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Abstract. Terrestrial carbon (C) sequestration is limited by nitrogen (N), an empirically established constraint
that could intensify under CO2 fertilization and future global change. The terrestrial C sink is estimated to cur-
rently sequester approximately a third of annual anthropogenic CO2 emissions based on an ensemble of terrestrial
biosphere models, which have been evaluated in their ability to reproduce observations of the C, water, and en-
ergy cycles. However, their ability to reproduce observations of N cycling and thus the regulation of terrestrial C
sequestration by N have been largely unexplored. Here, we evaluate an ensemble of terrestrial biosphere models
with coupled C–N cycling and their performance at simulating N cycling, outlining a framework for evaluating N
cycling that can be applied across terrestrial biosphere models. We find that models exhibit significant variability
across N pools and fluxes, simulating different magnitudes and trends over the historical period, despite their
ability to generally reproduce the historical terrestrial C sink. Furthermore, there are no significant correlations
between model performance in simulating N cycling and model performance in simulating C cycling, nor are
there significant differences in model performance between models with different representations of fundamen-
tal N cycling processes. This suggests that the underlying N processes that regulate terrestrial C sequestration
operate differently across models and appear to be disconnected from C cycling. Models tend to overestimate
tropical biological N fixation, vegetation C : N ratio, and soil C : N ratio but underestimate temperate biological
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N fixation relative to observations. However, there is significant uncertainty associated with measurements of
N cycling processes given their scarcity (especially relative to those of C cycling processes) and their high spa-
tiotemporal variability. Overall, our results suggest that terrestrial biosphere models that represent coupled C–N
cycling could be overestimating C storage per unit N, which could lead to biases in projections of the future
terrestrial C sink under CO2 fertilization and future global change (let alone those without a representation of
N cycling). More extensive observations of N cycling processes and comparisons against experimental manip-
ulations are crucial to evaluate N cycling and its impact on C cycling and guide its development in terrestrial
biosphere models.

1 Introduction

The terrestrial biosphere is estimated by the Global Carbon
Project (GCP) to currently sequester approximately a third
of anthropogenic CO2 emissions (Friedlingstein et al., 2022).
The GCP annually reports an estimate of the global carbon
(C) budget, which includes an estimate of the atmosphere–
land CO2 flux based on simulations of an ensemble of ter-
restrial biosphere models – the trends in the land carbon cy-
cle project (TRENDY) ensemble. In recent years, the ma-
jority of the models within the TRENDY ensemble have in-
corporated a representation of coupled C and nitrogen (N)
cycling given the empirically established importance of N
limitation of vegetation growth (Elser et al., 2007; LeBauer
and Treseder, 2008; Wright et al., 2018). Whereas only 4 out
of 9 models represented coupled C–N cycling in the 2013
GCP, 11 out of 16 models represented coupled C–N cycling
in the 2022 GCP (Fig. 1). Capturing N constraints on C cy-
cling is critical for realistically simulating the terrestrial C
sink, which arises from the combined effects of concurrently
acting global change drivers that are each modulated by N.
CO2 fertilization is limited by N (Terrer et al., 2019; S. Wang
et al., 2020), intensifying N deposition increases N supply
(O’Sullivan et al., 2019; Wang et al., 2017), rising tempera-
ture and varying precipitation modulate decomposition and
soil N availability (Liu et al., 2017), and land use change
and associated N fertilization regimes determine N supply to
crops.

The TRENDY ensemble has been extensively evaluated
against observations of the C, water, and energy cycles (Col-
lier et al., 2018; Friedlingstein et al., 2022; Seiler et al.,
2022). Within the GCP itself, the primary simulated C pools,
C fluxes, and water fluxes are evaluated using a skill score
system developed by the International Land Model Bench-
marking (ILAMB) project that quantifies model performance
by comparing model simulations to observations (Collier et
al., 2018; Friedlingstein et al., 2022). ILAMB scores encom-
pass the mean and variability of a given variable (pool or
flux) over monthly to decadal temporal scales and over grid
cell to global spatial scales. However, despite its importance
in regulating C cycling, N cycling has not been explicitly
evaluated. This is in part due to the relatively recent incor-
poration of N cycling in terrestrial biosphere models (Fig. 1)

Figure 1. Number of terrestrial biosphere models contributing to
the Global Carbon Project (the TRENDY ensemble) with and with-
out coupled C–N cycling.

(Fisher and Koven, 2020; Hungate et al., 2003) but also due
to the paucity of global observation-based datasets of N cy-
cling. N exists in many forms and is lost from terrestrial
ecosystems via numerous pathways (emissions of NH3, N2O,
NOx , and N2, as well as NO−3 and NH+4 leaching), N pro-
cesses are generally not measured in situ in networks such
as FLUXNET, and remote sensing methodologies for mea-
suring N processes are still in their infancy. Additionally, N
processes exhibit extremely high spatial and temporal vari-
abilities and are thus challenging to measure. As such, N cy-
cling has commonly been evaluated by comparing simulated
N pools and fluxes to global totals based on a small num-
ber of observations that have been scaled up or averaged to
yield a value with wide confidence intervals (Davies-Barnard
et al., 2020).

N cycling is implicitly evaluated by comparing terrestrial
biosphere models without N cycling to those with coupled
C–N cycling in reproducing observations of the C, water,
and energy cycles in the absence of N cycle observations.
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Results suggest that there are only minor differences be-
tween the performance of models with and without N cy-
cling. There is no significant difference between the terres-
trial C sink simulated by the TRENDY models with and with-
out N cycling (Friedlingstein et al., 2022) or between the ter-
restrial C sink simulated by the models participating in the
Multi-scale synthesis and Terrestrial Model Intercomparison
Project (MsTMIP) with and without N cycling (Huntzinger
et al., 2017). Comparing the mean score across all C, wa-
ter, and energy cycle variables between TRENDY models
with and without N cycling yielded no significant difference
(Seiler et al., 2022). However, TRENDY models without N
cycling had significantly higher scores for net biome pro-
ductivity than TRENDY models with N cycling (although
all other variables were not significantly different between
TRENDY models with and without N cycling, including veg-
etation C, soil C, net biome productivity, leaf area index, la-
tent heat flux, and runoff) (Seiler et al., 2022). Despite this
seeming absence of a difference between models with and
without coupled C–N cycling in simulating the current terres-
trial C sink, it is imperative that N constraints on C cycling
are properly represented by terrestrial biosphere models in
order to realistically simulate the terrestrial C sink under fu-
ture global change, which modifies the C–N balance through
N limitation of CO2 fertilization and intensifying N deposi-
tion among other effects of global change. As such, explicitly
evaluating N cycling processes themselves is necessary to as-
sess the ability of terrestrial biosphere models to capture the
underlying mechanisms that determine terrestrial C seques-
tration and thus to realistically project the future terrestrial C
sink under global change.

Here, we synthesize the N pools and fluxes simulated by
11 terrestrial biosphere models in the TRENDY ensemble
that participated in the 2022 GCP. We evaluate their perfor-
mance in reproducing observations of three key variables of
the N cycle: biological N fixation, vegetation C : N ratio, and
soil C : N ratio. These three variables are critical to C cycling
because (1) biological N fixation is the dominant natural N
supply to terrestrial ecosystems, influencing the degree of N
limitation of plant growth and thus terrestrial C sequestra-
tion, and (2) vegetation and soil C : N ratios reflect assimi-
lated C per unit N and thus terrestrial C storage.

2 Methods

2.1 Simulation protocol

For the 2022 GCP (version 11), the TRENDY ensemble con-
sisted of 16 terrestrial biosphere models, 11 of which repre-
sent N cycling (CABLE-POP, CLM5.0, DLEM, ISAM, JS-
BACH, JULES-ES, LPJ-GUESS, LPX-Bern, OCNv2, OR-
CHIDEEv3, and SDGVM). Although SDGVM includes a
representation of N cycling, its representation is simplistic
and was therefore not included. Additionally, CLASSIC con-
tributed to the 2022 GCP without coupled C–N cycling; the

S3 simulation from the TRENDY protocol was repeated by
CLASSIC with coupled C–N cycling following the 2022
GCP protocol and was used here. Overall, we analysed 11
models with coupled C–N cycling (Table 1).

