rate of CH4 exhibits com-
plex temporal variability, because (1) the gas has a
short perturbation lifetime, ∼12 years (Prather et al
2012), compared to longer-lived gases such as CO2
for which emissions accumulate in the atmosphere
on centennial to millennial timescales (Ciais et al
2013), and (2) the sources and sinks are diverse
and can change rapidly over short time periods
(Dlugokencky et al 1999, Bousquet et al 2006). For
example, atmospheric CH4 concentrations increased
by approximately 12 ± 6 ppb yr−1 during the 1980s
(based on observations made by the National Oceanic
and Atmospheric Administration’s (NOAA) Earth Sys-
tem Research Laboratory (ESRL) at the Mauna Loa
Observatory, MLO); however in the 1990s a slowdown
in growth was observed (Dlugokencky et al 1999), fol-
lowed by a stabilization in the atmospheric growth rate
of CH4 that began in 1999 and lasted until 2006 (Dlu-
gokencky et al 2009). Starting in 2007 and continuing
to 2015, atmospheric CH4 concentrations began to
increase once more, at an average rate of 6.4 ppb yr−1,
equivalent to 17.8 Tg yr−1, (Dlugokencky et al 2015).
The drivers responsible for the CH4 stabilizationperiod
remain unclear and may be due to changes in the
concentration of atmospheric hydroxyl (OH) radicals,
the main oxidative sink for methane (Heimann 2011),
but with isotopic evidence also supporting either a
reduced contribution from fossil fuel emissions (Aydin
et al 2011), or reduced emissions from natural wet-
lands and rice cultivation (Kai et al 2011). In contrast,
the period of renewed atmospheric CH4 growth

shows high latitudinal variability (Nisbet et al 2014),
and several explanations have been proposed, includ-
ing a reduction in the OH sink capacity for CH4
(Rigby et al 2008), increases in Arctic and tropical wet-
land emissions (Dlugokencky et al 2009), increased
fossil fuel activities related to hydraulic fracking and
natural gas exploitation (Jackson et al 2014, Rice et
al 2016, Turner et al 2016), and possible changes
in agriculture, in particular livestock production
(Herrero et al 2013). Recent observational evidence
suggests that the depletion of atmospheric 𝛿13C of
CH4 since 2007 supports a storyline for increasing
biogenic emissions from agriculture (Schaefer et al
2016) rather than a decreasing thermogenic (fossil
fuel related) or pyrogenic (biomass burning) emissions
(Ghosh et al 2015).

The role of natural wetlands in the periods of stabi-
lization (1999–2006) and renewed growth (2007–2012)
has generally been overlooked in recent global CH4
budgets because these assessments have ended too
early, i.e. 1993–2004 in the WETCHIMP ecosystem
model ensemble (Melton et al 2013), 1980–2009 in the
Kirschke et al (2013) study, andupto2008 in theDlugo-
kencky et al (2009) study. An additional constraint has
been the limited availability and scope of temporal wet-
land dynamics datasets, such as the Global Inundation
Extent from Multi-Satellites Observations (GIEMS),
which presently only covers 1993 to 2007 (Prigent
et al 2007, Papa et al 2010) and excludes seasonal
or permanent wetlands where surface inundation, or
flooding, is not observed. Because a key requirement
for wetlands to produce CH4 is by anaerobic soil res-
piration, where saturated or flooded soil conditions
limit oxygen availability and thus create a suitable envi-
ronment for methanogenesis, the accurate mapping
of wetland area is critically important for estimating
emissions. We address this issue, and problems related
to comprehensively mapping wetland types (Adam
et al 2010, Bohn et al 2015), by merging dynamic
satellite remote sensing data of surface inundation
for the 2000–2012 period (Schroeder et al 2015)
with a static inventory of wetlands (Lehner and Doll
2004) following the same definition for natural wet-
lands used in Matthews and Fung (1987) and Melton
et al (2013). These wetland definitions include both
permanently and seasonally flooded soils, and include
soils with either surface inundation or sub-surface sat-
uration or both. Our definition includes only natural
freshwater wetlands that are vegetated, such as peat-
land systems (bogs and fens) and mineral wetlands
(including swamps and marshes), and attempts to
avoid double counting of wetland emissions by exclud-
ing lakes, rivers, rice cultivation, saline estuaries, salt
marshes, and reservoirs, which are typically accounted
for as separate CH4 fluxes in global inventories
(Saunois et al 2016).

An additional challenge in wetland CH4 emis-
sion modeling is that multiple pathways for CH4
production, consumption, and release exist within
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wetlands; anaerobically produced CH4 is released to
the atmosphere after being affected by a combination
of processes that include oxidation by methanotrophic
bacteria in the soil before diffusion to the atmosphere
via plant transport structures known as ‘aerenchyma’,
ebullition or through soil pores. Wetland models rep-
resent these biogeochemical and biophysical processes
with varying degrees of complexity, with some model-
ing approaches estimating only the net flux of CH4
as a ratio of CO2 to CH4 production (Christensen
et al 1996, Kaplan 2002) and other approaches rep-
resenting multiple individual processes involved in the
production, consumption, and transport of CH4 to the
atmosphere (Cao et al 1996, Walter et al 2001, Riley
et al 2011, Zürcher et al 2013, Grant et al 2015).
The various formulations of model structure, param-
eterization, and initialization lead to relatively high
uncertainties and emphasize the need for an ensem-
ble approach in any comprehensive evaluation of the
temporal dynamics and long-term evolution of global
wetland CH4 emissions. The use of multiple biogeo-
chemical models also allows for testing hypotheses
related to either the climatic sensitivity of methane
emissions, versus wetland area, or substrate limitation,
for example.

