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Abstract The response of forest growth to climate variability varies along environmental gradients. A
growth increase and decrease with warming is usually observed in cold-humid and warm-dry regions,
respectively. However, it remains poorly known where the sign of these temperature effects switches. Here
we introduce a newly developed European tree ring network that has been specifically collected to
reconstruct forest aboveground biomass increment (ABI). We quantify, how the long-term (1910–2009)
interannual variability of ABI depends on local mean May–August temperature and test, if a dynamic global
vegetation model ensemble reflects the resulting patterns. We find that sites at 8 °C mean May–August
temperature increase ABI on average by 5.7 ± 1.3%, whereas sites at 20 °C decrease ABI by
3.0 ± 1.8% m�2 year�1 Δ°C�1. A threshold temperature between beneficial and detrimental effects of
warming and the associated increase in water demand on tree growth emerged at 15.9 ± 1.4 °C mean
May–August temperature. Because interannual variability increases proportionally with mean growth
rate—that is, the coefficient of variation stays constant—wewere able to validate these findings with a much
larger tree ring data set that had been established following classic dendrochronological sampling schemes.
While the observed climate sensitivity pattern is well reflected in the dynamic global vegetation model
ensemble, there is a large spread of threshold temperatures between the individual models. Also, individual
models disagree strongly on the magnitude of climate impact at the coldest and warmest locations,
suggesting where model improvement is most needed to more accurately predict forest growth and
effectively guide silvicultural practices.

1. Introduction

The fifth phase of the Coupled Model Intercomparison Project projects a 63 ± 27% increase in global Net
Primary Productivity (NPP) by 2099 under the business-as-usual CO2 emissions scenario (Representative
Concentration Pathway 8.5 (RCP8.5); Wieder et al., 2015), integrating the terrestrial response to a variety of phy-
siological, ecological, and climatic processes. Rising atmospheric CO2 concentration is generally expected to
increase plant growth (Iversen & Norby, 2014). This increase can be further enhanced by increasing tempera-
tures and longer growing seasons (Churkina et al., 2005) or alternatively be offset through water stress induced
by increased evaporative demand (Williams et al., 2013). Similarly, variation in nutrient availability (Fatichi et al.,
2014), management strategy (Noormets et al., 2015; Rydval et al., 2015), and disturbance frequency and inten-
sity, such as insect outbreaks or storm damages (Seidl et al., 2014), are known to impact the terrestrial land car-
bon sink. These interacting terms determine the annual residual terrestrial carbon balance, which has varied
from a 0.45 Pg C/year source to a 4.03 Pg C/year sink during the past 50 years (Le Quéré et al., 2015). These
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values are inferred as the net difference between the sum of emissions by fossil fuel combustion and land
cover change and the CO2 uptake by the atmosphere (i.e., the annual growth rate of CO2 concentration)
and ocean. The aggregated sink values are, however, based on average biome-specific responses to
environmental forcing and characterized by high variability and uncertainties concerning temporal dynamics
and spatial manifestations (Nemani, 2003; Piao et al., 2013; Poulter et al., 2014; Reichstein et al., 2013).

Quantifying the sensitivity of individual biomes to environmental variation is thus crucial to anticipate their
fates under future climate. This challenge has been addressed by diverse approaches including repeated field
measurements (Clark et al., 2001), climate manipulation experiments, satellite (Nemani, 2003), and eddy-
covariance data (Beer et al., 2010), together with subsequent integration into biogeochemical and Earth
System Models (Medlyn et al., 2015). However, synthesizing observations into quantitative constraints of
ecosystem responses to environmental changes is challenged by a lack of high-temporal resolution (forest
inventories), indirect measures of plant carbon uptake (satellite data), or short time series (eddy covariance
and climate manipulation experiments). In this study, we take advantage of a long-term, annually resolved,
spatially extensive, and in situ data source that enables us to quantify the absolute climate sensitivity
(i.e., gram carbon per year per square meter per degree Celsius) and interannual variability of aboveground
forest growth: Tree ring networks provide useful records of howmean climate conditions control tree growth
responses to annually varying climatic parameters (Babst et al., 2013; St. George, 2014; Vicente-Serrano et al.,
2014; Williams et al., 2010). Yet most tree ring studies report only the direction and strength of a climate-
growth relationship (correlation coefficient) and leave the actual degree to which the climatic driver affects
tree growth unaddressed. However, this sensitivity estimate (regression slope), which is a result of tree
growth variability and the strength of the climate-growth relationship, would be necessary to be able to
determine the magnitude of climate change impact on current and future tree growth.