We analysed the S3 simulation from the TRENDY pro-
tocol, which includes historical changes in atmospheric
CO2, climate, N deposition, N fertilization, and land use
from 1851 to 2021 (see Friedlingstein et al., 2022, for a
full description of the simulation protocol). Briefly, mod-
els were forced with atmospheric CO2 from Dlugokencky
and Tans (2022); the merged monthly Climate Research
Unit (CRU), 6-hourly Japanese 55-year Reanalysis (JRA-
55) dataset, or the monthly CRU dataset from Harris et al.
(2020); N deposition from Hegglin et al. (2016) and Tian et
al. (2022); N fertilization from the global N2O Model In-
tercomparison Project (NMIP) (Tian et al., 2018); and land
use from the LUH2-GCB2022 (Land-Use Harmonization 2)
dataset (Chini et al., 2021; Hurtt et al., 2020; Klein Gold-
ewijk et al., 2017a, b). We interpolated outputs from all mod-
els to a common resolution of 1◦× 1◦ using bilinear interpo-
lation.

2.2 Terrestrial biosphere model descriptions

The terrestrial biosphere models in the TRENDY ensemble
employ a wide variety of assumptions and formulations of
N cycling processes, reflecting knowledge gaps and diver-
gent theories (Table 1). Here we describe four fundamental
aspects of N cycling for each terrestrial biosphere model: N
limitation of vegetation growth, biological N fixation, the re-
sponse of vegetation to N limitation (i.e., strategies in which
vegetation invests C to increase N supply in N-limited condi-
tions), and N limitation of decomposition. These have been
identified as important challenges for representing N cycling
in terrestrial biosphere models (Meyerholt et al., 2020; Peng
et al., 2020; Stocker et al., 2016; Wieder et al., 2015a; Zaehle
et al., 2015; Zaehle and Dalmonech, 2011).

Terrestrial biosphere models differ in how N limitation of
vegetation growth is represented (Thomas et al., 2015). Some
TRENDY models represent flexible C : N stoichiometry and
modelled maximum carboxylation rate of photosynthesis
(Vcmax) decreases with decreasing leaf N (CABLE-POP,
CLASSIC, CLM5.0, LPJ-GUESS, OCNv2, ORCHIDEEv3)
following empirical evidence (Walker et al., 2014). Other
TRENDY models represent time-invariant C : N stoichiom-
etry and modelled gross primary productivity (GPP) or
net primary productivity (NPP) decreases with N limitation
(DLEM, ISAM, JSBACH, JULES-ES, and LPX-Bern). Im-
portantly, flexible vs. time-invariant C : N stoichiometry de-
termines terrestrial C storage per unit N.

Biological N fixation is the dominant natural N supply
to terrestrial ecosystems (Vitousek et al., 2013). In terres-
trial biosphere models, biological N fixation has generally
been represented phenomenologically as a function of ei-
ther NPP or evapotranspiration (ET) (Cleveland et al., 1999).
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Table 1. Terrestrial biosphere models in the TRENDY-N ensemble and descriptions of their representations of N limitation of vegetation
growth, biological N fixation, vegetation response to N limitation (i.e., strategies in which vegetation invests C to increase N supply in
N-limited conditions), and N limitation of decomposition.

Reference N limitation of vegetation
growth

Biological N fixation Vegetation response to
N limitation

N limitation of
decomposition

CABLE-POP Haverd et al. (2018) Vcmax = f (vegetation N)
Flexible C : N stoichiome-
try

Time invariant Static N invariant

CLASSIC Melton et al. (2020) Vcmax = f (vegetation N)
Flexible C : N stoichiome-
try

f (N limitation of vegeta-
tion growth)

Dynamic (biological N
fixation)

N invariant

CLM5.0 Lawrence et al. (2019) Vcmax = f (vegetation N)
Flexible C : N stoichiome-
try

f (N limitation of vegeta-
tion growth)

Dynamic (biological N
fixation, mycorrhizae,
re-translocation)

f (soil N)

DLEM Tian et al. (2015) GPP= f (vegetation N) f (soil temperature, soil
moisture, soil C, soil N)

Dynamic (root alloca-
tion)

f (soil N)

ISAM Shu et al. (2020) GPP= f (vegetation N) f (ET) Static f (soil N)

JSBACH Reick et al. (2021) NPP= f (vegetation N) f (NPP) Static f (soil N)

JULES-ES Wiltshire et al. (2021) NPP= f (vegetation N) f (NPP) Static f (soil N)

LPJ-GUESS Smith et al. (2014) Vcmax = f (vegetation N)
Flexible C : N stoichiome-
try

f (ET) Dynamic (root alloca-
tion)

N invariant

LPX-Bern Lienert and Joos (2018) NPP= f (vegetation N) Derived post hoc to sim-
ulate a closed N cycle

Static N invariant

OCNv2 Zaehle and Friend (2010) Vcmax = f (vegetation N)
Flexible C : N stoichiome-
try

f (N limitation of vegeta-
tion growth)

Dynamic (root alloca-
tion)

f (soil N)

ORCHIDEEv3 Vuichard et al. (2019) Vcmax = f (vegetation N)
Flexible C : N stoichiome-
try

Time invariant Static N invariant

More recently, representations of biological N fixation have
been updated such that it is up-regulated in N-limited con-
ditions following empirical evidence (Menge et al., 2015;
Vitousek et al., 2013; Zheng et al., 2019). The majority
of TRENDY models represent biological N fixation phe-
nomenologically (ISAM, JSBACH, JULES-ES, and LPJ-
GUESS). Three TRENDY models (CLASSIC, CLM5.0, and
OCNv2) represent biological N fixation mechanistically such
that it increases with N limitation of vegetation and has an as-
sociated C cost per unit N fixed (Kou-Giesbrecht and Arora,
2022; Lawrence et al., 2019; Meyerholt et al., 2016; Shi et
al., 2016; Fisher et al., 2010). These representations separate
free-living biological N fixation (via soil microbes, epiphytic
microbes, lichens, bryophytes, etc.; Reed et al., 2011) from
symbiotic biological N fixation, which is regulated by N lim-
itation of vegetation. DLEM derives biological N fixation as
a function of soil temperature, soil moisture, soil C, and soil
N. LPX-Bern derives biological N fixation post hoc to sim-
ulate a closed N cycle, implicitly including rock N sources
(Joos et al., 2020). Finally, CABLE-POP and ORCHIDEEv3
represent biological N fixation as a specified time-invariant

input over the historical period. Importantly, representing the
regulation of biological N fixation by N limitation not only
determines biological N fixation itself but also modulates
terrestrial C sequestration: it enables vegetation to increase
N uptake in N-limited conditions, reduce N limitation, and
sustain terrestrial C sequestration. Some TRENDY models
(DLEM, LPJ-GUESS, and OCNv2) also represent increas-
ing C allocation to roots with increasing N limitation (Smith
et al., 2014; Zaehle and Friend, 2010) following empirical
evidence (Poorter et al., 2012). This enables vegetation to
also increase root N uptake in N-limited conditions, reduce
N limitation, and sustain terrestrial C sequestration. The re-
sponse of vegetation to N limitation, which could also in-
clude increased C allocation to mycorrhizae (Phillips et al.,
2013) (represented in CLM5.0) or increased re-translocation
of N during tissue turnover (Du et al., 2020; Han et al., 2013;
Kobe et al., 2005) (represented in CLM5.0), is important for
determining terrestrial C sequestration.