To extend the record of observations, and to
consider process-based uncertainties, an ensemble of
elevenbiogeochemical models that simulate CH4 emis-
sions followed a common protocol (see Methods)
to provide monthly integrated global wetland CH4
emissions at 0.5◦ spatial resolution from 2000–2012.
Global wetland area and inundation dynamics were
estimated by merging (see Methods) remote sens-
ing based observations of daily surface inundation
from the Surface WAter Microwave Product Series
(SWAMPS; Schroeder et al 2015) with the static
inventory of wetland area from the Global Lakes and
Wetlands Database (GLWD; Lehner and Doll 2004).
This approach aimed to reduce uncertainties inwetland
area estimation using prognostic approaches (Melton
et al 2013) and also addressed known issues associ-
ated with remote sensing of surface inundation where
sub-surface saturation and forested wetlands are poorly
detected (Bohn et al 2015). Methane emissions from
lakes and rice paddies (Zhang et al 2016a), and soil
consumption of atmospheric CH4 (Curry 2007) are
excluded from our estimates and included in more
a recent multi-sectorial analysis of the global CH4
budget (Saunois et al 2016). The overall objectives
of this study were to (i) provide an estimate up to
2012 for global wetland CH4 emissions, (ii) quantify
the role of wetlands CH4 emissions on the stabilization
period (2000–2006) and the renewed growth period
(2007–2012), and (iii) partition the relative role of
meteorological drivers, their teleconnections, and wet-
land area dynamics on wetland CH4 emissions between
2000–2012.

Methods

Wetland area dynamics
To reduce the uncertainty for wetland area dynamics
resulting from predictive modeling approaches such
as TOPMODEL (Gedney and Cox 2003), we com-
bined remote sensing and inventory data to develop
a monthly global wetland area dataset. Current satellite
remote sensing of wetlands uses coarse-spatial resolu-
tion passive and active microwave sensors, ∼25 km2,
that observe surface water generally not obscured by
vegetation (Bohn et al 2015, Schroeder et al 2015). This
includes open water (e.g. lakes, rivers and ocean) as
well as surface inundated wetlands comprising mainly
of open plant canopies, and thus excludes exposed
wetlands with no observable surface flooding as well
as surface inundated wetlands beneath closed (for-
est) canopies. Consequently, whereas ground-based
wetland inventories estimate between 8.2 and 10.1
Mkm2 of wetlands globally (Lehner and Doll 2004),
remote sensing surface water estimates of wetlands
are far lower, i.e. ∼6.5 Mkm2 excluding coastal
grid regions (Schroeder et al 2015). To develop a
comprehensive wetland dynamics dataset, we inte-
grated the Global Lakes and Wetlands Dataset, or
GLWD (Lehner and Doll 2004), with the seasonal
cycle of surface water inundation from the Sur-
face WAter Microwave Product Series (SWAMPS;
Schroeder et al 2015).

The SWAMPS dataset maps fractional surface
water dynamics using remote sensing data from
multiple passive and active microwave satellite mis-
sions using a 28 day screening procedure to mask
snow, ice cover, and melting snow. In our analy-
sis, SWAMPS surface inundation was derived from
the Special Sensor Microwave Imager version 1 and
2 (SSMI v1/v2), SeaWinds-on-QuickSCAT (QSCAT)
fromJanuary 2000 toOctober2008, and fromtheEuro-
pean Space Agency Advanced Scatterometer (ASCAT)
from November 2008 to December 2012. Land-cover
data from MOD12Q1 V004 (Friedl et al 2010) was
used to exclude permanent open water (water bodies,
rivers, snow/ice) and thus avoid double counting of
wetlands, with an additional global FAO land mask
(Zobler 1986) applied to remove coastal grid cells
where brackish and salt-water wetlands were not con-
sidered as a source of methane. The monthly SWAMPS
dataset (‘fw_28_swe’) was re-projected from its native
0.25◦ EASE grid to a geographic 0.5◦ rectilinear grid
(WGS84)usingaconservative remapping interpolation
to preserve the original wetland area.

The GLWD Level 3 dataset was first reclassified
to remove Classes 1–3, lakes, reservoirs and rivers,
and then aggregated by summing wetland area to
0.5◦ from 30 arc-second resolution. GLWD is com-
monly used as a benchmark for various remote sensing
and wetland mapping activities because it incorporates
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the highest-quality country-level inventory coverage
of wetlands (Peregon et al 2008, Fluet-Chouinard
et al 2014, Bohn et al 2015). The integration of
SWAMPS and GLWD took place in three phases; first
the maximum annual surface water fraction at the per-
pixel level (FwMax𝑥,𝑦) for the 2000–2012 period was
compared with GLWD (GLWDmax𝑥,𝑦) to estimate the
relative SWAMPS detection bias (FwMaxCor𝑥,𝑦).

FwMaxCor𝑥,𝑦 =
GLWD𝑥,𝑦

FwMax𝑥,𝑦
(1)

Second, FwMax𝑥,𝑦 from SWAMPS was adjusted using
the FwMaxCor𝑥,𝑦 correction factor from equation (1)
so that the maximum surface-water fraction from
SWAMPS matched the GLWD estimate equation (2).
For areas approximately northwest of the Hud-
son Bay Lowlands, the GLWD classifies the entire
region as ‘lakes’, and so in cases where the merg-
ing SWAMPS-GLWD resulted in lower wetland area,
the original SWAMPS surface-water values were used
equation (3). Seasonal wetlands in desert systems,
mapped in the GLWD, were retained in the SWAMPS-
GLWD product.

FwMaxGLWD𝑥,𝑦 = FwMaxCor𝑥,𝑦FwMax𝑥,𝑦 (2)

FwMaxGLWD𝑥,𝑦=if (FwMaxGLWD𝑥,𝑦

<FwMax𝑥,𝑦, FwMax𝑥,𝑦)
(3)

Third, the original monthly SWAMPS surface-
inundation (Fw𝑥,𝑦,𝑚) was rescaled equation (4) for
each year as a fraction of that same year’s (uncor-
rected) maximum inundation, resulting in a unique
monthly scalar (0–1) for each year (FwScalar𝑥,𝑦,𝑚).
Lastly, FwMaxCor𝑥,𝑦 was multiplied by the annual
fractional inundation cycle, FwScalar𝑥,𝑦,𝑚 (equation 5).

FwScalar𝑥,𝑦,𝑚 =
Fw𝑥,𝑦,𝑚

FwMax𝑥,𝑦,𝑚
where m = 1..12 (4)

FwCor𝑥,𝑦,𝑡=FwMaxGLWD𝑥,𝑦FwScalar𝑥,𝑦,𝑡
where 𝑡 = 1..all months (5)

The adjusted SWAMPS-GLWD product results in
a maximum wetland area of 10.5 Mkm2, and in
agreement with the GLWD and other studies (Fluet-
Chouinard et al 2014), but the product also maintains
the seasonal cycle and inter-annual trends of inun-
dation mapped by SWAMPS. Key wetland areas are
retained in the SWAMPS-GLWD in areas such as
Amazonia, the Congo Basin, and the Western Siberian
Lowlands, which in previous studies have been poorly
represented (Bohn et al 2015).