In this study we introduce a new tree ring network comprising 49 sites and spanning a large climate gradient
across Europe that—in contrast to most available tree ring data sets—has been specifically collected with a
sampling scheme designed to reconstruct forest aboveground biomass increment (ABI, Figures 1a and 1b;
Babst, Bouriaud, Alexander, et al., 2014; Davis et al., 2009; Nehrbass-Ahles et al., 2014). We use this new tree
ring network to (i) quantify the interannual variability of ABI across European forest ecosystems and (ii) assess
the interannual climate sensitivity of European forest growth. Additionally, we compare our results to data
from a publicly available tree ring data set (Babst et al., 2013) to evaluate the influence of two different stan-
dardization and sampling methods on growth variability and climate sensitivity in Europe. Further, we use the
observed pattern of climate sensitivity to benchmark NPP estimates from a dynamic global vegetation model
(DGVM) ensemble that has been frequently used in global carbon cycle analyses (TRENDY, Sitch et al., 2015).

2. Materials and Methods
2.1. Study Area and Sampling Design

We employed a fixed-plot sampling design (Babst, Bouriaud, Alexander, et al., 2014) where all tree individuals
(alive, dead standing and lying, and stumps) with a diameter at breast height>5.6 cmwere sampled (Table S1
in the supporting information). We recorded the position, height, and diameter at breast height of each tree
before collecting two increment cores parallel to the slope, as well as stem discs of the dead trees (where
applicable). We sampled 40 plots across Europe between 2012 and 2014 (Figure 1b) along a climate gradient
ranging from 7.5 to 21.2 °C May, June, July, and August (MJJA) temperature and 85 to 690 mm of MJJA preci-
pitation (1980–2009, Figure 1a). Eight additional sites from Babst, Bouriaud, Alexander, et al. (2014) and one
site from Nehrbass-Ahles et al. (2014) were included leading to a total of 49 sites. Plot selection focused on
two of themost abundant and important tree species in Europe spruce (Picea abies) and beech (Fagus sylvatica,
San-Miguel-Ayanz et al., 2016, Mauri et al., 2017), but other species such as larch (Larix decidua), fir (Abies alba),
and pine (Pinus sylvestris and others) were also included. Stand compositions range from monocultures to
mixed forests and from young plantations (~50 years old) to old-growth multilayered stands (see Table S1).

2.2. Tree Ring Data

Tree cores were prepared and measured using standard dendrochronological techniques. Missing rings and
distance to pith were estimated as in Nehrbass-Ahles et al. (2014), and the transformation from
one-dimensional tree ring width series to individual ABI followed Babst, Bouriaud, Alexander, et al. (2014).
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Up to six suitable species-specific allometric equations were thereby applied to the reconstructed tree dia-
meters in each year to calculate aboveground woody biomass through time (Table S2). ABI was calculated
as the year-to-year difference of the sum of all individual tree biomass values and expressed as gram carbon
per square meter per year. Interannual variability was calculated over the 1980–2009 period as the mean
coefficient of variation of ABI of a running 10-year window. We chose this rather short period because of
the increasing uncertainty of the reconstructed stand ABI toward the past (Foster et al., 2014) and to

Figure 1. Climatic (a) and spatial (b) domain of the tree ring network, (c) relationship between absolute IAV and mean ABI of individual Picea abies trees at three
exemplary plots for 1980–2009, which were chosen to represent each one site with low, medium, and high IAV, where all size classes are represented evenly,
(d) relationship betweenmedian relative IAV of Picea abies trees at plots with n> 6 Picea abies trees andmean growing season temperature, (e) relationship between
absolute IAV and mean ABI for 1980–2009, and (f) median observed and simulated relative IAV for 1980–2009 across four temperature bins. Relative IAV is the
coefficient of variation of absolute IAV. Colors in (a, b, and e) refer to different dominant tree species (abbreviations according to International Tree Ring Data Bank,
ABAL = Abies alba, FASY = Fagus sylvatica, LADE = Larix decidua, PCAB = Picea abies, PIsp = Pinus sp. pl. (P. sylvestris, P. pinaster, and P. brutia), that is, the species
with the highest basal area percentage at a given site. The gray shaded area in (a) and (b) corresponds to the climate space covered with a buffer of ±0.5 °C
temperature and ± 20 mm precipitation. Shadings in (c)–(e) represent the 95% confidence interval of the corresponding regression. IAV = interannual variability;
ABI = aboveground biomass increment; MJJA = May, June, July, August.
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ensure that the coefficient of variation was not heavily influenced by nonclimatic influences, including influ-
ences related to either short-term pulses or longer-term trends caused by management (Davis et al., 2009),
natural disturbances, or stand dynamics. In total, we have reconstructed annual ABI, ABIi (ti,j), for 49 individual
sites with site number i (i = 1:49); each record includes Ni values for years ti,j, with j running from the first to the
last year of observation of site i.