The decomposition rate is controlled by soil temperature,
soil moisture, and N content in litter, where increasing lit-
ter C : N ratio decreases the decomposition rate (Cotrufo
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et al., 2013). Some TRENDY models represent this re-
duction in decomposition rate with increasing litter C : N
ratio (CLM5.0, DLEM, ISAM, JSBACH, JULES-ES, and
OCNv2) following empirical evidence.

2.3 Observation-based datasets

We interpolated observation-based datasets to a common res-
olution of 1◦× 1◦ using bilinear interpolation for compari-
son against model outputs. To compare model outputs against
observation-based datasets we averaged model outputs over
1980–2021, which spans the period in which most measure-
ments were made.

2.3.1 Biological N fixation

A biological N fixation observation-based dataset was de-
rived from Davies-Barnard and Friedlingstein (2020), a
global meta-analysis of field measurements of natural biolog-
ical N fixation (free-living and symbiotic) that scales biome-
specific means onto the Collection 5 MODIS Global Land
Cover Type International Geosphere-Biosphere Programme
(IGBP) product (Friedl et al., 2010). This dataset includes
agricultural biological N fixation and assumes that crop bio-
logical N fixation rates are equivalent to those of grasses.

The score of LPX-Bern in simulating biological N fixation
is not analysed because it implicitly includes rock N sources
and is thus not directly comparable to the observation-based
dataset.

2.3.2 Vegetation C : N ratio

A vegetation C : N ratio observation-based dataset was de-
rived by scaling biome-specific means for vegetation C : N
ratios from the TRY plant trait database (Kattge et al., 2020)
onto the Collection 5 MODIS Global Land Cover Type IGBP
product (Friedl et al., 2010) and combining it with the re-
mote sensing leaf N content product from Moreno-Martínez
et al. (2018). First, we obtained N content per dry mass
for leaves, roots, and stems and C content per dry mass for
leaves, roots, and stems from the TRY plant trait database.
We selected entries that reported species. Second, we ob-
tained the plant functional type (PFT) for each species from
the TRY plant trait database. We categorized each PFT into
the IGBP land cover types (Table A1 in the Appendix) and
then used this to categorize each entry into the IGBP land
cover types using species. We averaged across entries in each
IGBP land cover type. Third, we divided mean tissue C con-
tent per tissue dry mass by mean tissue N content per tissue
dry mass for each tissue and for each IGBP land cover type.
Fourth, we weighed each tissue by its PFT-specific fraction
of total biomass from Poorter et al. (2012) to obtain the total
vegetation C : N ratio for each IGBP land cover type. Fifth,
we scaled total vegetation C : N ratio and leaf N content per
dry mass for each IGBP land cover type to the Collection 5

MODIS Global Land Cover Type IGBP product. Sixth, we
multiplied derived total vegetation C : N ratio relative to leaf
N content per dry mass by the remote sensing leaf N con-
tent per dry mass product (Moreno-Martínez et al., 2018) to
obtain a vegetation C : N ratio observation-based dataset.

2.3.3 Soil C : N ratio

A soil C : N ratio observation-based dataset was derived from
soil C and soil N products from SoilGrids (Poggio et al.,
2021), which provides globally gridded datasets of soil or-
ganic C and total soil N at a 250 m× 250 m resolution for
six layers up to a depth of 200 cm. These estimates are de-
rived using machine learning methods and soil observations
from 240 000 locations across the globe and over 400 envi-
ronmental covariates. We summed soil C over all layers and
soil N over all layers (using the bulk density and depth of
each layer) and then obtained the soil C : N ratio.

2.3.4 C cycling variables

In addition to evaluating N cycling variables, we also eval-
uated the primary C cycling variables: GPP, net biome pro-
ductivity (NBP), vegetation C (CVEG), soil C (CSOIL), and
leaf area index (LAI). These variables have been previously
evaluated in detail for the terrestrial biosphere models in the
TRENDY ensemble in Seiler et al. (2022). Seiler et al. (2022)
give further details on the observation-based datasets used to
evaluate the primary C cycling variables. Briefly, we eval-
uated GPP against MODIS (Zhang et al., 2017), GOSIF
(Li and Xiao, 2019), and FLUXCOM (Jung et al., 2020)
products. We evaluated NBP against the CAMS (Agustí-
Panareda et al., 2019), CarboScope (Rödenbeck et al., 2018),
and CT2019 (Jacobson et al., 2020) products. We evaluated
CVEG against the GEOCARBON (Avitabile et al., 2016;
Santoro et al., 2015), Zhang and Liang (2020), and Huang
et al. (2021) products. We evaluated LAI against Advanced
Very High Resolution Radiometer (AVHRR; Claverie et al.,
2016), Copernicus (Verger et al., 2014), and MODIS (My-
neni et al., 2002) products. We evaluated CSOIL against Har-
monized World Soil Database (HWSD; Todd-Brown et al.,
2013; Wieder, 2014) and SoilGrids (Hengl et al., 2017) prod-
ucts. These observation-based products are globally gridded.

2.4 Model evaluation with the Automated Model
Benchmarking R (AMBER) package

The Automated Model Benchmarking R (AMBER) pack-
age developed by Seiler et al. (2021) quantifies model per-
formance in reproducing observation-based datasets using
a skill score system that is based on ILAMB (Collier et
al., 2018). Five scores assess the simulated time mean bias
(Sbias), monthly centralized root-mean-square error (Srmse),
seasonality (Sphase), inter-annual variability (Siav), and spatial
distribution (Sdist) in comparison to the observation-based
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dataset. Scores are dimensionless and range from 0 to 1,
where higher values indicate better model performance. The
overall score for each variable (Soverall) is

Soverall =mean
(
Sbias,Srmse,Sphase,Siav,Sdist

)
. (1)

We calculated the overall score for each C and N cycling vari-
able. Because biological N fixation, vegetation C : N ratio,
and soil C : N ratio datasets are representative of the present-
day (as a single time point) values, Srmse, Sphase, and Siav are
not defined and thus do not contribute to Soverall. This also
holds for vegetation C and soil C. The calculation of each
score is described in detail in Seiler et al. (2022).

2.5 Statistics

We used a Mann–Kendall trend test to assess the existence
of a statistically significant trend in the time series over the
historical period for simulated C and N cycling variables
(Hipel and McLeod, 1994). We conducted two analyses to
compare model performance in simulating C cycling vs. N
cycling. First, we calculated Spearman’s rank correlation co-
efficient to assess the existence of statistically significant
correlations between overall scores, present-day global val-
ues, and Kendall’s tau. Second, we used a t test or ANOVA
(p value < 0.05) to assess the existence of statistically signif-
icant differences between overall scores, present-day global
values, and Kendall’s tau for models with different represen-
tations of N limitation of vegetation growth, biological N fix-
ation, vegetation response to N limitation, and N limitation of
decomposition (Table 1).

3 Results

3.1 Net biome productivity

Figure 2 shows NBP simulated by the TRENDY ensemble
models with coupled C–N cycling (hereafter referred to as
the TRENDY-N ensemble). NBP is the difference between
the net natural atmosphere–land flux of CO2 and land use
change CO2 emissions. Positive values of NBP indicate a
terrestrial C sink, whereas negative values of NBP indicate
a terrestrial C source. All TRENDY-N ensemble models sug-
gest a terrestrial C sink for the present day, agreeing with the
global carbon budget constraint from the 2022 Global Car-
bon Budget with most models within 2 standard deviations
of the mean (1.5± 0.6 Pg C for 2012–2021) (Fig. 2a). The
TRENDY-N ensemble agrees reasonably well with observa-
tions globally, agreeing somewhat better with CarboScope
and CT2019 than with CAMS (Fig. 2b). However, the lat-
itudinal distributions of the observation-based datasets dis-
play weak agreement among themselves with opposing signs
in multiple regions due to differences in the inversion mod-
els and atmospheric CO2 measurements used in each dataset
(Fig. 2b). The largest differences occur at southern latitudes
and at high northern latitudes, and this is in part due to the

smaller land area at these latitudes. The regions showing the
strongest agreement are at middle to high northern latitudes,
where both the TRENDY-N ensemble and observations sug-
gest a terrestrial C sink (Fig. 2b).