We also conducted a sensitivity test to account for
how differences in view angle between the QSCAT and
ASCAT instruments might influence trends in surface
inundation. SWAMPS accounted for changes in the

angle-of-incidence between sensors by applying a time-
averaged normalization approach to the backscatter
retrievals (Schroeder et al 2015), however sensor-based
offsets in grid cells with low surface inundation may
affect the trends. We removed low surface-inundation
grid cells (defined by their maximum annual value)
using a per-pixel threshold of 0.5%, 1%, 2.5% and 5%,
and compared the change in methane emissions for
each scenario with no filter applied.

Modeling protocol and other driver data
A common simulation protocol was followed by each
of the wetland modeling teams (listed in table S1 avail-
able at stacks.iop.org/ERL/12/094013/mmedia) using
standardized climate, atmospheric CO2 and dynamic
wetland area data (used to map CH4 producing
regions), and also to specify boundary conditions for
model spin-up and transient runs. CRU-NCEP v4.0
was used as the meteorology data, which includes long
and shortwave radiation, air pressure, specific humid-
ity, total precipitation, air temperature, and wind speed
and direction. CRU-NCEP v4.0 combines the higher
spatial resolution of CRU TS3.22 (Harris et al 2013)
with the higher temporal resolution from the NCEP
Reanalysis product (Kanamitsu et al 2002), to pro-
duce a meteorological forcing dataset that covers years
1901–2012 at 6 hourly temporal and 0.5 degree spatial
resolution, and is used as the climate driver for biogeo-
chemical models included in the annual Global Carbon
Project CO2 budget (Le Quéré et al 2015). Global
atmospheric CO2 concentrations were provided at an
annual resolution for 1860–2012, with data prior to
1958 from ice cores (Joos and Spahni 2008) and after
1958 from the average of NOAA measurements at
Mauna Loa (MLO) and the South Pole (SPO) stations.

Models were run to equilibrium during a spin-
up phase where the first thirty years of climate
data, 1901–1930, were recycled with pre-industrial
CO2 concentrations ∼276 ppm). Soil texture data
was prescribed using model-specific global soil
databases such as the Harmonized World Soils
Database (FAO/IIASA/ISRIC/ISSCAS/JRC 2012) and
with pedo-transfer functions (i.e. Cosby et al 1984) to
determine water-holding capacity. Land use (i.e. agri-
culture or pasture) and land-cover change were not
simulated, and CH4 emissions by fire excluded from
our analysis. Modeling groups used their default veg-
etation distributions determined by either a dynamic
vegetation model or by prescribed satellite vegetation
products (Poulter et al 2015).

Atmospheric CH4 observations
Atmospheric observations of CH4 were accessed from
the NOAA ESRL cooperative air sampling network
(Dlugokencky et al 1994). We carried out a com-
parison of wetland CH4 emissions with atmospheric
growth rate data from surface flask measurements
at MLO and with the globally averaged marine sur-
face annual mean dataset, which uses selected sites
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Table 1. Wetland methane emissions in Tg CH4 yr−1 for each of the 12 TRANSCOM regions (Gurney et al 2003), with codes as defined in
figure 1. The emissions are presented as averaged over the stabilization period (2000–2006), the increasing period (2007–2012) and for 2012.
The uncertainty range is estimated as the standard deviation of the wetland CH4 model ensemble (n = 11).

Region 2000–2006 2007–2012 2012

Boreal
Boreal N America (NABo) 25.1 ± 11.3 26.1 ± 11.8 27.1 ± 12.5
Boreal Eurasia (EuBo) 11 ± 5.3 11 ± 5.2 10.7 ± 5.2
Europe (EURO) 5.7 ± 2.5 5.9 ± 2.6 6.1 ± 2.6
Temperate
N America (NATe) 16.2 ± 5.6 16.4 ± 5.7 17.6 ± 5.9
S America (SATe) 13.4 ± 3.6 12.1 ± 3.2 11.9 ± 3.4
Eurasia (EUTe) 15.1 ± 7.1 14.8 ± 7.2 14.9 ± 7.4
Tropical
S America (TrSA) 38.5 ± 9.3 37.4 ± 9.2 36.8 ± 9.1
Asia (TrAs) 22.5 ± 3.7 23.2 ± 3.7 23.9 ± 3.8
Africa (TrAf) 8.4 ± 1.9 8.0 ± 1.7 8.3 ± 1.8
Semi Arid
N Africa (NAfr) 8.5 ± 3.7 8.8 ± 3.6 8.3 ± 3.3
S Africa (SAfr) 9 ± 1.9 9.2 ± 2 9.2 ± 1.8
Australia (AUST) 2.7 ± 1.5 2.7 ± 1.4 2.6 ± 1.3
Global 184 ± 21.1 183.5 ± 23.1 185.7 ± 23.2

representative of a well-mixed marine boundary layer.
In addition to anthropogenic contributions, the growth
rate at MLO integrates terrestrial flux processes and has
been demonstrated to be useful as a representative sta-
tion for diagnosing CO2 and CH4 exchange between
the biosphere and atmosphere (Fung et al 1991, Dlu-
gokencky et al 1995, Bousquet et al 2006, Wang
et al 2014, Meng et al 2015). Annual mean CH4
concentrations from 2000–2012 were first detrended,
removing the long-term increase in CH4 concentra-
tions following 2006, because we were interested in
evaluating the role of interannual climate variability on
CH4 emissions (assuming minimal variability in OH
at interannual timescales) and then using a conversion
of 2.78 Tg CH4 per ppb to estimate changes in the
‘atmospheric burden’ (Fung et al 1991). The interan-
nual variability of CH4 concentrations and emissions
was then calculated as Y𝑖+Y(𝑖+1) (where Y = year).
As could be expected, the variability in the MLO
observations was more highly correlated with wetland
CH4 emission variability than with the globally aver-
aged observations, where the averaging across multiple,
mainly marine, stations across latitudes partly dampens
the contribution from land to inter-annual variability.
Thus, in the following, only the MLO observations are
used to discuss the contribution of the modeled fluxes
to atmospheric variability.