To facilitate comparisons with gridded DGVM simulations over Europe, we grouped ABI and NPP estimates
into four temperature ranges that generally represent (1) high elevation coniferous stands (6.7–10 °C), (2)
mixed forests of the montane zone (10–13.3 °C), (3) lowland (13.3–16.6 °C), and (4) Mediterranean forests
(16.6–21 °C; see also Figure 1f).

We note that although ABI is not entirely equivalent to total NPP—as it excludes foliage and belowground
biomass components (including root symbionts as well as exudates and the production of volatile organic
carbon)—empirical studies have shown that ABI is as a valid proxy of NPP as they are highly correlated
(Luyssaert et al., 2007, Figure S1).

2.3. Climate Data

Monthly mean temperature and precipitation totals for the site locations were derived by adjusting the CRU
TS 3.21 time series (Harris et al., 2014) to the mean climatology of the nearest WorldClim (1 × 1 km, Hijmans
et al., 2005) grid cell with a comparable elevation (20 cell search radius). For temperature, absolute anomalies
were calculated by subtracting the long-term (1950–2000, corresponding toWorldClim) monthly means from
the entire CRU TS 3.21 time series (1901–2013) and relative anomalies were calculated for precipitation
(observed precipitation divided by monthly means). These anomalies were added to (or multiplied with, in
the case of precipitation) the WorldClim baseline climatology. In this way, we obtain 49 records for monthly
mean temperature, Ti (m,t), and precipitation, Pi (m,t) with indexm (m = 1:12) indicating themonth of the year
and t (t = 1901:2013) the year. The monthly data are averaged over the period MJJA and for each year to get
Ti
MJJA (t) and Pi

MJJA (t).

2.4. Climate Sensitivity Estimation

Next, we estimate the sensitivities of ABI to interannual variations in May to August temperature and preci-
pitation for each site. First, we high-pass filtered the ABI and climate time series with a flexible cubic smooth-
ing spline (50% frequency cutoff at 10 years) to remove multidecadal trends. The aim is to dampen possible
nonclimatic influences on ABI variations. Due to this flexible standardization, we do not evaluate trends in
absolute ABI and NPP that are codriven by longer-term changes in CO2 and nitrogen fertilization, stand
dynamics and forest management, and land cover. The tree ring data were detrended by division, whereas
the climate data were subtracted from the smoothing spline to retain absolute units to which we can refer
a relative change in ABI. In the following only detrended data are used. The climate sensitivities (partial
regression slopes) of forest growth are determined at each plot through amultiple linear regression such that

ABIi ti;j
� � ¼ sTi �TMJJA

i ti;j
� �þ sPi �PMJJA

i ti;j
� �þ εABIi ti;j

� �
: (1)

εi
ABI (ti,j) represents the deviation between the linear regression fit and an individual measurement of ABI. sTi

and sPi are the sensitivities of ABI to interannual variations in May to August temperature and precipitation,

respectively. These sensitivities correspond to the partial derivatives ∂ABIi
∂TMJJA

i
(% °C�1) and ∂ABIi

∂PMJJA
i

(% 100 mm�1).

In this way, we obtain 49 pairs (sTi , s
P
i ) of local, plot-specific climate sensitivity values.

Next, we determine the relationships between the local sensitivities and the large-scale, spatial gradient in
climatological mean temperature and precipitation. Forty-nine climatological mean May to August tempera-

ture values,T clim
i , are computed by averaging the undetrended annual values of Ti

MJJA (t) for each site over the
period 1910 to 2009. Then, the sensitivities are regressed as follows:

sTi ¼ rsTT�Tclimi þ εTi and (2)

sPi ¼ rsPT�Tclimi þ εPi : (3)

rsTT and rsPT denote the regression coefficients and εi
T and εi

P denote again the residuals between the fit and
local sensitivities. The two new regression coefficients rsTT and rsPT provide an estimate how the sensitivities
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of ABI to interannual variation in temperature, sTi , and precipitation, sPi , vary along the climatological gradient
in mean May–August temperature.

We repeated the above procedure by using all possible combinations of monthly averaged data instead of
the May–August season. Seasonal window lengths varied from 1 to 12 months, and the includedmonths ran-
ged from previous year September to current year September. We selected the May–August season for both
annually varying and mean climate data, as this pair of seasons explained the most variance in formula (2).
Choosing this season does not mean that other months of the previous or current year do not influence
growth and, as such, climate sensitivity (see Babst et al., 2012, 2013).