3.2 Overview of N cycling

Figure 3 shows a schematic of the N cycle alongside the pri-
mary N fluxes and C : N ratios of the primary pools simu-
lated by the TRENDY-N ensemble for the present day (aver-
aged over 1980–2021) and observation-based estimates for
these variables that have previously been used for model
evaluation (Davies-Barnard et al., 2020). Simulated biolog-
ical N fixation ranged between 20 and 566 Tg N yr−1 (Ta-
ble 2) in comparison to the observation-based estimate of
88 Tg N yr−1 (52–130 Tg N yr−1). Simulated N2O emissions
ranged between 0.9 and 11.0 Tg N yr−1 (Table 2) in com-
parison to the observation-based estimate of 10.8 Tg N yr−1

(7.1–16.0 Tg N yr−1) (Tian et al., 2020). Simulated N losses
(which include emissions of NH3, N2O, NOx , and N2, as
well as NO−3 and NH+4 leaching) ranged between 87 and
603 Tg N yr−1 (Table 2) in comparison to the observation-
based estimate of 293 Tg N yr−1 (Fowler et al., 2013). The
simulated vegetation C : N ratio ranged between 103 and 222
(Table 2) in comparison to the observation-based estimate
of 133 (Zechmeister-Boltenstern et al., 2015). The simulated
combined litter–soil C : N ratio ranged between 10 and 64
(Table 2) in comparison to the observation-based estimate of
15 (Zechmeister-Boltenstern et al., 2015). Biological N fix-
ation has the largest inter-model spread with a coefficient of
variation of 1.06 (Table 2). Figure 4 shows the geographi-
cal distribution of the primary N pools and fluxes simulated
by the TRENDY-N ensemble for the present day (averaged
over 1980–2021), and variation across models is shown in
Appendix Fig. A1.

Figure 5 shows the time series of the change from pre-
industrial levels of the primary N pools and fluxes from 1850
to 2021 simulated by the TRENDY-N ensemble. Figure 6
shows the corresponding Kendall’s tau, which identifies the
existence of a statistically significant trend (Table A2). Over
the historical period, some models suggest decreasing vege-
tation N (6 out of 11 models), whereas other models suggest
increasing vegetation N (2 out of 11 models) or no trend in
vegetation N (3 out of 11 models). Some models suggest de-
creasing soil N (7 out of 11 models), whereas other models
suggest increasing soil N (4 out of 11 models). Some models
suggest increasing biological N fixation (7 out of 11 models),
whereas other models suggest decreasing biological N fixa-
tion (2 out of 11 models) or no trend in biological N fixation
(2 out of 11 models). All models suggest increasing N uptake
(10 out of 10 models). Most models suggest increasing net N
mineralization rate (9 out of 10 models) or no trend in N
mineralization rate (1 out of 10 models). All models suggest
increasing N2O emissions (7 out of 7 models) and increasing
N loss (10 out of 10 models).
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Figure 2. Net biome productivity (NBP) simulated by the TRENDY-N ensemble. (a) Global NBP from 1960 to 2021. The boxes indicate
the global C budget constraint (difference between fossil fuel CO2 emissions and the growth rate of atmospheric CO2 and the uptake of
CO2 by oceans; mean ±2 standard deviation) from the 2022 Global Carbon Budget (Friedlingstein et al., 2022). Thick lines indicate the
moving average over 10 years, and thin lines indicate the annual time series. (b) Latitudinal distribution and global mean of NBP (averaged
over 1980–2021) in comparison to three datasets (CAMS, Agustí-Panareda et al., 2019; CarboScope, Rödenbeck et al., 2018; and CT2019,
Jacobson et al., 2020). The boxplot shows the median, interquartile range (box), and 80 % percentiles (whiskers) of the global mean of NBP.

3.3 Evaluation of biological N fixation, vegetation C : N
ratio, and soil C : N ratio

In comparison to the observation-based dataset from Davies-
Barnard and Friedlingstein (2020), the TRENDY-N ensem-
ble reproduced global biological N fixation (101.8 Tg N yr−1

vs. 88 Tg N yr−1; Fig. 7a and Table 2) but overestimated
low-latitude biological N fixation and underestimated high-
latitude biological N fixation in the Northern Hemisphere
(Fig. 7b). In comparison to the observation-based dataset
from the TRY plant trait database, the TRENDY-N ensem-
ble overestimated the global vegetation C : N ratio (154.5 vs.
102.8; Fig. 7c and Table 2) and overestimated the vegetation
C : N ratio across latitudes while capturing its latitudinal pat-
tern (Fig. 7d). In comparison to the observation-based dataset

from SoilGrids, the TRENDY-N ensemble overestimated the
global soil C : N ratio, simulating a relatively constant soil
C : N ratio across latitudes (11.1 vs. 8.8; Fig. 7e and Table 2).
The TRENDY-N ensemble was thus unable to capture the
latitudinal pattern of the soil C : N ratio (Fig. 7f).

The overall score is a metric of model performance in re-
producing an observation-based dataset. Overall scores for
biological N fixation, vegetation C : N ratio, and soil C : N
ratio (0.46, 0.53, and 0.29 averaged across models, respec-
tively) were lower than those for C cycling variables (0.58
averaged across all C cycling variables and across models)
(Fig. 8). The mean overall score for vegetation C : N ratio
across models (0.53) was lower than the mean overall scores
for vegetation C across models (which ranged from 0.61 to
0.69 depending on the observation-based dataset used to de-
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Figure 3. The N cycle and the primary N pools and fluxes simulated by the TRENDY-N ensemble (averaged over 1980–2021). Horizontal
black lines indicate observation-based estimates that have previously been used for model evaluation (biological N fixation from Davies-
Barnard and Friedlingstein, 2020; vegetation and combined litter-soil C : N ratios from Zechmeister-Boltenstern et al., 2015; N2O emissions
from Tian et al., 2020; and N losses from Fowler et al., 2013). The black box indicates the terrestrial biosphere. N enters the terrestrial
biosphere via biological N fixation, N deposition, and N fertilization (entering the organic soil N pool, the inorganic soil N pool (ammonium
(NH+4 ) or nitrate (NO−3 )), or the vegetation N pool). N is transferred from the inorganic soil N pool to the vegetation N pool via N uptake. N
is transferred from the vegetation N pool to the litter N pool via N litterfall. N is transferred from the litter N pool to the organic soil N pool
via decomposition. N is transferred from the organic soil N pool to the inorganic soil N pool via net N mineralization. N exits the terrestrial
biosphere via N loss (which includes N leaching from soils and N2O, NOx , NH3, and N2 emissions from both soils and land use change).
Not all models provide output for each N pool or flux. Note that biological N fixation simulated by LPX-Bern implicitly includes rock N
sources.
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Figure 4. Geographical distributions of (a) vegetation N, (b) litter N, (c) soil N, (d) biological N fixation, (e) N uptake, (f) net N mineraliza-
tion, (g) N2O emissions, and (h) N loss simulated by the TRENDY-N ensemble (averaged across models over 1980–2021). Variation across
models is shown in Fig. A1.

rive the score). Similarly, the mean overall score for soil C : N
ratio across models (0.29) was lower than the mean overall
scores for soil C across models (which ranged from 0.39 to
0.53 depending on the observation-based dataset used to de-
rive the score).

For N cycling variables, the overall score is composed of
the time mean bias score (which assesses the difference be-
tween the time mean of model simulations and the time mean
of the observation-based dataset) and the spatial distribution
score (which assesses the ability of the model to reproduce
the spatial pattern of the observation-based dataset) (Collier
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Table 2. Global N pools, N fluxes, and C : N ratios simulated by the TRENDY-N ensemble (mean and coefficient of variation across models
over 1980–2021).