Results

Global and regional trends in wetland CH4 emissions
(2000–2012)
For the stabilization period (2000–2006), global
wetland CH4 emissions were estimated at 184 ± 21
Tg CH4 yr−1, where the uncertainty is estimated as
one standard deviation of the model ensemble mean.
Wetland emissions remained statistically similar dur-
ing the period of renewed growth (2007–2012) at
183± 23 Tg CH4 yr−1, with a slightly larger value in the
last year of analysis, 2012, of 186 ± 23 Tg CH4 yr−1

(table 1). For both time periods, tropical biomes,
defined in figure 1(a) as regions 7 to 9, dominated
the global flux with representative 2012 emissions, for
example, of 69 ± 12 Tg CH4 yr−1, followed by boreal
(44 ± 19 Tg CH4 yr−1), temperate (44 ± 10 Tg
CH4 yr−1), and sub-tropical biomes (20 ± 5 Tg
CH4 yr−1). The global fluxes are consistent with a
range of previously published estimates using satel-
lite based approaches, i.e. 170 Tg CH4 yr−1 (Bloom
et al 2010), atmospheric inversions, i.e. 149–159 Tg
CH4 yr−1 (Ghosh et al 2015) and 165 ± 9 Tg CH4 yr−1

(Bousquet et al 2011), process-based models, i.e. 190±
39 Tg CH4 yr−1 (Melton et al 2013) and a combination
of inversion and process-model, i.e. 172 Tg CH4 yr−1

(Spahni et al 2011).
Between the two time periods (the 2000–2006

‘stabilization’ and the 2007–2012 ‘renewed growth’
periods), no statistically significant change in the aver-
age model ensemble emissions (two-sided Student’s
t-test; 𝛼 = 0.1) was found at the global scale or
regionally (figure 2(a) and figure 3(a)). Among indi-
vidual models, the change in global emissions between
2000–2006 and 2007–2012 ranged from a 5.4 Tg
CH4 yr−1 decrease for ORCHIDEE to an increase of
4.8 Tg CH4 yr−1 for LPJ-MPI, with an ensemble
average change of −0.5± 0.9 Tg CH4 yr−1 (figure
1(b)). At the regional scale (figure 1(b)), an increase
in boreal wetland CH4 emissions of 1.2± 0.3 Tg
CH4 yr−1 was found for the ensemble, with only
CLM4.5 estimating reduced emissions of 0.2 Tg
CH4 yr−1 and with LPJ-MPI providing the largest
increase of 3.5 Tg CH4 yr−1. Six of the individual
models had statistically significant increasing trends
for boreal CH4 emissions (linear regression, p < 0.1)
and of these six, all models agreed with an increase
in emissions occurring for June−August (JJA) and
September−November (SON). A decrease in tropical
emissions of 0.9± 0.3 Tg CH4 yr−1 between 2000–
2006 and 2007–2012 was observed across the model
ensemble, with just two models estimating an increase
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Figure 1. (a) Map of regions, with codes defined in table 1, used to partition globe into boreal (code 1, 2, 3), temperate (code 4, 5, 6),
tropical (code 7, 8, 9) and arid biomes (code 10, 11, 12). (b) Change in mean annual wetland methane emissions from the stabilization
period to the increasing period. (c) Change in mean annual wetland area from SWAMPS-GLWD, used as the diagnostic model input
to the global wetland methane models. Error bars represent standard error.

(CLM4.5 and LPJ-MPI, 0.1 and 1.1 Tg CH4 yr−1,
respectively) and ORCHIDEE estimating the largest
decrease of 3.1 Tg CH4 yr−1. Four of the individual
models had a statistically significant (p < 0.1) decrease
in tropical CH4 emissions between JJA and SON.
Changes in tropical wetland emissions were sensitive
to the filtering of the low-surface inundated wetlands,

carried out to detect inter-sensor bias, but no statis-
tically significant change was detected (table S3). A
decrease in temperate regional emissions of 1.4± 0.4
Tg CH4 yr−1 and almost no change in semi-arid emis-
sions (0.4± 0.2 Tg CH4 yr−1) was also obtained for the
ensemble, but with a larger spread across models than
for the boreal and tropical regions.
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Figure 2. Time series for the anomalies of (a) global, (b) boreal, and (c) tropical wetland CH4 emissions, satellite-derived wetland
area, and air temperature. Monthly anomalies were estimated relative to their long-term monthly mean (2000–2012). Wetland CH4
emission anomalies are shown for each model (grey lines) and for the model ensemble (see figure 1 in Saunois et al (2016) for anomalies
of atmospheric concentrations). A 12 month running mean is applied to the ensemble mean time series (thick line) and forcing data.

Climatic and physical drivers of regional CH4 trends
During the 2000–2012 period, a linear regression

analysis with climate forcing based on the Climate
Research Unit, CRU TS3.22 (Harris et al2013), masked
to match wetland containing grid cells only (as an aver-
age over the 2000–2012 time period), revealed variable
spatial and seasonal trends in precipitation and air tem-
perature (for annual trends, see figure 3(c) and (d).
Total global December–February (DJF) precipitation
increased by 2.5 mm yr−1 (p< 0.05) but did not change
significantly in other seasons (figure 3(c)). Increas-
ing boreal winter (DJF) precipitation contributed to
about half of the annual global increase, 1.4 mm yr−1

(p = 0.1), with other boreal seasons showing no change,
tropical DJF precipitation increased by 8.2 mm yr−1

(p = 0.01), and semi-arid DJF precipitation increased

by 1.8 mm yr−1 (p = 0.04). Global annual air temper-
ature over wetlands was nearly constant (figure 3(d)),
and increased at a rate of 0.02 ◦C yr−1 in JJA (p< 0.05)
and 0.04 ◦C yr−1 in SON (p< 0.05). The change in
global air temperature was mainly due to increasing
air temperature in boreal regions with a significant
(p< 0.1) rate of increase of 0.06 ◦C yr−1 from 2000–
2012 in SON, and in tropical biomes where air
temperature also increased slightly in JJA and SON at a
rate of 0.02 ◦C yr−1 (p< 0.1). Cloud cover (not shown)
increased by 0.1% yr−1 (p = 0.05) between March–
May (MAM) in the tropics and decreased during boreal
MAM by −0.2% yr−1 (p = 0.03).