Regression coefficients were calculated over the 1910–2009 period as well as over two independent periods

1910–1959 and 1960–2009. For the two independent periodsTclimi was calculated over the respective 50 years.
All regression slopes and R2 values are based on robust regression with iteratively reweighted inverse least
squares to dampen the effect of outliers in the rather small and heterogeneous data set. Because the
high-pass filtered ABI time series are dimensionless, the obtained regression slopes reflect sensitivities of
ABI to climate variation relative to a mean of one. Assuming a constant of proportionality (i.e., variance scales
with mean growth rate) these relative sensitivities (expressed in percent per degree Celsius change) can be
transposed to absolute sensitivities (in gram carbon per degree Celsius change) by multiplying the dimen-
sionless time series with, for example, the observed mean ABI across the 49 sites of 233.5 g C m�2 year�1.

We tested the robustness of our results by recalculating the plot chronologies following a more common
dendrochronological method (hereafter termed classic). In this classic method raw ring widths of individual
tree cores were first detrended with a cubic smoothing spline with a 50% frequency cutoff at 10 years and
then averaged to a mean plot chronology using a biweight robust mean and variance stabilization to account
for changing sampling replication over time (Frank et al., 2007). The main difference to the ABI chronology
development is that in the classic dendrochronological approach all samples have the same weight, whereas
trees that grow the fastest—usually the biggest—dominate the ABI chronology. We applied this alternative
classic approach to our data and compared these results to those derived of a much larger tree ring network
standardized accordingly (992 sites, Babst et al., 2013). Climate sensitivities were calculated in the same way
as described above.

2.5. Dynamic Global Vegetation Models

Analogous to the ABI series, we assessed the climate sensitivity of annual NPP estimated from a suite of 11
process-based vegetation models for the 1910–2009 period across the entire grid of Europe (32–70°N, �10
to 30°E). The 11 models include 8 DGVMs of the TRENDY model intercomparison project (http://dgvm.ceh.
ac.uk; Sitch et al., 2015) and 2 models previously used for comparisons with tree ring width chronologies over
a set of 992 locations across Europe, hereafter called GEB-ORCHIDEE, GEB-LPJ (Babst et al., 2013), and
LPX-Bern v1.2 (Table S3). The two GEB models were restricted to model only tree plant functional types
(PFT), whereas all other models simulated all PFT. All models were forced with the observed change in atmo-
spheric CO2 concentration, historical climate change, and land use being held constant (representing the S2
scenario of the TRENDY project).

Modeled ABI outputs are neither reported in the TRENDY project database nor in the GEB models. However,
based on very high correlation between detrended modeled ABI and NPP time series in the LPX model (med-
ian correlation of all grid cells: r = 0.95; Figure S2), we conclude that it is appropriate to compare measured ABI
with modeled NPP. Although there are many approaches to model carbon allocation (Franklin et al., 2012)
most DGVMs and in particular all other models evaluated here use similar allometric carbon allocation rela-
tionships as LPX and hence we assume similar relationships between modeled ABI and NPP in the other
DGVMs. Inferences drawn from general relationships between measured ABI and modeled NPP behavior
should thus be largely independent of the actual selected model output (but see also discussion section 4.2).

3. Results
3.1. Tree Ring-Based Mean ABI and Interannual Variability

The observed mean site ABI ranges from 75 to 540 g C m�2 year�1 over 1980–2009. Assuming that ABI is an
~30–50% fraction of NPP (Babst, Bouriaud, Papale, et al., 2014), our observed network mean ABI of
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233.5 ± 111 g C m�2 year�1 overlaps with the inventory-based mean NPP (447 ± 112 g C m�2 year�1) of
Europe (Luyssaert et al., 2010). Controlled for species, the within-site standard deviation of individual trees
increases proportionally to mean ABI (see data from three exemplary Picea abies plots in Figure 1c). For each
of the four most represented species Picea abies, Fagus sylvatica, Pinus sylvestris, and Larix decidua, the coeffi-
cient of determination of this relationship is above 0.95. For the highest replicated tree species Picea abies the
average coefficient of variation of individual trees is 23.7 and ranges from 15.9 to 31.6 as a function of increas-
ing mean May–August temperature (R2 = 0.45, p < 0.001, N = 29, Figure 1d).

The relationship between standard deviation and growth level is also proportional between sites (R2 = 0.78,
p < 0.001) with an average coefficient of variation of 15.3 ± 4.4% (Figure 1e). Concordant with the individual
tree-based analysis, our data show a similarly strong and statistically significant positive relationship between
stand level coefficient of variation and mean May–August temperature (R2 = 0.55, p < 0.001, N = 22) for the
Picea abies dominated stands.