Coefficient of Global Global Global Global
variation mean median minimum maximum

Vegetation N (Tg N) 0.41 2.94 2.94 1.50 5.58
Litter N (Tg N) 0.81 1.94 1.08 0.73 5.61
Soil N (Tg N) 0.67 101.43 81.21 32.10 277.41
Biological N fixation (Tg N yr−1) 1.06 139.63 101.83 19.92 565.53
N uptake (Tg N yr−1) 0.33 838.78 698.11 529.53 1304.87
Net N mineralization (Tg N yr−1) 0.45 836.00 700.28 471.39 1661.53
N2O emissions (Tg N yr−1) 0.53 7.06 9.04 0.86 11.01
N loss (Tg N yr−1) 0.85 187.62 125.96 87.02 602.77
Vegetation C : N ratio 0.28 159.28 154.50 102.84 222.22
Soil C : N ratio 0.90 17.32 11.13 10.00 63.57

et al., 2018; Seiler et al., 2022). For biological N fixation, the
time mean bias score averaged across models was 0.50 and
the mean spatial distribution score across models was 0.41
(Table A3). For the vegetation C : N ratio, the time mean bias
averaged score across models was 0.46 and the mean spa-
tial distribution score across models was 0.59 (Table A3).
For the soil C : N ratio, the time mean bias score averaged
across models was 0.39 and the mean spatial distribution
score across models was 0.19 (Table A3).

Note that for C fluxes the overall score is composed of
not only the time mean bias score and the spatial distribution
score but also the monthly centralized root-mean-square-
error score (which assesses the ability of the model to re-
produce the time series of the observation-based dataset), the
seasonality score (which assesses the ability of the model to
reproduce the seasonality of the observation-based dataset),
and the inter-annual variability score (which assesses the
ability of the model to reproduce the inter-annual variabil-
ity of the observation-based dataset) because observation-
based datasets of C fluxes are available over time, whereas
observation-based datasets of C pools and all N cycling vari-
ables are representative of the present day (as a single time
point).

3.4 Model performance for C cycling vs. N cycling

There were no statistically significant correlations between
the overall score of NBP (as well as other primary C
variables) and the overall scores of the primary N vari-
ables across the TRENDY-N ensemble (Fig. A2). Further-
more, there were no statistically significant correlations be-
tween the present-day global value of NBP and the present-
day global values of the primary N variables across the
TRENDY-N ensemble (Fig. A3). Finally, there were no sta-
tistically significant correlations between Kendall’s tau of
NBP and Kendall’s tau of the primary N variables across the
TRENDY-N ensemble (Fig. A4).

3.5 Model performance for different representations of
N cycling processes

There were no statistically significant differences in overall
scores between models with different representations of N
limitation of vegetation growth (decreasing Vcmax and flexi-
ble C : N stoichiometry vs. decreasing NPP), different repre-
sentations of biological N fixation (function of N limitation
of vegetation growth vs. function of NPP or ET vs. time in-
variant), different representations of the response of vegeta-
tion to N limitation (dynamic vs. static), or different repre-
sentations of N limitation of decomposition (function of soil
N vs. N invariant) (Table A4). However, models that repre-
sented decomposition as a function of soil N had a signifi-
cantly higher NBP score (for CT2019) than models that rep-
resented decomposition as N invariant. Similarly, there were
no statistically significant differences between present-day
global values or Kendall’s tau of primary C and N pools and
fluxes between models with different representations of N
limitation of vegetation growth, biological N fixation, vege-
tation response to N limitation, and N limitation of decom-
position (Tables A5 and A6). This is likely in part due to
the low number of models and the confounding influence of
other process representations.

4 Discussion

4.1 Evaluation of N cycling in terrestrial biosphere
models

Despite the ability of all TRENDY-N models to simulate the
historical terrestrial C sink in line with observations (Fig. 2),
there is substantial variation in simulated N cycling processes
by the models. The magnitudes of N pools and fluxes differ
considerably between models (Figs. 3 and A1). Additionally,
the historical trajectories of these N pools and fluxes differ
between models: some models simulate increasing vegeta-
tion N and soil N, whereas others simulate decreasing vege-
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Figure 5. Time series of the change from the pre-industrial level (averaged over 1850–1870) of (a) vegetation N, (b) litter N, (c) soil N,
(d) biological N fixation, (e) N uptake, (f) net N mineralization, (g) N2O emissions, and (h) N loss simulated by the TRENDY-N ensemble
from 1850 to 2021. Figure A5 shows the time series for each N pool and N flux simulated by the TRENDY-N ensemble from 1850 to 2021.
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Figure 6. Kendall’s tau from the Mann–Kendall test
(p value < 0.05) for each N pool and N flux time series sim-
ulated by the TRENDY-N ensemble from 1850 to 2021 (Table A2).
A positive value (red) indicates an increasing trend and a nega-
tive value (blue) indicates a decreasing trend. Gray indicates a
statistically insignificant value, and white indicates a missing value.

tation N and soil N between 1850 and 2021 (Figs. 5 and 6).
These trajectories are the result of a host of interacting global
change drivers (CO2 fertilization, intensifying N deposition,
rising temperature and varying precipitation, and land use
change and associated N fertilization regimes) whose ef-
fects are challenging to disentangle without additional simu-
lations. For example, while intensifying N deposition and N
fertilizer use could drive increasing soil N and N uptake, land
use change could increase N losses from both vegetation N
and soil N. Most models suggest increasing biological N fix-
ation between 1850 and 2021. This occurs as a result of either
increasing vegetation biomass or the up-regulation of biolog-
ical N fixation due to N limitation imposed by CO2 fertiliza-
tion or a combination thereof, depending on the representa-
tion of biological N fixation in a given model (Table 1). This
follows observations that suggest that biological N fixation is
stimulated by CO2 fertilization (Zheng et al., 2020; Liang et
al., 2016), although its mechanism (i.e., up-regulated biolog-
ical N fixation in N-limited conditions) may not be captured.
Similarly, most models also suggest increasing N uptake be-
tween 1850 and 2021. This also occurs as a result of increas-
ing vegetation biomass; increasing soil N from intensifying
N deposition and N fertilizer use; or increasing biological N
fixation, mycorrhizae, and root allocation due to N limitation
imposed by CO2 fertilization, which is again dependent on
the representation of the vegetation response to N limitation
in a given model (Table 1). Most models suggest increas-
ing net N mineralization rate between 1850 and 2021, likely
due to rising temperature following observations (Liu et al.,

2017). Most models suggest increasing N2O emissions (and
N losses) between 1850 and 2021, likely due to rising tem-
peratures and intensifying N deposition and N fertilizer use
following observations (Tian et al., 2020).

We focused on three key N cycling processes for evalu-
ation: biological N fixation, vegetation C : N ratio, and soil
C : N ratio. These three key N cycling processes have impor-
tant implications for projecting the future terrestrial C sink.
Biological N fixation is the dominant natural N supply to ter-
restrial ecosystems and allows vegetation to increase N up-
take in N-limited conditions, reduce N limitation, and thus
sustain terrestrial C sequestration, such as in response to N
limitation imposed by CO2 fertilization (Zheng et al., 2020;
Liang et al., 2016). Vegetation and soil C : N ratios reflect as-
similated C per unit N and thus terrestrial C sequestration.
They can potentially vary, such as in response to high pho-
tosynthesis rates relative to N uptake rates driven by CO2
fertilization (Elser et al., 2010). Overall scores of N cycling
variables, which quantify model performance in reproducing
an observation-based dataset, are lower than overall scores
of corresponding C cycling variables, suggesting that models
could be less capable of capturing N cycling processes than
C cycling processes (Fig. 8). However, this could also be due
to the significant uncertainty associated with measurements
of N cycling processes as discussed below.