Average annual maximum global wetland area for
the merged SWAMPS-GLWD was 10.5 million km2

(see Methods for comparison with original SWAMPS)
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Figure 3. Annual trends, from 2000–2012, in (a) the ensemble averaged CH4 emissions, (b) wetland area, (c) annual precipitation, and
(d) air temperature. The black stippling highlights statistically significant trends (p< 0.1). Percent changes are also shown in figure S4.

and was in agreement with the GLWD inventoried
global wetland area (Lehner and Doll 2004) used as
the basis for several benchmarking activities (Fluet-
Chouinard et al 2014, Bohn et al 2015). Globally and
regionally, the SWAMPS-GLWD dataset had a sim-
ilar seasonal phase (figure S1) for wetland area as
GIEMS (R2 > 0.85 for all except the semi-arid region)
yet SWAMPS-GLWD had larger seasonal amplitude
because of the addition of permanent wetlands from

GLWD. The overlapping time period for GIEMS
and SWAMPS, years 2000–2007, showed no signif-
icant trends globally or regionally for both datasets.
Between the CH4 stabilization and renewed growth
periods, global mean annual wetland area decreased
by 93 000 km2 (2% of average annual wetland area,
figure 1(c) and figure 3(b)). At the seasonal scale,
a large part of the decrease was explained by nega-
tive JJA trends in wetland area, where a statistically
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significant decrease of 27 000 km2 yr−1 was observed
(p< 0.01).Muchof the seasonaldecreasewas explained
by statistically significant changes in tropical, temper-
ate, and semi-arid JJA wetland area of −4600,−1400,
and −6000 km2 yr−1, respectively, with additional
changes in DJF tropical (−3500 km2 yr−1) and semi-
arid (−7300 km2 yr−1) wetland area observed. In
the boreal regions, wetland area increased by 3000
and 16 400 km2 yr−1 in DJF and SON, respec-
tively (p< 0.01). Overall, a complex pattern of
regional and seasonal contributions in declin-
ing global wetland area was observed, consistent
with decadal and multi-decadal observations of
land-water storage and open-water bodies (Dieng
et al 2015, Donchyts et al 2016), and with tropical
wetland area decreasing (−3.4%) and boreal wetland
increasing (1.8%) in area (figures 2(b) and (c)) between
the stabilization and the renewed growth periods.

Sensitivity of CH4 emissions to climate and wetland
area
A partial correlation analysis was carried out to deter-
mine the effect of wetland area and climate on CH4
emissions, and to determine the interaction between
local climate and large-scale climatic teleconnections,
including the Multivariate El Niño Index (MEI) and the
North Atlantic Oscillation (NAO), on regional wetland
area dynamics. Partial correlation analysis is an appro-
priate statistic to provide estimates on the correlation
coefficient for a set of variables while simultaneously
controlling for their interactions. The resulting partial
correlations, r, range from −1 to 1 with absolute val-
ues closer to unity reflecting higher explanatory power,
either with a negative or positive relationship between
the independent and dependent variables. Monthly
time series for each variable were correlated for the
period 2000–2012 and the data were not detrended
beforehand because there were no significant trends
detected.

The MEI and NAO represent two major global cli-
matic teleconnections, with the MEI linking Pacific sea
surface temperature anomalies (lagged by one month)
with a warming and drying in tropical regions in its
positive El Niño phase and a wetting of mid-latitude
arid regions in its negative La Niña phase (Wolter and
Timlin 1993). The MEI is similar in its temporal
dynamics to the Oceanic Niño Index that uses sea sur-
face temperature anomalies from the Niño 3.4 region.
In contrast, the NAO measures the difference in air
pressure between the Icelandic low and Azores high
(Barnston and Livezey 1987), reflecting mid-to-high
latitude climates, with a positive NAO characterized
by above average annual temperature and wet win-
ters in Eastern North America and northern Europe
and below-average temperatures in the arctic. In con-
trast, during the negative NAO phase, cooler and drier
than average conditions persist in eastern North Amer-
ica and northern Europe, with warmer than average
conditions in the Arctic.

For the model ensemble, variability in global CH4
emissions was most highly correlated with wetland area
(r = 0.64), followed by temperature (r = 0.37) and with
negligible correlations for precipitation (r = 0.09) and
cloudcover (r=0.11).A twoto threemonth lagbetween
the CH4 emissions response and climate increased the
precipitation correlation by a small amount, from 0.09
(with no time lag) to 0.11 with a one month lag.
Monthly to seasonal scale lags have also been observed
in atmospheric inversion and hydrologic studies (Papa
et al 2015, Ribeiro et al 2016, Wilson et al 2016) where
transit time of water within a basin and other hydro-
logic processes, such as evapotranspiration, decouple
the more immediate interactions between precipita-
tion and emissions. At the regional scale, wetland area
was also the most important variable for CH4 emis-
sions, with a correlation of 0.89 and 0.72 in tropical
and temperate regions, respectively. In contrast, for
the individual models, global CH4 emission for JULES
and LPJ-MPI was more highly correlated with air tem-
perature than with wetland area due to their greater
temperature sensitivity than other models, whereas
the remaining models were correlated first with wet-
land area, and then with air temperature followed by
smaller precipitation or cloud cover correlations. The
ranking of global wetland area as the main driver of
CH4 production, followed by temperature and then
precipitation was similar for the boreal, tropical, tem-
perate, and arid regions, and consistent with results
from a multi-model CH4 sensitivity experiment car-
ried out by Melton et al (2013). Overall, the higher air
temperature sensitivity of CH4 emissions was respon-
sible for moderate correlations, with varying time lags
(t minus number months, n), with the MEI for boreal
(r𝑡−0 = −0.16), tropical (r𝑡−6 = 0.33), and temper-
ate emissions (r𝑡−3 = 0.24), with the NAO also only
weakly correlated with the model ensemble for boreal
regions (r𝑡−3 = −0.13). At the global scale, the MEI
and NAO were most highly correlated with CH4 emis-
sions with a five-month lag, r𝑡−5 = 0.26 and r𝑡−5 = 0.08,
respectively, slightly lower than in previously published
studies (Bousquet et al 2006, Hodson et al 2011).