3.2. Tree Ring-Derived Climate Sensitivity

We find that temperature sensitivity, sTi , strongly depends on mean May–August temperature (R2 = 0.64,
p < 0.001, Figure 2a) and ranges from +7.6% Δ°C�1 at a high-elevation Fagus sylvatica site to �5.6% Δ°C�1

at the warmest site (Pinus pinaster). Across the range of observed temperatures and sites, temperature
sensitivity changes by�0.72% per degree Celsius increase in mean May–August temperature. Notably, these
results indicate a threshold temperature of 15.9 ± 1.4 °C above (below) which forest growth decreases
(increases) with warming. This mean May–August temperature-dependent relationship stays temporally
stable between the first and second halves of the twentieth century. The effect of minor data loss in the early
period (only 36 of the 49 plots span the full 1910–2009 period, Table S1) does not affect this conclusion
(Figure S3). A similar but curvilinear andweaker relationship is observed for precipitation (R2 = 0.44, p< 0.001,
Figure 2b). Because of the above-described spread versus level relationship, we can multiply the
dimensionless time series with, for example, the network mean ABI of 233.5 g C m�2 year�1 and translate
the relative sensitivities into absolute sensitivities (secondary y axis of Figure 2).

Figure 2. Relative (left-hand black y axis) and absolute (right-hand red y axis) sensitivities of ABI to a change of 1 °C in MJJA
temperature (a) and 100 mm of MJJA precipitation (b). Data are plotted against average MJJA temperature over the
1910–2009 period. All time series were high-pass filtered with a cubic smoothing spline (50% frequency cutoff at 10 years,
left-hand axis units) and subsequently multiplied by the network mean ABI of 233.5 g C m�2 year�1 (right-hand axis units).
Colors refer to different dominant species as in Figure 1. Vertical dotted lines show the standard error of each sensitivity
estimate. The black line represents the regression line based on robust linear regression (a) or based on general additive
model including a smoothing term (b); gray shading indicates the 95% confidence interval after 1,000 simulations
accounting for uncertainties in the sensitivity values. Dashed (dash-dotted) lines show the regression line of the 1910–1959
(1960–2009) period. The early split period regression lines are based on the sensitivities of 45 plots against the mean MJJA
temperature of the 1910–1959 period. The late period regression lines show the regression of all plot sensitivities against
mean MJJA temperature of the 1960–2009 period. MJJA = May, June, July, August; ABI = aboveground biomass increment.
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Our observed climate sensitivity patterns are unaffected by the choice of how the plot chronologies are
calculated (Figure 3). In 48 of the 49 plots the sensitivity estimates of the classic approach (i.e., first detrending
of individual time series and subsequent averaging, thus giving the same weight to each tree and sample
irrespective of the tree’s absolute growth increment) lie within the uncertainty of the initial sensitivity
estimates from the ABI chronologies. This allows us to compare the climate sensitivities derived from our
new tree ring network with the much larger data set of Babst et al. (2013). Even though most of our plots
are located in Switzerland (23 of 49), the threshold temperature and magnitude of temperature sensitivities
of the new network are undistinguishable from the relationship derived from 992 classically established
chronologies (i.e., which are predominantly built of only dominant trees) that are much more evenly
distributed across Europe. We want to stress that both networks do not sufficiently cover tree species of
the warm and water-limited Mediterranean region and as such predominantly represent the climate
sensitivity gradient of temperate and boreal species of Central and Northern Europe.

3.3. Climate Sensitivity of Vegetation Models

The DGVM ensemble reveals substantial spread in the coefficients of variation of modeled NPP, which on
average are lower than the observed ABI coefficients of variation (Figure 1f). In contrast to the observational
data, 7 out of 11 models show a local minimum in relative interannual variability (range: 3.8–12.1%) at
intermediate temperatures (10–13.3 °C mean May–August temperature). Furthermore, response slopes and
temperature thresholds of the individual ensemble members diverge strongly (Figure 4). Nine out of 11
models exceed the observed slope by up to 3 times, and a wide spread of 11.2–18.9 °C (with outliers of
25.0 and 26.7 °C, Figures 4a and 4b) emerged for the threshold temperatures. Despite this spread, the
ensemble mean threshold temperature of 15.7 ± 0.7 °C (Figure 4b) agrees well with our tree ring-based
estimate, although the average response slope is steeper (�1.1% Δ°C, Figure 4c).