The TRENDY-N ensemble reproduced global
observation-based biological N fixation but tended to
overestimate low-latitude biological N fixation and under-
estimate high-latitude biological N fixation (Fig. 7a, b).
This is likely because most models represented biological N
fixation phenomenologically as a function of a measure of
vegetation activity (either NPP or ET). Since there is higher
vegetation activity at low latitudes than at high latitudes,
these models thus represent higher biological N fixation
at low latitudes than at high latitudes. However, because
biological N fixation is down-regulated in non-N-limited
conditions, it is often down-regulated at low latitudes, which
are generally not (or at least less) N-limited in nature (Barron
et al., 2011; Batterman et al., 2013; Sullivan et al., 2014).
While CLASSIC, CLM5.0, and OCNv2 can represent the
down-regulation of biological N fixation in non-N-limited
conditions, they still simulate high low-latitude biological
N fixation. This suggests that the strength of regulation
of biological N fixation could be insufficient and/or that
there could be unaccounted N sources at low latitudes.
For example, rock N weathering could be a significant
N source to terrestrial ecosystems. Some estimates have
suggested that rock N weathering could be as high as
11–18 Tg N yr−1 globally (Houlton et al., 2018) but is not
explicitly represented in the TRENDY-N ensemble (with
the exception of LPX-Bern, which calculates all external
N sources post hoc to simulate a closed N cycle, thereby
implicitly including rock N sources). The discrepancy
between modelled and observed biological N fixation could
also be due to uncertainty in the observation-based dataset
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Figure 7. Latitudinal distributions and global means of biological N fixation, vegetation C : N ratio, and soil C : N ratio simulated by the
TRENDY-N ensemble (averaged across models over 1980–2021) in comparison to observations. Panels (a, c, e) show the latitudinal distri-
bution of the mean and boxplots show the global mean. Panels (b, d, f) show the latitudinal distribution of the bias. Latitudinal distributions
show the mean (black line) and the 50 %, 80 %, and 100 % percentiles across models. Boxplots show the median, interquartile range (box),
and 80 % percentiles (whiskers) across models. Observation-based datasets are from Davies-Barnard and Friedlingstein (2020) for biological
N fixation, the TRY plant trait database for vegetation C : N ratio, and SoilGrids for soil C : N ratio. LPX-Bern simulations are not shown in
(a) or (b). Latitudinal distributions and global means of individual models in the TRENDY-N ensemble are shown in Fig. A6.

given the difficulties associated with measuring biological N
fixation (Soper et al., 2021). Ecological theory (Hedin et al.,
2009) has suggested that natural biological N fixation should
be higher at low latitudes given large N losses, in contrast
to the observation-based dataset from Davies-Barnard and
Friedlingstein (2020). Furthermore, the observation-based
dataset from Davies-Barnard and Friedlingstein (2020) did
not explicitly account for agricultural biological N fixation
but rather assumed that crop biological N fixation rates are

equivalent to those of grasses, although they are likely to be
much greater (Peoples et al., 2021; Herridge et al., 2022).

The TRENDY-N ensemble overestimated the global
observation-based vegetation C : N ratio but reproduced its
latitudinal pattern (as also indicated by its higher spatial dis-
tribution score) (Fig. 7c, d). This is because most models rep-
resent different plant functional types (e.g., evergreen needle-
leaf trees, deciduous broadleaf trees, evergreen broadleaf
trees) with different tissue C : N ratios (which can be either
flexible within a constrained range or time invariant). These
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Figure 8. Overall scores of the TRENDY-N ensemble in simulating
C and N cycling variables: gross primary productivity (GPP), net
biome productivity (NBP), vegetation C (CVEG), soil C (CSOIL),
leaf area index (LAI), biological N fixation (FBNF), vegetation
C : N ratio (CNVEG), and soil C : N ratio (CNSOIL). Abbreviations
of the observation-based datasets are described in Sect. 2 and in
Seiler et al. (2022).

plant functional types are geographically distributed accord-
ing to similar land cover products. The TRENDY-N ensem-
ble overestimated global observation-based soil C : N ratio
and failed to reproduce its latitudinal pattern (as also indi-
cated by its lower spatial distribution score) (Fig. 7e, f). In
particular, models failed to reproduce the peak at the Equa-
tor and the peak at approximately −30◦ S, corresponding
to tropical forests and deserts, respectively. This is because
most models represent a constant soil C : N ratio (both tem-
porally and spatially) and are thus unable to capture the spa-
tial variability in the soil C : N ratio. Improving the represen-
tation of soil N is an important future direction for terrestrial
biosphere model development given the essential feedbacks
between soil N and soil C.

4.2 Disconnect between C and N cycling in terrestrial
biosphere models

The importance of N limitation of terrestrial C sequestration
is empirically established (Elser et al., 2007; LeBauer and
Treseder, 2008; Wright et al., 2018). It has already influenced
the historical terrestrial C sink (S. Wang et al., 2020), and
it is expected to be especially important under future CO2
fertilization and global change (Terrer et al., 2019). While
all TRENDY-N models simulate the historical terrestrial C

sink in line with observations (and are no different from
TRENDY models without a representation N cycling; Seiler
et al., 2022), our results suggest a disconnect between C and
N cycling in these models. First, the models exhibit a wide
spread across simulated N pools and fluxes. Second, there
are no significant correlations between model performance
in simulating N cycling and model performance in simu-
lating C cycling. Third, there are no statistically significant
differences between models with different representations of
fundamental N cycling processes (N limitation of vegetation
growth, biological N fixation, the response of vegetation to
N limitation, and N limitation of decomposition).

Overall, our results suggest that the underlying N cycling
processes that regulate terrestrial C sequestration operate dif-
ferently across models and may not be fully captured given
that models are calibrated to C cycling. The spread across
models suggests that approaches to represent N cycling pro-
cesses vary among models and that there is no clear consen-
sus yet on what the best approaches are. Studies have ex-
plored the validity of different representations of N cycling
processes within a single model, suggesting that alternative
representations of a biological N fixation, ecosystem C : N
stoichiometry, and ecosystem N losses lead to substantial dif-
ferences in simulated C cycling (Kou-Giesbrecht and Arora,
2022; Meyerholt et al., 2020; Peng et al., 2020; Wieder et al.,
2015a). This disconnect between C and N cycling will be-
come particularly consequential for projecting the terrestrial
C sink under future global change, which is likely to modify
the C–N balance through N limitation of CO2 fertilization
and intensifying N deposition (among other effects of global
change).

4.3 Future directions

Evaluating N cycling in terrestrial biosphere models is
severely restricted by the lack of available observations of N
cycling. N cycling processes are notoriously difficult to mea-
sure, such as biological N fixation (Soper et al., 2021) and
gaseous N losses (Barton et al., 2015). In the past, N cycling
has commonly been evaluated by comparison to estimates of
global N pools and fluxes derived from a small number of
observations that have been scaled up or averaged to yield
a value with wide confidence intervals (Davies-Barnard et
al., 2020). Not only are these global totals highly uncertain,
but they also do not allow for the analysis of spatial pat-
terns. Here, we present an improved framework to evaluate
three key N cycling processes – biological N fixation, vege-
tation C : N ratio, and soil C : N ratio – in terrestrial biosphere
models. However, these globally gridded observation-based
datasets are also uncertain, given uncertainty in the estimates
of tissue C : N ratios for different plant functional types, tis-
sue fraction of total biomass (especially those of roots and
wood, which had a lower number of measurements in com-
parison to that of leaves), and the measurements and mod-
els used to derive soil N (Batjes et al., 2020). More obser-
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vations of these N cycling processes are necessary to reduce
uncertainty. Temporally explicit measurements are important
for assessing intra-annual and inter-annual variability. Lever-
aging advances in remote sensing (Knyazikhin et al., 2013;
Townsend et al., 2013; Cawse-Nicholson et al., 2021) and
incorporating N cycling process measurements into research
networks such as FLUXNET (Vicca et al., 2018) are essen-
tial. Multiple observation-based datasets taken from different
sources and derived via different methodologies of a given N
cycling process are necessary to evaluate observational un-
certainty (Seiler et al., 2021). Global observations of other
important N cycling processes (such as N mineralization and
N losses) are necessary to fully evaluate N cycling in ter-
restrial biosphere models. Additionally, hindcast simulations
of the transition from the Last Glacial Maximum to the pre-
industrial period can be used in combination with proxy-
based reconstructions of past N2O emissions (Fischer et al.,
2019) and C stocks (Jeltsch-Thömmes et al., 2019) for model
evaluation and can serve as a constraint for terrestrial bio-
sphere models (Joos et al., 2020).

