CLIMATE

How unusual is today's solar activity?

Arising from: S. K. Solanki, I. G. Usoskin, B. Kromer, M. Schüssler & J. Beer Nature 431, 1084–1087 (2004)

To put global warming into context requires knowledge about past changes in solar activity and the role of the Sun in climate change. Solanki *et al.*¹ propose that solar activity during recent decades was exceptionally high compared with that over the preceding 8,000 years. However, our extended analysis of the radiocarbon record reveals several periods during past centuries in which the strength of the magnetic field in the solar wind was similar to, or even higher than, that of today.

Solanki *et al.* combine radiocarbon (¹⁴C) data, visually observed sunspot numbers and models to extend the historical sunspot record over the Holocene. They exclude the most recent 100 years of the ¹⁴C record, which are influenced by ¹⁴C-depleted fossil-fuel emissions and atomic-bomb tests conducted since AD 1950. We extend the analysis of the radiocarbon record to AD 1950, which allows us to link the ¹⁴C-based solar reconstruction to instrumental measurements of solar magnetic modulation that cover the past 68 years^{2.3}.

The Sun influences the production rate of ¹⁴C in the Earth's atmosphere by modulating the galactic cosmic-ray flux through its magnetic field. Increased magnetic field in the solar wind causes a stronger deflection of galactic cosmic rays and lower radionuclide production rates in the atmosphere and vice versa. However, the atmospheric ¹⁴C concentration also depends nonlinearly on the geomagnetic field intensity and the global carbon cycle. These factors and their uncertainties need to be carefully included in the reconstruction of solar activity.

Figure 1 | Measured atmospheric ¹⁴CO₂:¹²CO₂ and ¹³CO₂:¹²CO₂ ratios and model results for δ ¹³C from AD 1500 to 1950. Δ ¹⁴C and δ ¹³C denote the per mil deviations from a standard. **a**, Tropospheric radiocarbon from tree-ring measurements from the Northern Hemisphere⁴ (black) and Southern Hemisphere⁵ (brown). Error bars show one standard deviation. **b**, The Law Dome (Antarctica) δ ¹³C record¹⁴ (dots) compared with the output of the Bern model (black line). Error bars show one standard deviation.

We reconstructed ¹⁴C production rates from radiocarbon records^{4,5} (Fig. 1a) using two box-diffusion type carbon-cycle models, the box-diffusion⁶ and the Bern model⁷, and a three-dimensional ocean model coupled to a four-box land biosphere. The ¹⁴C production record was transformed^{8,9} into a record of the solar modulation parameter that describes the solar influence on galactic cosmic-ray deflection by normalizing it to neutron-monitor and ionization-chamber data covering the recent decades². Alternatively, balloon-borne estimates of galactic cosmic-ray deflection³ were used instead of the ionization-chamber data. Like Solanki et al.¹, we assumed that natural variations in the carbon cycle were small during the past millennium, which is consistent with ice-core CO2 and 13CO2 data and models¹⁰. We considered uncertainties in ¹⁴C data, fossil CO₂ emissions, the geomagnetic field and model parameters. Results are similar across the range of models and simulations. Calculations using the Northern⁴ or Southern⁵ Hemisphere ¹⁴C record, or both, reveal that differences between the ¹⁴C records do not affect our main conclusions.

It is standard practice to model the observed dilution of the atmospheric isotope ratios caused by the addition of isotopically depleted carbon from fossil and land-use sources. Emissions from land-use sources are prescribed, emissions from land-use sources are inferred from the atmospheric carbon budget, and the two-way exchange fluxes between reservoirs are simulated. The dilution of ¹⁴C is governed by the same processes that affect ¹³C. The good agreement between modelled ¹³C and ice-core data (Fig. 1b) supports the reconstructed rate of ¹⁴C production.

The comparison between the physical quantities, the ¹⁴C-production rate and the solarmodulation parameter, and the visually based sunspot record reveals similarities and striking differences (Fig. 2). The 11-year solar cycle is distinct in all records. On the other hand, solar magnetic modulation was higher or comparable to today during the late eighteenth (and twelfth) century and around AD 1600, whereas sunspot numbers were highest over the recent decades. Sunspot numbers fell to zero during the Maunder Minimum (AD 1650-1700), whereas 14C production and solar modulation continued to vary. The balloon-borne measurements³ imply lower values for the solar modulation parameter than the ionizationchamber data². Those data seem preferable because they agree better with the solarmodulation changes inferred by Solanki et al.1 than do the balloon-borne measurements³. If we include the Northern and Southern Hemisphere ¹⁴C records (three-dimensional model) and normalize the data to the balloon-borne record, we obtain very similar levels of solar modulation (black curve in Fig. 2b).