Further examination of the results demonstrates that the DGVMs are excessively sensitive to both
temperature and precipitation variability (Figures 5–7). Compared to ABI, the models show stronger positive
(negative) temperature sensitivity at low (high) mean May–August temperature (Figures 5 and 6).
Furthermore, the common low precipitation sensitivity in both the observations and models at cooler mean
May–August temperature (range: �0.9% to 4.1% Δ100 mm�1) becomes too strongly positive in the models
above 16.6 °C (ABI: 2.2% Δ100mm�1; model mean: 13.3% Δ100mm�1, Figures 5 and 7). Lastly, we observe an

Figure 3. Relative sensitivities between the 992 tree ring chronologies from Babst et al. (2013, gray dots) and MJJA
temperature (a) and precipitation (b) plotted against mean MJJA temperature. Colored circles represent the regression
coefficients of the 49 biomass plots of this study. Filled points, vertical dotted lines, and solid red line represent the sen-
sitivities, uncertainties, and regression line as shown in Figure 2; empty circles and dashed red line represent sensitivities
and the regression line derived from the classic chronology development approach. The black regression line refers to
Babst et al. (2013). All sensitivities are based on the 10-year high-pass filtered data. MJJA = May, June, July, August;
ABI = aboveground biomass increment.
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increase in model ensemble spread with higher mean May–August temperature, which is exceptionally
prominent for precipitation sensitivity with a 4% sensitivity spread below 10 °C and 33% above 16.6 °C
(Figure 5). These tendencies, observed for the European-wide gridded analyses, also hold when focusing
only on grid cells that correspond to the tree ring sites (Figure S4). Model runs restricted to model only
tree PFT showed better model-observation agreement compared to their all-PFT equivalents (Table S4 and
Figures 6 and 7), yet the abundance of PFTs believed to be more climatically sensitive (i.e., C3 grasses) is
not sufficient to explain the discrepancies between models and observations (Figure S5).

4. Discussion

Considerable effort over the past decade has been devoted to constraining the climate sensitivity of the
terrestrial carbon cycle. Such investigations have typically been either spatially highly resolved with relative
sensitivities inferred from correlations between ecosystem processes and climate parameters (Beer et al.,
2010; Jung et al., 2017; Nemani, 2003; Piao et al., 2014) or alternatively, the absolute climate sensitivity has
been estimated from variation in atmospheric CO2 concentrations across large spatial domains and variability
within biomes left unaddressed (Ahlström et al., 2015; Ciais et al., 2014; Cox et al., 2013). In the present study,
we combine elements of both of these approaches—made possible with a biomass-oriented tree ring
sampling design (Babst, Bouriaud, Alexander, et al., 2014; Nehrbass-Ahles et al., 2014)—to provide spatially
constrained estimates of climate sensitivity for European forest ABI to benchmark DGVM performance.

4.1. Spatial Uncertainties

We demonstrate high variability in the magnitude and even the sign of the climate sensitivity of ABI or NPP,
depending upon the specific location of a site within the focal biome. Our empirical patterns show that
European forests south of ~50°N (excluding the Alps and representing roughly 53% of the CRU land grid cells)
will suffer from rising temperatures and simultaneously benefit from more precipitation and an increase in
water balance. While the mean model response reflects our climate sensitivity observations reasonably well,
we note that individual models show a diverse picture of regions where NPP is enhanced or reduced by
short-term climate variations (Figures 5 and 6). For example, VEGAS simulates positive effects of warmer
growing season temperature on NPP as far south as 40°N, whereas LPJ predicts already negative effects of
warmer temperatures south of 58°N. Model predictions are least certain for the highly productive and
intensely managed regions in temperate Europe (mean May–August temperature: 13–16 °C, roughly

Figure 4. Relative temperature sensitivities of observed ABI and modeled NPP. The straight lines in (a) are based on robust
linear regressions with shaded areas denoting the 95% confidence interval. The gray bars in (b) and (c) show the aggregate
model mean response threshold and average temperature sensitivity slope, respectively, with uncertainties (95% confi-
dence interval). Model values are derived using the entire grid of Europe. ABI = aboveground biomass increment; NPP = Net
Primary Productivity; MJJA = May, June, July, August.
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equivalent to the latitudinal band of 46–58°N), suggesting that reductions
in model uncertainties will be required to more effectively guide
silvicultural practices (Lindner et al., 2014).

4.2. Assessing Climate Sensitivity

Assessing the climate sensitivity of forest productivity and comparing it to
DGVM estimates is a challenging endeavor. While this comparison was
undertaken using the two most closely related metrics that can be derived
from the tree ring data and the archived TRENDY simulations (Sitch et al.,
2015), in the following section, we assess possible caveats of both data
sources and their comparison, particularly with respect to our main
conclusion that the models overestimate the climate sensitivity.
4.2.1. Tree Ring Sensitivities
Although the replication of our data set decreases toward the warmest
and coolest mean May–August temperature, our observed sensitivities
concur with a much larger tree ring data set spanning the whole of
Europe (Babst et al., 2013). Our findings further confirm general theory
about climate-driven tree growth mechanisms (Fritts, 1976), where at cool
locations interannual growth variability is primarily driven by growing
season temperatures and at warm locations precipitation and temperature
play a more equally important role. However, rather than showing only
correlation coefficients that only report sign and level of noise of the
relationship between tree growth and climate as usually done in large tree
ring network analyses (Babst et al., 2013; St. George, 2014; Vicente-Serrano
et al., 2014; Williams et al., 2010), we take into account the magnitude of
interannual growth variability of the time series and report
absolute sensitivities.