Modelled experimental manipulations (such as CO2 fer-
tilization or N fertilization experiments) are imperative to
evaluate model formulations of the underlying mechanisms
of C–N cycling interactions (Medlyn et al., 2015; Wieder et
al., 2019; Zaehle et al., 2014). Derived nutrient limitation
products (Fisher et al., 2012) can also be applied to evalu-
ate present-day nutrient cycling when phosphorus (P) is ac-
counted for (Braghiere et al., 2022). Evaluating the ability of
models to simulate present-day N cycling processes, as we
did here, is only one method of assessing their ability to sim-
ulate N limitation of terrestrial C sequestration. A robust test
of the simulated response to CO2 fertilization and N fertiliza-
tion across models would be ideal for evaluating the ability of
models to represent the regulation of C cycling by N cycling
under global change and thus their ability to realistically sim-
ulate the future terrestrial C sink.

While some of the models in the TRENDY-N ensemble
have the capability of representing coupled C, N, and P cy-
cling (Goll et al., 2012; Nakhavali et al., 2022; Sun et al.,
2021; Wang et al., 2010; Z. Wang et al., 2020; Yang et al.,
2014), P cycling was not active in the model simulations
in the GCP 2022. P limitation could be important for lim-
iting terrestrial C sequestration, especially in low-latitude
forests (Elser et al., 2007; Terrer et al., 2019; Wieder et al.,
2015b). As more models incorporate coupled C–N–P cycling
(Reed et al., 2015; Braghiere et al., 2022), observation-based
datasets of P will also be necessary for model evaluation.

5 Conclusions

Because the TRENDY-N ensemble overestimated both veg-
etation and soil C : N ratios, it is possible that models could
overestimate assimilated C per unit N and thus future terres-
trial C sequestration under CO2 fertilization. Alongside dis-
crepancies in biological N fixation, this could lead to biases
in projections of the future terrestrial C sink by the TRENDY-
N ensemble. Not to mention there are several other terrestrial
biosphere models in the TRENDY ensemble that do not rep-
resent coupled C–N cycling. While the models are capable of
reproducing the current terrestrial C sink, the spread across
the models in simulating N cycling suggests that C–N in-
teractions operate differently across models and may not be
fully captured given that models are calibrated to C cycling.
However, these C–N interactions are critical for projecting
the terrestrial C sink under global change in the future.
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Appendix A

Table A1. IGBP land cover type, corresponding TRY plant trait database PFT, tissue C : N ratios from the TRY plant trait database (Kattge
et al., 2020), tissue fractions (Poorter et al., 2012), and calculated total C : N ratio.

IGBP land cover type TRY plant trait database PFT Leaf Leaf Root Root Stem Stem Total
C : N fraction C : N fraction C : N fraction C : N

(0) Bare –

(1) Evergreen needleleaf forest Boreal evergreen needleleaf
Temperate evergreen needleleaf
Evergreen needleleaf
Tree evergreen needleleaf
Evergreen gymnosperm

40.5 0.04 43.1 0.21 236.0 0.75 187.7

(2) Evergreen broadleaf forest Boreal evergreen broadleaf
Temperate evergreen broadleaf
Tropical evergreen broadleaf
Evergreen broadleaf
Tree evergreen broadleaf
Evergreen angiosperm

31.3 0.02 35.1 0.16 180.7 0.82 154.4

(3) Deciduous needleleaf forest 187.7a

(4) Deciduous broadleaf forest Boreal deciduous broadleaf
Temperate deciduous broadleaf
Tropical deciduous broadleaf
Deciduous broadleaf
Tree deciduous broadleaf
Deciduous angiosperm

21.6 0.03 37.4 0.21 72.3 0.76 63.5

(5) Mixed forest 135.2b

(6) Closed shrubland Evergreen shrub
Shrub evergreen broadleaf

36.1 0.09 38.2 0.42 234.2 0.49 134.1

(7) Open shrubland

(8) Woody savannas

(9) Savannas

(10) Grasslands Grass C3
Grass C4

19.1 0.17 29.3 0.56 27.2 0.27 27.0

(11) Permanent wetlands 27.0c

(12) Croplands Crop C3 10.5 0.17 29.3c 0.56c 27.2c 0.27c 25.5

(13) Urban and built-up –

(14) Cropland/natural vegetation mosaic 25.5d

(15) Snow and ice –

(16) Barren or sparsely vegetated –
a Value from evergreen needleleaf forest. b Average of evergreen needleleaf forest, evergreen broadleaf forest, and deciduous broadleaf forest. c Value from grasslands. d Value from croplands.
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Table A2. Kendall’s tau from the Mann–Kendall test (p value < 0.05) for each N pool and N flux time series simulated by the TRENDY-N
ensemble from 1850 to 2021. NS indicates that Kendall’s tau is not significant. NA indicates that the variable was not reported by the model.

CABLE- CLASSIC CLM5.0 DLEM ISAM JSBACH JULES- LPJ- LPX- OCNv2 ORCHIDEEv3
POP ES GUESS Bern

Vegetation N 0.58 NS −0.97 −0.51 NS 0.83 NS −0.25 −0.75 −0.67 −0.51
Litter N 0.88 0.15 0.65 −0.7 −0.87 0.92 0.86 −0.35 0.44 −0.69 NS
Soil N 1 −0.8 −0.47 −0.97 −0.91 0.99 −0.67 −0.68 1 1 −0.3
Biological N fixation NS 0.95 0.84 −0.33 −0.11 0.89 0.79 0.62 0.92 0.45 NS
N uptake 0.89 0.64 0.81 0.78 NA 0.81 0.85 0.54 0.82 0.85 0.71
Net N mineralization 0.91 0.33 0.73 0.87 NA 0.85 0.76 NS 0.86 0.82 0.31
N2O emissions NA 0.92 0.7 0.87 NA 0.95 NA NA 0.7 0.42 0.69
N loss NA 0.94 0.67 0.94 0.73 0.59 0.63 0.94 0.81 0.42 0.65

Table A3. Time mean bias score (Sbias), spatial distribution score (Sdist), and overall score (Soverall) of the TRENDY-N ensemble in simu-
lating biological N fixation, vegetation C : N ratio, and soil C : N ratio. NA indicates that this variable was not evaluated.