Wetland area dynamics from the SWAMPS-
GLWD dataset at global and regional scales were
moderately correlated with air temperature (masked
for wetland grid cells), r𝑡−0 = 0.24 globally, and r𝑡−0
= 0.33 for boreal regions, suggesting surface-flooding
increased following seasonal permafrost thaw under
warmer temperatures (Schuur et al 2015). Precipita-
tion (also masked for wetland grid cells) was weakly
correlated with global wetland area (r𝑡−0 =−0.11), and
with wetland area in temperate (r𝑡−0 = 0.18), tropical
(r𝑡−0 = −0.12), and arid regions (r𝑡−0 = −0.15). The
introduction of time lags (up to +6 months) in the
climate variables did not significantly improve the cor-
relations with wetland area except in semi-arid regions
where a one month lag increased the precipitation cor-
relation with wetland area (r𝑡−1 = 0.30). These results
highlight the importance of incorporating sub-grid cell
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topographic variation, as well as cell-to-cell interac-
tions, when modeling feedbacks between hydrologic
flow paths and surface inundation dynamics. At the
global scale, the MEI was positively, albeit weakly, cor-
related with wetland area (r𝑡−5 = 0.33) mainly because
of the relationship with tropical (r𝑡−5 = 0.29) and tem-
perate wetland dynamics (r𝑡−5 = 0.25). Boreal regions
were negatively correlated with MEI with a one-month
lag (r𝑡−1 = −0.14) and both the MEI and NAO posi-
tively correlated with wetland area in temperate regions
(r𝑡−0 =0.27and r𝑡−0 =0.15, respectively).Themoderate
correlations, compared with earlier studies, were partly
due to the short time series, where between 2000–2012,
theNAOwasmainly innegativephase (meaningbelow-
average precipitation in mid-high latitudes, cooler
eastern North America and northern European tem-
peratures, and warmer arctic conditions), and no large
El Niño events, whereas a record magnitude La Niña
lasted from late 2009 to 2011 (Evans and Boyer-Souchet
2012). In addition, our regional definitions may also
interfere with the strength of the teleconnection cor-
relations by introducing a mix of biome types with
varying climatic responses (Zhang et al 2015).

Discussion

High latitude increases and low latitude decreases in
CH4 emissions
From 2000–2012, global wetland emissions appear to
have remained stable and with regional increasing
and decreasing trends closely compensating for one
another, with no net contribution to the observed
renewed atmospheric growth rate. By shifting the
period of comparison to 2003–2005 and 2010–2012
to evaluate the sensitivity of our definition for the sta-
bilization and renewed growth periods, we find only
a slightly larger increase in emissions, from 185± 22
Tg CH4 yr−1 to 186± 24 Tg CH4 yr−1, an average
1.23± 1.1 Tg CH4 increase and also not large enough
to explain the 2007 renewed atmospheric CH4 growth
rate of ∼17 Tg CH4 yr−1. Additionally, the increase
between the 2003–2005 and 2010–2012 periods is
not robust and almost entirely driven by just one
model, which also has the highest temperature sen-
sitivity, LPJ-MPI (12.6 Tg CH4 yr−1 increase). The
increase in boreal emissions from 2000–2012 appears
to be closely linked to both increasing air tempera-
ture and wetland area, with an anomalously warm
event in 2007 (Bruhwiler et al 2014). In high lati-
tude regions, evidence for warming air temperature
is well documented and the feedbacks between increas-
ing air temperature, sea-ice cover loss, and terrestrial
CH4 emissions is becoming increasingly clear (Karl
et al 2015, Parmentier et al 2015). Finer-temporal and
spatial remote-sensing based analyses are also consis-
tent with the evidence presented here for a net increase
in boreal wetland area and CH4 emissions from 2003
to 2011 (Watts et al 2014). Overall, these changes are

consistent with field observations (Sweeney et al 2016)
andwithwhat couldbe expected fromprojected climate
change and warming impacts on high latitude systems
that link temperature sensitivity as a dominant control
on arctic wetland CH4 emissions (Schaefer et al 2011,
Chen et al 2015, Schuur et al 2015).

In tropical regions, high interannual variability in
precipitation makes detecting decadal scale carbon-
cycle trends challenging (Jung et al 2010, Zhang
et al 2015). In terms of wetland area dynamics, Papa
et al (2010) reported a decrease of 19 600 km2 yr−1

in tropical surface inundation between 1993 and
2005 based on the GIEMS data, and losses of trop-
ical surface inundation appear to have continued
through 2012 at a rate of 4000 km2 yr−1 (Schroeder
et al 2015). As a consequence, declining tropical wet-
land CH4 emissions have been found in a range of
studies using GIEMS, for example, Meng et al (2015),
who found a decline of 1.68 Tg CH4 yr−1 from 1993–
2004. However, even with models that used fixed
or static, i.e. the GLWD, rather than dynamic areal
extent of wetlands, declining tropical wetland CH4
emissions were simulated (Zhu et al 2015), suggest-
ing that trends in climatic drivers that force changes
in wetland area may be an equally important con-
straint on tropical CH4 production. Over Amazonia
and the Congo Basins, large consecutive droughts, in
2005 and 2010, combined with regional warming, have
resulted inwidespreaddeclines in tropical forest canopy
greenness (Hilker et al 2014, Zhou et al 2014). These
Amazonian droughts are superimposed on an intensi-
fication of the hydrologic cycle in the wet season (Gloor
et al 2013) rather than an increase in the duration of
the wet season throughout the year. Declining pre-
cipitation trends between 2010–2012 were observed
in Western Amazonia and Eastern Congo, but over
SoutheastAsia, increases inprecipitationwereobserved
(figure 3(c)). Degradation of global wetlands due to
human activities is also a large component in declin-
ing wetland function (Petrescu et al 2015, Donchyts
et al 2016), and losses of tropical wetland area due to
drainage are the highest globally, ranging up to 2% per
year (Davidson 2014, Papa et al 2015).

Outside of tropical regions, declining wetland area
in temperate regionsalsocoincidedwith long-termdry-
ing of soils from 1950–2005 (Mueller and Zhang 2015),
however the precipitation trends from 2000–2012 of
relevance in this study suggest soil moisture actually
increased in this time period (figure 3(c)). Semi-arid
regions, i.e. eastern Australia and South America,
showed decreasing annual precipitation trends, despite
large swings in seasonal precipitation related to a series
of strong La Niña events (Boening et al 2012).

Role of teleconnections on interannual variability of
wetland area and CH4 emissions
ENSO has previously been highlighted as a key driver
of interannual variability in global wetland CH4 pro-
duction (Bousquet et al 2006, Hodson et al 2011,
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Figure 4. Interannual variability of detrended atmospheric methane concentrations, represented at the atmospheric burden in Tg
CH4, as measured at the Mauna Loa Observatory (Tg CH4 yr−1), approximately equivalent to the mean global concentrations, and
interannual variability in wetland methane emissions for global, boreal, and tropical wetlands. Bars represent the model ensemble
mean (n = 11), and the error bars represent one standard error.