Traditionally, dendrochronologists have sampled only dominant and
undamaged trees to reduce the number of samples needed to obtain a
representative growth signal and to extend the time series as far back in
time as possible. Nehrbass-Ahles et al. (2014), however, found that this
classic approach is potentially unsuitable to infer trends and absolute
levels of ABI, also because usually very few stand related metadata (such
as stand density and standing basal area) are collected during the
sampling. Despite these issues, however, they found that the interannual
signal and climate-growth relationships after removing subdecadal to
multidecadal frequencies (i.e., detrending with a flexible smoothing spline)
are largely unaffected by the initial sampling design, which the
recalculation of our plot chronologies confirms. Furthermore, the close
match of the temperature sensitivity relationship of the Babst et al.
(2013) network to our results validates the use of classically sampled tree
ring chronologies and the classic averaging procedure for climate
sensitivity analysis of the entire forest ecosystems in central and northern
Europe. Whether this is true in other regions and continents needs to be
evaluated, and one has to ensure that tree ring data are a representative
subset of the investigated forest ecosystem if used for addressing
broad-scale ecological questions. Furthermore, samples should be
recently enough collected to be compared with data from other carbon
cycle data streams (Babst et al., 2017). The advantage of our sampling
strategy and chronology calculation is that individual ABI time series are
weighted according to each tree’s absolute growth increment, and we
can directly calculate ABI without the need to be close to forest inventory
plots. However, the observed similarities between the ABI and classic

Figure 5. Bivariate plot of climate sensitivities of the ABI chronologies and 11
DGVMs binned into four temperature range classes. Each panel represents a
MJJA mean temperature range class, given in the upper right corner of
each panel, and includes locations from cold (a) to warm (d) regions. N
represents the number of biomass plots in the given temperature range.
Points represent the median sensitivity, while horizontal and vertical lines
through the points represent the interquartile ranges. The gray shaded
area outlines the interquartile range of ABI derived sensitivity estimates,
and the black square shows the mean response of the 11 DGVMs.
ABI = aboveground biomass increment; DGVM = dynamic global vegetation
model; MJJA = May, June, July, August.
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Figure 6. Tree ring derived (ABI) and modeled (NPP) temperature sensitivity map. Top left shows extrapolated temperature sensitivity of ABI via regression of
Figure 2a. Model sensitivities are actual values. ABI = aboveground biomass increment; NPP = Net Primary Productivity.
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Figure 7. Tree ring derived (ABI) and modeled (NPP) precipitation sensitivity map. Top left shows extrapolated precipitation sensitivity of ABI via regression of
Figure 2b. Model sensitivities are actual values. ABI = aboveground biomass increment; NPP = Net Primary Productivity.
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approach in our study might stem from the rather simple stand composition of most of our ABI plots (in 35 of
49 plots 75% of plot basal area comprises one species) that does not lead to a clear signal dampening, which
has been observed in mixed species stands where the most abundant species contributes to less than 40% of
plot basal area (Teets et al., 2018).

By transforming tree ring data with allometric equations, we assume a proportional growth response to
climate variability along the stem. There is limited evidence that, despite a very high correlation, radial
growth in poor growth years is more reduced at 1.30 m (the usual height for tree ring sampling) than in
samples taken near the tree’s crown, possibly leading to overestimated ABI sensitivity (Bouriaud et al.,
2005; van der Maaten-Theunissen & Bouriaud, 2012). On the other hand, our empirical measures might
underestimate the actual climate sensitivity of NPP, as current year’s ABI is partly composed of previous year’s
stored carbohydrates. Natural and anthropogenic disturbances might further dampen the climate signal, and
long-term effects of climate variation, nutrient, and CO2 fertilization on absolute tree growth are not
evaluated herein.