Biological N fixation Vegetation C : N ratio Soil C : N ratio

Sbias Sdist Soverall Sbias Sdist Soverall Sbias Sdist Soverall

CABLE-POP 0.46 0.08 0.27 0.36 0.50 0.43 0.2 0.34 0.27
CLASSIC 0.46 0.40 0.43 0.47 0.52 0.49 0.43 0.22 0.33
CLM5.0 0.55 0.56 0.56 0.56 0.68 0.62 0.45 0.16 0.31
DLEM 0.46 0.29 0.38 0.50 0.50 0.50 0.48 0.01 0.24
ISAM 0.47 0.24 0.36 0.45 0.70 0.57 0.05 0.28 0.16
JSBACH 0.48 0.44 0.46 0.53 0.37 0.45 0.38 0.11 0.25
JULES-ES 0.47 0.43 0.45 0.40 0.62 0.51 0.51 0 0.25
LPJ-GUESS 0.51 0.45 0.48 0.41 0.63 0.52 0.49 0.01 0.25
LPX-Bern NA NA NA 0.51 0.64 0.58 0.33 0.4 0.37
OCNv2 0.56 0.62 0.59 0.54 0.71 0.62 0.47 0.26 0.37
ORCHIDEEv3 0.60 0.63 0.61 0.35 0.63 0.49 0.48 0.31 0.39
Mean 0.50 0.41 0.46 0.46 0.59 0.53 0.39 0.19 0.29

Table A4. Overall scores of biological N fixation, vegetation C : N ratio, soil C : N ratio, and NBP averaged across TRENDY-N ensemble
models with different representations of key N cycling processes (N limitation of vegetation growth, biological N fixation, vegetation response
to N limitation, and N limitation of decomposition; see Table 1). The p values are from t tests and ANOVAs assessing differences between
these representations of key N cycling processes.

BNF- CNVEG- CNSOIL- NBP- NBP- NBP-
DBF TRY SoilGrids CAMS Carboscope CT2019

N limitation of vegetation growth Vcmax/flexible C : N stoichiometry 0.49 0.53 0.32 0.57 0.54 0.58
NPP 0.41 0.52 0.26 0.56 0.52 0.58
p value 0.21 0.88 0.15 0.59 0.44 0.90

Biological N fixation f (N limitation of vegetation growth) 0.44 0.46 0.33 0.57 0.54 0.57
f (NPP) or f (ET) 0.44 0.51 0.23 0.57 0.54 0.60
Time invariant 0.53 0.58 0.33 0.57 0.55 0.59
p value 0.59 0.15 0.06 0.92 0.91 0.28

Vegetation response to N limitation Dynamic 0.49 0.55 0.30 0.57 0.55 0.59
Static 0.43 0.51 0.28 0.56 0.53 0.58
p value 0.44 0.25 0.71 0.48 0.30 0.67

N limitation of decomposition f (soil N) 0.47 0.55 0.26 0.57 0.54 0.60
N invariant 0.45 0.50 0.32 0.56 0.52 0.56
p value 0.86 0.26 0.16 0.26 0.44 0.02
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Table A5. Present-day global values of biological N fixation, vegetation C : N ratio, and soil C : N ratio averaged across TRENDY-N ensemble
models with different representations of key N cycling processes (N limitation of vegetation growth, biological N fixation, vegetation response
to N limitation, and N limitation of decomposition; see Table 1). The p values are from t tests and ANOVAs assessing differences between
these representations of key N cycling processes.

Biological N Vegetation C : N Soil C : N
fixation ratio ratio

N limitation of vegetation growth Vcmax/flexible C : N stoichiometry 106.78 161.8 12.75
NPP 179.06 156.26 22.79
p value 0.51 0.85 0.39

Biological N fixation f (N limitation of vegetation growth) 123.14 201.68 15.71
f (NPP) or f (ET) 66.37 177.37 24.31
Time invariant 118.95 123.89 11.64
p value 0.27 0.15 0.68

Vegetation response to N limitation Dynamic 99.25 143.32 11.22
Static 173.29 172.58 22.4
p value 0.41 0.29 0.24

N limitation of decomposition f (soil N) 88.21 153.36 20.04
N invariant 201.34 166.38 14.04
p value 0.3 0.66 0.53

Table A6. Kendall’s tau from the Mann–Kendall test (p value < 0.05) for biological N fixation, vegetation C : N ratio, and soil C : N ratio
averaged across TRENDY-N ensemble models with different representations of key N cycling processes (N limitation of vegetation growth,
biological N fixation, vegetation response to N limitation, and N limitation of decomposition; see Table 1). The p values are from t tests and
ANOVAs assessing differences between these representations of key N cycling processes.

Biological N Vegetation C : N Soil C : N
fixation ratio ratio

N limitation of vegetation growth Vcmax/flexible C : N stoichiometry 0.48 −0.01 −0.04
NPP 0.43 −0.74 0
p value 0.89 0.06 0.94

Biological N fixation f (N limitation of vegetation growth) 0 –0.31 0.02
f (NPP) or f (ET) 0.55 −0.6 0.14
Time invariant 0.74 0.39 −0.03
p value 0.15 0.15 0.97

Vegetation response to N limitation Dynamic 0.5 −0.08 0.01
Static 0.41 −0.56 −0.04
p value 0.77 0.3 0.93

N limitation of decomposition f (soil N) 0.42 −0.42 0.31
N invariant 0.5 −0.25 −0.42
p value 0.8 0.7 0.14

Earth Syst. Dynam., 14, 767–795, 2023 https://doi.org/10.5194/esd-14-767-2023



S. Kou-Giesbrecht et al.: Evaluating nitrogen cycling 785

Figure A1. Geographical distributions of variation in (a) vegetation N, (b) litter N, (c) soil N, (d) biological N fixation, (e) N uptake, (f) net
N mineralization, (g) N2O emissions, and (h) N loss simulated by the TRENDY-N ensemble (across models over 1980–2021).
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Figure A2. Correlations between overall scores of primary C and N pools and fluxes across TRENDY-N ensemble models: gross primary
productivity (GPP), net biome productivity (NBP), vegetation C (CVEG), soil C (CSOIL), leaf area index (LAI), biological N fixation
(FBNF), vegetation C : N ratio (CNVEG), and soil C : N ratio (CNSOIL). Abbreviations of the observation-based datasets are described in
Sect. 2 and in Seiler et al. (2022). Spearman’s rank correlation coefficient is shown for statistically significant correlations (p value < 0.05).

Figure A3. Correlations between present-day global values (averaged over 1980–2021) of primary C and N pools and fluxes across
TRENDY-N ensemble models: vegetation C (CVEG), litter C (CLITTER), soil C (CSOIL), net biome productivity (NBP), gross primary
productivity (GPP), autotrophic respiration (RA), heterotrophic respiration (RH), leaf area index (LAI), vegetation N (NVEG), litter N (NLIT-
TER), soil N (NSOIL), biological N fixation (FBNF), N uptake (NUP), net N mineralization (NETNMIN), N2O emissions (N2O), N loss
(NLOSS), vegetation C : N ratio (CNVEG), and soil C : N ratio (CNSOIL). Spearman’s rank correlation coefficient is shown for statistically
significant correlations (p value < 0.05).
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Figure A4. Correlations between Kendall’s tau of primary C and N pools and fluxes across TRENDY-N ensemble models: vegetation
C (CVEG), litter C (CLITTER), soil C (CSOIL), net biome productivity (NBP), gross primary productivity (GPP), autotrophic respiration
(RA), heterotrophic respiration (RH), leaf area index (LAI), vegetation N (NVEG), litter N (NLITTER), soil N (NSOIL), biological N fixation
(FBNF), N uptake (NUP), net N mineralization (NETNMIN), N2O emissions (N2O), N loss (NLOSS), vegetation C : N ratio (CNVEG), and
soil C : N ratio (CNSOIL). Spearman’s rank correlation coefficient is shown for statistically significant correlations (p value < 0.05).
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Figure A5. Time series of (a) vegetation N, (b) litter N, (c) soil N, (d) biological N fixation, (e) N uptake, (f) net N mineralization, (g) N2O
emissions, and (h) N loss simulated by the TRENDY-N ensemble from 1850 to 2021.
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Figure A6. Latitudinal distributions and global means of (a) bio-
logical N fixation, (b) vegetation C : N ratio, and (c) soil C : N ratio
simulated by the TRENDY-N ensemble (averaged across models
over 1980–2021) in comparison to observation-based datasets from
Davies-Barnard and Friedlingstein (2020) for biological N fixation,
the TRY plant trait database for vegetation C : N ratio, and Soil-
Grids for soil C : N ratio. Boxplots show the median, interquartile
range (box), and 80 % percentiles (whiskers) of the global mean.
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