In any case, and irrespective of the data set applied, the recent solar activity is not exceptionally high (Fig. 2). The ¹⁴C results are broadly consistent with earlier reconstructions based on ¹⁰Be data from the South Pole, which show that production rates around AD 1780 and in the twelfth century were comparable to those observed today¹¹. We conclude that

Figure 2 | Radiocarbon production rate and solar modulation parameter compared with the group sunspot number. a, ¹⁴C-production rates (blue) were calculated from the Northern Hemisphere ¹⁴C record with two carbon-cycle models^{6,7} fossil-fuel emissions ($\pm 10\%$) and air-sea CO₂ exchange rate (\pm 30%) were varied systematically in sensitivity calculations (various lines). The shadowed area shows the 1σ errors resulting from 100 Monte Carlo simulations. We included Northern Hemisphere⁴ and Southern Hemisphere⁵¹⁴C data in a three-dimensional ocean model calculation (green line). The black curves show the ¹⁴C-production rate corrected for the geomagnetic field intensity^{8,9}. The red curve shows the group sunspot number¹⁵. All records are normalized and show 11-yr averages. b, The solar modulation parameter was calculated⁸ from the ¹⁴C-production rates and from ionizationchamber and neutron-monitor data². The grey band shows results from annual 14C data, including the error range based on the Monte Carlo calculations and uncertainties in the geomagnetic data9. The black line shows 11-yr averages (best estimate). Unfiltered (blue) and 11-yr-averaged (red) sunspot numbers¹⁵ are shown for comparison. The green line shows the threedimensional model results. The purple line depicts results using an alternative neutron-monitor record³ that indicates a stronger trend from 1937 to 1950 than the ionization-chamber data².

the link between the visually based sunspot numbers and solar-modulation parameter is neither straightforward nor yet understood, and also that solar modulation must have reached or exceeded today's magnitudes three times during the past millennium.

Uncertainties in low-frequency changes increase when reconstructions are extended from the past few centuries to the past millennia. The low-frequency Holocene ¹⁴C variations can largely be explained by changes in the geomagnetic field as they lie within the errors of the archaeomagnetic data set used for correction¹². Some palaeomagnetic records¹³ indicate higher geomagnetic intensities around 7000 BC, which indicate that solar activity could have been lower during this period than is suggested by Solanki *et al.*¹.

What do our results mean for climate change? It is speculative to translate solar magnetic modulation quantitatively into irradiance because we do not have a clear mechanistic understanding or evidence from data. Still, records of solar magnetic modulation proxies are often used as direct indicators of solar irradiance in climate and carbon-cycle model calculations (see ref. 10, for example). The reconstruction by Solanki *et al.* implies generally less solar forcing during the past millennium than in the second part of the twentieth century, whereas our reconstruction indicates that solar activity around AD 1150 and 1600 and in the late eighteenth century was probably comparable to the recent satellite-based observations. In any case, as noted by Solanki *et al.*, solar activity reconstructions tell us that only a minor fraction of the recent global warming can be explained by the variable Sun.

Raimund Muscheler*, Fortunat Joos†, Simon A. Müller†, Ian Snowball‡

*National Center for Atmospheric Research, Climate and Global Dynamics Division, Paleoclimatology, Boulder, Colorado 80305-3000, USA e-mail: raimund@ucar.edu †Climate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland

‡GeoBiosphere Science Centre, Quaternary Sciences, Lund University, 22362 Lund, Sweden

- 1. Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. & Beer, J. *Nature* **431**, 1084-1087 (2004).
- 2. Beer, J. Space Sci. Rev. 93, 107-119 (2000)
- McCracken, K. G. & Heikkila, B. in Proc. 28th Int. Cosmic Ray Conf. 2003, Tsukuba, Japan 4117–4120 (Univ. Acad. Press, Tokyo, 2003).
- Stuiver, M., Reimer, P. J. & Braziunas, T. F. Radiocarbon 40, 1127–1151 (1998).
- 5. McCormac, F. G. et al. Radiocarbon 44, 641-651 (2002).
- 6. Siegenthaler, U. J. Geophys. Res. 88, 3599-3608 (1983).
- 7. Joos, F. et al. Tellus B 48, 397-417 (1996).
- 8. Masarik, J. & Beer, J. J. Geophys. Res. 104,
- 12099-12111 (1999).
- Yang, S., Odah, H. & Shaw, J. Geophys. J. Int. 140, 158–162 (2000).
- Gerber, S. et al. Clim. Dynam. 20, 281-299 (2003).
 Bard, E., Raisbeck, G. M., Yiou, F. & Jouzel, J. Tellus B 52,
- 985-992 (2000). 12. Muscheler, R., Beer, J., Kubik, P. W. & Synal, H.-A.
- Quat. Sci. Rev. 24, 1849–1860 (2005).
 Snowball, I. & Sandgren, P. Earth Planet. Sci. Lett. 227,
- 361-376 (2004).
- Francey, R. J. et al. Tellus B 51, 170–193 (1999).
 Hoyt, D. V. & Schatten, K. H. Solar Phys. 179, 189–219 (1998).

doi:10.1038/nature04045