However, uncertainties related to the above mentioned caveats, such as tree allometry, sampling design, and
chronology development approach, on the interannual growth signal appear small in light of extensive
replication and spatial distribution of publicly available tree ring data sets (such as the International Tree
Ring Data Base; https://www.ncdc.noaa.gov/paleo-search/) and spatial homogeneity of year-to-year growth
variability (Babst et al., 2012; Charney et al., 2016; Williams et al., 2013) that make tree rings a valuable
annually resolved and in situ data source of aboveground woody NPP variability (Dye et al., 2016).
4.2.2. DGVM Sensitivities
The enhanced climate sensitivity of NPP from DGVMs has been previously reported (Babst et al., 2013; Ciais
et al., 2014; Huang et al., 2016; Piao et al., 2013; Rollinson et al., 2017; Zhang et al., 2017) and may result from
inadequate model parameterizations related to soil moisture availability and plant water transport. Circularity
issues introduced by correlating NPP with the same climate data that initially drove the model (Babst et al.,
2013) may further contribute to increased climate sensitivity. Most models presently vary carbon allocation
among living tissue pools (i.e., roots, sapwood, and foliage) depending upon climatic stressors and plant
functional constraints based on simple allometric relationships (cf. supporting information Table S1 in
Sitch et al., 2015). The allocation schemes are based upon empirical evidence that proportions of forest
biomass allocation change, for example, between dry and wet regions on Earth (Reich et al., 2014). Yet the
degree to which allocation to the different tissues, at a regional scale, actually varies interannually is poorly
understood. The lack of long-term interannual data of root growth and foliage production highlights the
need for research on interannual variability of carbon allocation in mature forests. After the installation of
Level II intensive monitoring plots (UNECE ICP Forests Network) in the mid-1990s, litter fall data (representing
leaf and fruit production) now reach sufficient length to robustly analyze the relationships between climate,
aboveground woody biomass increment, and foliage production. This should ultimately lead to improved
representation of annual variability in the (currently simplified) allocation formulations in DGVMs.

We are aware that the temporal behavior of total NPP and aboveground woody NPP (our ABI) is not identical,
although appears tightly correlated in extratropical forests (Figure S1). Yet a direct comparison between tree
ring data and modeled sapwood increment (i.e., the part of NPP attributed to new wood tissue) of the LPX
model does not lead to different conclusions. In fact, it increases the model-observation discrepancy
(Figure S6) as the interannual variability of modeled sapwood increment (median coefficient of variation:
33%) is nearly 3 times the variability of NPP (13%) and both time series are highly correlated (r = 0.95,
averaged over all grid cells). Although sapwood increment may be considered as the carbon pool that is most
closely related to ABI, in LPX, this pool was never intended to mimic actual tree growth.

Another reason for the observation-model sensitivity discrepancy might be that nonstructural
carbohydrates (frequently described as the carbon reserve pool) are not represented in most state-of-the-
art DGVMs. This factor may help explain the high sensitivity to current year’s growing season climate of
the models and is demonstrated by (i) significantly different autocorrelative properties of modeled and
observed time series (Figure S7), (ii) lower ecosystem persistence in models (Pappas et al., 2017), (iii) the
rather immediate NPP recovery after climate extremes compared to that of tree ring observations
(Anderegg et al., 2015), and (iv) missing lag effects of modeled NPP time series compared to observed tree
ring widths (Zhang et al., 2017).
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5. Conclusions

Our study provides the first long-term empirical estimates for threshold temperatures between positive and
negative responses of European forests to warming and the associated increase in evaporative demand.
European forests with mean May–August temperature above 15.9 ± 1.4 °C (~9 °C mean annual temperature)
are subject to growth decline with further warming and concurrent increases in moisture stress. Future
investigations are warranted to determine if this threshold temperature and the magnitude of changing
climate sensitivity with changing mean temperature is similar in other parts and other species of the world.
Coupled Earth-system models represent the best available tool to assess how these interactions may change
in the future, yet they require accurate representation of ecosystem responses to interannual climate
variation. We have shown that the DGVM ensemble median reflects well the observed empirical responses.
However, the large spread of individual ensemble members indicates substantial uncertainties regarding
key ecosystem processes and the importance of multimodel assessments. Ongoing modeling efforts, for
example, considering carbon reserve pools and remobilization of nonstructural carbohydrates in DGVMs
through the implementation of carbon allocation schemes reflecting actual phenological phases (yet
awaiting globally useful generalizations, Gea-Izquierdo et al., 2015), or refining the representation of stem
wood carbon by explicitly simulating tree rings (Li et al., 2014), will further increase the relevance of our
empirical ABI benchmarks.

We find that climate sensitivities of ABI vary in tight connection to the ambient climatic conditions with
values ranging from �5.6% to 7.6% Δ°C�1 across the network. These observations question the relevance
of a single large-scale estimate for the climate sensitivity of the terrestrial carbon cycle (or mean values of
smaller units thereof, Ahlström et al., 2015; Ciais et al., 2014; Cox et al., 2013) and suggest that more research
is required on transient behavior of individual biome responses to climate variation.
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