Dalsøren et al 2015). Here, we find a possibly lower
role for ENSO in driving global wetland CH4 produc-
tion that is due in part to i) the duration of the brief
time series where no strong El Niño was observed and
ii) the use of a new integrated wetland–surface–water
dataset. Previous analyses have used longer time series,
such as Hodson et al (2011), who scaled modeled soil-
moisture to wetland area based on a GIEMS calibrated
hydrologic model. For the time period 1950–2005 they
found a slightly higher global correlation of global CH4
emissions with ENSO, R2 = 0.39 (with a three-month
lag) and R2 = 0.56 for the tropics. In addition, using
an atmospheric inversion, Bousquet et al (2006) par-
titioned CH4 emissions to anthropogenic and natural
sources for the period 1984–2003. The study concluded
that the dominant role of CH4 surface sources was
from high interannual variability of wetland area that
was synchronized with ENSO. The longer 1950–2005
time period includes a wider range of both positive and
negative phase ENSO events, whereas the 2000–2012
period evaluated here includes two major La Niña and
only moderate El Niño events.

In addition, many studies have relied on GIEMS
surface inundation data to constrain wetland areal
dynamics, and have found GIEMS to be highly cor-
related with ENSO (Prigent et al 2007). While the
new SWAMPS-GLWD dataset used here was found
to enhance seasonal variation in wetland area, the
dataset alsopartially decoupled the interannual surface-
water variability fromclimatebecauseof the integration
of permanently inundated wetlands (with no surface
flooding) from GLWD, to address known limitations
in microwave remote sensing of wetlands, particularly
in forested areas (Bohn et al 2015). We evaluated
how the development of the SWAMPS-GLWD wet-
land dynamics dataset affected interannual variability
(IAV) of wetland CH4 emissions by comparing with
the detrended observations of atmospheric CH4 vari-
ability from MLO. We found the observed IAV at
MLO to range from −13 to 22 Tg CH4 yr−1 from
2000 to 2012 (figure 4). In comparison, the IAV of

the SWAMPS-GLWD driven wetland model ensem-
ble ranged from −13 to 19 Tg CH4 yr−1, and across
models, the range varied from small IAV (−8 to 1 Tg
CH4 yr−1 for CTEM) to large IAV (3 to 19 Tg CH4 yr−1

forORCHIDEE).Compared toobservations, the sensi-
tivity of the model ensemble results provide confidence
in the use of SWAMPS-GLWD for partially driving
a CH4 IAV consistent with previous top-down and
isotopic studies, e.g. Bousquet et al (2006), that demon-
strate wetland CH4 emissions explain a large portion
of the IAV in atmospheric growth (r = 0.46 for the
model ensemble, with the individual models ranging
from r = 0.2 (TRIPLEX-GHG) to r = 0.6 (SDGVM)).
Notably, the contribution of boreal wetlands to global
CH4 IAV appears to decline from 2000–2012 relative
to an increase from tropical contributions (figure 4),
however, overall we found a trend toward decreasing
IAV in the observed CH4 growth rate. Wildfires, not
considered in this study, can contribute between 10–20
Tg CH4 yr−1 of emission IAV, however no significant
trend over time has been observed to date (van der
Werf et al 2006, van der Werf et al 2010, Worden
et al 2013). Additionally, year-to-year variability in
the atmospheric oxidative sink for methane may
also affect variability in growth rate anomalies
(Rigby et al 2008).

Uncertainties from additional biogenic CH4 sources
The depletion of atmospheric 𝛿13C of CH4 since 2007
presents three scenarios, (i) a change in average bio-
genic wetland 𝛿13C source signature, (ii) an overall
increasing biogenic source, (iii) a decreasing thermo-
genic or pyrogenic source, or some combination of
all (Kirschke et al 2013). Thermogenic, or fossil-fuel
related emissions, are unlikely to have decreased in
recent years (Bergamaschi et al 2013, Nisbet et al
2014), and recent studies based on isotopic 𝛿13C con-
firm a large biogenic source (Dlugokencky et al 2011,
Rice et al 2016, Schaefer et al 2016). In addition to
the wetland types considered in this study, there are
several additional sources of biogenic emissions that
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could contribute to the depletion of atmospheric 𝛿13C.
These include river systems (Bastviken et al 2011,
Borges et al 2015), lakes (Verpoorter et al 2014, Tan
and Zhuang 2015), and agriculture (Leff et al 2004,
Chen et al 2013). For example, taken together, river
and lake system CH4 emissions are highly uncertain
and are estimated to emit as much as 100± 50 Tg
CH4 yr−1 (Bastviken et al 2011), or the equivalent of
∼30%–50% of global wetland emissions, and would
require a reassessment of other source terms to close
the global methane budget (Saunois et al 2016). These
emission hotspots are also geographically distributed
across arctic (Walter Anthony et al 2014), temper-
ate (Chen et al 2013) and tropical systems (Borges
et al 2015). The temporal response of agricultural
CH4 emissions (excluding biomass burning) is poorly
understood, yet agriculture accounts for about 30%
of total wetland CH4 emissions (Kirschke et al 2013)
and is produced from rice cultivation and enteric fer-
mentation of livestock ruminants. These agricultural
emissions can change on annual to decadal time scales
in response to climate (Li et al 2002), but also in
response to farming practices where land management
can rapidly respond to socio-economic drivers (Chen
et al 2013) and contribute to atmospheric IAV and to
long-term trends (Tian et al 2016).

Reducing biogenic source uncertainty
By using a multi-model approach to investigate the
temporal trends and spatial patterns in global CH4
emissions, the model uncertainty can be quantified
more robustly. Here, the sources of uncertainty can be
partitioned to (i) driver data, (ii) model structure, and
(iii) parameter uncertainty. By providing a consistent
set of climate, atmospheric CO2, and wetland area data,
the model spread was reduced from 123 Tg CH4 yr−1

(WETCHIMP, which used a similar model ensem-
ble) to 80 Tg CH4 yr−1 (this study). This reduction
highlights that uncertainties in wetland area are almost
equally important to our mechanistic understanding of
in situ CH4 production and consumption processes.
Combining SWAMPS and GLWD led to wetland
area estimates consistent with more detailed regional
estimates for Amazonia (Wilson et al 2007, Draper
et al 2014, Hess et al 2015), southeast Asia (Hooijer
et al 2010), and high-latitude systems, such as
the Western Siberia Lowlands (Bohn et al 2015,
Zhang et al 2016b).

Model structure is another key source of uncer-
tainty (Wania et al 2013, Xu et al 2016a), as
illustrated by the range of temperature-emission sen-
sitivities for the current model ensemble. About
half of the models used here (JULES, LPJ-wsl,
ORCHIDEE, SDGVM, CTEM) were based on the
semi-empirical model approach of Christensen et
al (1996), whereas the other models (LPX-Bern,
LPJ-MPI, CLM4.5, TRIPLEX-GHG) were based
on more mechanistic first order approaches based

on the framework developed by Walter et al
(2001), see table S2 for a summary. One topic of
large uncertainty are the oxidative processes that
consume CH4 (Ridgwell et al 1999), and that may
change over time and alter the CO2:CH4 production
ratios used in the semi-empirical approaches (Curry
2007). However, there was no clustering of model
structure in terms of global or regional emission trends.

In addition to meteorological and wetland area
interannual variability, atmospheric CO2 rose by
24 ppm to 393 ppm from 2000 to 2012 (based on
observations from Mauna Loa, MLO). Net primary
production in carbon cycle models tends to respond
positively to trends in elevated CO2 (Hickler et al2008),
and would be expected to provide a sustained increase
in substrate in the form of soil organic carbon for anaer-
obic processes to produce CH4. A strong CO2 driven
response in CH4 emissions was not observed by the
ensemble mean because of the high IAV of climate and
wetland area that appear to be more limiting for CH4
emissions than substrate. Over longer timescales, i.e.
multi-decadal to centennial, a strong CO2 feedback on
CH4 emissions is expected, with simulated increases in
global emissions of up to 73%± 49% at 857 ppm CO2
(Melton et al 2013).

Lastly, model parameters are difficult to robustly
estimate because CH4 production occurs in complex
landscapes where anaerobic soil conditions can be very
heterogeneous. To estimate emissions at scales of 50
km2 or larger, where CH4 production may be occur-
ring in small topographic depressions, remains a large
challenge (Lara et al 2015, Shi et al 2015). While the
area-weighted monthly-average flux estimates for the
model ensemble ranged within observations, i.e. from
2.7 to 3.9 g CH4 m−2 month−1 globally, 0.7 to 3.1 g
CH4 m−2 month−1 for boreal wetlands (observations
2–4 g CH4 m−2 month−1 in boreal systems (Turetsky
et al 2014), and 5.2 to 8.2 g CH4 m−2 month−1 for
tropical wetlands (observations 0.1 to 29 g CH4 m−2

month−1 (Sjogersten et al2014). Benchmarkingof pro-
cess models with flux tower measurements or airborne
campaigns remains critical for improving model struc-
ture and parameters (Miller et al 2016) and addressing
scaling artifacts that may obscure non-linear methane
production and consumption processes.

Conclusions

Key findings
Interpreting the interannual and decadal dynamics of
the CH4 atmospheric growth rate has presented sig-
nificant challenges over the past three decades, with
the sources and sinks remaining poorly understood
(Kirschke et al 2013). Using an ensemble of global wet-
land models constrained with satellite and inventory
based surface inundation and wetland area seasonal-
ity and trends, we now provide a comprehensive and
updated estimate of the role of wetlands in the recent
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increase of the atmospheric growth rate that began in
2007. We show that the role of wetlands in the renewed
period of atmospheric CH4 growth appears minimal to
non-existent, and that:

• At the global scale, wetland CH4 emissions have
remained constant from 2000–2012 at 184± 22 Tg
g CH4 yr−1 but that significant spatial variability in
trends are masked by the global perspective (figure
S2 and S3).

• In boreal regions, increasing CH4 emissions cor-
responds to increasing wetland area and air
temperature, whereas in the tropics, decreasing wet-
land area and large variability in precipitation has led
to decreased emissions.

• At global and the regional scales defined in our study,
the role of climatic teleconnections such as ENSO
andtheNAOaresmaller thanwhathasbeen reported
in previous work; however, we confirm that the IAV
of the atmospheric growth rate is largely explained
by wetlands.

• The interannual variability in global wetland emis-
sions isdominatedbyboreal regions from2000–2006
and then with increasing contribution from tropical
regionspossibly coincidingwith largerdroughtsover
Amazonia and the Congo Basin (figure 4). However,
there has been no consistent shift in the IAV of wet-
land CH4 emissions over the 2000–2012 time period
(figure 4).

• The range of the modelled interannual variability in
global wetland emissions in 2007–2012 is similar to
the IAV observed at the MLO station, while it is less
than observed for 2000–2006. Therefore, the period
2000–2006 is anomalous not only due to the absent
trend in the growth rate of atmospheric CH4 con-
centrations, but also due to anomalously high IAV
not fully explained by natural wetland emissions.

• Our results, interpreted in the context of a depletion
in atmospheric 𝛿13C observed since 2007, suggests
that either a shift in 𝛿13C biogenic source signa-
ture occurred or other agricultural biogenic sources
are required to explain the recent and sustained
atmospheric increase in CH4, or that, less likely,
a decrease in thermogenic and pyrogenic emission
has occurred. This is consistent with recent work
of Schaefer et al (2016) who present isotopic evi-
dence suggesting an increasing role of livestock and
agriculture in the growth rate of atmospheric CH4.

• The pattern of increasing high-latitude emissions
and possibly decreasing to stable tropical emissions
are consistent with climate change projections that
forecast a general increase in boreal air tempera-
turesandadecrease in tropicalprecipitation (Scholze
et al 2006). Thus the past decade presents an
observational test case for climate and socio eco-
nomic impact studiesonCH4 production (Lawrence
et al 2015, Petrescu et al 2015).

• To reduce uncertainties in wetland dynamics map-
ping we recommend that (1) multi-platform remote
sensing using both radar and optical observations
are integrated at higher spatial resolution to resolve
issues associated with low-detection probabilities in
closed-forest canopy regions, (2) that inter-sensor
calibration and effects on inter-annual and sea-
sonal trends are clearly accounted for, and (3) that
ground-based wetland inventories are continually
updated and made available to benchmark and cal-
ibrate remote sensing algorithms, and with clear
terminology to avoid double counting.
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